code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _UpperCAmelCase : int = '''\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n''' _UpperCAmelCase : Union[str, Any] = '''\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n''' _UpperCAmelCase : Tuple = '''\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def _A( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def _A( self ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def _A( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_="uniform_average" , snake_case_=True ): lowercase =mean_squared_error( _UpperCamelCase , _UpperCamelCase , sample_weight=_UpperCamelCase , multioutput=_UpperCamelCase , squared=_UpperCamelCase ) return {"mse": mse}
72
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__ : def __init__( self : str , lowercase__ : Union[str, Any] , lowercase__ : str=13 , lowercase__ : List[str]=32 , lowercase__ : int=2 , lowercase__ : List[Any]=3 , lowercase__ : Union[str, Any]=16 , lowercase__ : List[Any]=[32, 64, 1_28] , lowercase__ : List[Any]=[1, 2, 1] , lowercase__ : int=[2, 2, 4] , lowercase__ : str=2 , lowercase__ : Union[str, Any]=2.0 , lowercase__ : Any=True , lowercase__ : List[Any]=0.0 , lowercase__ : List[str]=0.0 , lowercase__ : Union[str, Any]=0.1 , lowercase__ : Any="gelu" , lowercase__ : Dict=False , lowercase__ : Any=True , lowercase__ : List[str]=0.0_2 , lowercase__ : str=1e-5 , lowercase__ : List[Any]=True , lowercase__ : Tuple=None , lowercase__ : int=True , lowercase__ : Any=10 , lowercase__ : Optional[int]=8 , lowercase__ : int=["stage1", "stage2"] , lowercase__ : int=[1, 2] , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = hidden_sizes _lowerCAmelCase = depths _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = patch_norm _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = is_training _lowerCAmelCase = scope _lowerCAmelCase = use_labels _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = encoder_stride _lowerCAmelCase = out_features _lowerCAmelCase = out_indices def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self : str , lowercase__ : str , lowercase__ : Any , lowercase__ : Optional[Any] ): _lowerCAmelCase = FocalNetModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowerCAmelCase = model(_UpperCamelCase ) _lowerCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : str , lowercase__ : str , lowercase__ : List[Any] ): _lowerCAmelCase = FocalNetBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowerCAmelCase = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase = None _lowerCAmelCase = FocalNetBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowerCAmelCase = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : Any , lowercase__ : Any , lowercase__ : str ): _lowerCAmelCase = FocalNetForMaskedImageModeling(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowerCAmelCase = model(_UpperCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase = 1 _lowerCAmelCase = FocalNetForMaskedImageModeling(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase = model(_UpperCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : Any ): _lowerCAmelCase = self.type_sequence_label_size _lowerCAmelCase = FocalNetForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowerCAmelCase = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase = 1 _lowerCAmelCase = FocalNetForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( A__ ,A__ ,unittest.TestCase ): UpperCamelCase__ =( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCamelCase__ =( {"""feature-extraction""": FocalNetModel, """image-classification""": FocalNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase__ =False UpperCamelCase__ =False UpperCamelCase__ =False UpperCamelCase__ =False UpperCamelCase__ =False def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): _lowerCAmelCase = FocalNetModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , embed_dim=37 , has_text_modality=_UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self : Any ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): pass def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase = model_class(_UpperCamelCase ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : Optional[Any] , lowercase__ : Tuple , lowercase__ : List[str] , lowercase__ : Tuple ): _lowerCAmelCase = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) _lowerCAmelCase = outputs.hidden_states _lowerCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) # FocalNet has a different seq_length _lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = reshaped_hidden_states[0].shape _lowerCAmelCase = ( reshaped_hidden_states[0].view(_UpperCamelCase , _UpperCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = 3 _lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = FocalNetModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = _config_zero_init(_UpperCamelCase ) for model_class in self.all_model_classes: _lowerCAmelCase = model_class(config=_UpperCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class lowerCamelCase__ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self : str ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCamelCase ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase = image_processor(images=_UpperCamelCase , return_tensors='pt' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase = model(**_UpperCamelCase ) # verify the logits _lowerCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) _lowerCAmelCase = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class lowerCamelCase__ ( A__ ,unittest.TestCase ): UpperCamelCase__ =(FocalNetBackbone,) if is_torch_available() else () UpperCamelCase__ =FocalNetConfig UpperCamelCase__ =False def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = FocalNetModelTester(self )
192
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Dict = """falcon""" __A : Any = ["""past_key_values"""] def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase ) _UpperCAmelCase = hidden_size if n_embed is None else n_embed _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id _UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase = alibi _UpperCAmelCase = new_decoder_architecture _UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase = parallel_attn _UpperCAmelCase = bias super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): return self.hidden_size // self.num_attention_heads @property def UpperCamelCase( self ): return not self.alibi
32
0
'''simple docstring''' import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase ( A__ ): '''simple docstring''' def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCamelCase , encoding='utf-8' ) as input_file: lowerCamelCase_ = re.compile(r'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) lowerCamelCase_ = input_file.read() lowerCamelCase_ = regexp.search(_UpperCamelCase ) return match def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' with open(_UpperCamelCase , encoding='utf-8' ) as input_file: lowerCamelCase_ = re.compile(r'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) lowerCamelCase_ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` lowerCamelCase_ = regexp.finditer(_UpperCamelCase ) lowerCamelCase_ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = Path('./datasets' ) lowerCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_UpperCamelCase ) ): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = Path('./datasets' ) lowerCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(_UpperCamelCase ) ): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
42
from math import sqrt def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_00_01 ) -> int: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 while count != nth: number += 2 if is_prime(SCREAMING_SNAKE_CASE_ ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
32
0
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging snake_case : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class snake_case_ (A__ ): def __init__( self :List[Any] ,__snake_case :Optional[Any] ,__snake_case :Optional[int]=7_68 ) -> str: super().__init__(_UpperCamelCase ) a__ = proj_size a__ = CLIPVisionModel(_UpperCamelCase ) a__ = PaintByExampleMapper(_UpperCamelCase ) a__ = nn.LayerNorm(config.hidden_size ) a__ = nn.Linear(config.hidden_size ,self.proj_size ) # uncondition for scaling a__ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def lowerCamelCase__( self :int ,__snake_case :Dict ,__snake_case :Dict=False ) -> Any: a__ = self.model(pixel_values=_UpperCamelCase ) a__ = clip_output.pooler_output a__ = self.mapper(latent_states[:, None] ) a__ = self.final_layer_norm(_UpperCamelCase ) a__ = self.proj_out(_UpperCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class snake_case_ (nn.Module ): def __init__( self :Tuple ,__snake_case :str ) -> Optional[Any]: super().__init__() a__ = (config.num_hidden_layers + 1) // 5 a__ = config.hidden_size a__ = 1 a__ = nn.ModuleList( [ BasicTransformerBlock(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,activation_fn='gelu' ,attention_bias=_UpperCamelCase ) for _ in range(_UpperCamelCase ) ] ) def lowerCamelCase__( self :Dict ,__snake_case :Optional[int] ) -> Optional[int]: for block in self.blocks: a__ = block(_UpperCamelCase ) return hidden_states
335
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(SCREAMING_SNAKE_CASE_ ) if number < 0: return False _UpperCAmelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
32
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__: Dict = logging.get_logger(__name__) lowerCAmelCase__: Dict = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class snake_case_ ( A__ ): __lowerCamelCase : Union[str, Any] = """wavlm""" def __init__( self , __lowerCAmelCase=32 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3_072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1e-5 , __lowerCAmelCase="group" , __lowerCAmelCase="gelu" , __lowerCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __lowerCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __lowerCAmelCase=False , __lowerCAmelCase=128 , __lowerCAmelCase=16 , __lowerCAmelCase=320 , __lowerCAmelCase=800 , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=0.05 , __lowerCAmelCase=10 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0 , __lowerCAmelCase=10 , __lowerCAmelCase=320 , __lowerCAmelCase=2 , __lowerCAmelCase=0.1 , __lowerCAmelCase=100 , __lowerCAmelCase=256 , __lowerCAmelCase=256 , __lowerCAmelCase=0.1 , __lowerCAmelCase="mean" , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=256 , __lowerCAmelCase=(512, 512, 512, 512, 1_500) , __lowerCAmelCase=(5, 3, 3, 1, 1) , __lowerCAmelCase=(1, 2, 3, 1, 1) , __lowerCAmelCase=512 , __lowerCAmelCase=80 , __lowerCAmelCase=0 , __lowerCAmelCase=1 , __lowerCAmelCase=2 , __lowerCAmelCase=False , __lowerCAmelCase=3 , __lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase=None , **__lowerCAmelCase , ): super().__init__(**_UpperCamelCase , pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : List[str] = hidden_size SCREAMING_SNAKE_CASE_ : Dict = feat_extract_norm SCREAMING_SNAKE_CASE_ : List[str] = feat_extract_activation SCREAMING_SNAKE_CASE_ : Optional[int] = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Tuple = conv_bias SCREAMING_SNAKE_CASE_ : Dict = num_buckets SCREAMING_SNAKE_CASE_ : Any = max_bucket_distance SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_conv_pos_embeddings SCREAMING_SNAKE_CASE_ : Tuple = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(self.conv_dim ) SCREAMING_SNAKE_CASE_ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_act SCREAMING_SNAKE_CASE_ : Dict = num_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = hidden_dropout SCREAMING_SNAKE_CASE_ : List[str] = attention_dropout SCREAMING_SNAKE_CASE_ : List[str] = activation_dropout SCREAMING_SNAKE_CASE_ : Tuple = feat_proj_dropout SCREAMING_SNAKE_CASE_ : Dict = final_dropout SCREAMING_SNAKE_CASE_ : Optional[Any] = layerdrop SCREAMING_SNAKE_CASE_ : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : List[str] = num_ctc_classes SCREAMING_SNAKE_CASE_ : List[Any] = vocab_size SCREAMING_SNAKE_CASE_ : str = do_stable_layer_norm SCREAMING_SNAKE_CASE_ : Tuple = use_weighted_layer_sum SCREAMING_SNAKE_CASE_ : Union[str, Any] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE_ : str = apply_spec_augment SCREAMING_SNAKE_CASE_ : List[str] = mask_time_prob SCREAMING_SNAKE_CASE_ : Optional[int] = mask_time_length SCREAMING_SNAKE_CASE_ : Any = mask_time_min_masks SCREAMING_SNAKE_CASE_ : Any = mask_feature_prob SCREAMING_SNAKE_CASE_ : Dict = mask_feature_length # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE_ : Any = num_codevectors_per_group SCREAMING_SNAKE_CASE_ : Optional[Any] = num_codevector_groups SCREAMING_SNAKE_CASE_ : Optional[int] = contrastive_logits_temperature SCREAMING_SNAKE_CASE_ : Dict = num_negatives SCREAMING_SNAKE_CASE_ : Dict = codevector_dim SCREAMING_SNAKE_CASE_ : Dict = proj_codevector_dim SCREAMING_SNAKE_CASE_ : List[Any] = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE_ : Any = ctc_loss_reduction SCREAMING_SNAKE_CASE_ : Dict = ctc_zero_infinity # adapter SCREAMING_SNAKE_CASE_ : Optional[int] = add_adapter SCREAMING_SNAKE_CASE_ : str = adapter_kernel_size SCREAMING_SNAKE_CASE_ : List[str] = adapter_stride SCREAMING_SNAKE_CASE_ : List[str] = num_adapter_layers SCREAMING_SNAKE_CASE_ : Dict = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_ : Tuple = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_ : List[Any] = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : str = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = list(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = xvector_output_dim @property def __A ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
345
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class __UpperCamelCase ( A__ ): __A : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __A : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) __A : ClassVar[Features] = Features({} ) __A : str = "text" @property def UpperCamelCase( self ): return {self.text_column: "text"}
32
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : List[str] = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : str = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
436
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "spiece.model"} UpperCAmelCase_ = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } UpperCAmelCase_ = "▁" class __UpperCamelCase ( A__ ): __A : Any = VOCAB_FILES_NAMES __A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase=100 , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=True , **_UpperCamelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _UpperCAmelCase = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) _UpperCAmelCase = legacy _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = extra_ids _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @staticmethod def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , ) return max_model_length @property def UpperCamelCase( self ): return self.sp_model.get_piece_size() + self._extra_ids def UpperCamelCase( self ): _UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase( self ): return list( set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCamelCase( self ): return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()] def UpperCamelCase( self , _UpperCamelCase ): if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) if token_ids_a is None: return token_ids_a else: _UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _UpperCamelCase ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: _UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' ) return super().tokenize(_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): if not self.legacy: _UpperCAmelCase = text.startswith(_UpperCamelCase ) if is_first: _UpperCAmelCase = text[1:] _UpperCAmelCase = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ): _UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCamelCase( self , _UpperCamelCase ): if token.startswith('''<extra_id_''' ): _UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase ) _UpperCAmelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): if index < self.sp_model.get_piece_size(): _UpperCAmelCase = self.sp_model.IdToPiece(_UpperCamelCase ) else: _UpperCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = [] _UpperCAmelCase = '''''' _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(_UpperCamelCase ) _UpperCAmelCase = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
32
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( A , A , A ): '''simple docstring''' UpperCAmelCase__ =MobileBertConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase__ =MobileBertForPreTraining(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint UpperCAmelCase__ =load_tf_weights_in_mobilebert(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCamelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
625
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' ) def A__ ( ) -> int | None: """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): _UpperCAmelCase = 10_00_02 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate for base_num in range(3_33 , 99 , -1 ): _UpperCAmelCase = 1_00_20_03 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
32
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : List[str] = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class __lowerCAmelCase (A__ ): '''simple docstring''' a__ = """luke""" def __init__( self , a=5_02_67 , a=50_00_00 , a=7_68 , a=2_56 , a=12 , a=12 , a=30_72 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=2 , a=0.02 , a=1e-1_2 , a=True , a=None , a=1 , a=0 , a=2 , **a , ): """simple docstring""" super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) snake_case_ :Optional[Any] = vocab_size snake_case_ :Optional[Any] = entity_vocab_size snake_case_ :List[str] = hidden_size snake_case_ :List[Any] = entity_emb_size snake_case_ :Tuple = num_hidden_layers snake_case_ :str = num_attention_heads snake_case_ :Dict = hidden_act snake_case_ :Tuple = intermediate_size snake_case_ :int = hidden_dropout_prob snake_case_ :List[str] = attention_probs_dropout_prob snake_case_ :int = max_position_embeddings snake_case_ :Optional[int] = type_vocab_size snake_case_ :Dict = initializer_range snake_case_ :Any = layer_norm_eps snake_case_ :Optional[Any] = use_entity_aware_attention snake_case_ :Optional[Any] = classifier_dropout
584
import numpy as np def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray: """simple docstring""" return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
from pathlib import Path import numpy as np from PIL import Image def __UpperCamelCase ( _lowerCAmelCase ) -> np.ndarray: """simple docstring""" A , A , A : List[Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def __UpperCamelCase ( _lowerCAmelCase ) -> np.ndarray: """simple docstring""" return (gray > 127) & (gray <= 255) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> np.ndarray: """simple docstring""" A : Optional[int] = np.zeros_like(SCREAMING_SNAKE_CASE_ ) A : Dict = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image A : Tuple = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): A : Optional[int] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() A : Tuple = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE_:Union[str, Any] = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" SCREAMING_SNAKE_CASE_:List[Any] = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE_:List[str] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE_:Any = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE_:Union[str, Any] = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
662
UpperCAmelCase_ = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def A__ ( ) -> None: """simple docstring""" _UpperCAmelCase = '''Morse code here!''' print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
32
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' UpperCAmelCase = '''https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg''' UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ).convert('''RGB''' ) return image def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.embeddings.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.embeddings.layernorm.bias''') ) # fmt: on return rename_keys def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = val def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) UpperCAmelCase = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict UpperCAmelCase = torch.cat((q_bias, torch.zeros_like(SCREAMING_SNAKE_CASE_ , requires_grad=SCREAMING_SNAKE_CASE_ ), v_bias) ) UpperCAmelCase = qkv_bias def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> int: '''simple docstring''' UpperCAmelCase = 364 if '''coco''' in model_name else 224 UpperCAmelCase = InstructBlipVisionConfig(image_size=SCREAMING_SNAKE_CASE_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: UpperCAmelCase = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: UpperCAmelCase = LlamaConfig.from_pretrained('''decapoda-research/llama-7b-hf''' , vocab_size=3_2001 ).to_dict() elif "vicuna-13b" in model_name: UpperCAmelCase = LlamaConfig.from_pretrained('''decapoda-research/llama-13b-hf''' , vocab_size=3_2001 ).to_dict() else: raise ValueError('''Model name not supported''' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 UpperCAmelCase = InstructBlipQFormerConfig(vocab_size=3_0523 ).to_dict() UpperCAmelCase = InstructBlipConfig(vision_config=SCREAMING_SNAKE_CASE_ , text_config=SCREAMING_SNAKE_CASE_ , qformer_config=SCREAMING_SNAKE_CASE_ ) return config, image_size @torch.no_grad() def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=False ) -> int: '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-uncased''' , truncation_side='''left''' ) qformer_tokenizer.add_special_tokens({'''bos_token''': '''[DEC]'''} ) if "t5" in model_name: UpperCAmelCase = TaTokenizerFast.from_pretrained('''google/flan-t5-xl''' , truncation_side='''left''' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) UpperCAmelCase = LlamaTokenizerFast.from_pretrained( '''huggyllama/llama-7b''' , truncation_side='''left''' , bos_token='''</s>''' , unk_token='''</s>''' ) tokenizer.add_special_tokens({'''pad_token''': '''[PAD]'''} ) UpperCAmelCase , UpperCAmelCase = get_blipa_config(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = InstructBlipForConditionalGeneration(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase = { '''instructblip-vicuna-7b''': ('''blip2_vicuna_instruct''', '''vicuna7b'''), '''instructblip-vicuna-13b''': ('''blip2_vicuna_instruct''', '''vicuna13b'''), '''instructblip-flan-t5-xl''': ('''blip2_t5_instruct''', '''flant5xl'''), '''instructblip-flan-t5-xxl''': ('''blip2_t5_instruct''', '''flant5xxl'''), } UpperCAmelCase , UpperCAmelCase = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase = '''cuda:1''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase = '''cuda:2''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = load_model_and_preprocess( name=SCREAMING_SNAKE_CASE_ , model_type=SCREAMING_SNAKE_CASE_ , is_eval=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase = original_model.state_dict() UpperCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE_ ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase = key.replace('''self''' , '''attention''' ) if "llm_proj" in key: UpperCAmelCase = key.replace('''llm_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''llm_model''' ): UpperCAmelCase = key.replace('''llm_model''' , '''language_model''' ) if key.startswith('''t5''' ): UpperCAmelCase = key.replace('''t5''' , '''language''' ) UpperCAmelCase = val # read in qv biases read_in_q_v_bias(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = load_demo_image() UpperCAmelCase = '''What is unusual about this image?''' # create processor UpperCAmelCase = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=SCREAMING_SNAKE_CASE_ , image_std=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = InstructBlipProcessor( image_processor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ , ) UpperCAmelCase = processor(images=SCREAMING_SNAKE_CASE_ , text=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # make sure processor creates exact same pixel values UpperCAmelCase = vis_processors['''eval'''](SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , SCREAMING_SNAKE_CASE_ ) original_model.to(SCREAMING_SNAKE_CASE_ ) hf_model.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): if "vicuna" in model_name: UpperCAmelCase = original_model({'''image''': original_pixel_values, '''text_input''': [prompt]} ).logits UpperCAmelCase = hf_model(**SCREAMING_SNAKE_CASE_ ).logits else: UpperCAmelCase = original_model( {'''image''': original_pixel_values, '''text_input''': [prompt], '''text_output''': ['''\n''']} ).logits UpperCAmelCase = tokenizer('''\n''' , return_tensors='''pt''' ).input_ids.to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) UpperCAmelCase = hf_model(**SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ).logits print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape UpperCAmelCase = 1E-4 if '''vicuna''' in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) print('''Looks ok!''' ) print('''Generating with original model...''' ) UpperCAmelCase = original_model.generate({'''image''': original_pixel_values, '''prompt''': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('''Generating with HF model...''' ) UpperCAmelCase = hf_model.generate( **SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? UpperCAmelCase = 2 print('''Original generation:''' , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = processor.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = [text.strip() for text in output_text] print('''HF generation:''' , SCREAMING_SNAKE_CASE_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: processor.push_to_hub(F"""Salesforce/{model_name}""" ) hf_model.push_to_hub(F"""Salesforce/{model_name}""" ) if __name__ == "__main__": __A : List[Any] = argparse.ArgumentParser() __A : Dict = [ "instructblip-vicuna-7b", "instructblip-vicuna-13b", "instructblip-flan-t5-xl", "instructblip-flan-t5-xxl", ] parser.add_argument( "--model_name", default="instructblip-flan-t5-xl", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) __A : Dict = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
130
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( A__ , unittest.TestCase ): __A : Any = DanceDiffusionPipeline __A : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __A : Tuple = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } __A : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __A : List[str] = False __A : str = False def UpperCamelCase( self ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) _UpperCAmelCase = IPNDMScheduler() _UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ): if str(_UpperCamelCase ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(_UpperCamelCase ) else: _UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _UpperCAmelCase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = DanceDiffusionPipeline(**_UpperCamelCase ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = pipe(**_UpperCamelCase ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCamelCase( self ): return super().test_save_load_local() @skip_mps def UpperCamelCase( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def UpperCamelCase( self ): return super().test_save_load_optional_components() @skip_mps def UpperCamelCase( self ): return super().test_attention_slicing_forward_pass() def UpperCamelCase( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase( self ): _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
32
0
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
341
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) UpperCAmelCase_ = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) UpperCAmelCase_ = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) UpperCAmelCase_ = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) UpperCAmelCase_ = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModel) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class __UpperCamelCase ( _BaseAutoModelClass ): __A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class __UpperCamelCase ( _BaseAutoModelClass ): __A : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class __UpperCamelCase ( _BaseAutoModelClass ): __A : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
32
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : Union[str, Any] = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
import baseaa def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode('''utf-8''' ) ) def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str: """simple docstring""" return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' ) if __name__ == "__main__": UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = baseaa_encode(test) print(encoded) UpperCAmelCase_ = baseaa_decode(encoded) print(decoded)
32
0
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig _lowercase: Any = { '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } _lowercase: Optional[int] = logging.get_logger(__name__) class lowerCamelCase__ ( A__ ): UpperCamelCase__ ="""maskformer""" UpperCamelCase__ ={"""hidden_size""": """mask_feature_size"""} UpperCamelCase__ =["""resnet""", """swin"""] UpperCamelCase__ =["""detr"""] def __init__( self : List[str] , lowercase__ : Optional[int] = 2_56 , lowercase__ : List[str] = 2_56 , lowercase__ : Any = 0.1 , lowercase__ : Dict = False , lowercase__ : str = None , lowercase__ : Any = None , lowercase__ : Union[str, Any] = 0.0_2 , lowercase__ : Tuple = 1.0 , lowercase__ : List[str] = 1.0 , lowercase__ : Tuple = 1.0 , lowercase__ : Tuple = 2_0.0 , lowercase__ : Dict = None , **lowercase__ : Optional[int] , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k _lowerCAmelCase = SwinConfig( image_size=3_84 , in_channels=3 , patch_size=4 , embed_dim=1_28 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_UpperCamelCase , _UpperCamelCase ): _lowerCAmelCase = backbone_config.pop('model_type' ) _lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase = config_class.from_dict(_UpperCamelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' f'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 _lowerCAmelCase = DetrConfig() else: # verify that the decoder is supported _lowerCAmelCase = ( decoder_config.pop('model_type' ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'Transformer Decoder {decoder_type} not supported, please use one of' f' {",".join(self.decoders_supported )}' ) if isinstance(_UpperCamelCase , _UpperCamelCase ): _lowerCAmelCase = CONFIG_MAPPING[decoder_type] _lowerCAmelCase = config_class.from_dict(_UpperCamelCase ) _lowerCAmelCase = backbone_config _lowerCAmelCase = decoder_config # main feature dimension for the model _lowerCAmelCase = fpn_feature_size _lowerCAmelCase = mask_feature_size # initializer _lowerCAmelCase = init_std _lowerCAmelCase = init_xavier_std # Hungarian matcher && loss _lowerCAmelCase = cross_entropy_weight _lowerCAmelCase = dice_weight _lowerCAmelCase = mask_weight _lowerCAmelCase = use_auxiliary_loss _lowerCAmelCase = no_object_weight _lowerCAmelCase = output_auxiliary_logits _lowerCAmelCase = self.decoder_config.encoder_attention_heads _lowerCAmelCase = self.decoder_config.num_hidden_layers super().__init__(**_UpperCamelCase ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , lowercase__ : List[str] , lowercase__ : Union[str, Any] , **lowercase__ : List[Any] ): return cls( backbone_config=_UpperCamelCase , decoder_config=_UpperCamelCase , **_UpperCamelCase , ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = copy.deepcopy(self.__dict__ ) _lowerCAmelCase = self.backbone_config.to_dict() _lowerCAmelCase = self.decoder_config.to_dict() _lowerCAmelCase = self.__class__.model_type return output
192
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): __A : int = ["""pixel_values"""] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = do_rescale _UpperCAmelCase = do_normalize _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ): return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(_UpperCamelCase ) if not is_batched(_UpperCamelCase ): _UpperCAmelCase = [images] if not valid_images(_UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
32
0
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) lowerCamelCase_ = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" lowerCamelCase_ = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" lowerCamelCase_ = max(len(SCREAMING_SNAKE_CASE_ ) ,len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) ,b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
42
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=A__ ): __A : str = ["""torch""", """scipy"""] def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ): requires_backends(cls , ['''torch''', '''scipy'''] )
32
0
def __lowercase ( __lowerCAmelCase : Union[str, Any] ): if not head: return True # split the list to two parts a__ , a__ = head.next, head while fast and fast.next: a__ = fast.next.next a__ = slow.next a__ = slow.next a__ = None # Don't forget here! But forget still works! # reverse the second part a__ = None while second: a__ = second.next a__ = node a__ = second a__ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False a__ = node.next a__ = head.next return True def __lowercase ( __lowerCAmelCase : Union[str, Any] ): if not head or not head.next: return True # 1. Get the midpoint (slow) a__ = a__ = a__ = head while fast and fast.next: a__ , a__ = fast.next.next, slow.next # 2. Push the second half into the stack a__ = [slow.val] while slow.next: a__ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False a__ = cur.next return True def __lowercase ( __lowerCAmelCase : Tuple ): if not head or not head.next: return True a__ = {} a__ = 0 while head: if head.val in d: d[head.val].append(SCREAMING_SNAKE_CASE_ ) else: a__ = [pos] a__ = head.next pos += 1 a__ = pos - 1 a__ = 0 for v in d.values(): if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0: middle += 1 else: a__ = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
335
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int: """simple docstring""" _UpperCAmelCase = [0 for i in range(n + 1 )] _UpperCAmelCase = 1 _UpperCAmelCase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = 1 _UpperCAmelCase = 0 for i in range(SCREAMING_SNAKE_CASE_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
32
0
