code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Optional[int] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
# See all BART models at https://huggingface.co/models?filter=bart
lowerCamelCase__ : Optional[Any] = {
"""vocab_file""": {
"""facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""",
"""facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""",
"""facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""",
"""facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""",
"""facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""",
"""yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""",
},
"""merges_file""": {
"""facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""",
"""facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""",
"""facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""",
"""facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""",
"""facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""",
"""yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""",
"""facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""",
"""facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""",
"""facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""",
"""facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""",
"""yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""",
},
}
lowerCamelCase__ : Dict = {
"""facebook/bart-base""": 1_0_2_4,
"""facebook/bart-large""": 1_0_2_4,
"""facebook/bart-large-mnli""": 1_0_2_4,
"""facebook/bart-large-cnn""": 1_0_2_4,
"""facebook/bart-large-xsum""": 1_0_2_4,
"""yjernite/bart_eli5""": 1_0_2_4,
}
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : int = VOCAB_FILES_NAMES
__lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP
__lowercase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase : int = ['input_ids', 'attention_mask']
__lowercase : int = BartTokenizer
def __init__( self:int , _a:Any=None , _a:Dict=None , _a:Any=None , _a:str="replace" , _a:Dict="<s>" , _a:Any="</s>" , _a:List[str]="</s>" , _a:Optional[Any]="<s>" , _a:List[Any]="<unk>" , _a:Optional[Any]="<pad>" , _a:str="<mask>" , _a:Tuple=False , _a:Optional[Any]=True , **_a:List[str] , ):
super().__init__(
_a , _a , tokenizer_file=_a , errors=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , add_prefix_space=_a , trim_offsets=_a , **_a , )
snake_case__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , _a ) != add_prefix_space:
snake_case__ = getattr(_a , pre_tok_state.pop('''type''' ) )
snake_case__ = add_prefix_space
snake_case__ = pre_tok_class(**_a )
snake_case__ = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
snake_case__ = '''post_processor'''
snake_case__ = getattr(self.backend_tokenizer , _a , _a )
if tokenizer_component_instance:
snake_case__ = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
snake_case__ = tuple(state['''sep'''] )
if "cls" in state:
snake_case__ = tuple(state['''cls'''] )
snake_case__ = False
if state.get('''add_prefix_space''' , _a ) != add_prefix_space:
snake_case__ = add_prefix_space
snake_case__ = True
if state.get('''trim_offsets''' , _a ) != trim_offsets:
snake_case__ = trim_offsets
snake_case__ = True
if changes_to_apply:
snake_case__ = getattr(_a , state.pop('''type''' ) )
snake_case__ = component_class(**_a )
setattr(self.backend_tokenizer , _a , _a )
@property
def SCREAMING_SNAKE_CASE__ ( self:Any ):
if self._mask_token is None:
if self.verbose:
logger.error('''Using mask_token, but it is not set yet.''' )
return None
return str(self._mask_token )
@mask_token.setter
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:Union[str, Any] ):
snake_case__ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else value
snake_case__ = value
def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:int , **_a:Tuple ):
snake_case__ = kwargs.get('''is_split_into_words''' , _a )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
'''to use it with pretokenized inputs.''' )
return super()._batch_encode_plus(*_a , **_a )
def SCREAMING_SNAKE_CASE__ ( self:str , *_a:Dict , **_a:Tuple ):
snake_case__ = kwargs.get('''is_split_into_words''' , _a )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
'''to use it with pretokenized inputs.''' )
return super()._encode_plus(*_a , **_a )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:str , _a:Optional[str] = None ):
snake_case__ = self._tokenizer.model.save(_a , name=_a )
return tuple(_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:Optional[int] , _a:Tuple=None ):
snake_case__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def SCREAMING_SNAKE_CASE__ ( self:str , _a:List[int] , _a:Optional[List[int]] = None ):
snake_case__ = [self.sep_token_id]
snake_case__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 33 |
from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class __magic_name__ :
'''simple docstring'''
__lowercase : int = BlenderbotConfig
__lowercase : Any = {}
__lowercase : Optional[Any] = 'gelu'
def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[Any]=13 , _a:Tuple=7 , _a:Union[str, Any]=True , _a:int=False , _a:int=99 , _a:Optional[int]=32 , _a:List[str]=2 , _a:List[str]=4 , _a:List[Any]=37 , _a:Any=0.1 , _a:int=0.1 , _a:List[Any]=20 , _a:List[str]=2 , _a:int=1 , _a:Dict=0 , ):
snake_case__ = parent
snake_case__ = batch_size
snake_case__ = seq_length
snake_case__ = is_training
snake_case__ = use_labels
snake_case__ = vocab_size
snake_case__ = hidden_size
snake_case__ = num_hidden_layers
snake_case__ = num_attention_heads
snake_case__ = intermediate_size
snake_case__ = hidden_dropout_prob
snake_case__ = attention_probs_dropout_prob
snake_case__ = max_position_embeddings
snake_case__ = eos_token_id
snake_case__ = pad_token_id
snake_case__ = bos_token_id
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 )
snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case__ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
snake_case__ = prepare_blenderbot_inputs_dict(_a , _a , _a )
return config, inputs_dict
def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:int ):
snake_case__ = TFBlenderbotModel(config=_a ).get_decoder()
snake_case__ = inputs_dict['''input_ids''']
snake_case__ = input_ids[:1, :]
snake_case__ = inputs_dict['''attention_mask'''][:1, :]
snake_case__ = inputs_dict['''head_mask''']
snake_case__ = 1
# first forward pass
snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a )
snake_case__ , snake_case__ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1 )
snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
snake_case__ = model(_a , attention_mask=_a )[0]
snake_case__ = model(_a , attention_mask=_a , past_key_values=_a )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
snake_case__ = output_from_no_past[:, -3:, random_slice_idx]
snake_case__ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_a , _a , rtol=1e-3 )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Tuple:
if attention_mask is None:
snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
snake_case__ = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
__lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
__lowercase : Tuple = (
{
'conversational': TFBlenderbotForConditionalGeneration,
'feature-extraction': TFBlenderbotModel,
'summarization': TFBlenderbotForConditionalGeneration,
'text2text-generation': TFBlenderbotForConditionalGeneration,
'translation': TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
__lowercase : Any = True
__lowercase : int = False
__lowercase : int = False
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = TFBlenderbotModelTester(self )
snake_case__ = ConfigTester(self , config_class=_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_a )
@require_tokenizers
@require_tf
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
__lowercase : Optional[int] = ['My friends are cool but they eat too many carbs.']
__lowercase : Optional[int] = 'facebook/blenderbot-400M-distill'
@cached_property
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.tokenizer(self.src_text , return_tensors='''tf''' )
snake_case__ = self.model.generate(
model_inputs.input_ids , )
snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 33 | 1 |
import json
import os
import unittest
from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast
from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES
from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __magic_name__ (snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : Optional[Any] = OpenAIGPTTokenizer
__lowercase : int = OpenAIGPTTokenizerFast
__lowercase : str = True
__lowercase : Dict = False
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
snake_case__ = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''w</w>''',
'''r</w>''',
'''t</w>''',
'''lo''',
'''low''',
'''er</w>''',
'''low</w>''',
'''lowest</w>''',
'''newer</w>''',
'''wider</w>''',
'''<unk>''',
]
snake_case__ = dict(zip(_a , range(len(_a ) ) ) )
snake_case__ = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', '''''']
snake_case__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
snake_case__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' ) as fp:
fp.write(json.dumps(_a ) )
with open(self.merges_file , '''w''' ) as fp:
fp.write('''\n'''.join(_a ) )
def SCREAMING_SNAKE_CASE__ ( self:int , _a:Dict ):
return "lower newer", "lower newer"
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = OpenAIGPTTokenizer(self.vocab_file , self.merges_file )
snake_case__ = '''lower'''
snake_case__ = ['''low''', '''er</w>''']
snake_case__ = tokenizer.tokenize(_a )
self.assertListEqual(_a , _a )
snake_case__ = tokens + ['''<unk>''']
snake_case__ = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:Dict=15 ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
snake_case__ = self.rust_tokenizer_class.from_pretrained(_a , **_a )
# Simple input
snake_case__ = '''This is a simple input'''
snake_case__ = ['''This is a simple input 1''', '''This is a simple input 2''']
snake_case__ = ('''This is a simple input''', '''This is a pair''')
snake_case__ = [
('''This is a simple input 1''', '''This is a simple input 2'''),
('''This is a simple pair 1''', '''This is a simple pair 2'''),
]
# Simple input tests
self.assertRaises(_a , tokenizer_r.encode , _a , max_length=_a , padding='''max_length''' )
# Simple input
self.assertRaises(_a , tokenizer_r.encode_plus , _a , max_length=_a , padding='''max_length''' )
# Simple input
self.assertRaises(
_a , tokenizer_r.batch_encode_plus , _a , max_length=_a , padding='''max_length''' , )
# Pair input
self.assertRaises(_a , tokenizer_r.encode , _a , max_length=_a , padding='''max_length''' )
# Pair input
self.assertRaises(_a , tokenizer_r.encode_plus , _a , max_length=_a , padding='''max_length''' )
# Pair input
self.assertRaises(
_a , tokenizer_r.batch_encode_plus , _a , max_length=_a , padding='''max_length''' , )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
pass
@require_ftfy
@require_spacy
@require_tokenizers
class __magic_name__ (snake_case_ ):
'''simple docstring'''
pass
| 33 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = 0
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:str ):
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
snake_case__ = Path(_a ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
snake_case__ = Path(_a ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = CLIPConfig()
# Create a dummy config file with image_proceesor_type
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
snake_case__ = Path(_a ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
snake_case__ = AutoImageProcessor.from_pretrained(_a ).to_dict()
config_dict.pop('''image_processor_type''' )
snake_case__ = CLIPImageProcessor(**_a )
# save in new folder
model_config.save_pretrained(_a )
config.save_pretrained(_a )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
# make sure private variable is not incorrectly saved
snake_case__ = json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
with self.assertRaisesRegex(
_a , '''clip-base is not a local folder and is not a valid model identifier''' ):
snake_case__ = AutoImageProcessor.from_pretrained('''clip-base''' )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
with self.assertRaisesRegex(
_a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
snake_case__ = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
with self.assertRaisesRegex(
_a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(_a ):
snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(_a ):
snake_case__ = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a )
snake_case__ = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_a )
snake_case__ = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a )
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
try:
AutoConfig.register('''custom''' , _a )
AutoImageProcessor.register(_a , _a )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_a ):
AutoImageProcessor.register(_a , _a )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
snake_case__ = Path(_a ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) )
snake_case__ = CustomImageProcessor.from_pretrained(_a )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_a )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : List[str] = True
try:
AutoConfig.register('''custom''' , _a )
AutoImageProcessor.register(_a , _a )
# If remote code is not set, the default is to use local
snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
snake_case__ = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
snake_case__ = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(not hasattr(_a , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 33 | 1 |
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
lowerCamelCase__ : Tuple = """\
@inproceedings{lin-2004-rouge,
title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",
author = \"Lin, Chin-Yew\",
booktitle = \"Text Summarization Branches Out\",
month = jul,
year = \"2004\",
address = \"Barcelona, Spain\",
publisher = \"Association for Computational Linguistics\",
url = \"https://www.aclweb.org/anthology/W04-1013\",
pages = \"74--81\",
}
"""
lowerCamelCase__ : List[str] = """\
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for
evaluating automatic summarization and machine translation software in natural language processing.