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class snake_case_ : @staticmethod def __A ( *__lowerCAmelCase , **__lowerCAmelCase ): pass @is_pipeline_test @require_vision @require_torch class snake_case_ ( unittest.TestCase ): __lowerCamelCase : Union[str, Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[str] = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) SCREAMING_SNAKE_CASE_ : List[str] = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def __A ( self , __lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = object_detector(examples[0] , threshold=0.0 ) SCREAMING_SNAKE_CASE_ : List[str] = len(_UpperCamelCase ) self.assertGreater(_UpperCamelCase , 0 ) self.assertEqual( _UpperCamelCase , [ { 'score': ANY(_UpperCamelCase ), 'label': ANY(_UpperCamelCase ), 'box': {'xmin': ANY(_UpperCamelCase ), 'ymin': ANY(_UpperCamelCase ), 'xmax': ANY(_UpperCamelCase ), 'ymax': ANY(_UpperCamelCase )}, } for i in range(_UpperCamelCase ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def __A ( self ): pass @require_torch def __A ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.64 , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.72_35, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.72_18, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.71_84, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.67_48, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.66_56, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.66_14, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.64_56, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.6_42, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.64_19, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ] , ) SCREAMING_SNAKE_CASE_ : str = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {'score': 0.72_35, 'label': 'cat', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.72_18, 'label': 'remote', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.71_84, 'label': 'couch', 'box': {'xmin': 204, 'ymin': 167, 'xmax': 232, 'ymax': 190}}, {'score': 0.67_48, 'label': 'remote', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.66_56, 'label': 'cat', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.66_14, 'label': 'couch', 'box': {'xmin': 571, 'ymin': 83, 'xmax': 598, 'ymax': 103}}, {'score': 0.64_56, 'label': 'remote', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, {'score': 0.6_42, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 274, 'xmax': 93, 'ymax': 297}}, {'score': 0.64_19, 'label': 'cat', 'box': {'xmin': 494, 'ymin': 105, 'xmax': 521, 'ymax': 127}}, ] ] , ) @require_torch @slow def __A ( self ): SCREAMING_SNAKE_CASE_ : str = pipeline('zero-shot-object-detection' ) SCREAMING_SNAKE_CASE_ : Any = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.28_68, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_77, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.25_37, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.14_74, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.12_08, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ] , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {'score': 0.28_68, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_77, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.25_37, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.14_74, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.12_08, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], [ {'score': 0.28_68, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_77, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.25_37, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.14_74, 'label': 'remote', 'box': {'xmin': 335, 'ymin': 74, 'xmax': 371, 'ymax': 187}}, {'score': 0.12_08, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def __A ( self ): pass @require_torch @slow def __A ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = 0.2 SCREAMING_SNAKE_CASE_ : str = pipeline('zero-shot-object-detection' ) SCREAMING_SNAKE_CASE_ : str = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=_UpperCamelCase , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.28_68, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_77, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, {'score': 0.25_37, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, ] , ) @require_torch @slow def __A ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = 2 SCREAMING_SNAKE_CASE_ : Any = pipeline('zero-shot-object-detection' ) SCREAMING_SNAKE_CASE_ : int = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=_UpperCamelCase , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {'score': 0.28_68, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.2_77, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 177, 'ymax': 115}}, ] , )
345
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( A__ ): def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
32
0
'''simple docstring''' import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _SCREAMING_SNAKE_CASE : str = get_logger(__name__) class _snake_case ( enum.Enum ): '''simple docstring''' __snake_case = """all_checks""" __snake_case = """basic_checks""" __snake_case = """no_checks""" class _snake_case ( A__ ): '''simple docstring''' pass class _snake_case ( A__ ): '''simple docstring''' pass class _snake_case ( A__ ): '''simple docstring''' pass class _snake_case ( A__ ): '''simple docstring''' pass def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ): """simple docstring""" if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) ) if len(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) > 0: raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) ) __magic_name__ : int = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] __magic_name__ : str = " for " + verification_name if verification_name is not None else "" if len(SCREAMING_SNAKE_CASE_ ) > 0: raise NonMatchingChecksumError( F"""Checksums didn\'t match{for_verification_name}:\n""" F"""{bad_urls}\n""" "Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class _snake_case ( A__ ): '''simple docstring''' pass class _snake_case ( A__ ): '''simple docstring''' pass class _snake_case ( A__ ): '''simple docstring''' pass class _snake_case ( A__ ): '''simple docstring''' pass def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) > 0: raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) ) if len(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) > 0: raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) ) __magic_name__ : int = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(SCREAMING_SNAKE_CASE_ ) > 0: raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE_ ) ) logger.info("All the splits matched successfully." ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ = True ): """simple docstring""" if record_checksum: __magic_name__ : int = shaaaa() with open(SCREAMING_SNAKE_CASE_ , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B"" ): m.update(SCREAMING_SNAKE_CASE_ ) __magic_name__ : Any = m.hexdigest() else: __magic_name__ : Any = None return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE_ ), "checksum": checksum} def _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
436
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( A__ ): __A : Dict = ["""image_processor""", """tokenizer"""] __A : List[str] = """BridgeTowerImageProcessor""" __A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , _UpperCamelCase , _UpperCamelCase ): super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel_values + pixel_mask _UpperCAmelCase = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
32
0
import logging from transformers import PretrainedConfig UpperCamelCase_ = logging.getLogger(__name__) UpperCamelCase_ = { 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class snake_case_ ( A__ ): '''simple docstring''' __UpperCamelCase = """bertabs""" def __init__( self, A_=3_0522, A_=512, A_=6, A_=512, A_=8, A_=512, A_=0.2, A_=6, A_=768, A_=8, A_=2048, A_=0.2, **A_, ) -> List[Any]: super().__init__(**_UpperCamelCase ) UpperCAmelCase__ =vocab_size UpperCAmelCase__ =max_pos UpperCAmelCase__ =enc_layers UpperCAmelCase__ =enc_hidden_size UpperCAmelCase__ =enc_heads UpperCAmelCase__ =enc_ff_size UpperCAmelCase__ =enc_dropout UpperCAmelCase__ =dec_layers UpperCAmelCase__ =dec_hidden_size UpperCAmelCase__ =dec_heads UpperCAmelCase__ =dec_ff_size UpperCAmelCase__ =dec_dropout
625
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCAmelCase : '''simple docstring''' def __init__( self , a , a=2 , a=True , a=False , a=10 , a=3 , a=32 * 4 , a=32 * 6 , a=4 , a=32 , ): """simple docstring""" snake_case_ :Optional[Any] = parent snake_case_ :Union[str, Any] = batch_size snake_case_ :Dict = is_training snake_case_ :List[Any] = use_auxiliary_loss snake_case_ :Tuple = num_queries snake_case_ :List[str] = num_channels snake_case_ :List[str] = min_size snake_case_ :Dict = max_size snake_case_ :Optional[Any] = num_labels snake_case_ :Optional[Any] = mask_feature_size def _a ( self ): """simple docstring""" snake_case_ :int = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _UpperCamelCase ) snake_case_ :Optional[int] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_UpperCamelCase ) snake_case_ :Tuple = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_UpperCamelCase ) > 0.5 ).float() snake_case_ :Union[str, Any] = (torch.rand((self.batch_size, self.num_labels) , device=_UpperCamelCase ) > 0.5).long() snake_case_ :Optional[int] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _a ( self ): """simple docstring""" return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_28 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def _a ( self ): """simple docstring""" snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ :int = self.prepare_config_and_inputs() snake_case_ :int = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def _a ( self , a , a ): """simple docstring""" snake_case_ :Union[str, Any] = output.encoder_hidden_states snake_case_ :Union[str, Any] = output.pixel_decoder_hidden_states snake_case_ :str = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_UpperCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCamelCase ) , config.decoder_config.decoder_layers ) def _a ( self , a , a , a , a=False ): """simple docstring""" with torch.no_grad(): snake_case_ :str = MaskFormerModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ :int = model(pixel_values=_UpperCamelCase , pixel_mask=_UpperCamelCase ) snake_case_ :Optional[Any] = model(_UpperCamelCase , output_hidden_states=_UpperCamelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_UpperCamelCase , _UpperCamelCase ) def _a ( self , a , a , a , a , a ): """simple docstring""" snake_case_ :Any = MaskFormerForInstanceSegmentation(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() def comm_check_on_output(a ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): snake_case_ :List[str] = model(pixel_values=_UpperCamelCase , pixel_mask=_UpperCamelCase ) snake_case_ :int = model(_UpperCamelCase ) comm_check_on_output(_UpperCamelCase ) snake_case_ :Dict = model( pixel_values=_UpperCamelCase , pixel_mask=_UpperCamelCase , mask_labels=_UpperCamelCase , class_labels=_UpperCamelCase ) comm_check_on_output(_UpperCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCAmelCase (A__ ,A__ ,unittest.TestCase ): '''simple docstring''' a__ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () a__ = ( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False def _a ( self ): """simple docstring""" snake_case_ :List[str] = MaskFormerModelTester(self ) snake_case_ :Optional[int] = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase ) def _a ( self ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self ): """simple docstring""" snake_case_ , snake_case_ :Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_UpperCamelCase , **_UpperCamelCase , output_hidden_states=_UpperCamelCase ) def _a ( self ): """simple docstring""" snake_case_ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_UpperCamelCase ) @unittest.skip(reason="MaskFormer does not use inputs_embeds" ) def _a ( self ): """simple docstring""" pass @unittest.skip(reason="MaskFormer does not have a get_input_embeddings method" ) def _a ( self ): """simple docstring""" pass @unittest.skip(reason="MaskFormer is not a generative model" ) def _a ( self ): """simple docstring""" pass @unittest.skip(reason="MaskFormer does not use token embeddings" ) def _a ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason="MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`" ) def _a ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _a ( self ): """simple docstring""" pass def _a ( self ): """simple docstring""" snake_case_ , snake_case_ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ :List[str] = model_class(_UpperCamelCase ) snake_case_ :List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ :str = [*signature.parameters.keys()] snake_case_ :Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) @slow def _a ( self ): """simple docstring""" for model_name in ["facebook/maskformer-swin-small-coco"]: snake_case_ :List[str] = MaskFormerModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def _a ( self ): """simple docstring""" snake_case_ :Any = (self.model_tester.min_size,) * 2 snake_case_ :str = { "pixel_values": torch.randn((2, 3, *size) , device=_UpperCamelCase ), "mask_labels": torch.randn((2, 10, *size) , device=_UpperCamelCase ), "class_labels": torch.zeros(2 , 10 , device=_UpperCamelCase ).long(), } snake_case_ :Optional[Any] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_UpperCamelCase ) snake_case_ :str = model(**_UpperCamelCase ) self.assertTrue(outputs.loss is not None ) def _a ( self ): """simple docstring""" snake_case_ , snake_case_ :int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_UpperCamelCase , **_UpperCamelCase , output_hidden_states=_UpperCamelCase ) def _a ( self ): """simple docstring""" snake_case_ , snake_case_ :Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ :str = model_class(_UpperCamelCase ).to(_UpperCamelCase ) snake_case_ :int = model(**_UpperCamelCase , output_attentions=_UpperCamelCase ) self.assertTrue(outputs.attentions is not None ) def _a ( self ): """simple docstring""" if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss snake_case_ :Any = self.all_model_classes[1] snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ :int = self.model_tester.prepare_config_and_inputs() snake_case_ :Dict = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() snake_case_ :Optional[int] = model(_UpperCamelCase , mask_labels=_UpperCamelCase , class_labels=_UpperCamelCase ).loss loss.backward() def _a ( self ): """simple docstring""" snake_case_ :Optional[Any] = self.all_model_classes[1] snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ :str = self.model_tester.prepare_config_and_inputs() snake_case_ :str = True snake_case_ :int = True snake_case_ :List[Any] = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() snake_case_ :Optional[Any] = model(_UpperCamelCase , mask_labels=_UpperCamelCase , class_labels=_UpperCamelCase ) snake_case_ :str = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() snake_case_ :List[str] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't snake_case_ :Dict = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() snake_case_ :Any = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_UpperCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __UpperCAmelCase : Dict = 1E-4 def A ( ): """simple docstring""" snake_case_ :Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' @cached_property def _a ( self ): """simple docstring""" return ( MaskFormerImageProcessor.from_pretrained("facebook/maskformer-swin-small-coco" ) if is_vision_available() else None ) def _a ( self ): """simple docstring""" snake_case_ :Dict = MaskFormerModel.from_pretrained("facebook/maskformer-swin-small-coco" ).to(_UpperCamelCase ) snake_case_ :List[str] = self.default_image_processor snake_case_ :Any = prepare_img() snake_case_ :Any = image_processor(_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) snake_case_ :List[Any] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCamelCase , (1, 3, 8_00, 10_88) ) with torch.no_grad(): snake_case_ :str = model(**_UpperCamelCase ) snake_case_ :Tuple = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(_UpperCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) snake_case_ :str = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(_UpperCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) snake_case_ :str = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(_UpperCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) def _a ( self ): """simple docstring""" snake_case_ :Any = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(_UpperCamelCase ) .eval() ) snake_case_ :int = self.default_image_processor snake_case_ :Optional[int] = prepare_img() snake_case_ :Tuple = image_processor(_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) snake_case_ :Optional[Any] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCamelCase , (1, 3, 8_00, 10_88) ) with torch.no_grad(): snake_case_ :Union[str, Any] = model(**_UpperCamelCase ) # masks_queries_logits snake_case_ :str = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) snake_case_ :Optional[Any] = [ [-1.3737124, -1.7724937, -1.9364233], [-1.5977281, -1.9867939, -2.1523695], [-1.5795398, -1.9269832, -2.093942], ] snake_case_ :Optional[int] = torch.tensor(_UpperCamelCase ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) # class_queries_logits snake_case_ :str = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) snake_case_ :Union[str, Any] = torch.tensor( [ [1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0], [3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0], [1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0], ] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) def _a ( self ): """simple docstring""" snake_case_ :str = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-resnet101-coco-stuff" ) .to(_UpperCamelCase ) .eval() ) snake_case_ :str = self.default_image_processor snake_case_ :List[Any] = prepare_img() snake_case_ :Optional[Any] = image_processor(_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) snake_case_ :Tuple = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCamelCase , (1, 3, 8_00, 10_88) ) with torch.no_grad(): snake_case_ :Optional[int] = model(**_UpperCamelCase ) # masks_queries_logits snake_case_ :int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) snake_case_ :Optional[Any] = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] snake_case_ :Union[str, Any] = torch.tensor(_UpperCamelCase ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) # class_queries_logits snake_case_ :List[Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) snake_case_ :Dict = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCamelCase , atol=_UpperCamelCase ) ) def _a ( self ): """simple docstring""" snake_case_ :Optional[int] = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(_UpperCamelCase ) .eval() ) snake_case_ :Union[str, Any] = self.default_image_processor snake_case_ :Union[str, Any] = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="pt" , ) snake_case_ :Tuple = inputs["pixel_values"].to(_UpperCamelCase ) snake_case_ :str = [el.to(_UpperCamelCase ) for el in inputs["mask_labels"]] snake_case_ :str = [el.to(_UpperCamelCase ) for el in inputs["class_labels"]] with torch.no_grad(): snake_case_ :Optional[int] = model(**_UpperCamelCase ) self.assertTrue(outputs.loss is not None )
584
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __UpperCamelCase ( A__ ): __A : Any = """biogpt""" def __init__( self , _UpperCamelCase=42384 , _UpperCamelCase=1024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1024 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = scale_embedding _UpperCAmelCase = use_cache _UpperCAmelCase = layerdrop _UpperCAmelCase = activation_dropout super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
32
0
def __UpperCamelCase ( _lowerCAmelCase ) -> str: """simple docstring""" if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) A : List[str] = """""" while len(SCREAMING_SNAKE_CASE_ ) % 3 != 0: A : Tuple = """0""" + bin_string A : Dict = [ bin_string[index : index + 3] for index in range(len(SCREAMING_SNAKE_CASE_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: A : int = 0 for index, val in enumerate(SCREAMING_SNAKE_CASE_ ): oct_val += int(2 ** (2 - index) * int(SCREAMING_SNAKE_CASE_ ) ) oct_string += str(SCREAMING_SNAKE_CASE_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
662
from typing import List from .keymap import KEYMAP, get_character def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: """simple docstring""" def decorator(SCREAMING_SNAKE_CASE_ : Any ): _UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ ) return func return decorator class __UpperCamelCase ( A__ ): def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not hasattr(_UpperCamelCase , '''key_handler''' ): setattr(_UpperCamelCase , '''key_handler''' , {} ) setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): _UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] ) for key in handled_keys: _UpperCAmelCase = value return new_cls @staticmethod def UpperCamelCase( cls ): _UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: _UpperCAmelCase = ord(_UpperCamelCase ) _UpperCAmelCase = cls.key_handler.get(_UpperCamelCase ) if handler: _UpperCAmelCase = char return handler(cls ) else: return None def A__ ( cls : Union[str, Any] ) -> Any: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
32
0
import argparse import os import re import packaging.version lowerCamelCase__ : Union[str, Any] = """examples/""" lowerCamelCase__ : Union[str, Any] = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } lowerCamelCase__ : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } lowerCamelCase__ : List[Any] = """README.md""" def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case__ = f.read() snake_case__ , snake_case__ = REPLACE_PATTERNS[pattern] snake_case__ = replace.replace('''VERSION''' , __lowerCAmelCase ) snake_case__ = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Any: for folder, directories, fnames in os.walk(__lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern='''examples''' ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> int: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not patch: update_version_in_examples(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> Dict: snake_case__ = '''🤗 Transformers currently provides the following architectures''' snake_case__ = '''1. Want to contribute a new model?''' with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case__ = f.readlines() # Find the start of the list. snake_case__ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 snake_case__ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): snake_case__ = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> Any: with open(REPLACE_FILES['''init'''] , '''r''' ) as f: snake_case__ = f.read() snake_case__ = REPLACE_PATTERNS['''init'''][0].search(__lowerCAmelCase ).groups()[0] return packaging.version.parse(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase=False ) -> List[Any]: snake_case__ = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: snake_case__ = default_version.base_version elif patch: snake_case__ = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: snake_case__ = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. snake_case__ = input(F"""Which version are you releasing? [{default_version}]""" ) if len(__lowerCAmelCase ) == 0: snake_case__ = default_version print(F"""Updating version to {version}.""" ) global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def SCREAMING_SNAKE_CASE ( ) -> Any: snake_case__ = get_version() snake_case__ = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" snake_case__ = current_version.base_version # Check with the user we got that right. snake_case__ = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(__lowerCAmelCase ) == 0: snake_case__ = dev_version print(F"""Updating version to {version}.""" ) global_version_update(__lowerCAmelCase ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": lowerCamelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") lowerCamelCase__ : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
33
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : str = IFImgaImgSuperResolutionPipeline __lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} __lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) __lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def SCREAMING_SNAKE_CASE__ ( self:Dict ): return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:str ): self._test_save_load_local() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
33
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = 0 def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:str ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case__ = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) snake_case__ = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved snake_case__ = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): snake_case__ = AutoImageProcessor.from_pretrained('''clip-base''' ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): with self.assertRaisesRegex( _a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): snake_case__ = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
33
import math class __magic_name__ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:list[list[float]] , _a:list[int] ): snake_case__ = 0.0 snake_case__ = 0.0 for i in range(len(_a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:list[list[int | float]] , _a:list[int] , _a:int , _a:float ): for i in range(len(_a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def SCREAMING_SNAKE_CASE ( ) -> None: # Training Examples ( m, n ) snake_case__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case__ = SelfOrganizingMap() snake_case__ = 3 snake_case__ = 0.5 for _ in range(__lowerCAmelCase ): for j in range(len(__lowerCAmelCase ) ): # training sample snake_case__ = training_samples[j] # Compute the winning vector snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # Update the winning vector snake_case__ = self_organizing_map.update(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # classify test sample snake_case__ = [0, 0, 0, 1] snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
33
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCamelCase__ : Dict = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = """▁""" lowerCamelCase__ : Union[str, Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCamelCase__ : Union[str, Any] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model""" ), } } lowerCamelCase__ : List[Any] = { """facebook/nllb-200-distilled-600M""": 1_0_2_4, } # fmt: off lowerCamelCase__ : List[str] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Union[str, Any] = VOCAB_FILES_NAMES __lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowercase : Optional[Any] = ['input_ids', 'attention_mask'] __lowercase : List[int] = [] __lowercase : List[int] = [] def __init__( self:List[Any] , _a:int , _a:Optional[int]="<s>" , _a:Any="</s>" , _a:int="</s>" , _a:str="<s>" , _a:Tuple="<unk>" , _a:Any="<pad>" , _a:str="<mask>" , _a:str=None , _a:Union[str, Any]=None , _a:List[Any]=None , _a:Optional[Dict[str, Any]] = None , _a:Any=None , _a:str=False , **_a:Tuple , ): # Mask token behave like a normal word, i.e. include the space before it snake_case__ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token snake_case__ = {} if sp_model_kwargs is None else sp_model_kwargs snake_case__ = legacy_behaviour super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , tokenizer_file=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_a , **_a , ) snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) snake_case__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token snake_case__ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case__ = 1 snake_case__ = len(self.sp_model ) snake_case__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_a ) } snake_case__ = {v: k for k, v in self.lang_code_to_id.items()} snake_case__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) snake_case__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} snake_case__ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) snake_case__ = src_lang if src_lang is not None else '''eng_Latn''' snake_case__ = self.lang_code_to_id[self._src_lang] snake_case__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self:Optional[Any] ): snake_case__ = self.__dict__.copy() snake_case__ = None snake_case__ = self.sp_model.serialized_model_proto() return state def __setstate__( self:int , _a:List[Any] ): snake_case__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case__ = {} snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def SCREAMING_SNAKE_CASE__ ( self:str ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:str ): snake_case__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:List[int] , _a:Optional[List[int]] = None , _a:bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) snake_case__ = [1] * len(self.prefix_tokens ) snake_case__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_a )) + suffix_ones return prefix_ones + ([0] * len(_a )) + ([0] * len(_a )) + suffix_ones def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:List[int] , _a:Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:List[int] , _a:Optional[List[int]] = None ): snake_case__ = [self.sep_token_id] snake_case__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:str , _a:Optional[str] , _a:Optional[str] , **_a:List[str] ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) snake_case__ = src_lang snake_case__ = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) snake_case__ = self.convert_tokens_to_ids(_a ) snake_case__ = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:str ): return self.sp_model.encode(_a , out_type=_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:List[str] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case__ = self.sp_model.PieceToId(_a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:str ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:Any ): snake_case__ = ''''''.join(_a ).replace(_a , ''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:str , _a:Optional[str] = None ): if not os.path.isdir(_a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , '''wb''' ) as fi: snake_case__ = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE__ ( self:str , _a:List[str] , _a:str = "eng_Latn" , _a:Optional[List[str]] = None , _a:str = "fra_Latn" , **_a:Union[str, Any] , ): snake_case__ = src_lang snake_case__ = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE__ ( self:int ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ): snake_case__ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: snake_case__ = [] snake_case__ = [self.eos_token_id, self.cur_lang_code] else: snake_case__ = [self.cur_lang_code] snake_case__ = [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:str ): snake_case__ = self.lang_code_to_id[lang] if self.legacy_behaviour: snake_case__ = [] snake_case__ = [self.eos_token_id, self.cur_lang_code] else: snake_case__ = [self.cur_lang_code] snake_case__ = [self.eos_token_id]
33
from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes snake_case__ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] snake_case__ = [] snake_case__ = 0 snake_case__ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case__ = [] snake_case__ = -1 for i in range(__lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case__ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case__ = i total_time += burst_time[target_process] completed += 1 snake_case__ = 0 snake_case__ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") lowerCamelCase__ : Tuple = 4 lowerCamelCase__ : Union[str, Any] = [2, 5, 3, 7] lowerCamelCase__ : Optional[Any] = [0, 0, 0, 0] lowerCamelCase__ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase__ : Union[str, Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
33
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch lowerCamelCase__ : Dict = logging.get_logger(__name__) @dataclass class __magic_name__ : '''simple docstring''' def __init__( self:Dict , _a:Any=False , _a:str=False , _a:Optional[int]=6.0 , _a:Any=None , _a:List[str]=False , _a:int=False , _a:Dict=None , _a:int="fp4" , _a:Optional[Any]=False , **_a:List[Any] , ): snake_case__ = load_in_abit snake_case__ = load_in_abit snake_case__ = llm_inta_threshold snake_case__ = llm_inta_skip_modules snake_case__ = llm_inta_enable_fpaa_cpu_offload snake_case__ = llm_inta_has_fpaa_weight snake_case__ = bnb_abit_quant_type snake_case__ = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: snake_case__ = torch.floataa elif isinstance(_a , _a ): snake_case__ = getattr(_a , _a ) elif isinstance(_a , torch.dtype ): snake_case__ = bnb_abit_compute_dtype else: raise ValueError('''bnb_4bit_compute_dtype must be a string or a torch.dtype''' ) self.post_init() def SCREAMING_SNAKE_CASE__ ( self:str ): if not isinstance(self.llm_inta_threshold , _a ): raise ValueError('''llm_int8_threshold must be a float''' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , _a ): raise ValueError('''llm_int8_skip_modules must be a list of strings''' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , _a ): raise ValueError('''llm_int8_enable_fp32_cpu_offload must be a boolean''' ) if not isinstance(self.llm_inta_has_fpaa_weight , _a ): raise ValueError('''llm_int8_has_fp16_weight must be a boolean''' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('''bnb_4bit_compute_dtype must be torch.dtype''' ) if not isinstance(self.bnb_abit_quant_type , _a ): raise ValueError('''bnb_4bit_quant_type must be a string''' ) if not isinstance(self.bnb_abit_use_double_quant , _a ): raise ValueError('''bnb_4bit_use_double_quant must be a boolean''' ) if self.load_in_abit and not version.parse(importlib.metadata.version('''bitsandbytes''' ) ) >= version.parse( '''0.39.0''' ): raise ValueError( '''4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): return self.load_in_abit or self.load_in_abit def SCREAMING_SNAKE_CASE__ ( self:Tuple ): if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def SCREAMING_SNAKE_CASE__ ( cls:List[str] , _a:int , _a:int , **_a:Any ): snake_case__ = cls(**_a ) snake_case__ = [] for key, value in kwargs.items(): if hasattr(_a , _a ): setattr(_a , _a , _a ) to_remove.append(_a ) for key in to_remove: kwargs.pop(_a , _a ) if return_unused_kwargs: return config, kwargs else: return config def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Union[str, os.PathLike] ): with open(_a , '''w''' , encoding='''utf-8''' ) as writer: snake_case__ = self.to_dict() snake_case__ = json.dumps(_a , indent=2 , sort_keys=_a ) + '''\n''' writer.write(_a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = copy.deepcopy(self.__dict__ ) snake_case__ = str(output['''bnb_4bit_compute_dtype'''] ).split('''.''' )[1] return output def __repr__( self:List[Any] ): return F"""{self.__class__.__name__} {self.to_json_string()}""" def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:bool = True ): if use_diff is True: snake_case__ = self.to_diff_dict() else: snake_case__ = self.to_dict() return json.dumps(_a , indent=2 , sort_keys=_a ) + "\n" def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.to_dict() # get the default config dict snake_case__ = BitsAndBytesConfig().to_dict() snake_case__ = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: snake_case__ = value return serializable_config_dict
33
lowerCamelCase__ : List[str] = """Alexander Joslin""" import operator as op from .stack import Stack def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: snake_case__ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} snake_case__ = Stack() snake_case__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__lowerCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__lowerCAmelCase ) elif i == ")": # RULE 4 snake_case__ = operator_stack.peek() operator_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operators[opr](__lowerCAmelCase , __lowerCAmelCase ) operand_stack.push(__lowerCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
33
1
from functools import lru_cache @lru_cache def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
33
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase__ : int = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[Any] , *_a:Dict , **_a:Tuple ): warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
1
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : int = 'EncodecFeatureExtractor' __lowercase : Dict = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self:Optional[int] , _a:Union[str, Any] , _a:Tuple ): super().__init__(_a , _a ) snake_case__ = self.feature_extractor snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:Optional[int]=None , _a:Tuple=None , _a:List[Any]=True ): return self.tokenizer.get_decoder_prompt_ids(task=_a , language=_a , no_timestamps=_a ) def __call__( self:List[Any] , *_a:Dict , **_a:Union[str, Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) snake_case__ = kwargs.pop('''audio''' , _a ) snake_case__ = kwargs.pop('''sampling_rate''' , _a ) snake_case__ = kwargs.pop('''text''' , _a ) if len(_a ) > 0: snake_case__ = args[0] snake_case__ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: snake_case__ = self.tokenizer(_a , **_a ) if audio is not None: snake_case__ = self.feature_extractor(_a , *_a , sampling_rate=_a , **_a ) if audio is None: return inputs elif text is None: return audio_inputs else: snake_case__ = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: snake_case__ = audio_inputs['''padding_mask'''] return inputs def SCREAMING_SNAKE_CASE__ ( self:int , *_a:List[str] , **_a:List[Any] ): snake_case__ = kwargs.pop('''audio''' , _a ) snake_case__ = kwargs.pop('''padding_mask''' , _a ) if len(_a ) > 0: snake_case__ = args[0] snake_case__ = args[1:] if audio_values is not None: return self._decode_audio(_a , padding_mask=_a ) else: return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Optional[int] , **_a:Dict ): return self.tokenizer.decode(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:Optional[Any] , _a:Optional = None ): snake_case__ = to_numpy(_a ) snake_case__ , snake_case__ , snake_case__ = audio_values.shape if padding_mask is None: return list(_a ) snake_case__ = to_numpy(_a ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) snake_case__ = seq_len - padding_mask.shape[-1] snake_case__ = 1 - self.feature_extractor.padding_value snake_case__ = np.pad(_a , ((0, 0), (0, difference)) , '''constant''' , constant_values=_a ) snake_case__ = audio_values.tolist() for i in range(_a ): snake_case__ = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] snake_case__ = sliced_audio.reshape(_a , -1 ) return audio_values
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Tuple = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
1
from __future__ import annotations from typing import Generic, TypeVar lowerCamelCase__ : Tuple = TypeVar("""T""") class __magic_name__ (Generic[T] ): '''simple docstring''' def __init__( self:List[str] , _a:T ): snake_case__ = data snake_case__ = self snake_case__ = 0 class __magic_name__ (Generic[T] ): '''simple docstring''' def __init__( self:Any ): # map from node name to the node object snake_case__ = {} def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:T ): # create a new set with x as its member snake_case__ = DisjointSetTreeNode(_a ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:T ): # find the set x belongs to (with path-compression) snake_case__ = self.map[data] if elem_ref != elem_ref.parent: snake_case__ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def SCREAMING_SNAKE_CASE__ ( self:Any , _a:DisjointSetTreeNode[T] , _a:DisjointSetTreeNode[T] ): # helper function for union operation if nodea.rank > nodea.rank: snake_case__ = nodea else: snake_case__ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:T , _a:T ): # merge 2 disjoint sets self.link(self.find_set(_a ) , self.find_set(_a ) ) class __magic_name__ (Generic[T] ): '''simple docstring''' def __init__( self:List[str] ): # connections: map from the node to the neighbouring nodes (with weights) snake_case__ = {} def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:T ): # add a node ONLY if its not present in the graph if node not in self.connections: snake_case__ = {} def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:T , _a:T , _a:int ): # add an edge with the given weight self.add_node(_a ) self.add_node(_a ) snake_case__ = weight snake_case__ = weight def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = [] snake_case__ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda _a : x[2] ) # creating the disjoint set snake_case__ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(_a ) # MST generation snake_case__ = 0 snake_case__ = 0 snake_case__ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: snake_case__ , snake_case__ , snake_case__ = edges[index] index += 1 snake_case__ = disjoint_set.find_set(_a ) snake_case__ = disjoint_set.find_set(_a ) if parent_u != parent_v: num_edges += 1 graph.add_edge(_a , _a , _a ) disjoint_set.union(_a , _a ) return graph
33
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: snake_case__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Dict = StableDiffusionLatentUpscalePipeline __lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase : List[Any] = frozenset([] ) __lowercase : Any = True @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = 1 snake_case__ = 4 snake_case__ = (16, 16) snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_a , only_cross_attention=_a , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) snake_case__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) snake_case__ = EulerDiscreteScheduler(prediction_type='''sample''' ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , ) snake_case__ = CLIPTextModel(_a ) snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:List[str]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''cpu''' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) snake_case__ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) snake_case__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = 2 snake_case__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case__ = getattr(_a , scheduler_enum.name ) snake_case__ = scheduler_cls.from_config(pipe.scheduler.config ) snake_case__ = pipe(**_a )[0] outputs.append(_a ) assert check_same_shape(_a ) @require_torch_gpu @slow class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' snake_case__ = pipe(_a , generator=_a , output_type='''latent''' ).images snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
33
1
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[Any] = KandinskyVaaPipeline __lowercase : List[str] = [ 'image_embeds', 'negative_image_embeds', ] __lowercase : Any = ['image_embeds', 'negative_image_embeds'] __lowercase : Any = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __lowercase : Optional[int] = False @property def SCREAMING_SNAKE_CASE__ ( self:Dict ): return 32 @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return 32 @property def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): return self.time_input_dim @property def SCREAMING_SNAKE_CASE__ ( self:Any ): return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self:Dict ): return 1_00 @property def SCREAMING_SNAKE_CASE__ ( self:Dict ): torch.manual_seed(0 ) snake_case__ = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } snake_case__ = UNetaDConditionModel(**_a ) return model @property def SCREAMING_SNAKE_CASE__ ( self:str ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): torch.manual_seed(0 ) snake_case__ = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.dummy_unet snake_case__ = self.dummy_movq snake_case__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='''linear''' , beta_start=0.00085 , beta_end=0.012 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_a , ) snake_case__ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:int , _a:Union[str, Any]=0 ): snake_case__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) snake_case__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = '''cpu''' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) snake_case__ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = pipe(**self.get_dummy_inputs(_a ) ) snake_case__ = output.images snake_case__ = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] snake_case__ = image[0, -3:, -3:, -1] snake_case__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ = np.array( [0.6237976, 1.0, 0.36441332, 1.0, 0.70639634, 0.29877186, 0.85652125, 0.5216843, 0.54454046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) snake_case__ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) snake_case__ = KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) snake_case__ = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) snake_case__ = '''red cat, 4k photo''' snake_case__ = torch.Generator(device='''cuda''' ).manual_seed(0 ) snake_case__ , snake_case__ = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() snake_case__ = torch.Generator(device='''cuda''' ).manual_seed(0 ) snake_case__ = pipeline( image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=1_00 , output_type='''np''' , ) snake_case__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(_a , _a )
33
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''ZinengTang/tvlt-base''' snake_case__ = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:List[Any] ): return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , **_a:Tuple ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = feature_extractor(_a , return_tensors='''np''' ) snake_case__ = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = image_processor(_a , return_tensors='''np''' ) snake_case__ = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
33
1
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig lowerCamelCase__ : Dict = logging.get_logger(__name__) # General docstring lowerCamelCase__ : Union[str, Any] = """PoolFormerConfig""" # Base docstring lowerCamelCase__ : List[str] = """sail/poolformer_s12""" lowerCamelCase__ : Optional[Any] = [1, 5_1_2, 7, 7] # Image classification docstring lowerCamelCase__ : Tuple = """sail/poolformer_s12""" lowerCamelCase__ : Optional[int] = """tabby, tabby cat""" lowerCamelCase__ : Union[str, Any] = [ """sail/poolformer_s12""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = False ) -> Any: if drop_prob == 0.0 or not training: return input snake_case__ = 1 - drop_prob snake_case__ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets snake_case__ = keep_prob + torch.rand(__lowerCAmelCase , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize snake_case__ = input.div(__lowerCAmelCase ) * random_tensor return output class __magic_name__ (nn.Module ): '''simple docstring''' def __init__( self:Tuple , _a:Optional[float] = None ): super().__init__() snake_case__ = drop_prob def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:torch.Tensor ): return drop_path(_a , self.drop_prob , self.training ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): return "p={}".format(self.drop_prob ) class __magic_name__ (nn.Module ): '''simple docstring''' def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[int] , _a:Tuple , _a:List[str] , _a:Dict , _a:List[Any]=None ): super().__init__() snake_case__ = patch_size if isinstance(_a , collections.abc.Iterable ) else (patch_size, patch_size) snake_case__ = stride if isinstance(_a , collections.abc.Iterable ) else (stride, stride) snake_case__ = padding if isinstance(_a , collections.abc.Iterable ) else (padding, padding) snake_case__ = nn.Convad(_a , _a , kernel_size=_a , stride=_a , padding=_a ) snake_case__ = norm_layer(_a ) if norm_layer else nn.Identity() def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:Optional[Any] ): snake_case__ = self.projection(_a ) snake_case__ = self.norm(_a ) return embeddings class __magic_name__ (nn.GroupNorm ): '''simple docstring''' def __init__( self:Dict , _a:Tuple , **_a:int ): super().__init__(1 , _a , **_a ) class __magic_name__ (nn.Module ): '''simple docstring''' def __init__( self:Union[str, Any] , _a:List[Any] ): super().__init__() snake_case__ = nn.AvgPoolad(_a , stride=1 , padding=pool_size // 2 , count_include_pad=_a ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:int ): return self.pool(_a ) - hidden_states class __magic_name__ (nn.Module ): '''simple docstring''' def __init__( self:str , _a:Optional[Any] , _a:Optional[Any] , _a:str , _a:List[Any] ): super().__init__() snake_case__ = nn.Convad(_a , _a , 1 ) snake_case__ = nn.Convad(_a , _a , 1 ) snake_case__ = PoolFormerDropPath(_a ) if isinstance(config.hidden_act , _a ): snake_case__ = ACTaFN[config.hidden_act] else: snake_case__ = config.hidden_act def SCREAMING_SNAKE_CASE__ ( self:int , _a:Any ): snake_case__ = self.conva(_a ) snake_case__ = self.act_fn(_a ) snake_case__ = self.drop(_a ) snake_case__ = self.conva(_a ) snake_case__ = self.drop(_a ) return hidden_states class __magic_name__ (nn.Module ): '''simple docstring''' def __init__( self:Any , _a:Union[str, Any] , _a:List[Any] , _a:int , _a:str , _a:Dict , _a:List[Any] ): super().__init__() snake_case__ = PoolFormerPooling(_a ) snake_case__ = PoolFormerOutput(_a , _a , _a , _a ) snake_case__ = PoolFormerGroupNorm(_a ) snake_case__ = PoolFormerGroupNorm(_a ) # Useful for training neural nets snake_case__ = PoolFormerDropPath(_a ) if drop_path > 0.0 else nn.Identity() snake_case__ = config.use_layer_scale if config.use_layer_scale: snake_case__ = nn.Parameter( config.layer_scale_init_value * torch.ones((_a) ) , requires_grad=_a ) snake_case__ = nn.Parameter( config.layer_scale_init_value * torch.ones((_a) ) , requires_grad=_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] ): if self.use_layer_scale: snake_case__ = self.pooling(self.before_norm(_a ) ) snake_case__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection snake_case__ = hidden_states + self.drop_path(_a ) snake_case__ = () snake_case__ = self.output(self.after_norm(_a ) ) snake_case__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection snake_case__ = hidden_states + self.drop_path(_a ) snake_case__ = (output,) + outputs return outputs else: snake_case__ = self.drop_path(self.pooling(self.before_norm(_a ) ) ) # First residual connection snake_case__ = pooling_output + hidden_states snake_case__ = () # Second residual connection inside the PoolFormerOutput block snake_case__ = self.drop_path(self.output(self.after_norm(_a ) ) ) snake_case__ = hidden_states + layer_output snake_case__ = (output,) + outputs return outputs class __magic_name__ (nn.Module ): '''simple docstring''' def __init__( self:Dict , _a:Dict ): super().__init__() snake_case__ = config # stochastic depth decay rule snake_case__ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings snake_case__ = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) snake_case__ = nn.ModuleList(_a ) # Transformer blocks snake_case__ = [] snake_case__ = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers snake_case__ = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( _a , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(_a ) ) snake_case__ = nn.ModuleList(_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Any , _a:List[str]=False , _a:Optional[Any]=True ): snake_case__ = () if output_hidden_states else None snake_case__ = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): snake_case__ , snake_case__ = layers # Get patch embeddings from hidden_states snake_case__ = embedding_layer(_a ) # Send the embeddings through the blocks for _, blk in enumerate(_a ): snake_case__ = blk(_a ) snake_case__ = layer_outputs[0] if output_hidden_states: snake_case__ = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_a , hidden_states=_a ) class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Tuple = PoolFormerConfig __lowercase : str = 'poolformer' __lowercase : Optional[int] = 'pixel_values' __lowercase : int = True def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:Tuple ): if isinstance(_a , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_a , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:int=False ): if isinstance(_a , _a ): snake_case__ = value lowerCamelCase__ : Optional[int] = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCamelCase__ : List[str] = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. """ @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' ,snake_case_ ,) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:Tuple , _a:List[str] ): super().__init__(_a ) snake_case__ = config snake_case__ = PoolFormerEncoder(_a ) # Initialize weights and apply final processing self.post_init() def SCREAMING_SNAKE_CASE__ ( self:Dict ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_a , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[torch.FloatTensor] = None , _a:Optional[bool] = None , _a:Optional[bool] = None , ): snake_case__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) snake_case__ = self.encoder( _a , output_hidden_states=_a , return_dict=_a , ) snake_case__ = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_a , hidden_states=encoder_outputs.hidden_states , ) class __magic_name__ (nn.Module ): '''simple docstring''' def __init__( self:Optional[Any] , _a:List[str] ): super().__init__() snake_case__ = nn.Linear(config.hidden_size , config.hidden_size ) def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Tuple ): snake_case__ = self.dense(_a ) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' ,snake_case_ ,) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:Tuple , _a:Dict ): super().__init__(_a ) snake_case__ = config.num_labels snake_case__ = PoolFormerModel(_a ) # Final norm snake_case__ = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head snake_case__ = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Optional[torch.FloatTensor] = None , _a:Optional[torch.LongTensor] = None , _a:Optional[bool] = None , _a:Optional[bool] = None , ): snake_case__ = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ = self.poolformer( _a , output_hidden_states=_a , return_dict=_a , ) snake_case__ = outputs[0] snake_case__ = self.classifier(self.norm(_a ).mean([-2, -1] ) ) snake_case__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case__ = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case__ = '''single_label_classification''' else: snake_case__ = '''multi_label_classification''' if self.config.problem_type == "regression": snake_case__ = MSELoss() if self.num_labels == 1: snake_case__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case__ = loss_fct(_a , _a ) elif self.config.problem_type == "single_label_classification": snake_case__ = CrossEntropyLoss() snake_case__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case__ = BCEWithLogitsLoss() snake_case__ = loss_fct(_a , _a ) if not return_dict: snake_case__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_a , logits=_a , hidden_states=outputs.hidden_states )
33
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[int] = 'data2vec-vision' def __init__( self:int , _a:Tuple=7_68 , _a:int=12 , _a:Any=12 , _a:Optional[int]=30_72 , _a:Optional[int]="gelu" , _a:Any=0.0 , _a:Any=0.0 , _a:List[str]=0.02 , _a:Dict=1e-12 , _a:Tuple=2_24 , _a:Any=16 , _a:str=3 , _a:str=False , _a:Union[str, Any]=False , _a:Optional[int]=False , _a:Any=False , _a:Dict=0.1 , _a:Dict=0.1 , _a:str=True , _a:str=[3, 5, 7, 11] , _a:List[str]=[1, 2, 3, 6] , _a:List[str]=True , _a:Any=0.4 , _a:str=2_56 , _a:Union[str, Any]=1 , _a:int=False , _a:Optional[int]=2_55 , **_a:Dict , ): super().__init__(**_a ) snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = use_mask_token snake_case__ = use_absolute_position_embeddings snake_case__ = use_relative_position_bias snake_case__ = use_shared_relative_position_bias snake_case__ = layer_scale_init_value snake_case__ = drop_path_rate snake_case__ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ = out_indices snake_case__ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ = use_auxiliary_head snake_case__ = auxiliary_loss_weight snake_case__ = auxiliary_channels snake_case__ = auxiliary_num_convs snake_case__ = auxiliary_concat_input snake_case__ = semantic_loss_ignore_index class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Any = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return 1e-4
33
1
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: snake_case__ = args.pruning_method snake_case__ = args.threshold snake_case__ = args.model_name_or_path.rstrip('''/''' ) snake_case__ = args.target_model_path print(F"""Load fine-pruned model from {model_name_or_path}""" ) snake_case__ = torch.load(os.path.join(__lowerCAmelCase , '''pytorch_model.bin''' ) ) snake_case__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: snake_case__ = tensor print(F"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: snake_case__ = tensor print(F"""Copied layer {name}""" ) elif "bias" in name: snake_case__ = tensor print(F"""Copied layer {name}""" ) else: if pruning_method == "magnitude": snake_case__ = MagnitudeBinarizer.apply(inputs=__lowerCAmelCase , threshold=__lowerCAmelCase ) snake_case__ = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue snake_case__ = name[:-6] snake_case__ = model[F"""{prefix_}mask_scores"""] snake_case__ = TopKBinarizer.apply(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue snake_case__ = name[:-6] snake_case__ = model[F"""{prefix_}mask_scores"""] snake_case__ = ThresholdBinarizer.apply(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) snake_case__ = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue snake_case__ = name[:-6] snake_case__ = model[F"""{prefix_}mask_scores"""] snake_case__ , snake_case__ = -0.1, 1.1 snake_case__ = torch.sigmoid(__lowerCAmelCase ) snake_case__ = s * (r - l) + l snake_case__ = s_bar.clamp(min=0.0 , max=1.0 ) snake_case__ = tensor * mask print(F"""Pruned layer {name}""" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: snake_case__ = os.path.join( os.path.dirname(__lowerCAmelCase ) , F"""bertarized_{os.path.basename(__lowerCAmelCase )}""" ) if not os.path.isdir(__lowerCAmelCase ): shutil.copytree(__lowerCAmelCase , __lowerCAmelCase ) print(F"""\nCreated folder {target_model_path}""" ) torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": lowerCamelCase__ : int = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) lowerCamelCase__ : Optional[int] = parser.parse_args() main(args)
33
import os import sys lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCamelCase__ : Optional[int] = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple: return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]: return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
33
1
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:List[Any] , _a:Dict , _a:List[Any] ): self.assertEqual(len(_a ) , len(_a ) ) for a, b in zip(_a , _a ): self.assertAlmostEqual(_a , _a , delta=_a ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_a ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = None ops.enable_eager_execution_internal() snake_case__ = tf.config.list_physical_devices('''CPU''' ) if len(_a ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) snake_case__ = tf.config.list_logical_devices(device_type='''CPU''' ) snake_case__ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): snake_case__ = GradientAccumulator() snake_case__ = tf.Variable([4.0, 3.0] ) snake_case__ , snake_case__ = create_optimizer(5e-5 , 10 , 5 ) snake_case__ = tf.Variable([0.0, 0.0] , trainable=_a ) def accumulate_on_replica(_a:Any ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_a:Optional[int] , _a:List[str] ): with strategy.scope(): snake_case__ = strategy.experimental_local_results(_a ) local_variables[0].assign(_a ) local_variables[1].assign(_a ) strategy.run(_a , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_a ) def _check_local_values(_a:Any , _a:Any ): snake_case__ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _a , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , _a , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
33
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : str = (CMStochasticIterativeScheduler,) __lowercase : List[str] = 10 def SCREAMING_SNAKE_CASE__ ( self:int , **_a:Optional[int] ): snake_case__ = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**_a ) return config def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = 10 snake_case__ = self.get_scheduler_config() snake_case__ = self.scheduler_classes[0](**_a ) scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps[0] snake_case__ = scheduler.timesteps[1] snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self:Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_a ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = 1 scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_a ): # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [1_06, 0] scheduler.set_timesteps(timesteps=_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 15, 0] with self.assertRaises(_a , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 1, 0] snake_case__ = len(_a ) with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_a )
33
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Optional[Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase__ : Optional[Any] = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models snake_case__ = '''lm_head''' snake_case__ = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case__ = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case__ = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case__ = value elif weight_type == "weight_g": snake_case__ = value elif weight_type == "weight_v": snake_case__ = value elif weight_type == "bias": snake_case__ = value else: snake_case__ = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: snake_case__ = [] snake_case__ = fairseq_model.state_dict() snake_case__ = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): snake_case__ = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) snake_case__ = True else: for key, mapped_key in MAPPING.items(): snake_case__ = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: snake_case__ = True if "*" in mapped_key: snake_case__ = name.split(__lowerCAmelCase )[0].split('''.''' )[-2] snake_case__ = mapped_key.replace('''*''' , __lowerCAmelCase ) if "weight_g" in name: snake_case__ = '''weight_g''' elif "weight_v" in name: snake_case__ = '''weight_v''' elif "bias" in name: snake_case__ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ = '''weight''' else: snake_case__ = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: snake_case__ = full_name.split('''conv_layers.''' )[-1] snake_case__ = name.split('''.''' ) snake_case__ = int(items[0] ) snake_case__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=True ) -> Optional[Any]: if config_path is not None: snake_case__ = UniSpeechConfig.from_pretrained(__lowerCAmelCase ) else: snake_case__ = UniSpeechConfig() if is_finetuned: if dict_path: snake_case__ = Dictionary.load_from_json(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case__ = target_dict.pad_index snake_case__ = target_dict.bos_index snake_case__ = target_dict.eos_index snake_case__ = len(target_dict.symbols ) snake_case__ = os.path.join(__lowerCAmelCase , '''vocab.json''' ) if not os.path.isdir(__lowerCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) snake_case__ = target_dict.indices # fairseq has the <pad> and <s> switched snake_case__ = 42 snake_case__ = 43 with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = WavaVecaPhonemeCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__lowerCAmelCase , ) snake_case__ = True if config.feat_extract_norm == '''layer''' else False snake_case__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) snake_case__ = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case__ = UniSpeechForCTC(__lowerCAmelCase ) else: snake_case__ = UniSpeechForPreTraining(__lowerCAmelCase ) if is_finetuned: snake_case__ , snake_case__ , snake_case__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: snake_case__ , snake_case__ , snake_case__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case__ = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_unispeech.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Dict = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCamelCase__ : List[str] = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
33
import numpy as np def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return vector * sigmoid(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
33
1
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Union[str, Any] = IFInpaintingSuperResolutionPipeline __lowercase : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __lowercase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) __lowercase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'latents'} def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:Dict , _a:Optional[int]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a ) snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE__ ( self:Any ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE__ ( self:str ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): self._test_save_load_local() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
33
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int: snake_case__ = set() snake_case__ = 0 snake_case__ = n + 1 # maximum limit for a in range(2 , __lowerCAmelCase ): for b in range(2 , __lowerCAmelCase ): snake_case__ = a**b # calculates the current power collect_powers.add(__lowerCAmelCase ) # adds the result to the set return len(__lowerCAmelCase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
33
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' ,'False' ) ) is not True ,reason='Skipping test because should only be run when releasing minor transformers version' ,) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue_model_parallelism.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 16_00, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 16_00, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, ] ) class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:str ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_a , ) assert hasattr(self , '''env''' ) def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Tuple ): # configuration for running training on smdistributed Model Parallel snake_case__ = { '''enabled''': True, '''processes_per_host''': 8, } snake_case__ = { '''enabled''': True, '''parameters''': { '''microbatches''': 4, '''placement_strategy''': '''spread''', '''pipeline''': '''interleaved''', '''optimize''': '''speed''', '''partitions''': 4, '''ddp''': True, }, } snake_case__ = {'''smdistributed''': {'''modelparallel''': smp_options}, '''mpi''': mpi_options} snake_case__ = '''trainer''' if self.script == '''run_glue.py''' else '''smtrainer''' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=_a , instance_type=self.instance_type , debugger_hook_config=_a , hyperparameters={ **self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path, '''max_steps''': 5_00, } , metric_definitions=self.env.metric_definitions , distribution=_a , py_version='''py36''' , ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:int ): TrainingJobAnalytics(_a ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Optional[Any] ): # create estimator snake_case__ = self.create_estimator(_a ) # run training estimator.fit() # result dataframe snake_case__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis snake_case__ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) snake_case__ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping snake_case__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _a )
33
from copy import deepcopy class __magic_name__ : '''simple docstring''' def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ): if arr is None and size is not None: snake_case__ = size snake_case__ = [0] * size elif arr is not None: self.init(_a ) else: raise ValueError('''Either arr or size must be specified''' ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ): snake_case__ = len(_a ) snake_case__ = deepcopy(_a ) for i in range(1 , self.size ): snake_case__ = self.next_(_a ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case__ = self.next_(_a ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case__ = self.next_(_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): self.add(_a , value - self.get(_a ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ): if right == 0: return 0 snake_case__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case__ = self.prev(_a ) return result def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): return self.prefix(_a ) - self.prefix(_a ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): return self.query(_a , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): value -= self.tree[0] if value < 0: return -1 snake_case__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
33
1
lowerCamelCase__ : Optional[int] = """Input must be a string of 8 numbers plus letter""" lowerCamelCase__ : List[str] = """TRWAGMYFPDXBNJZSQVHLCKE""" def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> bool: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ = F"""Expected string as input, found {type(__lowerCAmelCase ).__name__}""" raise TypeError(__lowerCAmelCase ) snake_case__ = spanish_id.replace('''-''' , '''''' ).upper() if len(__lowerCAmelCase ) != 9: raise ValueError(__lowerCAmelCase ) try: snake_case__ = int(spanish_id_clean[0:8] ) snake_case__ = spanish_id_clean[8] except ValueError as ex: raise ValueError(__lowerCAmelCase ) from ex if letter.isdigit(): raise ValueError(__lowerCAmelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
33
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __magic_name__ : '''simple docstring''' __lowercase : int = BlenderbotConfig __lowercase : Any = {} __lowercase : Optional[Any] = 'gelu' def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[Any]=13 , _a:Tuple=7 , _a:Union[str, Any]=True , _a:int=False , _a:int=99 , _a:Optional[int]=32 , _a:List[str]=2 , _a:List[str]=4 , _a:List[Any]=37 , _a:Any=0.1 , _a:int=0.1 , _a:List[Any]=20 , _a:List[str]=2 , _a:int=1 , _a:Dict=0 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = eos_token_id snake_case__ = pad_token_id snake_case__ = bos_token_id def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case__ = prepare_blenderbot_inputs_dict(_a , _a , _a ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:int ): snake_case__ = TFBlenderbotModel(config=_a ).get_decoder() snake_case__ = inputs_dict['''input_ids'''] snake_case__ = input_ids[:1, :] snake_case__ = inputs_dict['''attention_mask'''][:1, :] snake_case__ = inputs_dict['''head_mask'''] snake_case__ = 1 # first forward pass snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) snake_case__ , snake_case__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case__ = model(_a , attention_mask=_a )[0] snake_case__ = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case__ = output_from_no_past[:, -3:, random_slice_idx] snake_case__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Tuple: if attention_mask is None: snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowercase : Tuple = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowercase : Any = True __lowercase : int = False __lowercase : int = False def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFBlenderbotModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_tokenizers @require_tf class __magic_name__ (unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = ['My friends are cool but they eat too many carbs.'] __lowercase : Optional[int] = 'facebook/blenderbot-400M-distill' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.tokenizer(self.src_text , return_tensors='''tf''' ) snake_case__ = self.model.generate( model_inputs.input_ids , ) snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
33
1
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCamelCase__ : List[Any] = input("""Enter image url: """).strip() print(F"""Downloading image from {url} ...""") lowerCamelCase__ : Optional[int] = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image lowerCamelCase__ : str = soup.find("""meta""", {"""property""": """og:image"""})["""content"""] lowerCamelCase__ : Dict = requests.get(image_url).content lowerCamelCase__ : Optional[int] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, """wb""") as fp: fp.write(image_data) print(F"""Done. Image saved to disk as {file_name}.""")