The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.
Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.
This metrics is a wrapper around Google Research reimplementation of ROUGE:
https://github.com/google-research/google-research/tree/master/rouge
"""
lowerCamelCase__ : Optional[int] = """
Calculates average rouge scores for a list of hypotheses and references
Args:
predictions: list of predictions to score. Each prediction
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
rouge_types: A list of rouge types to calculate.
Valid names:
`\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,
`\"rougeL\"`: Longest common subsequence based scoring.
`\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.
See details in https://github.com/huggingface/datasets/issues/617
use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.
use_aggregator: Return aggregates if this is set to True
Returns:
rouge1: rouge_1 (precision, recall, f1),
rouge2: rouge_2 (precision, recall, f1),
rougeL: rouge_l (precision, recall, f1),
rougeLsum: rouge_lsum (precision, recall, f1)
Examples:
>>> rouge = datasets.load_metric('rouge')
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> results = rouge.compute(predictions=predictions, references=references)
>>> print(list(results.keys()))
['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
>>> print(results[\"rouge1\"])
AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))
>>> print(results[\"rouge1\"].mid.fmeasure)
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class __magic_name__ (datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/ROUGE_(metric)''',
'''https://github.com/google-research/google-research/tree/master/rouge''',
] , )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:Union[str, Any] , _a:List[Any] , _a:str=None , _a:Optional[int]=True , _a:Optional[Any]=False ):
if rouge_types is None:
snake_case__ = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum''']
snake_case__ = rouge_scorer.RougeScorer(rouge_types=_a , use_stemmer=_a )
if use_aggregator:
snake_case__ = scoring.BootstrapAggregator()
else:
snake_case__ = []
for ref, pred in zip(_a , _a ):
snake_case__ = scorer.score(_a , _a )
if use_aggregator:
aggregator.add_scores(_a )
else:
scores.append(_a )
if use_aggregator:
snake_case__ = aggregator.aggregate()
else:
snake_case__ = {}
for key in scores[0]:
snake_case__ = [score[key] for score in scores]
return result
| 33 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ : int = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> int:
snake_case__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
('''cls_token''', '''vit.embeddings.cls_token'''),
('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''),
('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''),
('''pos_embed''', '''vit.embeddings.position_embeddings'''),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
('''pre_logits.fc.weight''', '''pooler.dense.weight'''),
('''pre_logits.fc.bias''', '''pooler.dense.bias'''),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
snake_case__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('''norm.weight''', '''vit.layernorm.weight'''),
('''norm.bias''', '''vit.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
return rename_keys
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict:
for i in range(config.num_hidden_layers ):
if base_model:
snake_case__ = ''''''
else:
snake_case__ = '''vit.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" )
snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
snake_case__ = in_proj_weight[
: config.hidden_size, :
]
snake_case__ = in_proj_bias[: config.hidden_size]
snake_case__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
snake_case__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
snake_case__ = in_proj_weight[
-config.hidden_size :, :
]
snake_case__ = in_proj_bias[-config.hidden_size :]
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]:
snake_case__ = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
snake_case__ = dct.pop(__lowerCAmelCase )
snake_case__ = val
def SCREAMING_SNAKE_CASE ( ) -> str:
snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
return im
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict:
snake_case__ = ViTConfig()
snake_case__ = False
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
if vit_name[-5:] == "in21k":
snake_case__ = True
snake_case__ = int(vit_name[-12:-10] )
snake_case__ = int(vit_name[-9:-6] )
else:
snake_case__ = 1000
snake_case__ = '''huggingface/label-files'''
snake_case__ = '''imagenet-1k-id2label.json'''
snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) )
snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
snake_case__ = idalabel
snake_case__ = {v: k for k, v in idalabel.items()}
snake_case__ = int(vit_name[-6:-4] )
snake_case__ = int(vit_name[-3:] )
# size of the architecture
if "deit" in vit_name:
if vit_name[9:].startswith('''tiny''' ):
snake_case__ = 192
snake_case__ = 768
snake_case__ = 12
snake_case__ = 3
elif vit_name[9:].startswith('''small''' ):
snake_case__ = 384
snake_case__ = 1536
snake_case__ = 12
snake_case__ = 6
else:
pass
else:
if vit_name[4:].startswith('''small''' ):
snake_case__ = 768
snake_case__ = 2304
snake_case__ = 8
snake_case__ = 8
elif vit_name[4:].startswith('''base''' ):
pass
elif vit_name[4:].startswith('''large''' ):
snake_case__ = 1024
snake_case__ = 4096
snake_case__ = 24
snake_case__ = 16
elif vit_name[4:].startswith('''huge''' ):
snake_case__ = 1280
snake_case__ = 5120
snake_case__ = 32
snake_case__ = 16
# load original model from timm
snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
snake_case__ = timm_model.state_dict()
if base_model:
remove_classification_head_(__lowerCAmelCase )
snake_case__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase )
for src, dest in rename_keys:
rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# load HuggingFace model
if vit_name[-5:] == "in21k":
snake_case__ = ViTModel(__lowerCAmelCase ).eval()
else:
snake_case__ = ViTForImageClassification(__lowerCAmelCase ).eval()
model.load_state_dict(__lowerCAmelCase )
# Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor
if "deit" in vit_name:
snake_case__ = DeiTImageProcessor(size=config.image_size )
else:
snake_case__ = ViTImageProcessor(size=config.image_size )
snake_case__ = image_processor(images=prepare_img() , return_tensors='''pt''' )
snake_case__ = encoding['''pixel_values''']
snake_case__ = model(__lowerCAmelCase )
if base_model:
snake_case__ = timm_model.forward_features(__lowerCAmelCase )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1e-3 )
else:
snake_case__ = timm_model(__lowerCAmelCase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 )
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCAmelCase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--vit_name""",
default="""vit_base_patch16_224""",
type=str,
help="""Name of the ViT timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
lowerCamelCase__ : str = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
| 33 | 1 |
print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
| 33 |
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : List[str] = ['image_processor', 'tokenizer']
__lowercase : str = 'AutoImageProcessor'
__lowercase : Dict = 'AutoTokenizer'
def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ):
snake_case__ = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , _a , )
snake_case__ = kwargs.pop('''feature_extractor''' )
snake_case__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_a , _a )
snake_case__ = self.image_processor
snake_case__ = False
def __call__( self:Optional[int] , *_a:str , **_a:int ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*_a , **_a )
snake_case__ = kwargs.pop('''images''' , _a )
snake_case__ = kwargs.pop('''text''' , _a )
if len(_a ) > 0:
snake_case__ = args[0]
snake_case__ = args[1:]
if images is None and text is None:
raise ValueError('''You need to specify either an `images` or `text` input to process.''' )
if images is not None:
snake_case__ = self.image_processor(_a , *_a , **_a )
if text is not None:
snake_case__ = self.tokenizer(_a , **_a )
if text is None:
return inputs
elif images is None:
return encodings
else:
snake_case__ = encodings['''input_ids''']
return inputs
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ):
return self.tokenizer.batch_decode(*_a , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ):
return self.tokenizer.decode(*_a , **_a )
@contextmanager
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your images inputs, or in a separate call.''' )
snake_case__ = True
snake_case__ = self.tokenizer
yield
snake_case__ = self.image_processor
snake_case__ = False
def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ):
if added_vocab is None:
snake_case__ = self.tokenizer.get_added_vocab()
snake_case__ = {}
while tokens:
snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE )
if start_token is None:
break
snake_case__ = start_token.group(1 )
snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE )
snake_case__ = start_token.group()
if end_token is None:
snake_case__ = tokens.replace(_a , '''''' )
else:
snake_case__ = end_token.group()
snake_case__ = re.escape(_a )
snake_case__ = re.escape(_a )
snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE )
if content is not None:
snake_case__ = content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a )
if value:
if len(_a ) == 1:
snake_case__ = value[0]
snake_case__ = value
else: # leaf nodes
snake_case__ = []
for leaf in content.split(r'''<sep/>''' ):
snake_case__ = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
snake_case__ = leaf[1:-2] # for categorical special tokens
output[key].append(_a )
if len(output[key] ) == 1:
snake_case__ = output[key][0]
snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a )
if len(_a ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , )
return self.image_processor
| 33 | 1 |
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Optional[int] = ['image_processor', 'tokenizer']
__lowercase : Optional[int] = 'BridgeTowerImageProcessor'
__lowercase : int = ('RobertaTokenizer', 'RobertaTokenizerFast')
def __init__( self:Union[str, Any] , _a:Union[str, Any] , _a:Any ):
super().__init__(_a , _a )
def __call__( self:str , _a:Tuple , _a:Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _a:bool = True , _a:Union[bool, str, PaddingStrategy] = False , _a:Union[bool, str, TruncationStrategy] = None , _a:Optional[int] = None , _a:int = 0 , _a:Optional[int] = None , _a:Optional[bool] = None , _a:Optional[bool] = None , _a:bool = False , _a:bool = False , _a:bool = False , _a:bool = False , _a:bool = True , _a:Optional[Union[str, TensorType]] = None , **_a:Dict , ):
snake_case__ = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
# add pixel_values + pixel_mask
snake_case__ = self.image_processor(
_a , return_tensors=_a , do_normalize=_a , do_center_crop=_a , **_a )
encoding.update(_a )
return encoding
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Optional[int] , **_a:Optional[Any] ):
return self.tokenizer.batch_decode(*_a , **_a )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , *_a:Tuple , **_a:List[str] ):
return self.tokenizer.decode(*_a , **_a )
@property
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = self.tokenizer.model_input_names
snake_case__ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 33 |
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __magic_name__ :
'''simple docstring'''
def __init__( self:Optional[Any] , _a:int , _a:str=3 , _a:Optional[int]=32 , _a:Optional[Any]=3 , _a:Tuple=10 , _a:List[Any]=[8, 16, 32, 64] , _a:str=[1, 1, 2, 1] , _a:Any=True , _a:List[Any]=True , _a:List[str]="relu" , _a:int=3 , _a:Tuple=None , _a:Tuple=["stage2", "stage3", "stage4"] , _a:List[Any]=[2, 3, 4] , _a:Union[str, Any]=1 , ):
snake_case__ = parent
snake_case__ = batch_size
snake_case__ = image_size
snake_case__ = num_channels
snake_case__ = embeddings_size
snake_case__ = hidden_sizes
snake_case__ = depths
snake_case__ = is_training
snake_case__ = use_labels
snake_case__ = hidden_act
snake_case__ = num_labels
snake_case__ = scope
snake_case__ = len(_a )
snake_case__ = out_features
snake_case__ = out_indices
snake_case__ = num_groups
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case__ = None
if self.use_labels:
snake_case__ = ids_tensor([self.batch_size] , self.num_labels )
snake_case__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[int] , _a:Tuple , _a:int ):
snake_case__ = BitModel(config=_a )
model.to(_a )
model.eval()
snake_case__ = model(_a )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def SCREAMING_SNAKE_CASE__ ( self:int , _a:Tuple , _a:Any , _a:Union[str, Any] ):
snake_case__ = self.num_labels
snake_case__ = BitForImageClassification(_a )
model.to(_a )
model.eval()
snake_case__ = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:str , _a:List[str] , _a:Any ):
snake_case__ = BitBackbone(config=_a )
model.to(_a )
model.eval()
snake_case__ = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case__ = None
snake_case__ = BitBackbone(config=_a )
model.to(_a )
model.eval()
snake_case__ = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = self.prepare_config_and_inputs()