33
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = 0 def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:str ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case__ = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) snake_case__ = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved snake_case__ = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): snake_case__ = AutoImageProcessor.from_pretrained('''clip-base''' ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): with self.assertRaisesRegex( _a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): snake_case__ = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
33
1
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int: snake_case__ = set() snake_case__ = 0 snake_case__ = n + 1 # maximum limit for a in range(2 , __lowerCAmelCase ): for b in range(2 , __lowerCAmelCase ): snake_case__ = a**b # calculates the current power collect_powers.add(__lowerCAmelCase ) # adds the result to the set return len(__lowerCAmelCase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
33
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> int: snake_case__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ = '''''' else: snake_case__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[ : config.hidden_size, : ] snake_case__ = in_proj_bias[: config.hidden_size] snake_case__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ = in_proj_weight[ -config.hidden_size :, : ] snake_case__ = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: snake_case__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: snake_case__ = dct.pop(__lowerCAmelCase ) snake_case__ = val def SCREAMING_SNAKE_CASE ( ) -> str: snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = ViTConfig() snake_case__ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": snake_case__ = True snake_case__ = int(vit_name[-12:-10] ) snake_case__ = int(vit_name[-9:-6] ) else: snake_case__ = 1000 snake_case__ = '''huggingface/label-files''' snake_case__ = '''imagenet-1k-id2label.json''' snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = int(vit_name[-6:-4] ) snake_case__ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): snake_case__ = 192 snake_case__ = 768 snake_case__ = 12 snake_case__ = 3 elif vit_name[9:].startswith('''small''' ): snake_case__ = 384 snake_case__ = 1536 snake_case__ = 12 snake_case__ = 6 else: pass else: if vit_name[4:].startswith('''small''' ): snake_case__ = 768 snake_case__ = 2304 snake_case__ = 8 snake_case__ = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): snake_case__ = 1024 snake_case__ = 4096 snake_case__ = 24 snake_case__ = 16 elif vit_name[4:].startswith('''huge''' ): snake_case__ = 1280 snake_case__ = 5120 snake_case__ = 32 snake_case__ = 16 # load original model from timm snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ = timm_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) snake_case__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ = ViTModel(__lowerCAmelCase ).eval() else: snake_case__ = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: snake_case__ = DeiTImageProcessor(size=config.image_size ) else: snake_case__ = ViTImageProcessor(size=config.image_size ) snake_case__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) snake_case__ = encoding['''pixel_values'''] snake_case__ = model(__lowerCAmelCase ) if base_model: snake_case__ = timm_model.forward_features(__lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1e-3 ) else: snake_case__ = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase__ : str = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
33
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : str = field(default='text-classification' ,metadata={'include_in_asdict_even_if_is_default': True} ) __lowercase : ClassVar[Features] = Features({'text': Value('string' )} ) __lowercase : ClassVar[Features] = Features({'labels': ClassLabel} ) __lowercase : str = "text" __lowercase : str = "labels" def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:str ): if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , _a ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) snake_case__ = copy.deepcopy(self ) snake_case__ = self.label_schema.copy() snake_case__ = features[self.label_column] snake_case__ = label_schema return task_template @property def SCREAMING_SNAKE_CASE__ ( self:int ): return { self.text_column: "text", self.label_column: "labels", }
33
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = ['image_processor', 'tokenizer'] __lowercase : str = 'AutoImageProcessor' __lowercase : Dict = 'AutoTokenizer' def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ): snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) snake_case__ = kwargs.pop('''feature_extractor''' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) snake_case__ = self.image_processor snake_case__ = False def __call__( self:Optional[int] , *_a:str , **_a:int ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) snake_case__ = kwargs.pop('''images''' , _a ) snake_case__ = kwargs.pop('''text''' , _a ) if len(_a ) > 0: snake_case__ = args[0] snake_case__ = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: snake_case__ = self.image_processor(_a , *_a , **_a ) if text is not None: snake_case__ = self.tokenizer(_a , **_a ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ): return self.tokenizer.decode(*_a , **_a ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self:Tuple ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) snake_case__ = True snake_case__ = self.tokenizer yield snake_case__ = self.image_processor snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ): if added_vocab is None: snake_case__ = self.tokenizer.get_added_vocab() snake_case__ = {} while tokens: snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE ) if start_token is None: break snake_case__ = start_token.group(1 ) snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE ) snake_case__ = start_token.group() if end_token is None: snake_case__ = tokens.replace(_a , '''''' ) else: snake_case__ = end_token.group() snake_case__ = re.escape(_a ) snake_case__ = re.escape(_a ) snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE ) if content is not None: snake_case__ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a ) if value: if len(_a ) == 1: snake_case__ = value[0] snake_case__ = value else: # leaf nodes snake_case__ = [] for leaf in content.split(r'''<sep/>''' ): snake_case__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": snake_case__ = leaf[1:-2] # for categorical special tokens output[key].append(_a ) if len(output[key] ) == 1: snake_case__ = output[key][0] snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a ) if len(_a ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
33
1
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> str: snake_case__ = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , '''html.parser''' ) snake_case__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) snake_case__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": lowerCamelCase__ : List[Any] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 3_0, """pages""": """3979-3990""", """year""": 2_0_1_8, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
33
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __magic_name__ : '''simple docstring''' def __init__( self:Optional[Any] , _a:int , _a:str=3 , _a:Optional[int]=32 , _a:Optional[Any]=3 , _a:Tuple=10 , _a:List[Any]=[8, 16, 32, 64] , _a:str=[1, 1, 2, 1] , _a:Any=True , _a:List[Any]=True , _a:List[str]="relu" , _a:int=3 , _a:Tuple=None , _a:Tuple=["stage2", "stage3", "stage4"] , _a:List[Any]=[2, 3, 4] , _a:Union[str, Any]=1 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = image_size snake_case__ = num_channels snake_case__ = embeddings_size snake_case__ = hidden_sizes snake_case__ = depths snake_case__ = is_training snake_case__ = use_labels snake_case__ = hidden_act snake_case__ = num_labels snake_case__ = scope snake_case__ = len(_a ) snake_case__ = out_features snake_case__ = out_indices snake_case__ = num_groups def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[int] , _a:Tuple , _a:int ): snake_case__ = BitModel(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Tuple , _a:Any , _a:Union[str, Any] ): snake_case__ = self.num_labels snake_case__ = BitForImageClassification(_a ) model.to(_a ) model.eval() snake_case__ = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:str , _a:List[str] , _a:Any ): snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case__ = None snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowercase : int = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : Optional[Any] = False __lowercase : str = False __lowercase : Tuple = False __lowercase : Tuple = False def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = BitModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return @unittest.skip(reason='''Bit does not output attentions''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ) snake_case__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(config=_a ) for name, module in model.named_modules(): if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): def check_hidden_states_output(_a:List[Any] , _a:int , _a:Union[str, Any] ): snake_case__ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): snake_case__ = model(**self._prepare_for_class(_a , _a ) ) snake_case__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ = layer_type snake_case__ = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ = True check_hidden_states_output(_a , _a , _a ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = BitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE ( ) -> Any: snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ (unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): snake_case__ = model(**_a ) # verify the logits snake_case__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _a ) snake_case__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (BitBackbone,) if is_torch_available() else () __lowercase : int = BitConfig __lowercase : Any = False def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = BitModelTester(self )
33
1
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCamelCase__ : Tuple = yaml.safe_load( """\ name: \"\" allow_empty: false allow_empty_text: true subsections: - name: \"Dataset Card for X\" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: \"Table of Contents\" allow_empty: false allow_empty_text: false subsections: null - name: \"Dataset Description\" allow_empty: false allow_empty_text: false subsections: - name: \"Dataset Summary\" allow_empty: false allow_empty_text: false subsections: null - name: \"Supported Tasks and Leaderboards\" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null """ ) lowerCamelCase__ : Dict = { """name""": """root""", """text""": """""", """is_empty_text""": True, """subsections""": [ { """name""": """Dataset Card for My Dataset""", """text""": """""", """is_empty_text""": True, """subsections""": [ {"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []}, { """name""": """Dataset Description""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Dataset Summary""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [], }, { """name""": """Supported Tasks and Leaderboards""", """text""": """""", """is_empty_text""": True, """subsections""": [], }, {"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []}, ], }, ], } ], } lowerCamelCase__ : Tuple = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ lowerCamelCase__ : Optional[int] = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text """ lowerCamelCase__ : int = { """name""": """root""", """text""": """""", """is_empty_text""": True, """subsections""": [ { """name""": """Dataset Card for My Dataset""", """text""": """""", """is_empty_text""": True, """subsections""": [ {"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []}, { """name""": """Dataset Description""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Dataset Summary""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Extra Ignored Subsection""", """text""": """""", """is_empty_text""": True, """subsections""": [], } ], }, { """name""": """Supported Tasks and Leaderboards""", """text""": """""", """is_empty_text""": True, """subsections""": [], }, {"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []}, ], }, ], } ], } lowerCamelCase__ : Dict = """\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ lowerCamelCase__ : str = ( """The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.""" ) lowerCamelCase__ : Dict = """\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ lowerCamelCase__ : Any = ( """The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.""" ) lowerCamelCase__ : List[str] = """\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ lowerCamelCase__ : int = """The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.""" lowerCamelCase__ : List[Any] = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text """ lowerCamelCase__ : Optional[Any] = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).""" lowerCamelCase__ : str = """\ --- language: - zh - en --- # Dataset Card for My Dataset """ lowerCamelCase__ : Optional[Any] = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'.""" lowerCamelCase__ : List[str] = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text """ lowerCamelCase__ : List[str] = """The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.""" lowerCamelCase__ : Optional[Any] = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages """ lowerCamelCase__ : Optional[Any] = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.""" lowerCamelCase__ : Tuple = """\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ lowerCamelCase__ : str = """The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.""" lowerCamelCase__ : Optional[Any] = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset """ lowerCamelCase__ : List[Any] = """The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.""" lowerCamelCase__ : Union[str, Any] = """\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ lowerCamelCase__ : Optional[Any] = """The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.""" lowerCamelCase__ : Union[str, Any] = """""" lowerCamelCase__ : Any = """The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.""" lowerCamelCase__ : int = """\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ lowerCamelCase__ : Optional[Any] = """The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.""" @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: assert ReadMe.from_string(__lowerCAmelCase , __lowerCAmelCase ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: with pytest.raises(__lowerCAmelCase , match=re.escape(expected_error.format(path='''root''' ) ) ): snake_case__ = ReadMe.from_string(__lowerCAmelCase , __lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: with pytest.raises(__lowerCAmelCase , match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> str: ReadMe.from_string(__lowerCAmelCase , __lowerCAmelCase , suppress_parsing_errors=__lowerCAmelCase ) @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ = Path(__lowerCAmelCase ) / '''README.md''' with open(__lowerCAmelCase , '''w+''' ) as readme_file: readme_file.write(__lowerCAmelCase ) snake_case__ = ReadMe.from_readme(__lowerCAmelCase , __lowerCAmelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ = Path(__lowerCAmelCase ) / '''README.md''' with open(__lowerCAmelCase , '''w+''' ) as readme_file: readme_file.write(__lowerCAmelCase ) snake_case__ = expected_error.format(path=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase , match=re.escape(__lowerCAmelCase ) ): snake_case__ = ReadMe.from_readme(__lowerCAmelCase , __lowerCAmelCase ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ = Path(__lowerCAmelCase ) / '''README.md''' with open(__lowerCAmelCase , '''w+''' ) as readme_file: readme_file.write(__lowerCAmelCase ) snake_case__ = expected_error.format(path=__lowerCAmelCase ) with pytest.raises(__lowerCAmelCase , match=re.escape(__lowerCAmelCase ) ): ReadMe.from_readme(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ = Path(__lowerCAmelCase ) / '''README.md''' with open(__lowerCAmelCase , '''w+''' ) as readme_file: readme_file.write(__lowerCAmelCase ) ReadMe.from_readme(__lowerCAmelCase , __lowerCAmelCase , suppress_parsing_errors=__lowerCAmelCase )
33
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCamelCase__ : Any = """\ """ lowerCamelCase__ : List[str] = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ lowerCamelCase__ : Any = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:List[Any] , _a:int = 16 , _a:bool = True , _a:Any=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": snake_case__ = '''cuda''' else: snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' snake_case__ = AutoModelForCausalLM.from_pretrained(_a ) snake_case__ = model.to(_a ) snake_case__ = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: snake_case__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" snake_case__ = model.config.max_length - 1 else: snake_case__ = model.config.max_length snake_case__ = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) snake_case__ = encodings['''input_ids'''] snake_case__ = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." snake_case__ = [] snake_case__ = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): snake_case__ = min(start_index + batch_size , len(_a ) ) snake_case__ = encoded_texts[start_index:end_index] snake_case__ = attn_masks[start_index:end_index] if add_start_token: snake_case__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) snake_case__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) snake_case__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) snake_case__ = encoded_batch with torch.no_grad(): snake_case__ = model(_a , attention_mask=_a ).logits snake_case__ = out_logits[..., :-1, :].contiguous() snake_case__ = labels[..., 1:].contiguous() snake_case__ = attn_mask[..., 1:].contiguous() snake_case__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
33
1
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> str: snake_case__ , snake_case__ = [], [] while len(__lowerCAmelCase ) > 1: snake_case__ , snake_case__ = min(__lowerCAmelCase ), max(__lowerCAmelCase ) start.append(__lowerCAmelCase ) end.append(__lowerCAmelCase ) collection.remove(__lowerCAmelCase ) collection.remove(__lowerCAmelCase ) end.reverse() return start + collection + end if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ : int = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
33
import os from datetime import datetime as dt from github import Github lowerCamelCase__ : int = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: snake_case__ = Github(os.environ['''GITHUB_TOKEN'''] ) snake_case__ = g.get_repo('''huggingface/diffusers''' ) snake_case__ = repo.get_issues(state='''open''' ) for issue in open_issues: snake_case__ = sorted(issue.get_comments() , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) snake_case__ = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
33
1
import argparse import hashlib # hashlib is only used inside the Test class import struct class __magic_name__ : '''simple docstring''' def __init__( self:Union[str, Any] , _a:List[str] ): snake_case__ = data snake_case__ = [0X67_452_301, 0XEF_CDA_B89, 0X98_BAD_CFE, 0X10_325_476, 0XC3_D2E_1F0] @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:Dict , _a:List[str] ): return ((n << b) | (n >> (32 - b))) & 0XFF_FFF_FFF def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) snake_case__ = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Optional[Any] ): snake_case__ = list(struct.unpack('''>16L''' , _a ) ) + [0] * 64 for i in range(16 , 80 ): snake_case__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.padding() snake_case__ = self.split_blocks() for block in self.blocks: snake_case__ = self.expand_block(_a ) snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case__ = (b & c) | ((~b) & d) snake_case__ = 0X5A_827_999 elif 20 <= i < 40: snake_case__ = b ^ c ^ d snake_case__ = 0X6E_D9E_BA1 elif 40 <= i < 60: snake_case__ = (b & c) | (b & d) | (c & d) snake_case__ = 0X8F_1BB_CDC elif 60 <= i < 80: snake_case__ = b ^ c ^ d snake_case__ = 0XCA_62C_1D6 snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = ( self.rotate(_a , 5 ) + f + e + k + expanded_block[i] & 0XFF_FFF_FFF, a, self.rotate(_a , 30 ), c, d, ) snake_case__ = ( self.h[0] + a & 0XFF_FFF_FFF, self.h[1] + b & 0XFF_FFF_FFF, self.h[2] + c & 0XFF_FFF_FFF, self.h[3] + d & 0XFF_FFF_FFF, self.h[4] + e & 0XFF_FFF_FFF, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: snake_case__ = B'''Test String''' assert SHAaHash(__lowerCAmelCase ).final_hash() == hashlib.shaa(__lowerCAmelCase ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: snake_case__ = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) snake_case__ = parser.parse_args() snake_case__ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: snake_case__ = f.read() else: snake_case__ = bytes(__lowerCAmelCase , '''utf-8''' ) print(SHAaHash(__lowerCAmelCase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
33
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__lowerCAmelCase , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = _distribute_shards(**__lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = _split_gen_kwargs(__lowerCAmelCase , __lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: if expected is RuntimeError: with pytest.raises(__lowerCAmelCase ): _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) else: snake_case__ = _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) assert out == expected
33
1
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase__ : int = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } lowerCamelCase__ : Optional[int] = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } lowerCamelCase__ : List[str] = { """vinai/phobert-base""": 2_5_6, """vinai/phobert-large""": 2_5_6, } def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Dict: snake_case__ = set() snake_case__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ = char snake_case__ = set(__lowerCAmelCase ) return pairs class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[int] = VOCAB_FILES_NAMES __lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self:Union[str, Any] , _a:Optional[int] , _a:Tuple , _a:Optional[Any]="<s>" , _a:Optional[int]="</s>" , _a:Tuple="</s>" , _a:Tuple="<s>" , _a:List[Any]="<unk>" , _a:Tuple="<pad>" , _a:Dict="<mask>" , **_a:Tuple , ): super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , **_a , ) snake_case__ = vocab_file snake_case__ = merges_file snake_case__ = {} snake_case__ = 0 snake_case__ = 1 snake_case__ = 2 snake_case__ = 3 self.add_from_file(_a ) snake_case__ = {v: k for k, v in self.encoder.items()} with open(_a , encoding='''utf-8''' ) as merges_handle: snake_case__ = merges_handle.read().split('''\n''' )[:-1] snake_case__ = [tuple(merge.split()[:-1] ) for merge in merges] snake_case__ = dict(zip(_a , range(len(_a ) ) ) ) snake_case__ = {} def SCREAMING_SNAKE_CASE__ ( self:int , _a:List[int] , _a:Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ = [self.cls_token_id] snake_case__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:List[int] , _a:Optional[List[int]] = None , _a:bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def SCREAMING_SNAKE_CASE__ ( self:str , _a:List[int] , _a:Optional[List[int]] = None ): snake_case__ = [self.sep_token_id] snake_case__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return len(self.encoder ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:str ): if token in self.cache: return self.cache[token] snake_case__ = tuple(_a ) snake_case__ = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) snake_case__ = get_pairs(_a ) if not pairs: return token while True: snake_case__ = min(_a , key=lambda _a : self.bpe_ranks.get(_a , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break snake_case__ , snake_case__ = bigram snake_case__ = [] snake_case__ = 0 while i < len(_a ): try: snake_case__ = word.index(_a , _a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ = j if word[i] == first and i < len(_a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ = tuple(_a ) snake_case__ = new_word if len(_a ) == 1: break else: snake_case__ = get_pairs(_a ) snake_case__ = '''@@ '''.join(_a ) snake_case__ = word[:-4] snake_case__ = word return word def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:List[str] ): snake_case__ = [] snake_case__ = re.findall(r'''\S+\n?''' , _a ) for token in words: split_tokens.extend(list(self.bpe(_a ).split(''' ''' ) ) ) return split_tokens def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict ): return self.encoder.get(_a , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:Union[str, Any] ): return self.decoder.get(_a , self.unk_token ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:str ): snake_case__ = ''' '''.join(_a ).replace('''@@ ''' , '''''' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:str , _a:Optional[str] = None ): if not os.path.isdir(_a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case__ = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) if os.path.abspath(self.merges_file ) != os.path.abspath(_a ): copyfile(self.merges_file , _a ) return out_vocab_file, out_merge_file def SCREAMING_SNAKE_CASE__ ( self:Any , _a:str ): if isinstance(_a , _a ): try: with open(_a , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(_a ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F"""Incorrect encoding detected in {f}, please rebuild the dataset""" ) return snake_case__ = f.readlines() for lineTmp in lines: snake_case__ = lineTmp.strip() snake_case__ = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) snake_case__ = line[:idx] snake_case__ = len(self.encoder )
33
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : str = IFImgaImgSuperResolutionPipeline __lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} __lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) __lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def SCREAMING_SNAKE_CASE__ ( self:Dict ): return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:str ): self._test_save_load_local() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
33
1
from collections import deque def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Union[str, Any]: snake_case__ = len(__lowerCAmelCase ) snake_case__ = deque() snake_case__ = [False for _ in range(__lowerCAmelCase )] snake_case__ = [-1 for _ in range(__lowerCAmelCase )] snake_case__ = index_of[:] def strong_connect(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): snake_case__ = index # the number when this node is seen snake_case__ = index # lowest rank node reachable from here index += 1 stack.append(__lowerCAmelCase ) snake_case__ = True for w in g[v]: if index_of[w] == -1: snake_case__ = strong_connect(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) snake_case__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: snake_case__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: snake_case__ = [] snake_case__ = stack.pop() snake_case__ = False component.append(__lowerCAmelCase ) while w != v: snake_case__ = stack.pop() snake_case__ = False component.append(__lowerCAmelCase ) components.append(__lowerCAmelCase ) return index snake_case__ = [] for v in range(__lowerCAmelCase ): if index_of[v] == -1: strong_connect(__lowerCAmelCase , 0 , __lowerCAmelCase ) return components def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = [[] for _ in range(__lowerCAmelCase )] for u, v in edges: g[u].append(__lowerCAmelCase ) return g if __name__ == "__main__": # Test lowerCamelCase__ : Tuple = 7 lowerCamelCase__ : Optional[Any] = [0, 0, 1, 2, 3, 3, 4, 4, 6] lowerCamelCase__ : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5] lowerCamelCase__ : int = [(u, v) for u, v in zip(source, target)] lowerCamelCase__ : List[str] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
33
import math class __magic_name__ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:list[list[float]] , _a:list[int] ): snake_case__ = 0.0 snake_case__ = 0.0 for i in range(len(_a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:list[list[int | float]] , _a:list[int] , _a:int , _a:float ): for i in range(len(_a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def SCREAMING_SNAKE_CASE ( ) -> None: # Training Examples ( m, n ) snake_case__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case__ = SelfOrganizingMap() snake_case__ = 3 snake_case__ = 0.5 for _ in range(__lowerCAmelCase ): for j in range(len(__lowerCAmelCase ) ): # training sample snake_case__ = training_samples[j] # Compute the winning vector snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # Update the winning vector snake_case__ = self_organizing_map.update(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # classify test sample snake_case__ = [0, 0, 0, 1] snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
33
1
from datetime import datetime import matplotlib.pyplot as plt import torch def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: for param in module.parameters(): snake_case__ = False def SCREAMING_SNAKE_CASE ( ) -> int: snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): snake_case__ = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: snake_case__ = plt.imshow(__lowerCAmelCase ) fig.axes.get_xaxis().set_visible(__lowerCAmelCase ) fig.axes.get_yaxis().set_visible(__lowerCAmelCase ) plt.show() def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: snake_case__ = datetime.now() snake_case__ = current_time.strftime('''%H:%M:%S''' ) return timestamp
33
from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes snake_case__ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] snake_case__ = [] snake_case__ = 0 snake_case__ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case__ = [] snake_case__ = -1 for i in range(__lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case__ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case__ = i total_time += burst_time[target_process] completed += 1 snake_case__ = 0 snake_case__ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") lowerCamelCase__ : Tuple = 4 lowerCamelCase__ : Union[str, Any] = [2, 5, 3, 7] lowerCamelCase__ : Optional[Any] = [0, 0, 0, 0] lowerCamelCase__ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase__ : Union[str, Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
33
1
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Union[str, Any] = (EulerDiscreteScheduler,) __lowercase : str = 10 def SCREAMING_SNAKE_CASE__ ( self:Tuple , **_a:str ): snake_case__ = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_a ) return config def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Any ): for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def SCREAMING_SNAKE_CASE__ ( self:Any ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a ) def SCREAMING_SNAKE_CASE__ ( self:str ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case__ = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): snake_case__ = scheduler.scale_model_input(_a , _a ) snake_case__ = model(_a , _a ) snake_case__ = scheduler.step(_a , _a , _a , generator=_a ) snake_case__ = output.prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config(prediction_type='''v_prediction''' ) snake_case__ = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case__ = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): snake_case__ = scheduler.scale_model_input(_a , _a ) snake_case__ = model(_a , _a ) snake_case__ = scheduler.step(_a , _a , _a , generator=_a ) snake_case__ = output.prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.2_676e-06 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case__ = sample.to(_a ) for t in scheduler.timesteps: snake_case__ = scheduler.scale_model_input(_a , _a ) snake_case__ = model(_a , _a ) snake_case__ = scheduler.step(_a , _a , _a , generator=_a ) snake_case__ = output.prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a , use_karras_sigmas=_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case__ = sample.to(_a ) for t in scheduler.timesteps: snake_case__ = scheduler.scale_model_input(_a , _a ) snake_case__ = model(_a , _a ) snake_case__ = scheduler.step(_a , _a , _a , generator=_a ) snake_case__ = output.prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
33
lowerCamelCase__ : List[str] = """Alexander Joslin""" import operator as op from .stack import Stack def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: snake_case__ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} snake_case__ = Stack() snake_case__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__lowerCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__lowerCAmelCase ) elif i == ")": # RULE 4 snake_case__ = operator_stack.peek() operator_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operators[opr](__lowerCAmelCase , __lowerCAmelCase ) operand_stack.push(__lowerCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
33
1
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __magic_name__ : '''simple docstring''' def __init__( self:Optional[Any] , _a:int , _a:str=3 , _a:Optional[int]=32 , _a:Optional[Any]=3 , _a:Tuple=10 , _a:List[Any]=[8, 16, 32, 64] , _a:str=[1, 1, 2, 1] , _a:Any=True , _a:List[Any]=True , _a:List[str]="relu" , _a:int=3 , _a:Tuple=None , _a:Tuple=["stage2", "stage3", "stage4"] , _a:List[Any]=[2, 3, 4] , _a:Union[str, Any]=1 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = image_size snake_case__ = num_channels snake_case__ = embeddings_size snake_case__ = hidden_sizes snake_case__ = depths snake_case__ = is_training snake_case__ = use_labels snake_case__ = hidden_act snake_case__ = num_labels snake_case__ = scope snake_case__ = len(_a ) snake_case__ = out_features snake_case__ = out_indices snake_case__ = num_groups def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[int] , _a:Tuple , _a:int ): snake_case__ = BitModel(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Tuple , _a:Any , _a:Union[str, Any] ): snake_case__ = self.num_labels snake_case__ = BitForImageClassification(_a ) model.to(_a ) model.eval() snake_case__ = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:str , _a:List[str] , _a:Any ): snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case__ = None snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowercase : int = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : Optional[Any] = False __lowercase : str = False __lowercase : Tuple = False __lowercase : Tuple = False def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = BitModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return @unittest.skip(reason='''Bit does not output attentions''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ) snake_case__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(config=_a ) for name, module in model.named_modules(): if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): def check_hidden_states_output(_a:List[Any] , _a:int , _a:Union[str, Any] ): snake_case__ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): snake_case__ = model(**self._prepare_for_class(_a , _a ) ) snake_case__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ = layer_type snake_case__ = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ = True check_hidden_states_output(_a , _a , _a ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = BitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE ( ) -> Any: snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ (unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): snake_case__ = model(**_a ) # verify the logits snake_case__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _a ) snake_case__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (BitBackbone,) if is_torch_available() else () __lowercase : int = BitConfig __lowercase : Any = False def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = BitModelTester(self )
33
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase__ : int = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[Any] , *_a:Dict , **_a:Tuple ): warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
1
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: def get_masked_lm_array(__lowerCAmelCase ): snake_case__ = F"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" snake_case__ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) if "kernel" in name: snake_case__ = array.transpose() return torch.from_numpy(__lowerCAmelCase ) def get_encoder_array(__lowerCAmelCase ): snake_case__ = F"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" snake_case__ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) if "kernel" in name: snake_case__ = array.transpose() return torch.from_numpy(__lowerCAmelCase ) def get_encoder_layer_array(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ = F"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" snake_case__ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) if "kernel" in name: snake_case__ = array.transpose() return torch.from_numpy(__lowerCAmelCase ) def get_encoder_attention_layer_array(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): snake_case__ = F"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" snake_case__ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = array.reshape(__lowerCAmelCase ) if "kernel" in name: snake_case__ = array.transpose() return torch.from_numpy(__lowerCAmelCase ) print(F"""Loading model based on config from {config_path}...""" ) snake_case__ = BertConfig.from_json_file(__lowerCAmelCase ) snake_case__ = BertForMaskedLM(__lowerCAmelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): snake_case__ = model.bert.encoder.layer[layer_index] # Self-attention snake_case__ = layer.attention.self snake_case__ = get_encoder_attention_layer_array( __lowerCAmelCase , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) snake_case__ = get_encoder_attention_layer_array( __lowerCAmelCase , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) snake_case__ = get_encoder_attention_layer_array( __lowerCAmelCase , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) snake_case__ = get_encoder_attention_layer_array( __lowerCAmelCase , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) snake_case__ = get_encoder_attention_layer_array( __lowerCAmelCase , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) snake_case__ = get_encoder_attention_layer_array( __lowerCAmelCase , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output snake_case__ = layer.attention.output snake_case__ = get_encoder_attention_layer_array( __lowerCAmelCase , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) snake_case__ = get_encoder_attention_layer_array( __lowerCAmelCase , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) snake_case__ = get_encoder_layer_array(__lowerCAmelCase , '''_attention_layer_norm/gamma''' ) snake_case__ = get_encoder_layer_array(__lowerCAmelCase , '''_attention_layer_norm/beta''' ) # Intermediate snake_case__ = layer.intermediate snake_case__ = get_encoder_layer_array(__lowerCAmelCase , '''_intermediate_dense/kernel''' ) snake_case__ = get_encoder_layer_array(__lowerCAmelCase , '''_intermediate_dense/bias''' ) # Output snake_case__ = layer.output snake_case__ = get_encoder_layer_array(__lowerCAmelCase , '''_output_dense/kernel''' ) snake_case__ = get_encoder_layer_array(__lowerCAmelCase , '''_output_dense/bias''' ) snake_case__ = get_encoder_layer_array(__lowerCAmelCase , '''_output_layer_norm/gamma''' ) snake_case__ = get_encoder_layer_array(__lowerCAmelCase , '''_output_layer_norm/beta''' ) # Embeddings snake_case__ = get_encoder_array('''_position_embedding_layer/embeddings''' ) snake_case__ = get_encoder_array('''_type_embedding_layer/embeddings''' ) snake_case__ = get_encoder_array('''_embedding_norm_layer/gamma''' ) snake_case__ = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head snake_case__ = model.cls.predictions.transform snake_case__ = get_masked_lm_array('''dense/kernel''' ) snake_case__ = get_masked_lm_array('''dense/bias''' ) snake_case__ = get_masked_lm_array('''layer_norm/gamma''' ) snake_case__ = get_masked_lm_array('''layer_norm/beta''' ) snake_case__ = get_masked_lm_array('''embedding_table''' ) # Pooling snake_case__ = BertPooler(config=__lowerCAmelCase ) snake_case__ = get_encoder_array('''_pooler_layer/kernel''' ) snake_case__ = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(__lowerCAmelCase ) # Integration test - should load without any errors ;) snake_case__ = BertForMaskedLM.from_pretrained(__lowerCAmelCase ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) lowerCamelCase__ : int = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Tuple = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
1
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowerCamelCase__ : List[str] = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:Dict , *_a:Union[str, Any] , **_a:List[Any] ): warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: snake_case__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Dict = StableDiffusionLatentUpscalePipeline __lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase : List[Any] = frozenset([] ) __lowercase : Any = True @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = 1 snake_case__ = 4 snake_case__ = (16, 16) snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_a , only_cross_attention=_a , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) snake_case__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) snake_case__ = EulerDiscreteScheduler(prediction_type='''sample''' ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , ) snake_case__ = CLIPTextModel(_a ) snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:List[str]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''cpu''' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) snake_case__ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) snake_case__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = 2 snake_case__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case__ = getattr(_a , scheduler_enum.name ) snake_case__ = scheduler_cls.from_config(pipe.scheduler.config ) snake_case__ = pipe(**_a )[0] outputs.append(_a ) assert check_same_shape(_a ) @require_torch_gpu @slow class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' snake_case__ = pipe(_a , generator=_a , output_type='''latent''' ).images snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
33
1
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> bool: snake_case__ = len(__lowerCAmelCase ) + 1 snake_case__ = len(__lowerCAmelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. snake_case__ = [[0 for i in range(__lowerCAmelCase )] for j in range(__lowerCAmelCase )] # since string of zero length match pattern of zero length snake_case__ = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __lowerCAmelCase ): snake_case__ = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __lowerCAmelCase ): snake_case__ = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __lowerCAmelCase ): for j in range(1 , __lowerCAmelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": snake_case__ = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: snake_case__ = 1 elif pattern[j - 2] in (input_string[i - 1], "."): snake_case__ = dp[i - 1][j] else: snake_case__ = 0 else: snake_case__ = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") lowerCamelCase__ : int = """aab""" lowerCamelCase__ : List[Any] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"""{input_string} matches the given pattern {pattern}""") else: print(F"""{input_string} does not match with the given pattern {pattern}""")
33
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''ZinengTang/tvlt-base''' snake_case__ = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:List[Any] ): return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , **_a:Tuple ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = feature_extractor(_a , return_tensors='''np''' ) snake_case__ = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = image_processor(_a , return_tensors='''np''' ) snake_case__ = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
33
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __magic_name__ : '''simple docstring''' def __init__( self:int , _a:Optional[Any] , _a:Any=2 , _a:Dict=True , _a:List[Any]=False , _a:List[str]=10 , _a:Union[str, Any]=3 , _a:Tuple=32 * 8 , _a:Dict=32 * 8 , _a:List[str]=4 , _a:Union[str, Any]=64 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = is_training snake_case__ = use_auxiliary_loss snake_case__ = num_queries snake_case__ = num_channels snake_case__ = min_size snake_case__ = max_size snake_case__ = num_labels snake_case__ = hidden_dim snake_case__ = hidden_dim def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _a ) snake_case__ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_a ) snake_case__ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_a ) > 0.5 ).float() snake_case__ = (torch.rand((self.batch_size, self.num_labels) , device=_a ) > 0.5).long() snake_case__ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) snake_case__ = self.num_queries snake_case__ = self.num_labels snake_case__ = [1, 1, 1, 1] snake_case__ = self.num_channels snake_case__ = 64 snake_case__ = 1_28 snake_case__ = self.hidden_dim snake_case__ = self.hidden_dim snake_case__ = self.hidden_dim return config def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = self.prepare_config_and_inputs() snake_case__ = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:str ): snake_case__ = output.encoder_hidden_states snake_case__ = output.pixel_decoder_hidden_states snake_case__ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , config.decoder_layers ) def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Optional[Any] , _a:Optional[int] , _a:List[str] , _a:Tuple=False ): with torch.no_grad(): snake_case__ = MaskaFormerModel(config=_a ) model.to(_a ) model.eval() snake_case__ = model(pixel_values=_a , pixel_mask=_a ) snake_case__ = model(_a , output_hidden_states=_a ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:str , _a:Dict , _a:Optional[Any] , _a:str , _a:str ): snake_case__ = MaskaFormerForUniversalSegmentation(config=_a ) model.to(_a ) model.eval() def comm_check_on_output(_a:Any ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): snake_case__ = model(pixel_values=_a , pixel_mask=_a ) snake_case__ = model(_a ) comm_check_on_output(_a ) snake_case__ = model( pixel_values=_a , pixel_mask=_a , mask_labels=_a , class_labels=_a ) comm_check_on_output(_a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __lowercase : int = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} __lowercase : List[Any] = False __lowercase : str = False __lowercase : Union[str, Any] = False __lowercase : int = False def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = MaskaFormerModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a , **_a , output_hidden_states=_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_a ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self:int ): pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def SCREAMING_SNAKE_CASE__ ( self:Any ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ) snake_case__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) @slow def SCREAMING_SNAKE_CASE__ ( self:int ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: snake_case__ = MaskaFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = (self.model_tester.min_size,) * 2 snake_case__ = { '''pixel_values''': torch.randn((2, 3, *size) , device=_a ), '''mask_labels''': torch.randn((2, 10, *size) , device=_a ), '''class_labels''': torch.zeros(2 , 10 , device=_a ).long(), } snake_case__ = self.model_tester.get_config() snake_case__ = MaskaFormerForUniversalSegmentation(_a ).to(_a ) snake_case__ = model(**_a ) self.assertTrue(outputs.loss is not None ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a , **_a , output_hidden_states=_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ).to(_a ) snake_case__ = model(**_a , output_attentions=_a ) self.assertTrue(outputs.attentions is not None ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): if not self.model_tester.is_training: return snake_case__ = self.all_model_classes[1] snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs() snake_case__ = model_class(_a ) model.to(_a ) model.train() snake_case__ = model(_a , mask_labels=_a , class_labels=_a ).loss loss.backward() def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = self.all_model_classes[1] snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs() snake_case__ = True snake_case__ = True snake_case__ = model_class(_a ).to(_a ) model.train() snake_case__ = model(_a , mask_labels=_a , class_labels=_a ) snake_case__ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() snake_case__ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() snake_case__ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() snake_case__ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCamelCase__ : Tuple = 1E-4 def SCREAMING_SNAKE_CASE ( ) -> Tuple: snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __magic_name__ (unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Any ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def SCREAMING_SNAKE_CASE__ ( self:int ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_a ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(_a , return_tensors='''pt''' ).to(_a ) snake_case__ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a , (1, 3, 3_84, 3_84) ) with torch.no_grad(): snake_case__ = model(**_a ) snake_case__ = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) snake_case__ = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) snake_case__ = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _a , atol=_a ) ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(_a , return_tensors='''pt''' ).to(_a ) snake_case__ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a , (1, 3, 3_84, 3_84) ) with torch.no_grad(): snake_case__ = model(**_a ) # masks_queries_logits snake_case__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) snake_case__ = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] snake_case__ = torch.tensor(_a ).to(_a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _a , atol=_a ) ) # class_queries_logits snake_case__ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) snake_case__ = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _a , atol=_a ) ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() snake_case__ = self.default_image_processor snake_case__ = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors='''pt''' , ) snake_case__ = inputs['''pixel_values'''].to(_a ) snake_case__ = [el.to(_a ) for el in inputs['''mask_labels''']] snake_case__ = [el.to(_a ) for el in inputs['''class_labels''']] with torch.no_grad(): snake_case__ = model(**_a ) self.assertTrue(outputs.loss is not None )
33
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[int] = 'data2vec-vision' def __init__( self:int , _a:Tuple=7_68 , _a:int=12 , _a:Any=12 , _a:Optional[int]=30_72 , _a:Optional[int]="gelu" , _a:Any=0.0 , _a:Any=0.0 , _a:List[str]=0.02 , _a:Dict=1e-12 , _a:Tuple=2_24 , _a:Any=16 , _a:str=3 , _a:str=False , _a:Union[str, Any]=False , _a:Optional[int]=False , _a:Any=False , _a:Dict=0.1 , _a:Dict=0.1 , _a:str=True , _a:str=[3, 5, 7, 11] , _a:List[str]=[1, 2, 3, 6] , _a:List[str]=True , _a:Any=0.4 , _a:str=2_56 , _a:Union[str, Any]=1 , _a:int=False , _a:Optional[int]=2_55 , **_a:Dict , ): super().__init__(**_a ) snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = use_mask_token snake_case__ = use_absolute_position_embeddings snake_case__ = use_relative_position_bias snake_case__ = use_shared_relative_position_bias snake_case__ = layer_scale_init_value snake_case__ = drop_path_rate snake_case__ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ = out_indices snake_case__ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ = use_auxiliary_head snake_case__ = auxiliary_loss_weight snake_case__ = auxiliary_channels snake_case__ = auxiliary_num_convs snake_case__ = auxiliary_concat_input snake_case__ = semantic_loss_ignore_index class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Any = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return 1e-4
33
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : List[Any] = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
import os import sys lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCamelCase__ : Optional[int] = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple: return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]: return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
33
1
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCamelCase__ : str = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCamelCase__ : List[str] = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowerCamelCase__ : int = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"""config.{attribute}""" in modeling_source or F"""getattr(config, \"{attribute}\"""" in modeling_source or F"""getattr(self.config, \"{attribute}\"""" in modeling_source ): snake_case__ = True # Deal with multi-line cases elif ( re.search( rF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __lowerCAmelCase , ) is not None ): snake_case__ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: snake_case__ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files snake_case__ = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] snake_case__ = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed snake_case__ = True if not attribute_used: snake_case__ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: snake_case__ = True elif attribute in ["tie_word_embeddings"] and default_value is False: snake_case__ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: snake_case__ = True elif attribute.endswith('''_token_id''' ): snake_case__ = True # configuration class specific cases if not case_allowed: snake_case__ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) snake_case__ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[str]: snake_case__ = dict(inspect.signature(config_class.__init__ ).parameters ) snake_case__ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] snake_case__ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass snake_case__ = {} if len(config_class.attribute_map ) > 0: snake_case__ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files snake_case__ = inspect.getsourcefile(__lowerCAmelCase ) snake_case__ = os.path.dirname(__lowerCAmelCase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. snake_case__ = [os.path.join(__lowerCAmelCase , __lowerCAmelCase ) for fn in os.listdir(__lowerCAmelCase ) if fn.startswith('''modeling_''' )] # Get the source code strings snake_case__ = [] for path in modeling_paths: if os.path.isfile(__lowerCAmelCase ): with open(__lowerCAmelCase ) as fp: modeling_sources.append(fp.read() ) snake_case__ = [] for config_param, default_value in zip(__lowerCAmelCase , __lowerCAmelCase ): # `attributes` here is all the variant names for `config_param` snake_case__ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): unused_attributes.append(attributes[0] ) return sorted(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> int: snake_case__ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) snake_case__ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __lowerCAmelCase : inspect.isclass(__lowerCAmelCase ) and issubclass(__lowerCAmelCase , __lowerCAmelCase ) and inspect.getmodule(__lowerCAmelCase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: snake_case__ = check_config_attributes_being_used(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case__ = unused_attributes if len(__lowerCAmelCase ) > 0: snake_case__ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F"""{name}: {attributes}\n""" raise ValueError(__lowerCAmelCase ) if __name__ == "__main__": check_config_attributes()
33
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : str = (CMStochasticIterativeScheduler,) __lowercase : List[str] = 10 def SCREAMING_SNAKE_CASE__ ( self:int , **_a:Optional[int] ): snake_case__ = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**_a ) return config def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = 10 snake_case__ = self.get_scheduler_config() snake_case__ = self.scheduler_classes[0](**_a ) scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps[0] snake_case__ = scheduler.timesteps[1] snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self:Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_a ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = 1 scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_a ): # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [1_06, 0] scheduler.set_timesteps(timesteps=_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 15, 0] with self.assertRaises(_a , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 1, 0] snake_case__ = len(_a ) with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_a )
33
1
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCamelCase__ : int = getLogger(__name__) lowerCamelCase__ : Optional[int] = """cuda""" if torch.cuda.is_available() else """cpu""" def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 8 , __lowerCAmelCase = DEFAULT_DEVICE , __lowerCAmelCase=False , __lowerCAmelCase="summarization" , __lowerCAmelCase=None , **__lowerCAmelCase , ) -> Dict: snake_case__ = Path(__lowerCAmelCase ).open('''w''' , encoding='''utf-8''' ) snake_case__ = str(__lowerCAmelCase ) snake_case__ = AutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase ).to(__lowerCAmelCase ) if fpaa: snake_case__ = model.half() snake_case__ = AutoTokenizer.from_pretrained(__lowerCAmelCase ) logger.info(F"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. snake_case__ = time.time() # update config with task specific params use_task_specific_params(__lowerCAmelCase , __lowerCAmelCase ) if prefix is None: snake_case__ = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(__lowerCAmelCase , __lowerCAmelCase ) ) ): snake_case__ = [prefix + text for text in examples_chunk] snake_case__ = tokenizer(__lowerCAmelCase , return_tensors='''pt''' , truncation=__lowerCAmelCase , padding='''longest''' ).to(__lowerCAmelCase ) snake_case__ = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **__lowerCAmelCase , ) snake_case__ = tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() snake_case__ = int(time.time() - start_time ) # seconds snake_case__ = len(__lowerCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def SCREAMING_SNAKE_CASE ( ) -> Tuple: return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase=True ) -> str: snake_case__ = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=__lowerCAmelCase , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=__lowerCAmelCase , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=__lowerCAmelCase , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=__lowerCAmelCase , required=__lowerCAmelCase , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=__lowerCAmelCase , required=__lowerCAmelCase , default=__lowerCAmelCase , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=__lowerCAmelCase , required=__lowerCAmelCase , default=__lowerCAmelCase , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=__lowerCAmelCase , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=__lowerCAmelCase , default=8 , required=__lowerCAmelCase , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=__lowerCAmelCase , default=-1 , required=__lowerCAmelCase , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=__lowerCAmelCase , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate snake_case__ , snake_case__ = parser.parse_known_args() snake_case__ = parse_numeric_n_bool_cl_kwargs(__lowerCAmelCase ) if parsed_args and verbose: print(F"""parsed the following generate kwargs: {parsed_args}""" ) snake_case__ = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: snake_case__ = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=__lowerCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) snake_case__ = generate_summaries_or_translations( __lowerCAmelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **__lowerCAmelCase , ) if args.reference_path is None: return {} # Compute scores snake_case__ = calculate_bleu if '''translation''' in args.task else calculate_rouge snake_case__ = [x.rstrip() for x in open(args.save_path ).readlines()] snake_case__ = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(__lowerCAmelCase )] snake_case__ = score_fn(__lowerCAmelCase , __lowerCAmelCase ) scores.update(__lowerCAmelCase ) if args.dump_args: scores.update(__lowerCAmelCase ) if args.info: snake_case__ = args.info if verbose: print(__lowerCAmelCase ) if args.score_path is not None: json.dump(__lowerCAmelCase , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
33
import numpy as np def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return vector * sigmoid(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
33
1
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowerCamelCase__ : Tuple = """hf-internal-testing/tiny-random-bert""" lowerCamelCase__ : Tuple = os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""") lowerCamelCase__ : Optional[int] = """9b8c223d42b2188cb49d29af482996f9d0f3e5a6""" class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = cached_file(_a , _a ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_a ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_a , _a ) ) ) with open(os.path.join(_a , '''refs''' , '''main''' ) ) as f: snake_case__ = f.read() self.assertEqual(_a , os.path.join(_a , '''snapshots''' , _a , _a ) ) self.assertTrue(os.path.isfile(_a ) ) # File is cached at the same place the second time. snake_case__ = cached_file(_a , _a ) self.assertEqual(_a , _a ) # Using a specific revision to test the full commit hash. snake_case__ = cached_file(_a , _a , revision='''9b8c223''' ) self.assertEqual(_a , os.path.join(_a , '''snapshots''' , _a , _a ) ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): with self.assertRaisesRegex(_a , '''is not a valid model identifier''' ): snake_case__ = cached_file('''tiny-random-bert''' , _a ) with self.assertRaisesRegex(_a , '''is not a valid git identifier''' ): snake_case__ = cached_file(_a , _a , revision='''aaaa''' ) with self.assertRaisesRegex(_a , '''does not appear to have a file named''' ): snake_case__ = cached_file(_a , '''conf''' ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): with self.assertRaisesRegex(_a , '''does not appear to have a file named''' ): snake_case__ = cached_file(_a , '''conf''' ) with open(os.path.join(_a , '''refs''' , '''main''' ) ) as f: snake_case__ = f.read() self.assertTrue(os.path.isfile(os.path.join(_a , '''.no_exist''' , _a , '''conf''' ) ) ) snake_case__ = cached_file(_a , '''conf''' , _raise_exceptions_for_missing_entries=_a ) self.assertIsNone(_a ) snake_case__ = cached_file(_a , '''conf''' , local_files_only=_a , _raise_exceptions_for_missing_entries=_a ) self.assertIsNone(_a ) snake_case__ = mock.Mock() snake_case__ = 5_00 snake_case__ = {} snake_case__ = HTTPError snake_case__ = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_a ) as mock_head: snake_case__ = cached_file(_a , '''conf''' , _raise_exceptions_for_connection_errors=_a ) self.assertIsNone(_a ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ ( self:Any ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _a ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _a ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _a ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_a , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , _a ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_a , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , _a , revision='''ahaha''' ) snake_case__ = get_file_from_repo('''bert-base-cased''' , _a ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case__ = json.loads(open(_a , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 7_68 ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ = Path(_a ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(_a , '''a.txt''' ) , str(_a ) ) self.assertIsNone(get_file_from_repo(_a , '''b.txt''' ) )
33
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int: snake_case__ = set() snake_case__ = 0 snake_case__ = n + 1 # maximum limit for a in range(2 , __lowerCAmelCase ): for b in range(2 , __lowerCAmelCase ): snake_case__ = a**b # calculates the current power collect_powers.add(__lowerCAmelCase ) # adds the result to the set return len(__lowerCAmelCase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
33
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : str = { """configuration_deberta""": ["""DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DebertaConfig""", """DebertaOnnxConfig"""], """tokenization_deberta""": ["""DebertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = ["""DebertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """DebertaForMaskedLM""", """DebertaForQuestionAnswering""", """DebertaForSequenceClassification""", """DebertaForTokenClassification""", """DebertaModel""", """DebertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ """TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDebertaForMaskedLM""", """TFDebertaForQuestionAnswering""", """TFDebertaForSequenceClassification""", """TFDebertaForTokenClassification""", """TFDebertaModel""", """TFDebertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys lowerCamelCase__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
from copy import deepcopy class __magic_name__ : '''simple docstring''' def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ): if arr is None and size is not None: snake_case__ = size snake_case__ = [0] * size elif arr is not None: self.init(_a ) else: raise ValueError('''Either arr or size must be specified''' ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ): snake_case__ = len(_a ) snake_case__ = deepcopy(_a ) for i in range(1 , self.size ): snake_case__ = self.next_(_a ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case__ = self.next_(_a ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case__ = self.next_(_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): self.add(_a , value - self.get(_a ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ): if right == 0: return 0 snake_case__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case__ = self.prev(_a ) return result def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): return self.prefix(_a ) - self.prefix(_a ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): return self.query(_a , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): value -= self.tree[0] if value < 0: return -1 snake_case__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
33
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : List[Any] = { """facebook/wav2vec2-base-960h""": """https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json""", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : int = 'wav2vec2' def __init__( self:Tuple , _a:List[Any]=32 , _a:int=7_68 , _a:Dict=12 , _a:Tuple=12 , _a:Optional[Any]=30_72 , _a:List[str]="gelu" , _a:List[Any]=0.1 , _a:List[Any]=0.1 , _a:List[Any]=0.1 , _a:List[Any]=0.0 , _a:Union[str, Any]=0.0 , _a:List[str]=0.1 , _a:Optional[int]=0.1 , _a:Optional[Any]=0.02 , _a:Tuple=1e-5 , _a:Optional[Any]="group" , _a:Dict="gelu" , _a:Union[str, Any]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _a:Optional[int]=(5, 2, 2, 2, 2, 2, 2) , _a:Dict=(10, 3, 3, 3, 3, 2, 2) , _a:Optional[int]=False , _a:List[str]=1_28 , _a:Optional[int]=16 , _a:Optional[int]=False , _a:Union[str, Any]=True , _a:Dict=0.05 , _a:Tuple=10 , _a:Optional[int]=2 , _a:str=0.0 , _a:Tuple=10 , _a:List[str]=0 , _a:List[str]=3_20 , _a:Any=2 , _a:List[Any]=0.1 , _a:List[Any]=1_00 , _a:Tuple=2_56 , _a:List[Any]=2_56 , _a:Any=0.1 , _a:Tuple="sum" , _a:Union[str, Any]=False , _a:Tuple=False , _a:Tuple=2_56 , _a:Union[str, Any]=(5_12, 5_12, 5_12, 5_12, 15_00) , _a:Union[str, Any]=(5, 3, 3, 1, 1) , _a:Dict=(1, 2, 3, 1, 1) , _a:Dict=5_12 , _a:Tuple=0 , _a:Any=1 , _a:Union[str, Any]=2 , _a:List[Any]=False , _a:Optional[int]=3 , _a:Tuple=2 , _a:Any=3 , _a:Union[str, Any]=None , _a:int=None , **_a:Optional[Any] , ): super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) snake_case__ = hidden_size snake_case__ = feat_extract_norm snake_case__ = feat_extract_activation snake_case__ = list(_a ) snake_case__ = list(_a ) snake_case__ = list(_a ) snake_case__ = conv_bias snake_case__ = num_conv_pos_embeddings snake_case__ = num_conv_pos_embedding_groups snake_case__ = len(self.conv_dim ) snake_case__ = num_hidden_layers snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = num_attention_heads snake_case__ = hidden_dropout snake_case__ = attention_dropout snake_case__ = activation_dropout snake_case__ = feat_proj_dropout snake_case__ = final_dropout snake_case__ = layerdrop snake_case__ = layer_norm_eps snake_case__ = initializer_range snake_case__ = vocab_size snake_case__ = do_stable_layer_norm snake_case__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case__ = apply_spec_augment snake_case__ = mask_time_prob snake_case__ = mask_time_length snake_case__ = mask_time_min_masks snake_case__ = mask_feature_prob snake_case__ = mask_feature_length snake_case__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case__ = num_codevectors_per_group snake_case__ = num_codevector_groups snake_case__ = contrastive_logits_temperature snake_case__ = feat_quantizer_dropout snake_case__ = num_negatives snake_case__ = codevector_dim snake_case__ = proj_codevector_dim snake_case__ = diversity_loss_weight # ctc loss snake_case__ = ctc_loss_reduction snake_case__ = ctc_zero_infinity # adapter snake_case__ = add_adapter snake_case__ = adapter_kernel_size snake_case__ = adapter_stride snake_case__ = num_adapter_layers snake_case__ = output_hidden_size or hidden_size snake_case__ = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case__ = list(_a ) snake_case__ = list(_a ) snake_case__ = list(_a ) snake_case__ = xvector_output_dim @property def SCREAMING_SNAKE_CASE__ ( self:Any ): return functools.reduce(operator.mul , self.conv_stride , 1 )
33
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __magic_name__ : '''simple docstring''' __lowercase : int = BlenderbotConfig __lowercase : Any = {} __lowercase : Optional[Any] = 'gelu' def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[Any]=13 , _a:Tuple=7 , _a:Union[str, Any]=True , _a:int=False , _a:int=99 , _a:Optional[int]=32 , _a:List[str]=2 , _a:List[str]=4 , _a:List[Any]=37 , _a:Any=0.1 , _a:int=0.1 , _a:List[Any]=20 , _a:List[str]=2 , _a:int=1 , _a:Dict=0 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = eos_token_id snake_case__ = pad_token_id snake_case__ = bos_token_id def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case__ = prepare_blenderbot_inputs_dict(_a , _a , _a ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:int ): snake_case__ = TFBlenderbotModel(config=_a ).get_decoder() snake_case__ = inputs_dict['''input_ids'''] snake_case__ = input_ids[:1, :] snake_case__ = inputs_dict['''attention_mask'''][:1, :] snake_case__ = inputs_dict['''head_mask'''] snake_case__ = 1 # first forward pass snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) snake_case__ , snake_case__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case__ = model(_a , attention_mask=_a )[0] snake_case__ = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case__ = output_from_no_past[:, -3:, random_slice_idx] snake_case__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Tuple: if attention_mask is None: snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowercase : Tuple = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowercase : Any = True __lowercase : int = False __lowercase : int = False def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFBlenderbotModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_tokenizers @require_tf class __magic_name__ (unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = ['My friends are cool but they eat too many carbs.'] __lowercase : Optional[int] = 'facebook/blenderbot-400M-distill' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.tokenizer(self.src_text , return_tensors='''tf''' ) snake_case__ = self.model.generate( model_inputs.input_ids , ) snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
33
1
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : str = {"""vocab_file""": """spiece.model"""} lowerCamelCase__ : Optional[Any] = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase__ : str = { """t5-small""": 5_1_2, """t5-base""": 5_1_2, """t5-large""": 5_1_2, """t5-3b""": 5_1_2, """t5-11b""": 5_1_2, } lowerCamelCase__ : Union[str, Any] = """▁""" class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[Any] = VOCAB_FILES_NAMES __lowercase : str = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Dict = ['input_ids', 'attention_mask'] def __init__( self:int , _a:Any , _a:List[str]="</s>" , _a:Union[str, Any]="<unk>" , _a:List[Any]="<pad>" , _a:Optional[Any]=1_00 , _a:List[str]=None , _a:Optional[Dict[str, Any]] = None , _a:int=True , **_a:int , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: snake_case__ = [F"""<extra_id_{i}>""" for i in range(_a )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens snake_case__ = len(set(filter(lambda _a : bool('''extra_id''' in str(_a ) ) , _a ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( F"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) snake_case__ = legacy snake_case__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_a , unk_token=_a , pad_token=_a , extra_ids=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , legacy=_a , **_a , ) snake_case__ = vocab_file snake_case__ = extra_ids snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:Optional[int] , _a:Union[str, Any] , _a:str ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: snake_case__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _a , ) return max_model_length @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return self.sp_model.get_piece_size() + self._extra_ids def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:List[int] , _a:Optional[List[int]] = None , _a:bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_a )) + [1] return ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): return list( set(filter(lambda _a : bool(re.search(r'''<extra_id_\d+>''' , _a ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): return [self._convert_token_to_id(_a ) for token in self.get_sentinel_tokens()] def SCREAMING_SNAKE_CASE__ ( self:int , _a:List[int] ): if len(_a ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:List[int] , _a:Optional[List[int]] = None ): snake_case__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:List[int] , _a:Optional[List[int]] = None ): snake_case__ = self._add_eos_if_not_present(_a ) if token_ids_a is None: return token_ids_a else: snake_case__ = self._add_eos_if_not_present(_a ) return token_ids_a + token_ids_a def __getstate__( self:Dict ): snake_case__ = self.__dict__.copy() snake_case__ = None return state def __setstate__( self:Tuple , _a:Union[str, Any] ): snake_case__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case__ = {} snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:"TextInput" , **_a:Tuple ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: snake_case__ = SPIECE_UNDERLINE + text.replace(_a , ''' ''' ) return super().tokenize(_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:Optional[int] , **_a:str ): if not self.legacy: snake_case__ = text.startswith(_a ) if is_first: snake_case__ = text[1:] snake_case__ = self.sp_model.encode(_a , out_type=_a ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_a ): snake_case__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int ): if token.startswith('''<extra_id_''' ): snake_case__ = re.match(r'''<extra_id_(\d+)>''' , _a ) snake_case__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:List[Any] ): if index < self.sp_model.get_piece_size(): snake_case__ = self.sp_model.IdToPiece(_a ) else: snake_case__ = F"""<extra_id_{self.vocab_size - 1 - index}>""" return token def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:Dict ): snake_case__ = [] snake_case__ = '''''' snake_case__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token snake_case__ = True snake_case__ = [] else: current_sub_tokens.append(_a ) snake_case__ = False out_string += self.sp_model.decode(_a ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:str , _a:Optional[str] = None ): if not os.path.isdir(_a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , '''wb''' ) as fi: snake_case__ = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
33
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = 0 def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:str ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case__ = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) snake_case__ = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved snake_case__ = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): snake_case__ = AutoImageProcessor.from_pretrained('''clip-base''' ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): with self.assertRaisesRegex( _a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): snake_case__ = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
33
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> None: snake_case__ = len(__lowerCAmelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__lowerCAmelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __lowerCAmelCase , __lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> None: snake_case__ = [] depth_first_search([] , [] , [] , __lowerCAmelCase , __lowerCAmelCase ) # Print all the boards for board in boards: for column in board: print(__lowerCAmelCase ) print('''''' ) print(len(__lowerCAmelCase ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
33
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> int: snake_case__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ = '''''' else: snake_case__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[ : config.hidden_size, : ] snake_case__ = in_proj_bias[: config.hidden_size] snake_case__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ = in_proj_weight[ -config.hidden_size :, : ] snake_case__ = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: snake_case__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: snake_case__ = dct.pop(__lowerCAmelCase ) snake_case__ = val def SCREAMING_SNAKE_CASE ( ) -> str: snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = ViTConfig() snake_case__ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": snake_case__ = True snake_case__ = int(vit_name[-12:-10] ) snake_case__ = int(vit_name[-9:-6] ) else: snake_case__ = 1000 snake_case__ = '''huggingface/label-files''' snake_case__ = '''imagenet-1k-id2label.json''' snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = int(vit_name[-6:-4] ) snake_case__ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): snake_case__ = 192 snake_case__ = 768 snake_case__ = 12 snake_case__ = 3 elif vit_name[9:].startswith('''small''' ): snake_case__ = 384 snake_case__ = 1536 snake_case__ = 12 snake_case__ = 6 else: pass else: if vit_name[4:].startswith('''small''' ): snake_case__ = 768 snake_case__ = 2304 snake_case__ = 8 snake_case__ = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): snake_case__ = 1024 snake_case__ = 4096 snake_case__ = 24 snake_case__ = 16 elif vit_name[4:].startswith('''huge''' ): snake_case__ = 1280 snake_case__ = 5120 snake_case__ = 32 snake_case__ = 16 # load original model from timm snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ = timm_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) snake_case__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ = ViTModel(__lowerCAmelCase ).eval() else: snake_case__ = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: snake_case__ = DeiTImageProcessor(size=config.image_size ) else: snake_case__ = ViTImageProcessor(size=config.image_size ) snake_case__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) snake_case__ = encoding['''pixel_values'''] snake_case__ = model(__lowerCAmelCase ) if base_model: snake_case__ = timm_model.forward_features(__lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1e-3 ) else: snake_case__ = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase__ : str = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
33
1