snake_case__ , snake_case__ , snake_case__ = config_and_inputs
snake_case__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
__lowercase : int = (
{'feature-extraction': BitModel, 'image-classification': BitForImageClassification}
if is_torch_available()
else {}
)
__lowercase : Tuple = False
__lowercase : Optional[Any] = False
__lowercase : str = False
__lowercase : Tuple = False
__lowercase : Tuple = False
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = BitModelTester(self )
snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
return
@unittest.skip(reason='''Bit does not output attentions''' )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
pass
@unittest.skip(reason='''Bit does not use inputs_embeds''' )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
pass
@unittest.skip(reason='''Bit does not support input and output embeddings''' )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
pass
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ = model_class(_a )
snake_case__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case__ = [*signature.parameters.keys()]
snake_case__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _a )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_a )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ = model_class(config=_a )
for name, module in model.named_modules():
if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
def check_hidden_states_output(_a:List[Any] , _a:int , _a:Union[str, Any] ):
snake_case__ = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
snake_case__ = model(**self._prepare_for_class(_a , _a ) )
snake_case__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case__ = self.model_tester.num_stages
self.assertEqual(len(_a ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ = ['''preactivation''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
snake_case__ = layer_type
snake_case__ = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case__ = True
check_hidden_states_output(_a , _a , _a )
@unittest.skip(reason='''Bit does not use feedforward chunking''' )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
pass
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case__ = BitModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def SCREAMING_SNAKE_CASE ( ) -> Any:
snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a )
snake_case__ = self.default_image_processor
snake_case__ = prepare_img()
snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
snake_case__ = model(**_a )
# verify the logits
snake_case__ = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , _a )
snake_case__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
@require_torch
class __magic_name__ (snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : Optional[Any] = (BitBackbone,) if is_torch_available() else ()
__lowercase : int = BitConfig
__lowercase : Any = False
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = BitModelTester(self )
| 33 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ : List[str] = logging.get_logger(__name__)
lowerCamelCase__ : Dict = {
"""google/vivit-b-16x2-kinetics400""": (
"""https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json"""
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Optional[int] = 'vivit'
def __init__( self:Tuple , _a:Any=2_24 , _a:Tuple=32 , _a:Optional[Any]=[2, 16, 16] , _a:str=3 , _a:Union[str, Any]=7_68 , _a:str=12 , _a:str=12 , _a:str=30_72 , _a:str="gelu_fast" , _a:Any=0.0 , _a:int=0.0 , _a:str=0.02 , _a:List[str]=1e-06 , _a:int=True , **_a:int , ):
snake_case__ = hidden_size
snake_case__ = num_hidden_layers
snake_case__ = num_attention_heads
snake_case__ = intermediate_size
snake_case__ = hidden_act
snake_case__ = hidden_dropout_prob
snake_case__ = attention_probs_dropout_prob
snake_case__ = initializer_range
snake_case__ = layer_norm_eps
snake_case__ = image_size
snake_case__ = num_frames
snake_case__ = tubelet_size
snake_case__ = num_channels
snake_case__ = qkv_bias
super().__init__(**_a )
| 33 |
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
lowerCamelCase__ : Any = """\
"""
lowerCamelCase__ : List[str] = """
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence.
For more information, see https://huggingface.co/docs/transformers/perplexity
"""
lowerCamelCase__ : Any = """
Args:
model_id (str): model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
input_texts (list of str): input text, each separate text snippet
is one list entry.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
device (str): device to run on, defaults to 'cuda' when available
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
Examples:
Example 1:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]
>>> results = perplexity.compute(model_id='gpt2',
... add_start_token=False,
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
78.22
>>> print(round(results[\"perplexities\"][0], 2))
11.11
Example 2:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = datasets.load_dataset(\"wikitext\",
... \"wikitext-2-raw-v1\",
... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS
[...]
>>> input_texts = [s for s in input_texts if s!='']
>>> results = perplexity.compute(model_id='gpt2',
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
60.35
>>> print(round(results[\"perplexities\"][0], 2))
81.12
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class __magic_name__ (datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:int ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''input_texts''': datasets.Value('''string''' ),
} ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:List[Any] , _a:int = 16 , _a:bool = True , _a:Any=None ):
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
snake_case__ = '''cuda'''
else:
snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
snake_case__ = AutoModelForCausalLM.from_pretrained(_a )
snake_case__ = model.to(_a )
snake_case__ = AutoTokenizer.from_pretrained(_a )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
snake_case__ = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(_a ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
snake_case__ = model.config.max_length - 1
else:
snake_case__ = model.config.max_length
snake_case__ = tokenizer(
_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a )
snake_case__ = encodings['''input_ids''']
snake_case__ = encodings['''attention_mask''']
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
snake_case__ = []
snake_case__ = CrossEntropyLoss(reduction='''none''' )
for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ):
snake_case__ = min(start_index + batch_size , len(_a ) )
snake_case__ = encoded_texts[start_index:end_index]
snake_case__ = attn_masks[start_index:end_index]
if add_start_token:
snake_case__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a )
snake_case__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
snake_case__ = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 )
snake_case__ = encoded_batch
with torch.no_grad():
snake_case__ = model(_a , attention_mask=_a ).logits
snake_case__ = out_logits[..., :-1, :].contiguous()
snake_case__ = labels[..., 1:].contiguous()
snake_case__ = attn_mask[..., 1:].contiguous()
snake_case__ = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
| 33 | 1 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = inspect.getfile(accelerate.test_utils )
snake_case__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] )
snake_case__ = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] )
snake_case__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] )
@require_multi_gpu
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
print(F"""Found {torch.cuda.device_count()} devices.""" )
snake_case__ = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_a , env=os.environ.copy() )
@require_multi_gpu
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
print(F"""Found {torch.cuda.device_count()} devices.""" )
snake_case__ = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path]
print(F"""Command: {cmd}""" )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_a , env=os.environ.copy() )
@require_multi_gpu
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_a , env=os.environ.copy() )
@require_multi_gpu
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" )
snake_case__ = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ):
execute_subprocess_async(_a , env=os.environ.copy() )
if __name__ == "__main__":
lowerCamelCase__ : Optional[int] = Accelerator()
lowerCamelCase__ : Union[str, Any] = (accelerator.state.process_index + 2, 1_0)
lowerCamelCase__ : List[str] = torch.randint(0, 1_0, shape).to(accelerator.device)
lowerCamelCase__ : Union[str, Any] = """"""
lowerCamelCase__ : str = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
lowerCamelCase__ : Optional[int] = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
lowerCamelCase__ : str = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 33 |
import os
from datetime import datetime as dt
from github import Github
lowerCamelCase__ : int = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""enhancement""",
"""new pipeline/model""",
"""new scheduler""",
"""wip""",
]
def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
snake_case__ = Github(os.environ['''GITHUB_TOKEN'''] )
snake_case__ = g.get_repo('''huggingface/diffusers''' )
snake_case__ = repo.get_issues(state='''open''' )
for issue in open_issues:
snake_case__ = sorted(issue.get_comments() , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase )
snake_case__ = comments[0] if len(__lowerCAmelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state='''closed''' )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state='''open''' )
issue.remove_from_labels('''stale''' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
issue.add_to_labels('''stale''' )
if __name__ == "__main__":
main()
| 33 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import is_speech_available, is_vision_available
from transformers.testing_utils import require_torch
if is_vision_available():
from transformers import TvltImageProcessor
if is_speech_available():
from transformers import TvltFeatureExtractor
from transformers import TvltProcessor
@require_torch
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = '''ZinengTang/tvlt-base'''
snake_case__ = tempfile.mkdtemp()
def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:List[Any] ):
return TvltImageProcessor.from_pretrained(self.checkpoint , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , **_a:Tuple ):
return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
processor.save_pretrained(self.tmpdirname )
snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname )
self.assertIsInstance(processor.feature_extractor , _a )
self.assertIsInstance(processor.image_processor , _a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
snake_case__ = np.ones([1_20_00] )
snake_case__ = feature_extractor(_a , return_tensors='''np''' )
snake_case__ = processor(audio=_a , return_tensors='''np''' )
for key in audio_dict.keys():
self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
snake_case__ = np.ones([3, 2_24, 2_24] )
snake_case__ = image_processor(_a , return_tensors='''np''' )
snake_case__ = processor(images=_a , return_tensors='''np''' )
for key in image_dict.keys():
self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
snake_case__ = np.ones([1_20_00] )
snake_case__ = np.ones([3, 2_24, 2_24] )
snake_case__ = processor(audio=_a , images=_a )
self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] )
# test if it raises when no input is passed
with pytest.raises(_a ):
processor()
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
self.assertListEqual(
processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
| 33 |
import pytest
from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs
@pytest.mark.parametrize(
'''kwargs, expected''' , [
({'''num_shards''': 0, '''max_num_jobs''': 1}, []),
({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]),
({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__lowerCAmelCase , i + 1 ) for i in range(10 )]),
({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]),
({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]),
({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]),
] , )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
snake_case__ = _distribute_shards(**__lowerCAmelCase )
assert out == expected
@pytest.mark.parametrize(
'''gen_kwargs, max_num_jobs, expected''' , [
({'''foo''': 0}, 10, [{'''foo''': 0}]),
({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]),
({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]),
({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]),
({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]),
] , )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict:
snake_case__ = _split_gen_kwargs(__lowerCAmelCase , __lowerCAmelCase )
assert out == expected
@pytest.mark.parametrize(
'''gen_kwargs, expected''' , [
({'''foo''': 0}, 1),
({'''shards''': [0]}, 1),
({'''shards''': [0, 1, 2, 3]}, 4),
({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4),
({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4),
({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError),
] , )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
if expected is RuntimeError:
with pytest.raises(__lowerCAmelCase ):
_number_of_shards_in_gen_kwargs(__lowerCAmelCase )
else:
snake_case__ = _number_of_shards_in_gen_kwargs(__lowerCAmelCase )
assert out == expected
| 33 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import TensorType, logging
if TYPE_CHECKING:
from ...onnx.config import PatchingSpec
from ...tokenization_utils_base import PreTrainedTokenizerBase
lowerCamelCase__ : Tuple = logging.get_logger(__name__)
lowerCamelCase__ : Optional[int] = {
"""allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""",
"""allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""",
"""allenai/longformer-large-4096-finetuned-triviaqa""": (
"""https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json"""
),
"""allenai/longformer-base-4096-extra.pos.embd.only""": (
"""https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json"""
),
"""allenai/longformer-large-4096-extra.pos.embd.only""": (
"""https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json"""
),
}
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Dict = 'longformer'
def __init__( self:str , _a:Union[List[int], int] = 5_12 , _a:int = 2 , _a:int = 1 , _a:int = 0 , _a:int = 2 , _a:int = 3_05_22 , _a:int = 7_68 , _a:int = 12 , _a:int = 12 , _a:int = 30_72 , _a:str = "gelu" , _a:float = 0.1 , _a:float = 0.1 , _a:int = 5_12 , _a:int = 2 , _a:float = 0.02 , _a:float = 1e-12 , _a:bool = False , **_a:Any , ):
super().__init__(pad_token_id=_a , **_a )
snake_case__ = attention_window
snake_case__ = sep_token_id
snake_case__ = bos_token_id
snake_case__ = eos_token_id
snake_case__ = vocab_size
snake_case__ = hidden_size
snake_case__ = num_hidden_layers
snake_case__ = num_attention_heads
snake_case__ = hidden_act
snake_case__ = intermediate_size
snake_case__ = hidden_dropout_prob
snake_case__ = attention_probs_dropout_prob
snake_case__ = max_position_embeddings
snake_case__ = type_vocab_size
snake_case__ = initializer_range
snake_case__ = layer_norm_eps
snake_case__ = onnx_export
class __magic_name__ (snake_case_ ):
'''simple docstring'''
def __init__( self:Tuple , _a:"PretrainedConfig" , _a:str = "default" , _a:"List[PatchingSpec]" = None ):
super().__init__(_a , _a , _a )
snake_case__ = True
@property
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
if self.task == "multiple-choice":
snake_case__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
snake_case__ = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''global_attention_mask''', dynamic_axis),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = super().outputs
if self.task == "default":
snake_case__ = {0: '''batch'''}
return outputs
@property
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
return 1e-4
@property
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
# needs to be >= 14 to support tril operator
return max(super().default_onnx_opset , 14 )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:"PreTrainedTokenizerBase" , _a:int = -1 , _a:int = -1 , _a:bool = False , _a:Optional[TensorType] = None , ):
snake_case__ = super().generate_dummy_inputs(
preprocessor=_a , batch_size=_a , seq_length=_a , is_pair=_a , framework=_a )
import torch
# for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64)
# makes the export fail randomly
snake_case__ = torch.zeros_like(inputs['''input_ids'''] )
# make every second token global
snake_case__ = 1
return inputs
| 33 |
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : str = IFImgaImgSuperResolutionPipeline
__lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'}
__lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} )
__lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'}
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
return self._get_superresolution_dummy_components()
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ):
if str(_a ).startswith('''mps''' ):
snake_case__ = torch.manual_seed(_a )
else:
snake_case__ = torch.Generator(device=_a ).manual_seed(_a )
snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a )
snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a )
snake_case__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''original_image''': original_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def SCREAMING_SNAKE_CASE__ ( self:str ):
self._test_save_load_local()
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 33 | 1 |
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:int ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' )
snake_case__ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
sd_pipe.set_scheduler('''sample_euler''' )
snake_case__ = '''A painting of a squirrel eating a burger'''
snake_case__ = torch.manual_seed(0 )
snake_case__ = sd_pipe([prompt] , generator=_a , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
snake_case__ = output.images
snake_case__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
snake_case__ = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
snake_case__ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
sd_pipe.set_scheduler('''sample_euler''' )
snake_case__ = '''A painting of a squirrel eating a burger'''
snake_case__ = torch.manual_seed(0 )
snake_case__ = sd_pipe([prompt] , generator=_a , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' )
snake_case__ = output.images
snake_case__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
snake_case__ = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
snake_case__ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
sd_pipe.set_scheduler('''sample_dpmpp_2m''' )
snake_case__ = '''A painting of a squirrel eating a burger'''
snake_case__ = torch.manual_seed(0 )
snake_case__ = sd_pipe(
[prompt] , generator=_a , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=_a , )
snake_case__ = output.images
snake_case__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
snake_case__ = np.array(
[0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 33 |
import math
class __magic_name__ :
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:list[list[float]] , _a:list[int] ):
snake_case__ = 0.0
snake_case__ = 0.0
for i in range(len(_a ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:list[list[int | float]] , _a:list[int] , _a:int , _a:float ):
for i in range(len(_a ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def SCREAMING_SNAKE_CASE ( ) -> None:
# Training Examples ( m, n )
snake_case__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
snake_case__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
snake_case__ = SelfOrganizingMap()
snake_case__ = 3
snake_case__ = 0.5
for _ in range(__lowerCAmelCase ):
for j in range(len(__lowerCAmelCase ) ):
# training sample
snake_case__ = training_samples[j]
# Compute the winning vector
snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase )
# Update the winning vector
snake_case__ = self_organizing_map.update(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# classify test sample
snake_case__ = [0, 0, 0, 1]
snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase )
# results
print(F"""Clusters that the test sample belongs to : {winner}""" )
print(F"""Weights that have been trained : {weights}""" )
# running the main() function
if __name__ == "__main__":
main()
| 33 | 1 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
lowerCamelCase__ : str = {
"""CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": (
"""https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json"""
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Optional[int] = 'trajectory_transformer'
__lowercase : List[Any] = ['past_key_values']
__lowercase : Dict = {
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self:List[Any] , _a:Any=1_00 , _a:List[str]=5 , _a:Optional[Any]=1 , _a:List[Any]=1 , _a:Optional[int]=2_49 , _a:Dict=6 , _a:int=17 , _a:Union[str, Any]=25 , _a:Optional[Any]=4 , _a:Union[str, Any]=4 , _a:int=1_28 , _a:Optional[Any]=0.1 , _a:Tuple=0.1 , _a:List[Any]=0.1 , _a:List[str]=0.0006 , _a:List[str]=5_12 , _a:Tuple=0.02 , _a:Optional[Any]=1e-12 , _a:Tuple=1 , _a:Dict=True , _a:str=1 , _a:Union[str, Any]=5_02_56 , _a:List[str]=5_02_56 , **_a:List[str] , ):
snake_case__ = vocab_size
snake_case__ = action_weight
snake_case__ = reward_weight
snake_case__ = value_weight
snake_case__ = max_position_embeddings
snake_case__ = block_size
snake_case__ = action_dim
snake_case__ = observation_dim
snake_case__ = transition_dim
snake_case__ = learning_rate
snake_case__ = n_layer
snake_case__ = n_head
snake_case__ = n_embd
snake_case__ = embd_pdrop
snake_case__ = attn_pdrop
snake_case__ = resid_pdrop
snake_case__ = initializer_range
snake_case__ = layer_norm_eps
snake_case__ = kaiming_initializer_range
snake_case__ = use_cache
super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
| 33 |
from __future__ import annotations
from statistics import mean
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]:
snake_case__ = [0] * no_of_processes
snake_case__ = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(__lowerCAmelCase ):
snake_case__ = burst_time[i]
snake_case__ = []
snake_case__ = 0
snake_case__ = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
snake_case__ = []
snake_case__ = -1
for i in range(__lowerCAmelCase ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(__lowerCAmelCase )
if len(__lowerCAmelCase ) > 0:
snake_case__ = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
snake_case__ = i
total_time += burst_time[target_process]
completed += 1
snake_case__ = 0
snake_case__ = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]:
snake_case__ = [0] * no_of_processes
for i in range(__lowerCAmelCase ):
snake_case__ = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("""[TEST CASE 01]""")
lowerCamelCase__ : Tuple = 4
lowerCamelCase__ : Union[str, Any] = [2, 5, 3, 7]
lowerCamelCase__ : Optional[Any] = [0, 0, 0, 0]
lowerCamelCase__ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
lowerCamelCase__ : Union[str, Any] = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""")
for i, process_id in enumerate(list(range(1, 5))):
print(
F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t"""
F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}"""
)
print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""")
print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
| 33 | 1 |
import collections
import importlib.util
import os
import re
from pathlib import Path
lowerCamelCase__ : str = """src/transformers"""
# Matches is_xxx_available()
lowerCamelCase__ : List[str] = re.compile(r"""is\_([a-z_]*)_available()""")
# Catches a one-line _import_struct = {xxx}
lowerCamelCase__ : Any = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
lowerCamelCase__ : Optional[Any] = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""")
# Catches a line if not is_foo_available
lowerCamelCase__ : Dict = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""")
# Catches a line _import_struct["bla"].append("foo")
lowerCamelCase__ : Tuple = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
lowerCamelCase__ : Dict = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""")
# Catches a line with an object between quotes and a comma: "MyModel",
lowerCamelCase__ : List[Any] = re.compile("""^\s+\"([^\"]+)\",""")
# Catches a line with objects between brackets only: ["foo", "bar"],
lowerCamelCase__ : Dict = re.compile("""^\s+\[([^\]]+)\]""")
# Catches a line with from foo import bar, bla, boo
lowerCamelCase__ : List[Any] = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
# Catches a line with try:
lowerCamelCase__ : Dict = re.compile(r"""^\s*try:""")
# Catches a line with else:
lowerCamelCase__ : Dict = re.compile(r"""^\s*else:""")
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> str:
if _re_test_backend.search(__lowerCAmelCase ) is None:
return None
snake_case__ = [b[0] for b in _re_backend.findall(__lowerCAmelCase )]
backends.sort()
return "_and_".join(__lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[str]:
with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
snake_case__ = f.readlines()
snake_case__ = 0
while line_index < len(__lowerCAmelCase ) and not lines[line_index].startswith('''_import_structure = {''' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(__lowerCAmelCase ):
return None
# First grab the objects without a specific backend in _import_structure
snake_case__ = []
while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None:
snake_case__ = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(__lowerCAmelCase ):
snake_case__ = _re_one_line_import_struct.search(__lowerCAmelCase ).groups()[0]
snake_case__ = re.findall('''\[([^\]]+)\]''' , __lowerCAmelCase )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] )
line_index += 1
continue
snake_case__ = _re_import_struct_key_value.search(__lowerCAmelCase )
if single_line_import_search is not None:
snake_case__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(__lowerCAmelCase ) > 0]
objects.extend(__lowerCAmelCase )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
line_index += 1
snake_case__ = {'''none''': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('''if TYPE_CHECKING''' ):