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: snake_case__ = os.path.abspath(__lowerCAmelCase ) logger.info(F"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model snake_case__ = tf.train.list_variables(__lowerCAmelCase ) snake_case__ = [] snake_case__ = [] snake_case__ = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") snake_case__ = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(F"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' snake_case__ = name[1:] # figure out how many levels deep the name is snake_case__ = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(__lowerCAmelCase ) # read data snake_case__ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) names.append('''/'''.join(__lowerCAmelCase ) ) arrays.append(__lowerCAmelCase ) logger.info(F"""Read a total of {len(__lowerCAmelCase ):,} layers""" ) # Sanity check if len(set(__lowerCAmelCase ) ) != 1: raise ValueError(F"""Found layer names with different depths (layer depth {list(set(__lowerCAmelCase ) )})""" ) snake_case__ = list(set(__lowerCAmelCase ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ = full_name.split('''/''' ) snake_case__ = model snake_case__ = [] for i, m_name in enumerate(__lowerCAmelCase ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): snake_case__ = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) snake_case__ = getattr(__lowerCAmelCase , '''embeddings''' ) snake_case__ = getattr(__lowerCAmelCase , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) snake_case__ = getattr(__lowerCAmelCase , '''encoder''' ) snake_case__ = getattr(__lowerCAmelCase , '''layer''' ) snake_case__ = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) snake_case__ = getattr(__lowerCAmelCase , '''pooler''' ) snake_case__ = getattr(__lowerCAmelCase , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) snake_case__ = getattr(__lowerCAmelCase , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) snake_case__ = getattr(__lowerCAmelCase , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) snake_case__ = getattr(__lowerCAmelCase , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) snake_case__ = getattr(__lowerCAmelCase , '''token_type_embeddings''' ) else: raise ValueError(F"""Unknown embedding layer with name {full_name}""" ) trace.append('''weight''' ) snake_case__ = getattr(__lowerCAmelCase , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) snake_case__ = getattr(__lowerCAmelCase , '''attention''' ) snake_case__ = getattr(__lowerCAmelCase , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) snake_case__ = getattr(__lowerCAmelCase , '''attention''' ) snake_case__ = getattr(__lowerCAmelCase , '''output''' ) snake_case__ = getattr(__lowerCAmelCase , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) snake_case__ = getattr(__lowerCAmelCase , '''attention''' ) snake_case__ = getattr(__lowerCAmelCase , '''output''' ) snake_case__ = getattr(__lowerCAmelCase , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) snake_case__ = getattr(__lowerCAmelCase , '''output''' ) snake_case__ = getattr(__lowerCAmelCase , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) snake_case__ = getattr(__lowerCAmelCase , '''output''' ) snake_case__ = getattr(__lowerCAmelCase , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) snake_case__ = getattr(__lowerCAmelCase , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) snake_case__ = getattr(__lowerCAmelCase , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) snake_case__ = getattr(__lowerCAmelCase , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) snake_case__ = getattr(__lowerCAmelCase , '''intermediate''' ) snake_case__ = getattr(__lowerCAmelCase , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) snake_case__ = getattr(__lowerCAmelCase , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) snake_case__ = getattr(__lowerCAmelCase , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) snake_case__ = getattr(__lowerCAmelCase , '''weight''' ) else: logger.warning(F"""Ignored {m_name}""" ) # for certain layers reshape is necessary snake_case__ = '''.'''.join(__lowerCAmelCase ) if re.match(r'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , __lowerCAmelCase ) or re.match( r'''(\S+)\.attention\.output\.dense\.weight''' , __lowerCAmelCase ): snake_case__ = array.reshape(pointer.data.shape ) if "kernel" in full_name: snake_case__ = array.transpose() if pointer.shape == array.shape: snake_case__ = torch.from_numpy(__lowerCAmelCase ) else: raise ValueError( F"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" F""" {array.shape}""" ) logger.info(F"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: # Instantiate model logger.info(F"""Loading model based on config from {config_path}...""" ) snake_case__ = BertConfig.from_json_file(__lowerCAmelCase ) snake_case__ = BertModel(__lowerCAmelCase ) # Load weights from checkpoint logger.info(F"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model logger.info(F"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Dict = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow 2.x checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model (must include filename).""", ) lowerCamelCase__ : Tuple = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
33
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = ['image_processor', 'tokenizer'] __lowercase : str = 'AutoImageProcessor' __lowercase : Dict = 'AutoTokenizer' def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ): snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) snake_case__ = kwargs.pop('''feature_extractor''' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) snake_case__ = self.image_processor snake_case__ = False def __call__( self:Optional[int] , *_a:str , **_a:int ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) snake_case__ = kwargs.pop('''images''' , _a ) snake_case__ = kwargs.pop('''text''' , _a ) if len(_a ) > 0: snake_case__ = args[0] snake_case__ = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: snake_case__ = self.image_processor(_a , *_a , **_a ) if text is not None: snake_case__ = self.tokenizer(_a , **_a ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ): return self.tokenizer.decode(*_a , **_a ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self:Tuple ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) snake_case__ = True snake_case__ = self.tokenizer yield snake_case__ = self.image_processor snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ): if added_vocab is None: snake_case__ = self.tokenizer.get_added_vocab() snake_case__ = {} while tokens: snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE ) if start_token is None: break snake_case__ = start_token.group(1 ) snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE ) snake_case__ = start_token.group() if end_token is None: snake_case__ = tokens.replace(_a , '''''' ) else: snake_case__ = end_token.group() snake_case__ = re.escape(_a ) snake_case__ = re.escape(_a ) snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE ) if content is not None: snake_case__ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a ) if value: if len(_a ) == 1: snake_case__ = value[0] snake_case__ = value else: # leaf nodes snake_case__ = [] for leaf in content.split(r'''<sep/>''' ): snake_case__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": snake_case__ = leaf[1:-2] # for categorical special tokens output[key].append(_a ) if len(output[key] ) == 1: snake_case__ = output[key][0] snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a ) if len(_a ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
33
1
import math class __magic_name__ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:list[list[float]] , _a:list[int] ): snake_case__ = 0.0 snake_case__ = 0.0 for i in range(len(_a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:list[list[int | float]] , _a:list[int] , _a:int , _a:float ): for i in range(len(_a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def SCREAMING_SNAKE_CASE ( ) -> None: # Training Examples ( m, n ) snake_case__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case__ = SelfOrganizingMap() snake_case__ = 3 snake_case__ = 0.5 for _ in range(__lowerCAmelCase ): for j in range(len(__lowerCAmelCase ) ): # training sample snake_case__ = training_samples[j] # Compute the winning vector snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # Update the winning vector snake_case__ = self_organizing_map.update(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # classify test sample snake_case__ = [0, 0, 0, 1] snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
33
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __magic_name__ : '''simple docstring''' def __init__( self:Optional[Any] , _a:int , _a:str=3 , _a:Optional[int]=32 , _a:Optional[Any]=3 , _a:Tuple=10 , _a:List[Any]=[8, 16, 32, 64] , _a:str=[1, 1, 2, 1] , _a:Any=True , _a:List[Any]=True , _a:List[str]="relu" , _a:int=3 , _a:Tuple=None , _a:Tuple=["stage2", "stage3", "stage4"] , _a:List[Any]=[2, 3, 4] , _a:Union[str, Any]=1 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = image_size snake_case__ = num_channels snake_case__ = embeddings_size snake_case__ = hidden_sizes snake_case__ = depths snake_case__ = is_training snake_case__ = use_labels snake_case__ = hidden_act snake_case__ = num_labels snake_case__ = scope snake_case__ = len(_a ) snake_case__ = out_features snake_case__ = out_indices snake_case__ = num_groups def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[int] , _a:Tuple , _a:int ): snake_case__ = BitModel(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Tuple , _a:Any , _a:Union[str, Any] ): snake_case__ = self.num_labels snake_case__ = BitForImageClassification(_a ) model.to(_a ) model.eval() snake_case__ = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:str , _a:List[str] , _a:Any ): snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case__ = None snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowercase : int = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : Optional[Any] = False __lowercase : str = False __lowercase : Tuple = False __lowercase : Tuple = False def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = BitModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return @unittest.skip(reason='''Bit does not output attentions''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ) snake_case__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(config=_a ) for name, module in model.named_modules(): if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): def check_hidden_states_output(_a:List[Any] , _a:int , _a:Union[str, Any] ): snake_case__ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): snake_case__ = model(**self._prepare_for_class(_a , _a ) ) snake_case__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ = layer_type snake_case__ = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ = True check_hidden_states_output(_a , _a , _a ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = BitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE ( ) -> Any: snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ (unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): snake_case__ = model(**_a ) # verify the logits snake_case__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _a ) snake_case__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (BitBackbone,) if is_torch_available() else () __lowercase : int = BitConfig __lowercase : Any = False def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = BitModelTester(self )
33
1
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = StableUnCLIPPipeline __lowercase : Any = TEXT_TO_IMAGE_PARAMS __lowercase : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS __lowercase : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS __lowercase : Any = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __lowercase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = 32 snake_case__ = embedder_hidden_size # prior components torch.manual_seed(0 ) snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) snake_case__ = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_a , projection_dim=_a , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) snake_case__ = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_a , num_layers=1 , ) torch.manual_seed(0 ) snake_case__ = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=_a , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) snake_case__ = StableUnCLIPImageNormalizer(embedding_dim=_a ) snake_case__ = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) snake_case__ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_a , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_a , layers_per_block=1 , upcast_attention=_a , use_linear_projection=_a , ) torch.manual_seed(0 ) snake_case__ = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_a , steps_offset=1 , ) torch.manual_seed(0 ) snake_case__ = AutoencoderKL() snake_case__ = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Tuple , _a:Any=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_a ) @slow @require_torch_gpu class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) snake_case__ = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() snake_case__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case__ = pipe('''anime turle''' , generator=_a , output_type='''np''' ) snake_case__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) snake_case__ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() snake_case__ = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) snake_case__ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
33
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCamelCase__ : Any = """\ """ lowerCamelCase__ : List[str] = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ lowerCamelCase__ : Any = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:List[Any] , _a:int = 16 , _a:bool = True , _a:Any=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": snake_case__ = '''cuda''' else: snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' snake_case__ = AutoModelForCausalLM.from_pretrained(_a ) snake_case__ = model.to(_a ) snake_case__ = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: snake_case__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" snake_case__ = model.config.max_length - 1 else: snake_case__ = model.config.max_length snake_case__ = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) snake_case__ = encodings['''input_ids'''] snake_case__ = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." snake_case__ = [] snake_case__ = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): snake_case__ = min(start_index + batch_size , len(_a ) ) snake_case__ = encoded_texts[start_index:end_index] snake_case__ = attn_masks[start_index:end_index] if add_start_token: snake_case__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) snake_case__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) snake_case__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) snake_case__ = encoded_batch with torch.no_grad(): snake_case__ = model(_a , attention_mask=_a ).logits snake_case__ = out_logits[..., :-1, :].contiguous() snake_case__ = labels[..., 1:].contiguous() snake_case__ = attn_mask[..., 1:].contiguous() snake_case__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
33
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[Any] = ['input_features', 'is_longer'] def __init__( self:List[Any] , _a:Dict=64 , _a:List[str]=4_80_00 , _a:str=4_80 , _a:Tuple=10 , _a:Dict=10_24 , _a:Any=0.0 , _a:List[Any]=False , _a:float = 0 , _a:float = 1_40_00 , _a:int = None , _a:str = "fusion" , _a:str = "repeatpad" , **_a:str , ): super().__init__( feature_size=_a , sampling_rate=_a , padding_value=_a , return_attention_mask=_a , **_a , ) snake_case__ = top_db snake_case__ = truncation snake_case__ = padding snake_case__ = fft_window_size snake_case__ = (fft_window_size >> 1) + 1 snake_case__ = hop_length snake_case__ = max_length_s snake_case__ = max_length_s * sampling_rate snake_case__ = sampling_rate snake_case__ = frequency_min snake_case__ = frequency_max snake_case__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_a , min_frequency=_a , max_frequency=_a , sampling_rate=_a , norm=_a , mel_scale='''htk''' , ) snake_case__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_a , min_frequency=_a , max_frequency=_a , sampling_rate=_a , norm='''slaney''' , mel_scale='''slaney''' , ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = copy.deepcopy(self.__dict__ ) snake_case__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def SCREAMING_SNAKE_CASE__ ( self:int , _a:np.array , _a:Optional[np.array] = None ): snake_case__ = spectrogram( _a , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_a , log_mel='''dB''' , ) return log_mel_spectrogram.T def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:List[str] , _a:Dict , _a:int ): snake_case__ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk snake_case__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk snake_case__ = [0] # randomly choose index for each part snake_case__ = np.random.choice(ranges[0] ) snake_case__ = np.random.choice(ranges[1] ) snake_case__ = np.random.choice(ranges[2] ) snake_case__ = mel[idx_front : idx_front + chunk_frames, :] snake_case__ = mel[idx_middle : idx_middle + chunk_frames, :] snake_case__ = mel[idx_back : idx_back + chunk_frames, :] snake_case__ = torch.tensor(mel[None, None, :] ) snake_case__ = torch.nn.functional.interpolate( _a , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=_a ) snake_case__ = mel_shrink[0][0].numpy() snake_case__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:np.array , _a:Dict , _a:List[str] , _a:Union[str, Any] ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": snake_case__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad snake_case__ = len(_a ) - max_length snake_case__ = np.random.randint(0 , overflow + 1 ) snake_case__ = waveform[idx : idx + max_length] snake_case__ = self._np_extract_fbank_features(_a , self.mel_filters_slaney )[None, :] elif truncation == "fusion": snake_case__ = self._np_extract_fbank_features(_a , self.mel_filters ) snake_case__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed snake_case__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. snake_case__ = np.stack([mel, mel, mel, mel] , axis=0 ) snake_case__ = False else: snake_case__ = self._random_mel_fusion(_a , _a , _a ) snake_case__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: snake_case__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": snake_case__ = int(max_length / len(_a ) ) snake_case__ = np.stack(np.tile(_a , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": snake_case__ = int(max_length / len(_a ) ) snake_case__ = np.stack(np.tile(_a , _a ) ) snake_case__ = np.pad(_a , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": snake_case__ = self._np_extract_fbank_features(_a , self.mel_filters ) snake_case__ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: snake_case__ = self._np_extract_fbank_features(_a , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self:Union[str, Any] , _a:Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _a:str = None , _a:Optional[str] = None , _a:Optional[int] = None , _a:Optional[int] = None , _a:Optional[Union[str, TensorType]] = None , **_a:int , ): snake_case__ = truncation if truncation is not None else self.truncation snake_case__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) snake_case__ = isinstance(_a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) snake_case__ = is_batched_numpy or ( isinstance(_a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case__ = [np.asarray(_a , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_a , np.ndarray ): snake_case__ = np.asarray(_a , dtype=np.floataa ) elif isinstance(_a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case__ = [np.asarray(_a )] # convert to mel spectrogram, truncate and pad if needed. snake_case__ = [ self._get_input_mel(_a , max_length if max_length else self.nb_max_samples , _a , _a ) for waveform in raw_speech ] snake_case__ = [] snake_case__ = [] for mel, longer in padded_inputs: input_mel.append(_a ) is_longer.append(_a ) if truncation == "fusion" and sum(_a ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer snake_case__ = np.random.randint(0 , len(_a ) ) snake_case__ = True if isinstance(input_mel[0] , _a ): snake_case__ = [np.asarray(_a , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool snake_case__ = [[longer] for longer in is_longer] snake_case__ = {'''input_features''': input_mel, '''is_longer''': is_longer} snake_case__ = BatchFeature(_a ) if return_tensors is not None: snake_case__ = input_features.convert_to_tensors(_a ) return input_features
33
import os from datetime import datetime as dt from github import Github lowerCamelCase__ : int = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: snake_case__ = Github(os.environ['''GITHUB_TOKEN'''] ) snake_case__ = g.get_repo('''huggingface/diffusers''' ) snake_case__ = repo.get_issues(state='''open''' ) for issue in open_issues: snake_case__ = sorted(issue.get_comments() , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) snake_case__ = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
33
1
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: snake_case__ = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int: snake_case__ = 1 snake_case__ = 2 for i in range(2 , max_n + 1 ): snake_case__ = pre_numerator snake_case__ = 2 * i // 3 if i % 3 == 0 else 1 snake_case__ = cur_numerator snake_case__ = e_cont * pre_numerator + temp return sum_digits(__lowerCAmelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
33
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__lowerCAmelCase , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = _distribute_shards(**__lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = _split_gen_kwargs(__lowerCAmelCase , __lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: if expected is RuntimeError: with pytest.raises(__lowerCAmelCase ): _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) else: snake_case__ = _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) assert out == expected
33
1
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
33
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : str = IFImgaImgSuperResolutionPipeline __lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} __lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) __lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def SCREAMING_SNAKE_CASE__ ( self:Dict ): return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:str ): self._test_save_load_local() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
33
1
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCamelCase__ : Any = """\ """ lowerCamelCase__ : List[str] = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ lowerCamelCase__ : Any = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:List[Any] , _a:int = 16 , _a:bool = True , _a:Any=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": snake_case__ = '''cuda''' else: snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' snake_case__ = AutoModelForCausalLM.from_pretrained(_a ) snake_case__ = model.to(_a ) snake_case__ = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: snake_case__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" snake_case__ = model.config.max_length - 1 else: snake_case__ = model.config.max_length snake_case__ = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) snake_case__ = encodings['''input_ids'''] snake_case__ = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." snake_case__ = [] snake_case__ = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): snake_case__ = min(start_index + batch_size , len(_a ) ) snake_case__ = encoded_texts[start_index:end_index] snake_case__ = attn_masks[start_index:end_index] if add_start_token: snake_case__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) snake_case__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) snake_case__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) snake_case__ = encoded_batch with torch.no_grad(): snake_case__ = model(_a , attention_mask=_a ).logits snake_case__ = out_logits[..., :-1, :].contiguous() snake_case__ = labels[..., 1:].contiguous() snake_case__ = attn_mask[..., 1:].contiguous() snake_case__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
33
import math class __magic_name__ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:list[list[float]] , _a:list[int] ): snake_case__ = 0.0 snake_case__ = 0.0 for i in range(len(_a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:list[list[int | float]] , _a:list[int] , _a:int , _a:float ): for i in range(len(_a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def SCREAMING_SNAKE_CASE ( ) -> None: # Training Examples ( m, n ) snake_case__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case__ = SelfOrganizingMap() snake_case__ = 3 snake_case__ = 0.5 for _ in range(__lowerCAmelCase ): for j in range(len(__lowerCAmelCase ) ): # training sample snake_case__ = training_samples[j] # Compute the winning vector snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # Update the winning vector snake_case__ = self_organizing_map.update(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # classify test sample snake_case__ = [0, 0, 0, 1] snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
33
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> bool: snake_case__ = str(__lowerCAmelCase ) return n == n[::-1] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100_0000 ) -> Union[str, Any]: snake_case__ = 0 for i in range(1 , __lowerCAmelCase ): if is_palindrome(__lowerCAmelCase ) and is_palindrome(bin(__lowerCAmelCase ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
33
from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes snake_case__ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] snake_case__ = [] snake_case__ = 0 snake_case__ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case__ = [] snake_case__ = -1 for i in range(__lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case__ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case__ = i total_time += burst_time[target_process] completed += 1 snake_case__ = 0 snake_case__ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") lowerCamelCase__ : Tuple = 4 lowerCamelCase__ : Union[str, Any] = [2, 5, 3, 7] lowerCamelCase__ : Optional[Any] = [0, 0, 0, 0] lowerCamelCase__ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase__ : Union[str, Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
33
1
from math import ceil def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 1001 ) -> int: snake_case__ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): snake_case__ = 2 * i + 1 snake_case__ = 2 * i snake_case__ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: lowerCamelCase__ : Dict = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
33
lowerCamelCase__ : List[str] = """Alexander Joslin""" import operator as op from .stack import Stack def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: snake_case__ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} snake_case__ = Stack() snake_case__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__lowerCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__lowerCAmelCase ) elif i == ")": # RULE 4 snake_case__ = operator_stack.peek() operator_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operators[opr](__lowerCAmelCase , __lowerCAmelCase ) operand_stack.push(__lowerCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
33
1
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __magic_name__ (snake_case_ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , '''width_multiplier''' ) ) class __magic_name__ : '''simple docstring''' def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[int]=13 , _a:Any=64 , _a:Union[str, Any]=2 , _a:List[Any]=3 , _a:Optional[Any]="swish" , _a:Any=3 , _a:str=32 , _a:Optional[int]=0.1 , _a:Optional[int]=0.02 , _a:Optional[Any]=True , _a:Optional[Any]=True , _a:List[str]=10 , _a:List[str]=None , _a:str=0.25 , _a:Tuple=0.0 , _a:int=0.0 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = make_divisible(5_12 * width_multiplier , divisor=8 ) snake_case__ = hidden_act snake_case__ = conv_kernel_size snake_case__ = output_stride snake_case__ = classifier_dropout_prob snake_case__ = use_labels snake_case__ = is_training snake_case__ = num_labels snake_case__ = initializer_range snake_case__ = scope snake_case__ = width_multiplier snake_case__ = ffn_dropout snake_case__ = attn_dropout def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case__ = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:Dict , _a:List[Any] , _a:str , _a:Optional[int] ): snake_case__ = MobileViTVaModel(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Tuple , _a:str , _a:List[str] , _a:Union[str, Any] ): snake_case__ = self.num_labels snake_case__ = MobileViTVaForImageClassification(_a ) model.to(_a ) model.eval() snake_case__ = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:List[str] , _a:List[str] , _a:str , _a:List[str] ): snake_case__ = self.num_labels snake_case__ = MobileViTVaForSemanticSegmentation(_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) snake_case__ = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Tuple = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __lowercase : Optional[Any] = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : Optional[Any] = False __lowercase : Union[str, Any] = False __lowercase : Union[str, Any] = False __lowercase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = MobileViTVaModelTester(self ) snake_case__ = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a ) def SCREAMING_SNAKE_CASE__ ( self:int ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self:int ): pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def SCREAMING_SNAKE_CASE__ ( self:Any ): pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE__ ( self:str ): pass def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ) snake_case__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): def check_hidden_states_output(_a:Tuple , _a:str , _a:Any ): snake_case__ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): snake_case__ = model(**self._prepare_for_class(_a , _a ) ) snake_case__ = outputs.hidden_states snake_case__ = 5 self.assertEqual(len(_a ) , _a ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. snake_case__ = 2 for i in range(len(_a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ = True check_hidden_states_output(_a , _a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @slow def SCREAMING_SNAKE_CASE__ ( self:Any ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = MobileViTVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE ( ) -> str: snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ (unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( _a ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): snake_case__ = model(**_a ) # verify the logits snake_case__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _a ) snake_case__ = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) snake_case__ = model.to(_a ) snake_case__ = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) snake_case__ = prepare_img() snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): snake_case__ = model(**_a ) snake_case__ = outputs.logits # verify the logits snake_case__ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _a ) snake_case__ = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) snake_case__ = model.to(_a ) snake_case__ = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) snake_case__ = prepare_img() snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): snake_case__ = model(**_a ) snake_case__ = outputs.logits.detach().cpu() snake_case__ = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(50, 60)] ) snake_case__ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _a ) snake_case__ = image_processor.post_process_semantic_segmentation(outputs=_a ) snake_case__ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _a )
33
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase__ : int = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[Any] , *_a:Dict , **_a:Tuple ): warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
1
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Union[str, Any]: return EnvironmentCommand() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[str]: return EnvironmentCommand(args.accelerate_config_file ) class __magic_name__ (snake_case_ ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:ArgumentParser ): snake_case__ = parser.add_parser('''env''' ) download_parser.set_defaults(func=_a ) download_parser.add_argument( '''--accelerate-config_file''' , default=_a , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_a ) def __init__( self:List[str] , _a:Dict , *_a:Dict ): snake_case__ = accelerate_config_file def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = '''not installed''' if is_safetensors_available(): import safetensors snake_case__ = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors snake_case__ = F"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" snake_case__ = '''not installed''' snake_case__ = snake_case__ = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file snake_case__ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_a ): snake_case__ = load_config_from_file(self._accelerate_config_file ).to_dict() snake_case__ = ( '''\n'''.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(_a , _a ) else F"""\t{accelerate_config}""" ) snake_case__ = '''not installed''' snake_case__ = '''NA''' if is_torch_available(): import torch snake_case__ = torch.__version__ snake_case__ = torch.cuda.is_available() snake_case__ = '''not installed''' snake_case__ = '''NA''' if is_tf_available(): import tensorflow as tf snake_case__ = tf.__version__ try: # deprecated in v2.1 snake_case__ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool snake_case__ = bool(tf.config.list_physical_devices('''GPU''' ) ) snake_case__ = '''not installed''' snake_case__ = '''not installed''' snake_case__ = '''not installed''' snake_case__ = '''NA''' if is_flax_available(): import flax import jax import jaxlib snake_case__ = flax.__version__ snake_case__ = jax.__version__ snake_case__ = jaxlib.__version__ snake_case__ = jax.lib.xla_bridge.get_backend().platform snake_case__ = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F"""{safetensors_version}""", '''Accelerate version''': F"""{accelerate_version}""", '''Accelerate config''': F"""{accelerate_config_str}""", '''PyTorch version (GPU?)''': F"""{pt_version} ({pt_cuda_available})""", '''Tensorflow version (GPU?)''': F"""{tf_version} ({tf_cuda_available})""", '''Flax version (CPU?/GPU?/TPU?)''': F"""{flax_version} ({jax_backend})""", '''Jax version''': F"""{jax_version}""", '''JaxLib version''': F"""{jaxlib_version}""", '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_a ) ) return info @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:Tuple ): return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Tuple = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available lowerCamelCase__ : Union[str, Any] = { """configuration_ernie""": ["""ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ErnieConfig""", """ErnieOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : int = [ """ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ErnieForCausalLM""", """ErnieForMaskedLM""", """ErnieForMultipleChoice""", """ErnieForNextSentencePrediction""", """ErnieForPreTraining""", """ErnieForQuestionAnswering""", """ErnieForSequenceClassification""", """ErnieForTokenClassification""", """ErnieModel""", """ErniePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys lowerCamelCase__ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: snake_case__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Dict = StableDiffusionLatentUpscalePipeline __lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase : List[Any] = frozenset([] ) __lowercase : Any = True @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = 1 snake_case__ = 4 snake_case__ = (16, 16) snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_a , only_cross_attention=_a , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) snake_case__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) snake_case__ = EulerDiscreteScheduler(prediction_type='''sample''' ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , ) snake_case__ = CLIPTextModel(_a ) snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:List[str]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''cpu''' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) snake_case__ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) snake_case__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = 2 snake_case__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case__ = getattr(_a , scheduler_enum.name ) snake_case__ = scheduler_cls.from_config(pipe.scheduler.config ) snake_case__ = pipe(**_a )[0] outputs.append(_a ) assert check_same_shape(_a ) @require_torch_gpu @slow class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' snake_case__ = pipe(_a , generator=_a , output_type='''latent''' ).images snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
33
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class __magic_name__ (unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) snake_case__ = AutoTokenizer.from_pretrained('''google/mt5-small''' ) snake_case__ = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids snake_case__ = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids snake_case__ = model(_a , labels=_a ).loss snake_case__ = -tf.math.reduce_mean(_a ).numpy() snake_case__ = -21.228168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
33
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''ZinengTang/tvlt-base''' snake_case__ = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:List[Any] ): return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , **_a:Tuple ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = feature_extractor(_a , return_tensors='''np''' ) snake_case__ = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = image_processor(_a , return_tensors='''np''' ) snake_case__ = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
33
1
import qiskit def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 2 ) -> qiskit.result.counts.Counts: snake_case__ = qubits # Using Aer's simulator snake_case__ = qiskit.Aer.get_backend('''aer_simulator''' ) # Creating a Quantum Circuit acting on the q register snake_case__ = qiskit.QuantumCircuit(__lowerCAmelCase , __lowerCAmelCase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , __lowerCAmelCase ): # Adding CX (CNOT) gate circuit.cx(i - 1 , __lowerCAmelCase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(__lowerCAmelCase ) ) , list(range(__lowerCAmelCase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator snake_case__ = qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=1000 ) return job.result().get_counts(__lowerCAmelCase ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
33
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[int] = 'data2vec-vision' def __init__( self:int , _a:Tuple=7_68 , _a:int=12 , _a:Any=12 , _a:Optional[int]=30_72 , _a:Optional[int]="gelu" , _a:Any=0.0 , _a:Any=0.0 , _a:List[str]=0.02 , _a:Dict=1e-12 , _a:Tuple=2_24 , _a:Any=16 , _a:str=3 , _a:str=False , _a:Union[str, Any]=False , _a:Optional[int]=False , _a:Any=False , _a:Dict=0.1 , _a:Dict=0.1 , _a:str=True , _a:str=[3, 5, 7, 11] , _a:List[str]=[1, 2, 3, 6] , _a:List[str]=True , _a:Any=0.4 , _a:str=2_56 , _a:Union[str, Any]=1 , _a:int=False , _a:Optional[int]=2_55 , **_a:Dict , ): super().__init__(**_a ) snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = use_mask_token snake_case__ = use_absolute_position_embeddings snake_case__ = use_relative_position_bias snake_case__ = use_shared_relative_position_bias snake_case__ = layer_scale_init_value snake_case__ = drop_path_rate snake_case__ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ = out_indices snake_case__ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ = use_auxiliary_head snake_case__ = auxiliary_loss_weight snake_case__ = auxiliary_channels snake_case__ = auxiliary_num_convs snake_case__ = auxiliary_concat_input snake_case__ = semantic_loss_ignore_index class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Any = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return 1e-4
33
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __magic_name__ : '''simple docstring''' def __init__( self:List[str] , _a:Optional[Any] , _a:Any=13 , _a:Union[str, Any]=2 , _a:Dict=24 , _a:Optional[Any]=16 , _a:Dict=True , _a:str=True , _a:Tuple=32 , _a:str=5 , _a:Dict=4 , _a:List[str]=37 , _a:Any="gelu" , _a:Optional[int]=0.1 , _a:Any=0.1 , _a:Any=10 , _a:List[str]=0.02 , _a:Optional[Any]=None , _a:Union[str, Any]=2 , _a:int=2 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = patch_size snake_case__ = max_length snake_case__ = num_mel_bins snake_case__ = is_training snake_case__ = use_labels snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = scope snake_case__ = frequency_stride snake_case__ = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) snake_case__ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 snake_case__ = (self.max_length - self.patch_size) // self.time_stride + 1 snake_case__ = frequency_out_dimension * time_out_dimension snake_case__ = num_patches + 2 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = self.get_config() return config, input_values, labels def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:List[Any] , _a:Dict , _a:Any ): snake_case__ = ASTModel(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = config_and_inputs snake_case__ = {'''input_values''': input_values} return config, inputs_dict @require_torch class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : str = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) __lowercase : Optional[Any] = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : Optional[int] = False __lowercase : List[Any] = False __lowercase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self:int , _a:Union[str, Any] , _a:Optional[int] , _a:List[str] , _a:Optional[Any] , _a:Tuple ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = ASTModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): pass def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ) snake_case__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ['''input_values'''] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) @slow def SCREAMING_SNAKE_CASE__ ( self:str ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = ASTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE ( ) -> Any: snake_case__ = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) snake_case__ , snake_case__ = torchaudio.load(__lowerCAmelCase ) return audio, sampling_rate @require_torch @require_torchaudio class __magic_name__ (unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = self.default_feature_extractor snake_case__ = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(_a ) snake_case__ = self.default_feature_extractor snake_case__ , snake_case__ = prepare_audio() snake_case__ = audio.squeeze().numpy() snake_case__ = feature_extractor(_a , sampling_rate=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): snake_case__ = model(**_a ) # verify the logits snake_case__ = torch.Size((1, 5_27) ) self.assertEqual(outputs.logits.shape , _a ) snake_case__ = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
33