# If the line is an if not is_backend_available, we grab all objects associated.
snake_case__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
snake_case__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
snake_case__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ):
snake_case__ = lines[line_index]
if _re_import_struct_add_one.search(__lowerCAmelCase ) is not None:
objects.append(_re_import_struct_add_one.search(__lowerCAmelCase ).groups()[0] )
elif _re_import_struct_add_many.search(__lowerCAmelCase ) is not None:
snake_case__ = _re_import_struct_add_many.search(__lowerCAmelCase ).groups()[0].split(''', ''' )
snake_case__ = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0]
objects.extend(__lowerCAmelCase )
elif _re_between_brackets.search(__lowerCAmelCase ) is not None:
snake_case__ = _re_between_brackets.search(__lowerCAmelCase ).groups()[0].split(''', ''' )
snake_case__ = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0]
objects.extend(__lowerCAmelCase )
elif _re_quote_object.search(__lowerCAmelCase ) is not None:
objects.append(_re_quote_object.search(__lowerCAmelCase ).groups()[0] )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
elif line.startswith(''' ''' * 12 + '''"''' ):
objects.append(line[13:-3] )
line_index += 1
snake_case__ = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
snake_case__ = []
while (
line_index < len(__lowerCAmelCase )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('''else''' )
):
snake_case__ = lines[line_index]
snake_case__ = _re_import.search(__lowerCAmelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
snake_case__ = {'''none''': objects}
# Let's continue with backend-specific objects
while line_index < len(__lowerCAmelCase ):
# If the line is an if is_backend_available, we grab all objects associated.
snake_case__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
snake_case__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
snake_case__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ):
snake_case__ = lines[line_index]
snake_case__ = _re_import.search(__lowerCAmelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 12 ):
objects.append(line[12:-2] )
line_index += 1
snake_case__ = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
def find_duplicates(__lowerCAmelCase ):
return [k for k, v in collections.Counter(__lowerCAmelCase ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
snake_case__ = []
for key in import_dict_objects.keys():
snake_case__ = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
snake_case__ = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
snake_case__ = '''base imports''' if key == '''none''' else F"""{key} backend"""
errors.append(F"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def SCREAMING_SNAKE_CASE ( ) -> str:
snake_case__ = []
for root, _, files in os.walk(__lowerCAmelCase ):
if "__init__.py" in files:
snake_case__ = os.path.join(__lowerCAmelCase , '''__init__.py''' )
snake_case__ = parse_init(__lowerCAmelCase )
if objects is not None:
snake_case__ = analyze_results(*__lowerCAmelCase )
if len(__lowerCAmelCase ) > 0:
snake_case__ = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append('''\n'''.join(__lowerCAmelCase ) )
if len(__lowerCAmelCase ) > 0:
raise ValueError('''\n\n'''.join(__lowerCAmelCase ) )
def SCREAMING_SNAKE_CASE ( ) -> Tuple:
snake_case__ = []
for path, directories, files in os.walk(__lowerCAmelCase ):
for folder in directories:
# Ignore private modules
if folder.startswith('''_''' ):
directories.remove(__lowerCAmelCase )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(__lowerCAmelCase ) / folder).glob('''*.py''' ) ) ) == 0:
continue
snake_case__ = str((Path(__lowerCAmelCase ) / folder).relative_to(__lowerCAmelCase ) )
snake_case__ = short_path.replace(os.path.sep , '''.''' )
submodules.append(__lowerCAmelCase )
for fname in files:
if fname == "__init__.py":
continue
snake_case__ = str((Path(__lowerCAmelCase ) / fname).relative_to(__lowerCAmelCase ) )
snake_case__ = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' )
if len(submodule.split('''.''' ) ) == 1:
submodules.append(__lowerCAmelCase )
return submodules
lowerCamelCase__ : Optional[int] = [
"""convert_pytorch_checkpoint_to_tf2""",
"""modeling_flax_pytorch_utils""",
]
def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
# This is to make sure the transformers module imported is the one in the repo.
snake_case__ = importlib.util.spec_from_file_location(
'''transformers''' , os.path.join(__lowerCAmelCase , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
snake_case__ = spec.loader.load_module()
snake_case__ = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(__lowerCAmelCase ) > 0:
snake_case__ = '''\n'''.join(F"""- {module}""" for module in module_not_registered )
raise ValueError(
'''The following submodules are not properly registered in the main init of Transformers:\n'''
F"""{list_of_modules}\n"""
'''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 33 |
lowerCamelCase__ : List[str] = """Alexander Joslin"""
import operator as op
from .stack import Stack
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int:
snake_case__ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub}
snake_case__ = Stack()
snake_case__ = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(__lowerCAmelCase ) )
elif i in operators:
# RULE 2
operator_stack.push(__lowerCAmelCase )
elif i == ")":
# RULE 4
snake_case__ = operator_stack.peek()
operator_stack.pop()
snake_case__ = operand_stack.peek()
operand_stack.pop()
snake_case__ = operand_stack.peek()
operand_stack.pop()
snake_case__ = operators[opr](__lowerCAmelCase , __lowerCAmelCase )
operand_stack.push(__lowerCAmelCase )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
lowerCamelCase__ : Optional[Any] = """(5 + ((4 * 2) * (2 + 3)))"""
# answer = 45
print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
| 33 | 1 |
from collections.abc import Sequence
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase = False ) -> float:
if not arr:
return 0
snake_case__ = 0 if allow_empty_subarrays else float('''-inf''' )
snake_case__ = 0.0
for num in arr:
snake_case__ = max(0 if allow_empty_subarrays else num , curr_sum + num )
snake_case__ = max(__lowerCAmelCase , __lowerCAmelCase )
return max_sum
if __name__ == "__main__":
from doctest import testmod
testmod()
lowerCamelCase__ : Any = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(F"""{max_subarray_sum(nums) = }""")
| 33 |
import warnings
from ...utils import logging
from .image_processing_perceiver import PerceiverImageProcessor
lowerCamelCase__ : int = logging.get_logger(__name__)
class __magic_name__ (snake_case_ ):
'''simple docstring'''
def __init__( self:List[Any] , *_a:Dict , **_a:Tuple ):
warnings.warn(
'''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use PerceiverImageProcessor instead.''' , _a , )
super().__init__(*_a , **_a )
| 33 | 1 |
from itertools import zip_longest
import requests
from bsa import BeautifulSoup
from pandas import DataFrame
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = "laptop" ) -> DataFrame:
snake_case__ = F"""https://www.amazon.in/laptop/s?k={product}"""
snake_case__ = {
'''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
(KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''',
'''Accept-Language''': '''en-US, en;q=0.5''',
}
snake_case__ = BeautifulSoup(requests.get(__lowerCAmelCase , headers=__lowerCAmelCase ).text )
# Initialize a Pandas dataframe with the column titles
snake_case__ = DataFrame(
columns=[
'''Product Title''',
'''Product Link''',
'''Current Price of the product''',
'''Product Rating''',
'''MRP of the product''',
'''Discount''',
] )
# Loop through each entry and store them in the dataframe
for item, _ in zip_longest(
soup.find_all(
'''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ):
try:
snake_case__ = item.ha.text
snake_case__ = '''https://www.amazon.in/''' + item.ha.a['''href''']
snake_case__ = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text
try:
snake_case__ = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text
except AttributeError:
snake_case__ = '''Not available'''
try:
snake_case__ = (
'''₹'''
+ item.find(
'''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1]
)
except AttributeError:
snake_case__ = ''''''
try:
snake_case__ = float(
(
(
float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) )
- float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) )
)
/ float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) )
)
* 100 )
except ValueError:
snake_case__ = float('''nan''' )
except AttributeError:
pass
snake_case__ = [
product_title,
product_link,
product_price,
product_rating,
product_mrp,
discount,
]
snake_case__ = ''' '''
snake_case__ = ''' '''
data_frame.index += 1
return data_frame
if __name__ == "__main__":
lowerCamelCase__ : Optional[Any] = """headphones"""
get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
| 33 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase__ : Tuple = {
"""configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""],
"""tokenization_roberta""": ["""RobertaTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = ["""RobertaTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Optional[int] = [
"""ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""RobertaForCausalLM""",
"""RobertaForMaskedLM""",
"""RobertaForMultipleChoice""",
"""RobertaForQuestionAnswering""",
"""RobertaForSequenceClassification""",
"""RobertaForTokenClassification""",
"""RobertaModel""",
"""RobertaPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : List[str] = [
"""TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFRobertaForCausalLM""",
"""TFRobertaForMaskedLM""",
"""TFRobertaForMultipleChoice""",
"""TFRobertaForQuestionAnswering""",
"""TFRobertaForSequenceClassification""",
"""TFRobertaForTokenClassification""",
"""TFRobertaMainLayer""",
"""TFRobertaModel""",
"""TFRobertaPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : str = [
"""FlaxRobertaForCausalLM""",
"""FlaxRobertaForMaskedLM""",
"""FlaxRobertaForMultipleChoice""",
"""FlaxRobertaForQuestionAnswering""",
"""FlaxRobertaForSequenceClassification""",
"""FlaxRobertaForTokenClassification""",
"""FlaxRobertaModel""",
"""FlaxRobertaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 33 | 1 |
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
__lowercase : Tuple = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int , _a:str , _a:Optional[Any] ):
snake_case__ = hf_hub_download(
repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' )
snake_case__ = VideoClassificationPipeline(model=_a , image_processor=_a , top_k=2 )
snake_case__ = [
example_video_filepath,
'''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''',
]
return video_classifier, examples
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:Optional[Any] ):
for example in examples:
snake_case__ = video_classifier(_a )
self.assertEqual(
_a , [
{'''score''': ANY(_a ), '''label''': ANY(_a )},
{'''score''': ANY(_a ), '''label''': ANY(_a )},
] , )
@require_torch
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification'''
snake_case__ = VideoMAEFeatureExtractor(
size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} )
snake_case__ = pipeline(
'''video-classification''' , model=_a , feature_extractor=_a , frame_sampling_rate=4 )
snake_case__ = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' )
snake_case__ = video_classifier(_a , top_k=2 )
self.assertEqual(
nested_simplify(_a , decimals=4 ) , [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}] , )
snake_case__ = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(_a , decimals=4 ) , [
[{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}],
[{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}],
] , )
@require_tf
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
pass
| 33 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]:
snake_case__ = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:] )
class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : Dict = StableDiffusionLatentUpscalePipeline
__lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
'height',
'width',
'cross_attention_kwargs',
'negative_prompt_embeds',
'prompt_embeds',
}
__lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'}
__lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
__lowercase : int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__lowercase : List[Any] = frozenset([] )
__lowercase : Any = True
@property
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = 1
snake_case__ = 4
snake_case__ = (16, 16)
snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a )
return image
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
torch.manual_seed(0 )
snake_case__ = UNetaDConditionModel(
act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=(
'''KDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
) , in_channels=8 , mid_block_type=_a , only_cross_attention=_a , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , )
snake_case__ = AutoencoderKL(
block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
snake_case__ = EulerDiscreteScheduler(prediction_type='''sample''' )
snake_case__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , )
snake_case__ = CLIPTextModel(_a )
snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
snake_case__ = {
'''unet''': model.eval(),
'''vae''': vae.eval(),
'''scheduler''': scheduler,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:List[str]=0 ):
if str(_a ).startswith('''mps''' ):
snake_case__ = torch.manual_seed(_a )
else:
snake_case__ = torch.Generator(device=_a ).manual_seed(_a )
snake_case__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': self.dummy_image.cpu(),
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = '''cpu'''
snake_case__ = self.get_dummy_components()
snake_case__ = self.pipeline_class(**_a )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
snake_case__ = self.get_dummy_inputs(_a )
snake_case__ = pipe(**_a ).images
snake_case__ = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 2_56, 2_56, 3) )
snake_case__ = np.array(
[0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] )
snake_case__ = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_a , 1e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:str ):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
super().test_inference_batch_single_identical(expected_max_diff=7e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
super().test_save_load_local(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:str ):
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = [
'''DDIMScheduler''',
'''DDPMScheduler''',
'''PNDMScheduler''',
'''HeunDiscreteScheduler''',
'''EulerAncestralDiscreteScheduler''',
'''KDPM2DiscreteScheduler''',
'''KDPM2AncestralDiscreteScheduler''',
'''DPMSolverSDEScheduler''',
]
snake_case__ = self.get_dummy_components()
snake_case__ = self.pipeline_class(**_a )
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=_a )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
snake_case__ = self.get_dummy_inputs(_a )
snake_case__ = 2
snake_case__ = []
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
snake_case__ = getattr(_a , scheduler_enum.name )
snake_case__ = scheduler_cls.from_config(pipe.scheduler.config )
snake_case__ = pipe(**_a )[0]
outputs.append(_a )
assert check_same_shape(_a )
@require_torch_gpu
@slow
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = torch.manual_seed(33 )
snake_case__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa )
pipe.to('''cuda''' )
snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
snake_case__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic'''
snake_case__ = pipe(_a , generator=_a , output_type='''latent''' ).images
snake_case__ = upscaler(
prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0]
snake_case__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' )
assert np.abs((expected_image - image).mean() ) < 5e-2
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = torch.manual_seed(33 )
snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
snake_case__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas'''
snake_case__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' )
snake_case__ = upscaler(
prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0]
snake_case__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' )
assert np.abs((expected_image - image).max() ) < 5e-2
| 33 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Optional[int] = {
"""facebook/data2vec-vision-base-ft""": (
"""https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json"""
),
}
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Optional[int] = 'data2vec-vision'
def __init__( self:int , _a:Tuple=7_68 , _a:int=12 , _a:Any=12 , _a:Optional[int]=30_72 , _a:Optional[int]="gelu" , _a:Any=0.0 , _a:Any=0.0 , _a:List[str]=0.02 , _a:Dict=1e-12 , _a:Tuple=2_24 , _a:Any=16 , _a:str=3 , _a:str=False , _a:Union[str, Any]=False , _a:Optional[int]=False , _a:Any=False , _a:Dict=0.1 , _a:Dict=0.1 , _a:str=True , _a:str=[3, 5, 7, 11] , _a:List[str]=[1, 2, 3, 6] , _a:List[str]=True , _a:Any=0.4 , _a:str=2_56 , _a:Union[str, Any]=1 , _a:int=False , _a:Optional[int]=2_55 , **_a:Dict , ):
super().__init__(**_a )
snake_case__ = hidden_size
snake_case__ = num_hidden_layers
snake_case__ = num_attention_heads
snake_case__ = intermediate_size
snake_case__ = hidden_act
snake_case__ = hidden_dropout_prob
snake_case__ = attention_probs_dropout_prob
snake_case__ = initializer_range
snake_case__ = layer_norm_eps
snake_case__ = image_size
snake_case__ = patch_size
snake_case__ = num_channels
snake_case__ = use_mask_token
snake_case__ = use_absolute_position_embeddings
snake_case__ = use_relative_position_bias
snake_case__ = use_shared_relative_position_bias
snake_case__ = layer_scale_init_value
snake_case__ = drop_path_rate
snake_case__ = use_mean_pooling
# decode head attributes (semantic segmentation)
snake_case__ = out_indices
snake_case__ = pool_scales
# auxiliary head attributes (semantic segmentation)
snake_case__ = use_auxiliary_head
snake_case__ = auxiliary_loss_weight
snake_case__ = auxiliary_channels
snake_case__ = auxiliary_num_convs
snake_case__ = auxiliary_concat_input
snake_case__ = semantic_loss_ignore_index
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Any = version.parse('1.11' )
@property
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
return 1e-4
| 33 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import is_speech_available, is_vision_available
from transformers.testing_utils import require_torch
if is_vision_available():
from transformers import TvltImageProcessor
if is_speech_available():
from transformers import TvltFeatureExtractor
from transformers import TvltProcessor
@require_torch
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = '''ZinengTang/tvlt-base'''
snake_case__ = tempfile.mkdtemp()
def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:List[Any] ):
return TvltImageProcessor.from_pretrained(self.checkpoint , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , **_a:Tuple ):
return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
processor.save_pretrained(self.tmpdirname )
snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname )
self.assertIsInstance(processor.feature_extractor , _a )
self.assertIsInstance(processor.image_processor , _a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
snake_case__ = np.ones([1_20_00] )
snake_case__ = feature_extractor(_a , return_tensors='''np''' )
snake_case__ = processor(audio=_a , return_tensors='''np''' )
for key in audio_dict.keys():
self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
snake_case__ = np.ones([3, 2_24, 2_24] )
snake_case__ = image_processor(_a , return_tensors='''np''' )
snake_case__ = processor(images=_a , return_tensors='''np''' )
for key in image_dict.keys():
self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
snake_case__ = np.ones([1_20_00] )
snake_case__ = np.ones([3, 2_24, 2_24] )
snake_case__ = processor(audio=_a , images=_a )
self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] )
# test if it raises when no input is passed
with pytest.raises(_a ):
processor()
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
self.assertListEqual(
processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
| 33 | 1 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin, SchedulerOutput
@dataclass
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : torch.FloatTensor
__lowercase : torch.FloatTensor
class __magic_name__ (snake_case_ ,snake_case_ ):
'''simple docstring'''
__lowercase : Any = 1
@register_to_config
def __init__( self:str , _a:int = 20_00 , _a:float = 0.15 , _a:float = 0.01 , _a:float = 1348.0 , _a:float = 1e-5 , _a:int = 1 , ):
# standard deviation of the initial noise distribution
snake_case__ = sigma_max
# setable values
snake_case__ = None
self.set_sigmas(_a , _a , _a , _a )
def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:torch.FloatTensor , _a:Optional[int] = None ):
return sample
def SCREAMING_SNAKE_CASE__ ( self:str , _a:int , _a:float = None , _a:Union[str, torch.device] = None ):
snake_case__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps
snake_case__ = torch.linspace(1 , _a , _a , device=_a )
def SCREAMING_SNAKE_CASE__ ( self:int , _a:int , _a:float = None , _a:float = None , _a:float = None ):
snake_case__ = sigma_min if sigma_min is not None else self.config.sigma_min
snake_case__ = sigma_max if sigma_max is not None else self.config.sigma_max
snake_case__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps
if self.timesteps is None:
self.set_timesteps(_a , _a )
snake_case__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
snake_case__ = torch.exp(torch.linspace(math.log(_a ) , math.log(_a ) , _a ) )
snake_case__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] )
def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:Optional[Any] ):
return torch.where(
timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , )
def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:torch.FloatTensor , _a:int , _a:torch.FloatTensor , _a:Optional[torch.Generator] = None , _a:bool = True , ):
if self.timesteps is None:
raise ValueError(
'''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' )
snake_case__ = timestep * torch.ones(
sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0])
snake_case__ = (timestep * (len(self.timesteps ) - 1)).long()
# mps requires indices to be in the same device, so we use cpu as is the default with cuda
snake_case__ = timesteps.to(self.discrete_sigmas.device )
snake_case__ = self.discrete_sigmas[timesteps].to(sample.device )
snake_case__ = self.get_adjacent_sigma(_a , _a ).to(sample.device )
snake_case__ = torch.zeros_like(_a )
snake_case__ = (sigma**2 - adjacent_sigma**2) ** 0.5
# equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
# also equation 47 shows the analog from SDE models to ancestral sampling methods
snake_case__ = diffusion.flatten()
while len(diffusion.shape ) < len(sample.shape ):
snake_case__ = diffusion.unsqueeze(-1 )
snake_case__ = drift - diffusion**2 * model_output
# equation 6: sample noise for the diffusion term of
snake_case__ = randn_tensor(
sample.shape , layout=sample.layout , generator=_a , device=sample.device , dtype=sample.dtype )
snake_case__ = sample - drift # subtract because `dt` is a small negative timestep