import os import sys lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCamelCase__ : Optional[int] = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple: return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]: return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
33
1
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: def count_of_possible_combinations(__lowerCAmelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: def count_of_possible_combinations_with_dp_array( __lowerCAmelCase , __lowerCAmelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] snake_case__ = sum( count_of_possible_combinations_with_dp_array(target - item , __lowerCAmelCase ) for item in array ) snake_case__ = answer return answer snake_case__ = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: snake_case__ = [0] * (target + 1) snake_case__ = 1 for i in range(1 , target + 1 ): for j in range(__lowerCAmelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ : Any = 3 lowerCamelCase__ : int = 5 lowerCamelCase__ : List[Any] = [1, 2, 5] print(combination_sum_iv(n, array, target))
33
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : str = (CMStochasticIterativeScheduler,) __lowercase : List[str] = 10 def SCREAMING_SNAKE_CASE__ ( self:int , **_a:Optional[int] ): snake_case__ = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**_a ) return config def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = 10 snake_case__ = self.get_scheduler_config() snake_case__ = self.scheduler_classes[0](**_a ) scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps[0] snake_case__ = scheduler.timesteps[1] snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self:Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_a ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = 1 scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_a ): # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [1_06, 0] scheduler.set_timesteps(timesteps=_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 15, 0] with self.assertRaises(_a , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 1, 0] snake_case__ = len(_a ) with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_a )
33
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> None: if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): snake_case__ , snake_case__ = array[indexa], array[indexa] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> None: if length > 1: snake_case__ = int(length / 2 ) for i in range(__lowerCAmelCase , low + middle ): comp_and_swap(__lowerCAmelCase , __lowerCAmelCase , i + middle , __lowerCAmelCase ) bitonic_merge(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) bitonic_merge(__lowerCAmelCase , low + middle , __lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> None: if length > 1: snake_case__ = int(length / 2 ) bitonic_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 1 ) bitonic_sort(__lowerCAmelCase , low + middle , __lowerCAmelCase , 0 ) bitonic_merge(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : List[str] = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ : int = [int(item.strip()) for item in user_input.split(""",""")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("""\nSorted array in ascending order is: """, end="""""") print(*unsorted, sep=""", """) bitonic_merge(unsorted, 0, len(unsorted), 0) print("""Sorted array in descending order is: """, end="""""") print(*unsorted, sep=""", """)
33
import numpy as np def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return vector * sigmoid(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
33
1
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : List[Any] = {"""vocab_file""": """sentencepiece.model"""} lowerCamelCase__ : Dict = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, } lowerCamelCase__ : List[str] = { """google/rembert""": 2_5_6, } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[Any] = VOCAB_FILES_NAMES __lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP __lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self:Union[str, Any] , _a:Union[str, Any] , _a:Tuple=False , _a:Dict=True , _a:int=True , _a:Optional[Any]="[CLS]" , _a:int="[SEP]" , _a:Dict="[UNK]" , _a:Optional[int]="[SEP]" , _a:Any="[PAD]" , _a:Union[str, Any]="[CLS]" , _a:Dict="[MASK]" , **_a:str , ): super().__init__( do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , **_a , ) snake_case__ = do_lower_case snake_case__ = remove_space snake_case__ = keep_accents snake_case__ = vocab_file snake_case__ = spm.SentencePieceProcessor() self.sp_model.Load(_a ) @property def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return len(self.sp_model ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self:str ): snake_case__ = self.__dict__.copy() snake_case__ = None return state def __setstate__( self:List[Any] , _a:Optional[int] ): snake_case__ = d snake_case__ = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Tuple , _a:Any=False ): snake_case__ = self.sp_model.EncodeAsPieces(_a ) return pieces def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:Optional[int] ): return self.sp_model.PieceToId(_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:Optional[int] ): return self.sp_model.IdToPiece(_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:Union[str, Any] ): snake_case__ = self.sp_model.decode_pieces(_a ) return out_string def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:List[int] , _a:Optional[List[int]] = None ): snake_case__ = [self.sep_token_id] snake_case__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self:Any , _a:List[int] , _a:Optional[List[int]] = None , _a:bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:List[int] , _a:Optional[List[int]] = None ): snake_case__ = [self.sep_token_id] snake_case__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:str , _a:Optional[str] = None ): if not os.path.isdir(_a ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_a ) ) return snake_case__ = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
33
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int: snake_case__ = set() snake_case__ = 0 snake_case__ = n + 1 # maximum limit for a in range(2 , __lowerCAmelCase ): for b in range(2 , __lowerCAmelCase ): snake_case__ = a**b # calculates the current power collect_powers.add(__lowerCAmelCase ) # adds the result to the set return len(__lowerCAmelCase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
33
1
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Union[str, Any] = CLIPTokenizer __lowercase : str = CLIPTokenizerFast __lowercase : Dict = True __lowercase : Any = {} __lowercase : Tuple = False def SCREAMING_SNAKE_CASE__ ( self:str ): super().setUp() # fmt: off snake_case__ = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on snake_case__ = dict(zip(_a , range(len(_a ) ) ) ) snake_case__ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] snake_case__ = {'''unk_token''': '''<unk>'''} snake_case__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_a ) ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , **_a:Optional[int] ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , **_a:Union[str, Any] ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:List[str] ): snake_case__ = '''lower newer''' snake_case__ = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case__ = '''lower newer''' snake_case__ = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] snake_case__ = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) snake_case__ = tokens + [tokenizer.unk_token] snake_case__ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) @require_ftfy def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case__ = self.tokenizer_class.from_pretrained(_a , **_a ) snake_case__ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) snake_case__ = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' snake_case__ = tokenizer_s.tokenize(_a ) snake_case__ = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways snake_case__ = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' snake_case__ = tokenizer_s.tokenize(_a ) snake_case__ = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of space type snake_case__ = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: snake_case__ = tokenizer_s.tokenize(_a ) snake_case__ = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of line break type snake_case__ = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: snake_case__ = tokenizer_s.tokenize(_a ) snake_case__ = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Any ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case__ = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` snake_case__ = F"""{text_of_1_token} {text_of_1_token}""" snake_case__ = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) snake_case__ = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , ) snake_case__ = F""" {text}""" snake_case__ = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) snake_case__ = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ) + 1, 1 + len(_a ) + 1 + len(_a )) , ) def SCREAMING_SNAKE_CASE__ ( self:str ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_a ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def SCREAMING_SNAKE_CASE__ ( self:int ): super().test_tokenization_python_rust_equals() def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): # CLIP always lower cases letters pass
33
from copy import deepcopy class __magic_name__ : '''simple docstring''' def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ): if arr is None and size is not None: snake_case__ = size snake_case__ = [0] * size elif arr is not None: self.init(_a ) else: raise ValueError('''Either arr or size must be specified''' ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ): snake_case__ = len(_a ) snake_case__ = deepcopy(_a ) for i in range(1 , self.size ): snake_case__ = self.next_(_a ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case__ = self.next_(_a ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case__ = self.next_(_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): self.add(_a , value - self.get(_a ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ): if right == 0: return 0 snake_case__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case__ = self.prev(_a ) return result def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): return self.prefix(_a ) - self.prefix(_a ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): return self.query(_a , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): value -= self.tree[0] if value < 0: return -1 snake_case__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
33
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase__ : List[str] = logging.get_logger(__name__) if is_vision_available(): import PIL class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : int = ['pixel_values'] def __init__( self:Union[str, Any] , _a:bool = True , _a:Dict[str, int] = None , _a:PILImageResampling = PILImageResampling.BICUBIC , _a:bool = True , _a:Dict[str, int] = None , _a:bool = True , _a:Union[int, float] = 1 / 2_55 , _a:bool = True , _a:Optional[Union[float, List[float]]] = None , _a:Optional[Union[float, List[float]]] = None , _a:bool = True , **_a:Tuple , ): super().__init__(**_a ) snake_case__ = size if size is not None else {'''shortest_edge''': 2_24} snake_case__ = get_size_dict(_a , default_to_square=_a ) snake_case__ = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} snake_case__ = get_size_dict(_a , default_to_square=_a , param_name='''crop_size''' ) snake_case__ = do_resize snake_case__ = size snake_case__ = resample snake_case__ = do_center_crop snake_case__ = crop_size snake_case__ = do_rescale snake_case__ = rescale_factor snake_case__ = do_normalize snake_case__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN snake_case__ = image_std if image_std is not None else OPENAI_CLIP_STD snake_case__ = do_convert_rgb def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:np.ndarray , _a:Dict[str, int] , _a:PILImageResampling = PILImageResampling.BICUBIC , _a:Optional[Union[str, ChannelDimension]] = None , **_a:Dict , ): snake_case__ = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) snake_case__ = get_resize_output_image_size(_a , size=size['''shortest_edge'''] , default_to_square=_a ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:np.ndarray , _a:Dict[str, int] , _a:Optional[Union[str, ChannelDimension]] = None , **_a:Optional[int] , ): snake_case__ = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_a , size=(size['''height'''], size['''width''']) , data_format=_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:np.ndarray , _a:Union[int, float] , _a:Optional[Union[str, ChannelDimension]] = None , **_a:str , ): return rescale(_a , scale=_a , data_format=_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:np.ndarray , _a:Union[float, List[float]] , _a:Union[float, List[float]] , _a:Optional[Union[str, ChannelDimension]] = None , **_a:Optional[Any] , ): return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:ImageInput , _a:bool = None , _a:Dict[str, int] = None , _a:PILImageResampling = None , _a:bool = None , _a:int = None , _a:bool = None , _a:float = None , _a:bool = None , _a:Optional[Union[float, List[float]]] = None , _a:Optional[Union[float, List[float]]] = None , _a:bool = None , _a:Optional[Union[str, TensorType]] = None , _a:Optional[ChannelDimension] = ChannelDimension.FIRST , **_a:int , ): snake_case__ = do_resize if do_resize is not None else self.do_resize snake_case__ = size if size is not None else self.size snake_case__ = get_size_dict(_a , param_name='''size''' , default_to_square=_a ) snake_case__ = resample if resample is not None else self.resample snake_case__ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ = crop_size if crop_size is not None else self.crop_size snake_case__ = get_size_dict(_a , param_name='''crop_size''' , default_to_square=_a ) snake_case__ = do_rescale if do_rescale is not None else self.do_rescale snake_case__ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ = do_normalize if do_normalize is not None else self.do_normalize snake_case__ = image_mean if image_mean is not None else self.image_mean snake_case__ = image_std if image_std is not None else self.image_std snake_case__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case__ = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case__ = [convert_to_rgb(_a ) for image in images] # All transformations expect numpy arrays. snake_case__ = [to_numpy_array(_a ) for image in images] if do_resize: snake_case__ = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_center_crop: snake_case__ = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: snake_case__ = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: snake_case__ = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] snake_case__ = [to_channel_dimension_format(_a , _a ) for image in images] snake_case__ = {'''pixel_values''': images} return BatchFeature(data=_a , tensor_type=_a )
33
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __magic_name__ : '''simple docstring''' __lowercase : int = BlenderbotConfig __lowercase : Any = {} __lowercase : Optional[Any] = 'gelu' def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[Any]=13 , _a:Tuple=7 , _a:Union[str, Any]=True , _a:int=False , _a:int=99 , _a:Optional[int]=32 , _a:List[str]=2 , _a:List[str]=4 , _a:List[Any]=37 , _a:Any=0.1 , _a:int=0.1 , _a:List[Any]=20 , _a:List[str]=2 , _a:int=1 , _a:Dict=0 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = eos_token_id snake_case__ = pad_token_id snake_case__ = bos_token_id def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case__ = prepare_blenderbot_inputs_dict(_a , _a , _a ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:int ): snake_case__ = TFBlenderbotModel(config=_a ).get_decoder() snake_case__ = inputs_dict['''input_ids'''] snake_case__ = input_ids[:1, :] snake_case__ = inputs_dict['''attention_mask'''][:1, :] snake_case__ = inputs_dict['''head_mask'''] snake_case__ = 1 # first forward pass snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) snake_case__ , snake_case__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case__ = model(_a , attention_mask=_a )[0] snake_case__ = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case__ = output_from_no_past[:, -3:, random_slice_idx] snake_case__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Tuple: if attention_mask is None: snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowercase : Tuple = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowercase : Any = True __lowercase : int = False __lowercase : int = False def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFBlenderbotModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_tokenizers @require_tf class __magic_name__ (unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = ['My friends are cool but they eat too many carbs.'] __lowercase : Optional[int] = 'facebook/blenderbot-400M-distill' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.tokenizer(self.src_text , return_tensors='''tf''' ) snake_case__ = self.model.generate( model_inputs.input_ids , ) snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
33
1
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> list[int]: if num <= 0: raise ValueError('''Input must be a positive integer''' ) snake_case__ = [True] * (num + 1) snake_case__ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __lowerCAmelCase ): snake_case__ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ : int = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
33
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = 0 def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:str ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case__ = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) snake_case__ = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved snake_case__ = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): snake_case__ = AutoImageProcessor.from_pretrained('''clip-base''' ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): with self.assertRaisesRegex( _a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): snake_case__ = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
33
1
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: snake_case__ = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue snake_case__ = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) snake_case__ = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) snake_case__ = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) snake_case__ = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) snake_case__ = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) snake_case__ = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) snake_case__ = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) snake_case__ = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) snake_case__ = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) snake_case__ = key.replace('''image_encoder.module''' , '''flava.image_model''' ) snake_case__ = key.replace('''text_encoder.module''' , '''flava.text_model''' ) snake_case__ = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) snake_case__ = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) snake_case__ = key.replace('''text_projection''' , '''flava.text_projection''' ) snake_case__ = key.replace('''image_projection''' , '''flava.image_projection''' ) snake_case__ = value.float() for key, value in codebook_state_dict.items(): snake_case__ = value return upgrade @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ) -> Any: if config_path is not None: snake_case__ = FlavaConfig.from_pretrained(__lowerCAmelCase ) else: snake_case__ = FlavaConfig() snake_case__ = FlavaForPreTraining(__lowerCAmelCase ).eval() snake_case__ = convert_dalle_checkpoint(__lowerCAmelCase , __lowerCAmelCase , save_checkpoint=__lowerCAmelCase ) if os.path.exists(__lowerCAmelCase ): snake_case__ = torch.load(__lowerCAmelCase , map_location='''cpu''' ) else: snake_case__ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location='''cpu''' ) snake_case__ = upgrade_state_dict(__lowerCAmelCase , __lowerCAmelCase ) hf_model.load_state_dict(__lowerCAmelCase ) snake_case__ = hf_model.state_dict() snake_case__ = count_parameters(__lowerCAmelCase ) snake_case__ = count_parameters(__lowerCAmelCase ) + count_parameters(__lowerCAmelCase ) assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-3 ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCamelCase__ : int = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
33
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> int: snake_case__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ = '''''' else: snake_case__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[ : config.hidden_size, : ] snake_case__ = in_proj_bias[: config.hidden_size] snake_case__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ = in_proj_weight[ -config.hidden_size :, : ] snake_case__ = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: snake_case__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: snake_case__ = dct.pop(__lowerCAmelCase ) snake_case__ = val def SCREAMING_SNAKE_CASE ( ) -> str: snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = ViTConfig() snake_case__ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": snake_case__ = True snake_case__ = int(vit_name[-12:-10] ) snake_case__ = int(vit_name[-9:-6] ) else: snake_case__ = 1000 snake_case__ = '''huggingface/label-files''' snake_case__ = '''imagenet-1k-id2label.json''' snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = int(vit_name[-6:-4] ) snake_case__ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): snake_case__ = 192 snake_case__ = 768 snake_case__ = 12 snake_case__ = 3 elif vit_name[9:].startswith('''small''' ): snake_case__ = 384 snake_case__ = 1536 snake_case__ = 12 snake_case__ = 6 else: pass else: if vit_name[4:].startswith('''small''' ): snake_case__ = 768 snake_case__ = 2304 snake_case__ = 8 snake_case__ = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): snake_case__ = 1024 snake_case__ = 4096 snake_case__ = 24 snake_case__ = 16 elif vit_name[4:].startswith('''huge''' ): snake_case__ = 1280 snake_case__ = 5120 snake_case__ = 32 snake_case__ = 16 # load original model from timm snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ = timm_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) snake_case__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ = ViTModel(__lowerCAmelCase ).eval() else: snake_case__ = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: snake_case__ = DeiTImageProcessor(size=config.image_size ) else: snake_case__ = ViTImageProcessor(size=config.image_size ) snake_case__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) snake_case__ = encoding['''pixel_values'''] snake_case__ = model(__lowerCAmelCase ) if base_model: snake_case__ = timm_model.forward_features(__lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1e-3 ) else: snake_case__ = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase__ : str = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
33
1
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = 't5' __lowercase : Union[str, Any] = ['past_key_values'] __lowercase : Optional[Any] = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self:Tuple , _a:Any=3_21_28 , _a:Union[str, Any]=5_12 , _a:str=64 , _a:List[Any]=20_48 , _a:Dict=6 , _a:Tuple=None , _a:str=8 , _a:List[str]=32 , _a:Dict=1_28 , _a:Any=0.1 , _a:List[str]=1e-6 , _a:List[Any]=1.0 , _a:Tuple="relu" , _a:Union[str, Any]=True , _a:int=True , _a:Dict=0 , _a:Optional[Any]=1 , **_a:str , ): snake_case__ = vocab_size snake_case__ = d_model snake_case__ = d_kv snake_case__ = d_ff snake_case__ = num_layers snake_case__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry snake_case__ = num_heads snake_case__ = relative_attention_num_buckets snake_case__ = relative_attention_max_distance snake_case__ = dropout_rate snake_case__ = layer_norm_epsilon snake_case__ = initializer_factor snake_case__ = feed_forward_proj snake_case__ = use_cache snake_case__ = self.feed_forward_proj.split('''-''' ) snake_case__ = act_info[-1] snake_case__ = act_info[0] == '''gated''' if len(_a ) > 1 and act_info[0] != "gated" or len(_a ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": snake_case__ = '''gelu_new''' super().__init__( pad_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , **_a , ) class __magic_name__ (snake_case_ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: snake_case__ = '''past_encoder_sequence + sequence''' snake_case__ = {0: '''batch'''} snake_case__ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: snake_case__ = {0: '''batch''', 1: '''decoder_sequence'''} snake_case__ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_a , direction='''inputs''' ) return common_inputs @property def SCREAMING_SNAKE_CASE__ ( self:Dict ): return 13
33
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = ['image_processor', 'tokenizer'] __lowercase : str = 'AutoImageProcessor' __lowercase : Dict = 'AutoTokenizer' def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ): snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) snake_case__ = kwargs.pop('''feature_extractor''' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) snake_case__ = self.image_processor snake_case__ = False def __call__( self:Optional[int] , *_a:str , **_a:int ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) snake_case__ = kwargs.pop('''images''' , _a ) snake_case__ = kwargs.pop('''text''' , _a ) if len(_a ) > 0: snake_case__ = args[0] snake_case__ = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: snake_case__ = self.image_processor(_a , *_a , **_a ) if text is not None: snake_case__ = self.tokenizer(_a , **_a ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ): return self.tokenizer.decode(*_a , **_a ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self:Tuple ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) snake_case__ = True snake_case__ = self.tokenizer yield snake_case__ = self.image_processor snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ): if added_vocab is None: snake_case__ = self.tokenizer.get_added_vocab() snake_case__ = {} while tokens: snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE ) if start_token is None: break snake_case__ = start_token.group(1 ) snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE ) snake_case__ = start_token.group() if end_token is None: snake_case__ = tokens.replace(_a , '''''' ) else: snake_case__ = end_token.group() snake_case__ = re.escape(_a ) snake_case__ = re.escape(_a ) snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE ) if content is not None: snake_case__ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a ) if value: if len(_a ) == 1: snake_case__ = value[0] snake_case__ = value else: # leaf nodes snake_case__ = [] for leaf in content.split(r'''<sep/>''' ): snake_case__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": snake_case__ = leaf[1:-2] # for categorical special tokens output[key].append(_a ) if len(output[key] ) == 1: snake_case__ = output[key][0] snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a ) if len(_a ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
33
1
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> bool: if number < 0: raise ValueError('''number must not be negative''' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
33
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __magic_name__ : '''simple docstring''' def __init__( self:Optional[Any] , _a:int , _a:str=3 , _a:Optional[int]=32 , _a:Optional[Any]=3 , _a:Tuple=10 , _a:List[Any]=[8, 16, 32, 64] , _a:str=[1, 1, 2, 1] , _a:Any=True , _a:List[Any]=True , _a:List[str]="relu" , _a:int=3 , _a:Tuple=None , _a:Tuple=["stage2", "stage3", "stage4"] , _a:List[Any]=[2, 3, 4] , _a:Union[str, Any]=1 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = image_size snake_case__ = num_channels snake_case__ = embeddings_size snake_case__ = hidden_sizes snake_case__ = depths snake_case__ = is_training snake_case__ = use_labels snake_case__ = hidden_act snake_case__ = num_labels snake_case__ = scope snake_case__ = len(_a ) snake_case__ = out_features snake_case__ = out_indices snake_case__ = num_groups def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[int] , _a:Tuple , _a:int ): snake_case__ = BitModel(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Tuple , _a:Any , _a:Union[str, Any] ): snake_case__ = self.num_labels snake_case__ = BitForImageClassification(_a ) model.to(_a ) model.eval() snake_case__ = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:str , _a:List[str] , _a:Any ): snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case__ = None snake_case__ = BitBackbone(config=_a ) model.to(_a ) model.eval() snake_case__ = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ = config_and_inputs snake_case__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowercase : int = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : Optional[Any] = False __lowercase : str = False __lowercase : Tuple = False __lowercase : Tuple = False def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = BitModelTester(self ) snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return @unittest.skip(reason='''Bit does not output attentions''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(_a ) snake_case__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ = [*signature.parameters.keys()] snake_case__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ = model_class(config=_a ) for name, module in model.named_modules(): if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): def check_hidden_states_output(_a:List[Any] , _a:int , _a:Union[str, Any] ): snake_case__ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): snake_case__ = model(**self._prepare_for_class(_a , _a ) ) snake_case__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ = layer_type snake_case__ = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ = True check_hidden_states_output(_a , _a , _a ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): pass def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = BitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE ( ) -> Any: snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ (unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): snake_case__ = model(**_a ) # verify the logits snake_case__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _a ) snake_case__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (BitBackbone,) if is_torch_available() else () __lowercase : int = BitConfig __lowercase : Any = False def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = BitModelTester(self )
33
1
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process lowerCamelCase__ : Dict = logging.getLogger(__name__) lowerCamelCase__ : Union[str, Any] = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) lowerCamelCase__ : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __magic_name__ : '''simple docstring''' __lowercase : Optional[str] = field( default=snake_case_ ,metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } ,) __lowercase : Optional[str] = field( default=snake_case_ ,metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(snake_case_ )} ,) __lowercase : Optional[str] = field( default=snake_case_ ,metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } ,) __lowercase : Optional[str] = field( default=snake_case_ ,metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowercase : Optional[str] = field( default=snake_case_ ,metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __lowercase : Optional[str] = field( default=snake_case_ ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} ,) __lowercase : bool = field( default=snake_case_ ,metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} ,) __lowercase : str = field( default='main' ,metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} ,) __lowercase : bool = field( default=snake_case_ ,metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } ,) def SCREAMING_SNAKE_CASE__ ( self:str ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class __magic_name__ : '''simple docstring''' __lowercase : Optional[str] = field( default=snake_case_ ,metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __lowercase : Optional[str] = field( default=snake_case_ ,metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowercase : Optional[str] = field(default=snake_case_ ,metadata={'help': 'The input training data file (a text file).'} ) __lowercase : Optional[str] = field( default=snake_case_ ,metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} ,) __lowercase : Optional[str] = field( default=snake_case_ ,metadata={'help': 'An optional input train ref data file for whole word masking in Chinese.'} ,) __lowercase : Optional[str] = field( default=snake_case_ ,metadata={'help': 'An optional input validation ref data file for whole word masking in Chinese.'} ,) __lowercase : bool = field( default=snake_case_ ,metadata={'help': 'Overwrite the cached training and evaluation sets'} ) __lowercase : Optional[int] = field( default=5 ,metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } ,) __lowercase : Optional[int] = field( default=snake_case_ ,metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated. Default to the max input length of the model.' ) } ,) __lowercase : Optional[int] = field( default=snake_case_ ,metadata={'help': 'The number of processes to use for the preprocessing.'} ,) __lowercase : float = field( default=0.15 ,metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __lowercase : bool = field( default=snake_case_ ,metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } ,) def SCREAMING_SNAKE_CASE__ ( self:str ): if self.train_file is not None: snake_case__ = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: snake_case__ = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: snake_case__ = [json.loads(__lowerCAmelCase ) for line in f.read().splitlines() if (len(__lowerCAmelCase ) > 0 and not line.isspace())] assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) snake_case__ = {c: dataset[c] for c in dataset.column_names} snake_case__ = refs return Dataset.from_dict(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case__ , snake_case__ , snake_case__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case__ , snake_case__ , snake_case__ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. snake_case__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case__ = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): snake_case__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , ) snake_case__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , ) else: snake_case__ = {} if data_args.train_file is not None: snake_case__ = data_args.train_file if data_args.validation_file is not None: snake_case__ = data_args.validation_file snake_case__ = data_args.train_file.split('''.''' )[-1] if extension == "txt": snake_case__ = '''text''' snake_case__ = load_dataset(__lowerCAmelCase , data_files=__lowerCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case__ = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: snake_case__ = AutoConfig.from_pretrained(model_args.config_name , **__lowerCAmelCase ) elif model_args.model_name_or_path: snake_case__ = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowerCAmelCase ) else: snake_case__ = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) snake_case__ = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: snake_case__ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowerCAmelCase ) elif model_args.model_name_or_path: snake_case__ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowerCAmelCase ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: snake_case__ = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) snake_case__ = AutoModelForMaskedLM.from_config(__lowerCAmelCase ) model.resize_token_embeddings(len(__lowerCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: snake_case__ = datasets['''train'''].column_names else: snake_case__ = datasets['''validation'''].column_names snake_case__ = '''text''' if '''text''' in column_names else column_names[0] snake_case__ = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(__lowerCAmelCase ): # Remove empty lines snake_case__ = [line for line in examples['''text'''] if len(__lowerCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=data_args.max_seq_length ) snake_case__ = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: snake_case__ = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: snake_case__ = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer snake_case__ = data_args.train_ref_file or data_args.validation_ref_file if has_ref: snake_case__ = False # Data collator # This one will take care of randomly masking the tokens. snake_case__ = DataCollatorForWholeWordMask(tokenizer=__lowerCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer snake_case__ = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: snake_case__ = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): snake_case__ = model_args.model_name_or_path else: snake_case__ = None snake_case__ = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload snake_case__ = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCAmelCase , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation snake_case__ = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) snake_case__ = trainer.evaluate() snake_case__ = math.exp(eval_output['''eval_loss'''] ) snake_case__ = perplexity snake_case__ = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCAmelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[str]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
33
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCamelCase__ : Any = """\ """ lowerCamelCase__ : List[str] = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ lowerCamelCase__ : Any = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:List[Any] , _a:int = 16 , _a:bool = True , _a:Any=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": snake_case__ = '''cuda''' else: snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' snake_case__ = AutoModelForCausalLM.from_pretrained(_a ) snake_case__ = model.to(_a ) snake_case__ = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: snake_case__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" snake_case__ = model.config.max_length - 1 else: snake_case__ = model.config.max_length snake_case__ = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) snake_case__ = encodings['''input_ids'''] snake_case__ = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." snake_case__ = [] snake_case__ = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): snake_case__ = min(start_index + batch_size , len(_a ) ) snake_case__ = encoded_texts[start_index:end_index] snake_case__ = attn_masks[start_index:end_index] if add_start_token: snake_case__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) snake_case__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) snake_case__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) snake_case__ = encoded_batch with torch.no_grad(): snake_case__ = model(_a , attention_mask=_a ).logits snake_case__ = out_logits[..., :-1, :].contiguous() snake_case__ = labels[..., 1:].contiguous() snake_case__ = attn_mask[..., 1:].contiguous() snake_case__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
33
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Union[str, Any] = { """configuration_xlm_roberta_xl""": [ """XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaXLConfig""", """XLMRobertaXLOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaXLForCausalLM""", """XLMRobertaXLForMaskedLM""", """XLMRobertaXLForMultipleChoice""", """XLMRobertaXLForQuestionAnswering""", """XLMRobertaXLForSequenceClassification""", """XLMRobertaXLForTokenClassification""", """XLMRobertaXLModel""", """XLMRobertaXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys lowerCamelCase__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
33
import os from datetime import datetime as dt from github import Github lowerCamelCase__ : int = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: snake_case__ = Github(os.environ['''GITHUB_TOKEN'''] ) snake_case__ = g.get_repo('''huggingface/diffusers''' ) snake_case__ = repo.get_issues(state='''open''' ) for issue in open_issues: snake_case__ = sorted(issue.get_comments() , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) snake_case__ = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
33
1
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : str = IFImgaImgSuperResolutionPipeline __lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} __lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) __lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def SCREAMING_SNAKE_CASE__ ( self:Dict ): return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:str ): self._test_save_load_local() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
33
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__lowerCAmelCase , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = _distribute_shards(**__lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = _split_gen_kwargs(__lowerCAmelCase , __lowerCAmelCase ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: if expected is RuntimeError: with pytest.raises(__lowerCAmelCase ): _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) else: snake_case__ = _number_of_shards_in_gen_kwargs(__lowerCAmelCase ) assert out == expected
33
1