# TODO is the variable diffusion the correct scaling term for the noise?
snake_case__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g
if not return_dict:
return (prev_sample, prev_sample_mean)
return SdeVeOutput(prev_sample=_a , prev_sample_mean=_a )
def SCREAMING_SNAKE_CASE__ ( self:int , _a:torch.FloatTensor , _a:torch.FloatTensor , _a:Optional[torch.Generator] = None , _a:bool = True , ):
if self.timesteps is None:
raise ValueError(
'''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' )
# For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
# sample noise for correction
snake_case__ = randn_tensor(sample.shape , layout=sample.layout , generator=_a ).to(sample.device )
# compute step size from the model_output, the noise, and the snr
snake_case__ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean()
snake_case__ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean()
snake_case__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
snake_case__ = step_size * torch.ones(sample.shape[0] ).to(sample.device )
# self.repeat_scalar(step_size, sample.shape[0])
# compute corrected sample: model_output term and noise term
snake_case__ = step_size.flatten()
while len(step_size.shape ) < len(sample.shape ):
snake_case__ = step_size.unsqueeze(-1 )
snake_case__ = sample + step_size * model_output
snake_case__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=_a )
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:torch.FloatTensor , _a:torch.FloatTensor , _a:torch.FloatTensor , ):
# Make sure sigmas and timesteps have the same device and dtype as original_samples
snake_case__ = timesteps.to(original_samples.device )
snake_case__ = self.discrete_sigmas.to(original_samples.device )[timesteps]
snake_case__ = (
noise * sigmas[:, None, None, None]
if noise is not None
else torch.randn_like(_a ) * sigmas[:, None, None, None]
)
snake_case__ = noise + original_samples
return noisy_samples
def __len__( self:Tuple ):
return self.config.num_train_timesteps
| 33 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Optional[int] = {
"""facebook/data2vec-vision-base-ft""": (
"""https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json"""
),
}
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Optional[int] = 'data2vec-vision'
def __init__( self:int , _a:Tuple=7_68 , _a:int=12 , _a:Any=12 , _a:Optional[int]=30_72 , _a:Optional[int]="gelu" , _a:Any=0.0 , _a:Any=0.0 , _a:List[str]=0.02 , _a:Dict=1e-12 , _a:Tuple=2_24 , _a:Any=16 , _a:str=3 , _a:str=False , _a:Union[str, Any]=False , _a:Optional[int]=False , _a:Any=False , _a:Dict=0.1 , _a:Dict=0.1 , _a:str=True , _a:str=[3, 5, 7, 11] , _a:List[str]=[1, 2, 3, 6] , _a:List[str]=True , _a:Any=0.4 , _a:str=2_56 , _a:Union[str, Any]=1 , _a:int=False , _a:Optional[int]=2_55 , **_a:Dict , ):
super().__init__(**_a )
snake_case__ = hidden_size
snake_case__ = num_hidden_layers
snake_case__ = num_attention_heads
snake_case__ = intermediate_size
snake_case__ = hidden_act
snake_case__ = hidden_dropout_prob
snake_case__ = attention_probs_dropout_prob
snake_case__ = initializer_range
snake_case__ = layer_norm_eps
snake_case__ = image_size
snake_case__ = patch_size
snake_case__ = num_channels
snake_case__ = use_mask_token
snake_case__ = use_absolute_position_embeddings
snake_case__ = use_relative_position_bias
snake_case__ = use_shared_relative_position_bias
snake_case__ = layer_scale_init_value
snake_case__ = drop_path_rate
snake_case__ = use_mean_pooling
# decode head attributes (semantic segmentation)
snake_case__ = out_indices
snake_case__ = pool_scales
# auxiliary head attributes (semantic segmentation)
snake_case__ = use_auxiliary_head
snake_case__ = auxiliary_loss_weight
snake_case__ = auxiliary_channels
snake_case__ = auxiliary_num_convs
snake_case__ = auxiliary_concat_input
snake_case__ = semantic_loss_ignore_index
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Any = version.parse('1.11' )
@property
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
return 1e-4
| 33 | 1 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Dict = (UniPCMultistepScheduler,)
__lowercase : Dict = (('num_inference_steps', 25),)
def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:int ):
snake_case__ = {
'''num_train_timesteps''': 10_00,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
'''solver_type''': '''bh2''',
}
config.update(**_a )
return config
def SCREAMING_SNAKE_CASE__ ( self:str , _a:Dict=0 , **_a:Tuple ):
snake_case__ = dict(self.forward_default_kwargs )
snake_case__ = kwargs.pop('''num_inference_steps''' , _a )
snake_case__ = self.dummy_sample
snake_case__ = 0.1 * sample
snake_case__ = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
snake_case__ = self.get_scheduler_config(**_a )
snake_case__ = scheduler_class(**_a )
scheduler.set_timesteps(_a )
# copy over dummy past residuals
snake_case__ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_a )
snake_case__ = scheduler_class.from_pretrained(_a )
new_scheduler.set_timesteps(_a )
# copy over dummy past residuals
snake_case__ = dummy_past_residuals[: new_scheduler.config.solver_order]
snake_case__ , snake_case__ = sample, sample
for t in range(_a , time_step + scheduler.config.solver_order + 1 ):
snake_case__ = scheduler.step(_a , _a , _a , **_a ).prev_sample
snake_case__ = new_scheduler.step(_a , _a , _a , **_a ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:str=0 , **_a:List[str] ):
snake_case__ = dict(self.forward_default_kwargs )
snake_case__ = kwargs.pop('''num_inference_steps''' , _a )
snake_case__ = self.dummy_sample
snake_case__ = 0.1 * sample
snake_case__ = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
scheduler.set_timesteps(_a )
# copy over dummy past residuals (must be after setting timesteps)
snake_case__ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_a )
snake_case__ = scheduler_class.from_pretrained(_a )
# copy over dummy past residuals
new_scheduler.set_timesteps(_a )
# copy over dummy past residual (must be after setting timesteps)
snake_case__ = dummy_past_residuals[: new_scheduler.config.solver_order]
snake_case__ = scheduler.step(_a , _a , _a , **_a ).prev_sample
snake_case__ = new_scheduler.step(_a , _a , _a , **_a ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:List[Any]=None , **_a:List[str] ):
if scheduler is None:
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config(**_a )
snake_case__ = scheduler_class(**_a )
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config(**_a )
snake_case__ = scheduler_class(**_a )
snake_case__ = 10
snake_case__ = self.dummy_model()
snake_case__ = self.dummy_sample_deter
scheduler.set_timesteps(_a )
for i, t in enumerate(scheduler.timesteps ):
snake_case__ = model(_a , _a )
snake_case__ = scheduler.step(_a , _a , _a ).prev_sample
return sample
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = dict(self.forward_default_kwargs )
snake_case__ = kwargs.pop('''num_inference_steps''' , _a )
for scheduler_class in self.scheduler_classes:
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = self.dummy_sample
snake_case__ = 0.1 * sample
if num_inference_steps is not None and hasattr(_a , '''set_timesteps''' ):
scheduler.set_timesteps(_a )
elif num_inference_steps is not None and not hasattr(_a , '''set_timesteps''' ):
snake_case__ = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
snake_case__ = [residual + 0.2, residual + 0.15, residual + 0.10]
snake_case__ = dummy_past_residuals[: scheduler.config.solver_order]
snake_case__ = scheduler.timesteps[5]
snake_case__ = scheduler.timesteps[6]
snake_case__ = scheduler.step(_a , _a , _a , **_a ).prev_sample
snake_case__ = scheduler.step(_a , _a , _a , **_a ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def SCREAMING_SNAKE_CASE__ ( self:int ):
# make sure that iterating over schedulers with same config names gives same results
# for defaults
snake_case__ = UniPCMultistepScheduler(**self.get_scheduler_config() )
snake_case__ = self.full_loop(scheduler=_a )
snake_case__ = torch.mean(torch.abs(_a ) )
assert abs(result_mean.item() - 0.2464 ) < 1e-3
snake_case__ = DPMSolverSinglestepScheduler.from_config(scheduler.config )
snake_case__ = DEISMultistepScheduler.from_config(scheduler.config )
snake_case__ = DPMSolverMultistepScheduler.from_config(scheduler.config )
snake_case__ = UniPCMultistepScheduler.from_config(scheduler.config )
snake_case__ = self.full_loop(scheduler=_a )
snake_case__ = torch.mean(torch.abs(_a ) )
assert abs(result_mean.item() - 0.2464 ) < 1e-3
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
for timesteps in [25, 50, 1_00, 9_99, 10_00]:
self.check_over_configs(num_train_timesteps=_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
self.check_over_configs(thresholding=_a )
for order in [1, 2, 3]:
for solver_type in ["bh1", "bh2"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=_a , prediction_type=_a , sample_max_value=_a , solver_order=_a , solver_type=_a , )
def SCREAMING_SNAKE_CASE__ ( self:int ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
for solver_type in ["bh1", "bh2"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=_a , solver_type=_a , prediction_type=_a , )
snake_case__ = self.full_loop(
solver_order=_a , solver_type=_a , prediction_type=_a , )
assert not torch.isnan(_a ).any(), "Samples have nan numbers"
def SCREAMING_SNAKE_CASE__ ( self:Any ):
self.check_over_configs(lower_order_final=_a )
self.check_over_configs(lower_order_final=_a )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]:
self.check_over_forward(num_inference_steps=_a , time_step=0 )
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = self.full_loop()
snake_case__ = torch.mean(torch.abs(_a ) )
assert abs(result_mean.item() - 0.2464 ) < 1e-3
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = self.full_loop(prediction_type='''v_prediction''' )
snake_case__ = torch.mean(torch.abs(_a ) )
assert abs(result_mean.item() - 0.1014 ) < 1e-3
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config(thresholding=_a , dynamic_thresholding_ratio=0 )
snake_case__ = scheduler_class(**_a )
snake_case__ = 10
snake_case__ = self.dummy_model()
snake_case__ = self.dummy_sample_deter.half()
scheduler.set_timesteps(_a )
for i, t in enumerate(scheduler.timesteps ):
snake_case__ = model(_a , _a )
snake_case__ = scheduler.step(_a , _a , _a ).prev_sample
assert sample.dtype == torch.floataa
def SCREAMING_SNAKE_CASE__ ( self:List[str] , **_a:List[str] ):
for scheduler_class in self.scheduler_classes:
snake_case__ = self.get_scheduler_config(**_a )
snake_case__ = scheduler_class(**_a )