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:Any , *_a:List[Any] , **_a:Any ): warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : str = IFImgaImgSuperResolutionPipeline __lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} __lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) __lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def SCREAMING_SNAKE_CASE__ ( self:Dict ): return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:str ): self._test_save_load_local() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
33
1
from PIL import Image def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Image: def brightness(__lowerCAmelCase ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__lowerCAmelCase ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 lowerCamelCase__ : List[str] = change_brightness(img, 1_0_0) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
33
import math class __magic_name__ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:list[list[float]] , _a:list[int] ): snake_case__ = 0.0 snake_case__ = 0.0 for i in range(len(_a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:list[list[int | float]] , _a:list[int] , _a:int , _a:float ): for i in range(len(_a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def SCREAMING_SNAKE_CASE ( ) -> None: # Training Examples ( m, n ) snake_case__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case__ = SelfOrganizingMap() snake_case__ = 3 snake_case__ = 0.5 for _ in range(__lowerCAmelCase ): for j in range(len(__lowerCAmelCase ) ): # training sample snake_case__ = training_samples[j] # Compute the winning vector snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # Update the winning vector snake_case__ = self_organizing_map.update(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # classify test sample snake_case__ = [0, 0, 0, 1] snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
33
1
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = ['image_processor', 'tokenizer'] __lowercase : str = 'AutoImageProcessor' __lowercase : Dict = 'AutoTokenizer' def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ): snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) snake_case__ = kwargs.pop('''feature_extractor''' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) snake_case__ = self.image_processor snake_case__ = False def __call__( self:Optional[int] , *_a:str , **_a:int ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) snake_case__ = kwargs.pop('''images''' , _a ) snake_case__ = kwargs.pop('''text''' , _a ) if len(_a ) > 0: snake_case__ = args[0] snake_case__ = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: snake_case__ = self.image_processor(_a , *_a , **_a ) if text is not None: snake_case__ = self.tokenizer(_a , **_a ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ): return self.tokenizer.decode(*_a , **_a ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self:Tuple ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) snake_case__ = True snake_case__ = self.tokenizer yield snake_case__ = self.image_processor snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ): if added_vocab is None: snake_case__ = self.tokenizer.get_added_vocab() snake_case__ = {} while tokens: snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE ) if start_token is None: break snake_case__ = start_token.group(1 ) snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE ) snake_case__ = start_token.group() if end_token is None: snake_case__ = tokens.replace(_a , '''''' ) else: snake_case__ = end_token.group() snake_case__ = re.escape(_a ) snake_case__ = re.escape(_a ) snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE ) if content is not None: snake_case__ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a ) if value: if len(_a ) == 1: snake_case__ = value[0] snake_case__ = value else: # leaf nodes snake_case__ = [] for leaf in content.split(r'''<sep/>''' ): snake_case__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": snake_case__ = leaf[1:-2] # for categorical special tokens output[key].append(_a ) if len(output[key] ) == 1: snake_case__ = output[key][0] snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a ) if len(_a ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
33
from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes snake_case__ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] snake_case__ = [] snake_case__ = 0 snake_case__ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case__ = [] snake_case__ = -1 for i in range(__lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: snake_case__ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case__ = i total_time += burst_time[target_process] completed += 1 snake_case__ = 0 snake_case__ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: snake_case__ = [0] * no_of_processes for i in range(__lowerCAmelCase ): snake_case__ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") lowerCamelCase__ : Tuple = 4 lowerCamelCase__ : Union[str, Any] = [2, 5, 3, 7] lowerCamelCase__ : Optional[Any] = [0, 0, 0, 0] lowerCamelCase__ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase__ : Union[str, Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
33
1
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[int]: snake_case__ , snake_case__ = image.size snake_case__ , snake_case__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 snake_case__ = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) snake_case__ = np.array(__lowerCAmelCase ).astype(np.floataa ) / 255.0 snake_case__ = image[None].transpose(0 , 3 , 1 , 2 ) snake_case__ = torch.from_numpy(__lowerCAmelCase ) return 2.0 * image - 1.0 class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[str] , _a:VQModel , _a:UNetaDModel , _a:Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): super().__init__() self.register_modules(vqvae=_a , unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self:int , _a:Union[torch.Tensor, PIL.Image.Image] = None , _a:Optional[int] = 1 , _a:Optional[int] = 1_00 , _a:Optional[float] = 0.0 , _a:Optional[Union[torch.Generator, List[torch.Generator]]] = None , _a:Optional[str] = "pil" , _a:bool = True , ): if isinstance(_a , PIL.Image.Image ): snake_case__ = 1 elif isinstance(_a , torch.Tensor ): snake_case__ = image.shape[0] else: raise ValueError(F"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}""" ) if isinstance(_a , PIL.Image.Image ): snake_case__ = preprocess(_a ) snake_case__ , snake_case__ = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image snake_case__ = (batch_size, self.unet.config.in_channels // 2, height, width) snake_case__ = next(self.unet.parameters() ).dtype snake_case__ = randn_tensor(_a , generator=_a , device=self.device , dtype=_a ) snake_case__ = image.to(device=self.device , dtype=_a ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_a , device=self.device ) snake_case__ = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler snake_case__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case__ = {} if accepts_eta: snake_case__ = eta for t in self.progress_bar(_a ): # concat latents and low resolution image in the channel dimension. snake_case__ = torch.cat([latents, image] , dim=1 ) snake_case__ = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual snake_case__ = self.unet(_a , _a ).sample # compute the previous noisy sample x_t -> x_t-1 snake_case__ = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # decode the image latents with the VQVAE snake_case__ = self.vqvae.decode(_a ).sample snake_case__ = torch.clamp(_a , -1.0 , 1.0 ) snake_case__ = image / 2 + 0.5 snake_case__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case__ = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
33
lowerCamelCase__ : List[str] = """Alexander Joslin""" import operator as op from .stack import Stack def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: snake_case__ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} snake_case__ = Stack() snake_case__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__lowerCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__lowerCAmelCase ) elif i == ")": # RULE 4 snake_case__ = operator_stack.peek() operator_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operand_stack.peek() operand_stack.pop() snake_case__ = operators[opr](__lowerCAmelCase , __lowerCAmelCase ) operand_stack.push(__lowerCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
33
1
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
33
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase__ : int = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:List[Any] , *_a:Dict , **_a:Tuple ): warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
33
1
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence snake_case__ = gray_code_sequence_string(__lowerCAmelCase ) # # convert them to integers for i in range(len(__lowerCAmelCase ) ): snake_case__ = int(sequence[i] , 2 ) return sequence def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] snake_case__ = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits snake_case__ = gray_code_sequence_string(bit_count - 1 ) snake_case__ = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): snake_case__ = '''0''' + smaller_sequence[i] sequence.append(__lowerCAmelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): snake_case__ = '''1''' + smaller_sequence[i] sequence.append(__lowerCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Tuple = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
1
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:str , _a:Dict ): snake_case__ = 3 snake_case__ = 2_50 snake_case__ = ids_tensor((batch_size, length) , _a ) snake_case__ = torch.ones((batch_size, length) , device=_a , dtype=torch.float ) / length return input_ids, scores def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ , snake_case__ = self._get_tensors(5 ) snake_case__ = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(_a , _a ) ) snake_case__ , snake_case__ = self._get_tensors(9 ) self.assertFalse(criteria(_a , _a ) ) snake_case__ , snake_case__ = self._get_tensors(10 ) self.assertTrue(criteria(_a , _a ) ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = MaxLengthCriteria(max_length=10 ) snake_case__ , snake_case__ = self._get_tensors(5 ) self.assertFalse(criteria(_a , _a ) ) snake_case__ , snake_case__ = self._get_tensors(9 ) self.assertFalse(criteria(_a , _a ) ) snake_case__ , snake_case__ = self._get_tensors(10 ) self.assertTrue(criteria(_a , _a ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) snake_case__ , snake_case__ = self._get_tensors(5 ) self.assertFalse(criteria(_a , _a ) ) snake_case__ , snake_case__ = self._get_tensors(9 ) self.assertFalse(criteria(_a , _a ) ) snake_case__ , snake_case__ = self._get_tensors(10 ) self.assertTrue(criteria(_a , _a ) ) snake_case__ = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ , snake_case__ = self._get_tensors(5 ) snake_case__ = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(_a , _a ) ) snake_case__ = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(_a , _a ) ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(_a ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) snake_case__ = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(_a ) , 1 )
33
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: snake_case__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Dict = StableDiffusionLatentUpscalePipeline __lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase : List[Any] = frozenset([] ) __lowercase : Any = True @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = 1 snake_case__ = 4 snake_case__ = (16, 16) snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_a , only_cross_attention=_a , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) snake_case__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) snake_case__ = EulerDiscreteScheduler(prediction_type='''sample''' ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , ) snake_case__ = CLIPTextModel(_a ) snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case__ = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:List[str]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''cpu''' snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) snake_case__ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) snake_case__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:str ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] snake_case__ = self.get_dummy_components() snake_case__ = self.pipeline_class(**_a ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs(_a ) snake_case__ = 2 snake_case__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case__ = getattr(_a , scheduler_enum.name ) snake_case__ = scheduler_cls.from_config(pipe.scheduler.config ) snake_case__ = pipe(**_a )[0] outputs.append(_a ) assert check_same_shape(_a ) @require_torch_gpu @slow class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' snake_case__ = pipe(_a , generator=_a , output_type='''latent''' ).images snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = torch.manual_seed(33 ) snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) snake_case__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) snake_case__ = upscaler( prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0] snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
33
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> int: snake_case__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ = '''''' else: snake_case__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[ : config.hidden_size, : ] snake_case__ = in_proj_bias[: config.hidden_size] snake_case__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ = in_proj_weight[ -config.hidden_size :, : ] snake_case__ = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: snake_case__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: snake_case__ = dct.pop(__lowerCAmelCase ) snake_case__ = val def SCREAMING_SNAKE_CASE ( ) -> str: snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = ViTConfig() snake_case__ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": snake_case__ = True snake_case__ = int(vit_name[-12:-10] ) snake_case__ = int(vit_name[-9:-6] ) else: snake_case__ = 1000 snake_case__ = '''huggingface/label-files''' snake_case__ = '''imagenet-1k-id2label.json''' snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = int(vit_name[-6:-4] ) snake_case__ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): snake_case__ = 192 snake_case__ = 768 snake_case__ = 12 snake_case__ = 3 elif vit_name[9:].startswith('''small''' ): snake_case__ = 384 snake_case__ = 1536 snake_case__ = 12 snake_case__ = 6 else: pass else: if vit_name[4:].startswith('''small''' ): snake_case__ = 768 snake_case__ = 2304 snake_case__ = 8 snake_case__ = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): snake_case__ = 1024 snake_case__ = 4096 snake_case__ = 24 snake_case__ = 16 elif vit_name[4:].startswith('''huge''' ): snake_case__ = 1280 snake_case__ = 5120 snake_case__ = 32 snake_case__ = 16 # load original model from timm snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ = timm_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) snake_case__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ = ViTModel(__lowerCAmelCase ).eval() else: snake_case__ = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: snake_case__ = DeiTImageProcessor(size=config.image_size ) else: snake_case__ = ViTImageProcessor(size=config.image_size ) snake_case__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) snake_case__ = encoding['''pixel_values'''] snake_case__ = model(__lowerCAmelCase ) if base_model: snake_case__ = timm_model.forward_features(__lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1e-3 ) else: snake_case__ = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase__ : str = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
33
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = '''ZinengTang/tvlt-base''' snake_case__ = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:List[Any] ): return TvltImageProcessor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , **_a:Tuple ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _a ) self.assertIsInstance(processor.image_processor , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = feature_extractor(_a , return_tensors='''np''' ) snake_case__ = processor(audio=_a , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = image_processor(_a , return_tensors='''np''' ) snake_case__ = processor(images=_a , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) snake_case__ = np.ones([1_20_00] ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = processor(audio=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
33
1
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Dict: if not is_accelerate_available(): return method snake_case__ = version.parse(accelerate.__version__ ).base_version if version.parse(__lowerCAmelCase ) < version.parse('''0.17.0''' ): return method def wrapper(self , *__lowerCAmelCase , **__lowerCAmelCase ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *__lowerCAmelCase , **__lowerCAmelCase ) return wrapper
33
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[int] = 'data2vec-vision' def __init__( self:int , _a:Tuple=7_68 , _a:int=12 , _a:Any=12 , _a:Optional[int]=30_72 , _a:Optional[int]="gelu" , _a:Any=0.0 , _a:Any=0.0 , _a:List[str]=0.02 , _a:Dict=1e-12 , _a:Tuple=2_24 , _a:Any=16 , _a:str=3 , _a:str=False , _a:Union[str, Any]=False , _a:Optional[int]=False , _a:Any=False , _a:Dict=0.1 , _a:Dict=0.1 , _a:str=True , _a:str=[3, 5, 7, 11] , _a:List[str]=[1, 2, 3, 6] , _a:List[str]=True , _a:Any=0.4 , _a:str=2_56 , _a:Union[str, Any]=1 , _a:int=False , _a:Optional[int]=2_55 , **_a:Dict , ): super().__init__(**_a ) snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = use_mask_token snake_case__ = use_absolute_position_embeddings snake_case__ = use_relative_position_bias snake_case__ = use_shared_relative_position_bias snake_case__ = layer_scale_init_value snake_case__ = drop_path_rate snake_case__ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ = out_indices snake_case__ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ = use_auxiliary_head snake_case__ = auxiliary_loss_weight snake_case__ = auxiliary_channels snake_case__ = auxiliary_num_convs snake_case__ = auxiliary_concat_input snake_case__ = semantic_loss_ignore_index class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Any = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return 1e-4
33
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Any = { """configuration_megatron_bert""": ["""MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegatronBertConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Union[str, Any] = [ """MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegatronBertForCausalLM""", """MegatronBertForMaskedLM""", """MegatronBertForMultipleChoice""", """MegatronBertForNextSentencePrediction""", """MegatronBertForPreTraining""", """MegatronBertForQuestionAnswering""", """MegatronBertForSequenceClassification""", """MegatronBertForTokenClassification""", """MegatronBertModel""", """MegatronBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys lowerCamelCase__ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
import os import sys lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCamelCase__ : Optional[int] = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple: return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]: return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]: return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
33
1
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = BertJapaneseTokenizer __lowercase : Optional[Any] = False __lowercase : List[Any] = True def SCREAMING_SNAKE_CASE__ ( self:List[str] ): super().setUp() snake_case__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] snake_case__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Dict ): snake_case__ = '''こんにちは、世界。 \nこんばんは、世界。''' snake_case__ = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:Optional[int] ): snake_case__ , snake_case__ = self.get_input_output_texts(_a ) snake_case__ = tokenizer.encode(_a , add_special_tokens=_a ) snake_case__ = tokenizer.decode(_a , clean_up_tokenization_spaces=_a ) return text, ids def SCREAMING_SNAKE_CASE__ ( self:Dict ): pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self:int ): pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.tokenizer_class(self.vocab_file ) snake_case__ = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(_a ) snake_case__ = '''こんにちは、世界。\nこんばんは、世界。''' snake_case__ = tokenizer.tokenize(_a ) self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) snake_case__ = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_a , '''wb''' ) as handle: pickle.dump(_a , _a ) with open(_a , '''rb''' ) as handle: snake_case__ = pickle.load(_a ) snake_case__ = tokenizer_new.tokenize(_a ) self.assertListEqual(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): try: snake_case__ = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): try: snake_case__ = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = MecabTokenizer(do_lower_case=_a , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): try: snake_case__ = MecabTokenizer( do_lower_case=_a , normalize_text=_a , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = MecabTokenizer(normalize_text=_a , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(_a ) snake_case__ = '''こんにちは、世界。\nこんばんは、世界。''' snake_case__ = tokenizer.tokenize(_a ) self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) snake_case__ = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_a , '''wb''' ) as handle: pickle.dump(_a , _a ) with open(_a , '''rb''' ) as handle: snake_case__ = pickle.load(_a ) snake_case__ = tokenizer_new.tokenize(_a ) self.assertListEqual(_a , _a ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = SudachiTokenizer(do_lower_case=_a , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = SudachiTokenizer(normalize_text=_a , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = SudachiTokenizer(trim_whitespace=_a , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(_a ) snake_case__ = '''こんにちは、世界。\nこんばんは、世界。''' snake_case__ = tokenizer.tokenize(_a ) self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) snake_case__ = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_a , '''wb''' ) as handle: pickle.dump(_a , _a ) with open(_a , '''rb''' ) as handle: snake_case__ = pickle.load(_a ) snake_case__ = tokenizer_new.tokenize(_a ) self.assertListEqual(_a , _a ) @require_jumanpp def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = JumanppTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = JumanppTokenizer(normalize_text=_a ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = JumanppTokenizer(trim_whitespace=_a ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): snake_case__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] snake_case__ = {} for i, token in enumerate(_a ): snake_case__ = i snake_case__ = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) snake_case__ = tokenizer.subword_tokenizer snake_case__ = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(_a , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) snake_case__ = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(_a , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) snake_case__ = tokenizer.encode('''ありがとう。''' , add_special_tokens=_a ) snake_case__ = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_a ) snake_case__ = tokenizer.build_inputs_with_special_tokens(_a ) snake_case__ = tokenizer.build_inputs_with_special_tokens(_a , _a ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Dict = BertJapaneseTokenizer __lowercase : List[str] = False def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): super().setUp() snake_case__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] snake_case__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__ ( self:List[str] , **_a:Tuple ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[Any] ): snake_case__ = '''こんにちは、世界。 \nこんばんは、世界。''' snake_case__ = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self:Any ): pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self:List[str] ): pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self:str ): pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) snake_case__ = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( _a , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] snake_case__ = {} for i, token in enumerate(_a ): snake_case__ = i snake_case__ = CharacterTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) snake_case__ = tokenizer.encode('''ありがとう。''' , add_special_tokens=_a ) snake_case__ = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_a ) snake_case__ = tokenizer.build_inputs_with_special_tokens(_a ) snake_case__ = tokenizer.build_inputs_with_special_tokens(_a , _a ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = '''cl-tohoku/bert-base-japanese''' snake_case__ = AutoTokenizer.from_pretrained(_a ) self.assertIsInstance(_a , _a ) class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(_a ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) snake_case__ = '''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(_a ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
33
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : str = (CMStochasticIterativeScheduler,) __lowercase : List[str] = 10 def SCREAMING_SNAKE_CASE__ ( self:int , **_a:Optional[int] ): snake_case__ = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**_a ) return config def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = 10 snake_case__ = self.get_scheduler_config() snake_case__ = self.scheduler_classes[0](**_a ) scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps[0] snake_case__ = scheduler.timesteps[1] snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self:Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_a ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = 1 scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_a ): # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [1_06, 0] scheduler.set_timesteps(timesteps=_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 15, 0] with self.assertRaises(_a , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 1, 0] snake_case__ = len(_a ) with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_a )
33
1
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Tuple = ['vqvae'] def __init__( self:Any , _a:AutoencoderKL , _a:UNetaDConditionModel , _a:Mel , _a:Union[DDIMScheduler, DDPMScheduler] , ): super().__init__() self.register_modules(unet=_a , scheduler=_a , mel=_a , vqvae=_a ) def SCREAMING_SNAKE_CASE__ ( self:int ): return 50 if isinstance(self.scheduler , _a ) else 10_00 @torch.no_grad() def __call__( self:Tuple , _a:int = 1 , _a:str = None , _a:np.ndarray = None , _a:int = 0 , _a:int = 0 , _a:int = None , _a:torch.Generator = None , _a:float = 0 , _a:float = 0 , _a:torch.Generator = None , _a:float = 0 , _a:torch.Tensor = None , _a:torch.Tensor = None , _a:Union[str, Any]=True , ): snake_case__ = steps or self.get_default_steps() self.scheduler.set_timesteps(_a ) snake_case__ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: snake_case__ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: snake_case__ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=_a , device=self.device , ) snake_case__ = noise snake_case__ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_a , _a ) snake_case__ = self.mel.audio_slice_to_image(_a ) snake_case__ = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) snake_case__ = (input_image / 2_55) * 2 - 1 snake_case__ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: snake_case__ = self.vqvae.encode(torch.unsqueeze(_a , 0 ) ).latent_dist.sample( generator=_a )[0] snake_case__ = self.vqvae.config.scaling_factor * input_images if start_step > 0: snake_case__ = self.scheduler.add_noise(_a , _a , self.scheduler.timesteps[start_step - 1] ) snake_case__ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) snake_case__ = int(mask_start_secs * pixels_per_second ) snake_case__ = int(mask_end_secs * pixels_per_second ) snake_case__ = self.scheduler.add_noise(_a , _a , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , _a ): snake_case__ = self.unet(_a , _a , _a )['''sample'''] else: snake_case__ = self.unet(_a , _a )['''sample'''] if isinstance(self.scheduler , _a ): snake_case__ = self.scheduler.step( model_output=_a , timestep=_a , sample=_a , eta=_a , generator=_a , )['''prev_sample'''] else: snake_case__ = self.scheduler.step( model_output=_a , timestep=_a , sample=_a , generator=_a , )['''prev_sample'''] if mask is not None: if mask_start > 0: snake_case__ = mask[:, step, :, :mask_start] if mask_end > 0: snake_case__ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance snake_case__ = 1 / self.vqvae.config.scaling_factor * images snake_case__ = self.vqvae.decode(_a )['''sample'''] snake_case__ = (images / 2 + 0.5).clamp(0 , 1 ) snake_case__ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() snake_case__ = (images * 2_55).round().astype('''uint8''' ) snake_case__ = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_a , mode='''RGB''' ).convert('''L''' ) for _ in images) ) snake_case__ = [self.mel.image_to_audio(_a ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_a )[:, np.newaxis, :] ) , **ImagePipelineOutput(_a ) ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:List[Image.Image] , _a:int = 50 ): assert isinstance(self.scheduler , _a ) self.scheduler.set_timesteps(_a ) snake_case__ = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) snake_case__ = (sample / 2_55) * 2 - 1 snake_case__ = torch.Tensor(_a ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): snake_case__ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps snake_case__ = self.scheduler.alphas_cumprod[t] snake_case__ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) snake_case__ = 1 - alpha_prod_t snake_case__ = self.unet(_a , _a )['''sample'''] snake_case__ = (1 - alpha_prod_t_prev) ** 0.5 * model_output snake_case__ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) snake_case__ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:torch.Tensor , _a:torch.Tensor , _a:float ): snake_case__ = acos(torch.dot(torch.flatten(_a ) , torch.flatten(_a ) ) / torch.norm(_a ) / torch.norm(_a ) ) return sin((1 - alpha) * theta ) * xa / sin(_a ) + sin(alpha * theta ) * xa / sin(_a )
33
import numpy as np def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray: return vector * sigmoid(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
33
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Optional[int] = ['image_processor', 'tokenizer'] __lowercase : str = 'LayoutLMv3ImageProcessor' __lowercase : Tuple = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self:Union[str, Any] , _a:Dict=None , _a:Optional[Any]=None , **_a:Tuple ): snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) snake_case__ = kwargs.pop('''feature_extractor''' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) def __call__( self:List[Any] , _a:int , _a:Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _a:Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _a:Union[List[List[int]], List[List[List[int]]]] = None , _a:Optional[Union[List[int], List[List[int]]]] = None , _a:bool = True , _a:Union[bool, str, PaddingStrategy] = False , _a:Union[bool, str, TruncationStrategy] = None , _a:Optional[int] = None , _a:int = 0 , _a:Optional[int] = None , _a:Optional[bool] = None , _a:Optional[bool] = None , _a:bool = False , _a:bool = False , _a:bool = False , _a:bool = False , _a:bool = True , _a:Optional[Union[str, TensorType]] = None , **_a:List[str] , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor snake_case__ = self.image_processor(images=_a , return_tensors=_a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_a , _a ): snake_case__ = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case__ = features['''words'''] snake_case__ = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel values snake_case__ = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: snake_case__ = self.get_overflowing_images(_a , encoded_inputs['''overflow_to_sample_mapping'''] ) snake_case__ = images return encoded_inputs def SCREAMING_SNAKE_CASE__ ( self:str , _a:int , _a:int ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image snake_case__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_a ) != len(_a ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F""" {len(_a )} and {len(_a )}""" ) return images_with_overflow def SCREAMING_SNAKE_CASE__ ( self:Any , *_a:Optional[int] , **_a:Tuple ): return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , *_a:str , **_a:Dict ): return self.tokenizer.decode(*_a , **_a ) @property def SCREAMING_SNAKE_CASE__ ( self:int ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def SCREAMING_SNAKE_CASE__ ( self:str ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self:List[str] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
33
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int: snake_case__ = set() snake_case__ = 0 snake_case__ = n + 1 # maximum limit for a in range(2 , __lowerCAmelCase ): for b in range(2 , __lowerCAmelCase ): snake_case__ = a**b # calculates the current power collect_powers.add(__lowerCAmelCase ) # adds the result to the set return len(__lowerCAmelCase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
33
1
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): lowerCamelCase__ : str = True from torch.cuda.amp import autocast lowerCamelCase__ : List[Any] = logging.getLogger(__name__) @dataclass class __magic_name__ : '''simple docstring''' __lowercase : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __lowercase : Optional[str] = field( default=snake_case_ ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} ,) __lowercase : Optional[bool] = field( default=snake_case_ ,metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) __lowercase : Optional[bool] = field( default=snake_case_ ,metadata={'help': 'Whether to log verbose messages or not.'} ,) __lowercase : Optional[float] = field( default=2.0 ,metadata={'help': 'Maximum temperature for gumbel softmax.'} ) __lowercase : Optional[float] = field( default=0.5 ,metadata={'help': 'Minimum temperature for gumbel softmax.'} ) __lowercase : Optional[float] = field( default=0.99_99_95 ,metadata={'help': 'Decay of gumbel temperature during training.'} ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case__ = logging.WARNING if model_args.verbose_logging: snake_case__ = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): snake_case__ = logging.INFO logger.setLevel(__lowerCAmelCase ) @dataclass class __magic_name__ : '''simple docstring''' __lowercase : str = field( default=snake_case_ ,metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __lowercase : Optional[str] = field( default=snake_case_ ,metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowercase : Optional[str] = field( default='train' ,metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } ,) __lowercase : Optional[str] = field( default='validation' ,metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } ,) __lowercase : Optional[str] = field( default='file' ,metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} ,) __lowercase : bool = field( default=snake_case_ ,metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) __lowercase : Optional[int] = field( default=1 ,metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } ,) __lowercase : Optional[int] = field( default=snake_case_ ,metadata={'help': 'The number of processes to use for the preprocessing.'} ,) __lowercase : Optional[float] = field( default=20.0 ,metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'} ) @dataclass class __magic_name__ : '''simple docstring''' __lowercase : WavaVecaForPreTraining __lowercase : WavaVecaFeatureExtractor __lowercase : Union[bool, str] = "longest" __lowercase : Optional[int] = None __lowercase : Optional[int] = None def __call__( self:Optional[Any] , _a:List[Dict[str, Union[List[int], torch.Tensor]]] ): # reformat list to dict and set to pytorch format snake_case__ = self.feature_extractor.pad( _a , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) snake_case__ = self.model._get_feat_extract_output_lengths(batch['''input_values'''].shape[-1] ) snake_case__ = batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula snake_case__ = self.model._get_feat_extract_output_lengths(batch['''attention_mask'''].sum(-1 ) ).to( torch.long ) snake_case__ = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['''input_values'''].device ) # these two operations makes sure that all values # before the output lengths indices are attended to snake_case__ = 1 snake_case__ = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices snake_case__ = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_a , min_masks=2 , ) return batch class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:str , *_a:List[Any] , _a:Dict=1 , _a:List[str]=0 , _a:Union[str, Any]=1.0 , **_a:Optional[Any] ): super().__init__(*_a , **_a ) snake_case__ = 0 snake_case__ = max_gumbel_temp snake_case__ = min_gumbel_temp snake_case__ = gumbel_temp_decay def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:nn.Module , _a:Dict[str, Union[torch.Tensor, Any]] ): model.train() snake_case__ = self._prepare_inputs(_a ) if self.use_amp: with autocast(): snake_case__ = self.compute_loss(_a , _a ) else: snake_case__ = self.compute_loss(_a , _a ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": snake_case__ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": snake_case__ = loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: snake_case__ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_a ).backward() elif self.use_apex: with amp.scale_loss(_a , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_a ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case__ , snake_case__ , snake_case__ = parser.parse_args_into_dataclasses() configure_logger(__lowerCAmelCase , __lowerCAmelCase ) # Downloading and loading a dataset from the hub. snake_case__ = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" snake_case__ = DatasetDict() snake_case__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) snake_case__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" snake_case__ = DatasetDict() snake_case__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='''validation''' , cache_dir=model_args.cache_dir , ) snake_case__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported snake_case__ = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__lowerCAmelCase ) def prepare_dataset(__lowerCAmelCase ): # check that all files have the correct sampling rate snake_case__ , snake_case__ = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays snake_case__ = datasets.map( __lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['''train'''].column_names ) # filter audio files that are too long snake_case__ = vectorized_datasets.filter( lambda __lowerCAmelCase : len(data['''speech'''] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__lowerCAmelCase ): return feature_extractor(batch['''speech'''] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` snake_case__ = vectorized_datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['''train'''].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 snake_case__ = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( '''PreTraining is only supported for ``config.do_stable_layer_norm=True`` and''' ''' ``config.feat_extract_norm=\'layer\'''' ) snake_case__ = WavaVecaForPreTraining(__lowerCAmelCase ) snake_case__ = DataCollatorForWavaVecaPretraining(model=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) snake_case__ = WavaVecaPreTrainer( model=__lowerCAmelCase , data_collator=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=vectorized_datasets['''train'''] , eval_dataset=vectorized_datasets['''validation'''] , tokenizer=__lowerCAmelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
33
from copy import deepcopy class __magic_name__ : '''simple docstring''' def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ): if arr is None and size is not None: snake_case__ = size snake_case__ = [0] * size elif arr is not None: self.init(_a ) else: raise ValueError('''Either arr or size must be specified''' ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ): snake_case__ = len(_a ) snake_case__ = deepcopy(_a ) for i in range(1 , self.size ): snake_case__ = self.next_(_a ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case__ = self.next_(_a ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:int ): return index - (index & (-index)) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case__ = self.next_(_a ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): self.add(_a , value - self.get(_a ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ): if right == 0: return 0 snake_case__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case__ = self.prev(_a ) return result def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ): return self.prefix(_a ) - self.prefix(_a ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): return self.query(_a , index + 1 ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ): value -= self.tree[0] if value < 0: return -1 snake_case__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
33
1