scheduler.set_timesteps(scheduler.config.num_train_timesteps )
assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
| 33 |
import os
import sys
lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(__file__), """src""")
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
lowerCamelCase__ : Optional[int] = [
"""torch""",
"""numpy""",
"""tokenizers""",
"""filelock""",
"""requests""",
"""tqdm""",
"""regex""",
"""sentencepiece""",
"""sacremoses""",
"""importlib_metadata""",
"""huggingface_hub""",
]
@add_start_docstrings(AutoConfig.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any:
return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoTokenizer.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]:
return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModel.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple:
return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]:
return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]:
return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]:
return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]:
return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
| 33 | 1 |
class __magic_name__ :
'''simple docstring'''
def __init__( self:Optional[Any] ):
snake_case__ = {} # Mapping from char to TrieNode
snake_case__ = False
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:list[str] ):
for word in words:
self.insert(_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:str ):
snake_case__ = self
for char in word:
if char not in curr.nodes:
snake_case__ = TrieNode()
snake_case__ = curr.nodes[char]
snake_case__ = True
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:str ):
snake_case__ = self
for char in word:
if char not in curr.nodes:
return False
snake_case__ = curr.nodes[char]
return curr.is_leaf
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:str ):
def _delete(_a:TrieNode , _a:str , _a:int ) -> bool:
if index == len(_a ):
# If word does not exist
if not curr.is_leaf:
return False
snake_case__ = False
return len(curr.nodes ) == 0
snake_case__ = word[index]
snake_case__ = curr.nodes.get(_a )
# If char not in current trie node
if not char_node:
return False
# Flag to check if node can be deleted
snake_case__ = _delete(_a , _a , index + 1 )
if delete_curr:
del curr.nodes[char]
return len(curr.nodes ) == 0
return delete_curr
_delete(self , _a , 0 )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> None:
if node.is_leaf:
print(__lowerCAmelCase , end=''' ''' )
for key, value in node.nodes.items():
print_words(__lowerCAmelCase , word + key )
def SCREAMING_SNAKE_CASE ( ) -> bool:
snake_case__ = '''banana bananas bandana band apple all beast'''.split()
snake_case__ = TrieNode()
root.insert_many(__lowerCAmelCase )
# print_words(root, "")
assert all(root.find(__lowerCAmelCase ) for word in words )
assert root.find('''banana''' )
assert not root.find('''bandanas''' )
assert not root.find('''apps''' )
assert root.find('''apple''' )
assert root.find('''all''' )
root.delete('''all''' )
assert not root.find('''all''' )
root.delete('''banana''' )
assert not root.find('''banana''' )
assert root.find('''bananas''' )
return True
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> None:
print(str(__lowerCAmelCase ) , '''works!''' if passes else '''doesn\'t work :(''' )
def SCREAMING_SNAKE_CASE ( ) -> None:
assert test_trie()
def SCREAMING_SNAKE_CASE ( ) -> None:
print_results('''Testing trie functionality''' , test_trie() )
if __name__ == "__main__":
main()
| 33 |
import torch
from diffusers import CMStochasticIterativeScheduler
from .test_schedulers import SchedulerCommonTest
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : str = (CMStochasticIterativeScheduler,)
__lowercase : List[str] = 10
def SCREAMING_SNAKE_CASE__ ( self:int , **_a:Optional[int] ):
snake_case__ = {
'''num_train_timesteps''': 2_01,
'''sigma_min''': 0.002,
'''sigma_max''': 80.0,
}
config.update(**_a )
return config
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = 10
snake_case__ = self.get_scheduler_config()
snake_case__ = self.scheduler_classes[0](**_a )
scheduler.set_timesteps(_a )
snake_case__ = scheduler.timesteps[0]
snake_case__ = scheduler.timesteps[1]
snake_case__ = self.dummy_sample
snake_case__ = 0.1 * sample
snake_case__ = scheduler.step(_a , _a , _a ).prev_sample
snake_case__ = scheduler.step(_a , _a , _a ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_a )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
for clip_denoised in [True, False]:
self.check_over_configs(clip_denoised=_a )
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = 1
scheduler.set_timesteps(_a )
snake_case__ = scheduler.timesteps
snake_case__ = torch.manual_seed(0 )
snake_case__ = self.dummy_model()
snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(_a ):
# 1. scale model input
snake_case__ = scheduler.scale_model_input(_a , _a )
# 2. predict noise residual
snake_case__ = model(_a , _a )
# 3. predict previous sample x_t-1
snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
snake_case__ = pred_prev_sample
snake_case__ = torch.sum(torch.abs(_a ) )
snake_case__ = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 192.7614 ) < 1e-2
assert abs(result_mean.item() - 0.2510 ) < 1e-3
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [1_06, 0]
scheduler.set_timesteps(timesteps=_a )
snake_case__ = scheduler.timesteps
snake_case__ = torch.manual_seed(0 )
snake_case__ = self.dummy_model()
snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma
for t in timesteps:
# 1. scale model input
snake_case__ = scheduler.scale_model_input(_a , _a )
# 2. predict noise residual
snake_case__ = model(_a , _a )
# 3. predict previous sample x_t-1
snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
snake_case__ = pred_prev_sample
snake_case__ = torch.sum(torch.abs(_a ) )
snake_case__ = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 347.6357 ) < 1e-2
assert abs(result_mean.item() - 0.4527 ) < 1e-3
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [39, 30, 12, 15, 0]
with self.assertRaises(_a , msg='''`timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=_a )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [39, 30, 12, 1, 0]
snake_case__ = len(_a )
with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=_a )
| 33 | 1 |
from copy import deepcopy
class __magic_name__ :
'''simple docstring'''
def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ):
if arr is None and size is not None:
snake_case__ = size
snake_case__ = [0] * size
elif arr is not None:
self.init(_a )
else:
raise ValueError('''Either arr or size must be specified''' )
def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ):
snake_case__ = len(_a )
snake_case__ = deepcopy(_a )
for i in range(1 , self.size ):
snake_case__ = self.next_(_a )
if j < self.size:
self.tree[j] += self.tree[i]
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
snake_case__ = self.next_(_a )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def SCREAMING_SNAKE_CASE__ ( _a:int ):
return index + (index & (-index))
@staticmethod
def SCREAMING_SNAKE_CASE__ ( _a:int ):
return index - (index & (-index))
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ):
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
snake_case__ = self.next_(_a )
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ):
self.add(_a , value - self.get(_a ) )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ):
if right == 0:
return 0
snake_case__ = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
snake_case__ = self.prev(_a )
return result
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ):
return self.prefix(_a ) - self.prefix(_a )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ):
return self.query(_a , index + 1 )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ):
value -= self.tree[0]
if value < 0:
return -1
snake_case__ = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
snake_case__ = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 33 |
import numpy as np
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray:
return 1 / (1 + np.exp(-vector ))
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray:
return vector * sigmoid(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 33 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ : int = logging.get_logger(__name__)
lowerCamelCase__ : List[Any] = {
"""google/switch-base-8""": """https://huggingface.co/google/switch-base-8/blob/main/config.json""",
}
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Tuple = 'switch_transformers'
__lowercase : Optional[int] = ['past_key_values']
__lowercase : Optional[int] = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'}
def __init__( self:Union[str, Any] , _a:Tuple=3_21_28 , _a:Optional[Any]=7_68 , _a:Dict=64 , _a:Dict=20_48 , _a:Any=64 , _a:Optional[Any]=12 , _a:Tuple=3 , _a:List[Any]=12 , _a:Union[str, Any]=3 , _a:Optional[int]=12 , _a:Dict=8 , _a:Optional[Any]=False , _a:Tuple=0.01 , _a:Tuple="float32" , _a:Dict=False , _a:List[str]=32 , _a:str=1_28 , _a:Tuple=0.1 , _a:List[str]=1e-6 , _a:List[Any]=0.001 , _a:Optional[Any]=0.001 , _a:List[Any]=1.0 , _a:Tuple="relu" , _a:Any=True , _a:Any=False , _a:Dict=True , _a:Any=0 , _a:int=1 , **_a:Optional[Any] , ):
snake_case__ = vocab_size
snake_case__ = d_model
snake_case__ = d_kv
snake_case__ = d_ff
snake_case__ = num_sparse_encoder_layers
snake_case__ = num_layers
snake_case__ = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
snake_case__ = num_sparse_decoder_layers
# This tells us, each how many encoder layer we'll have to set a sparse layer.
if self.num_sparse_encoder_layers > 0:
snake_case__ = self.num_layers // self.num_sparse_encoder_layers
else:
snake_case__ = self.num_layers # HACK: this will create 0 sparse layers
# This tells us, each how many encoder layer we'll have to set a sparse layer.
if self.num_sparse_decoder_layers > 0:
snake_case__ = self.num_decoder_layers // self.num_sparse_decoder_layers
else:
snake_case__ = self.num_decoder_layers # HACK: this will create 0 sparse layers
snake_case__ = num_heads
snake_case__ = num_experts
snake_case__ = expert_capacity
snake_case__ = router_bias
snake_case__ = router_jitter_noise
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" )
snake_case__ = router_dtype
snake_case__ = router_ignore_padding_tokens
snake_case__ = relative_attention_num_buckets
snake_case__ = relative_attention_max_distance
snake_case__ = dropout_rate
snake_case__ = layer_norm_epsilon
snake_case__ = initializer_factor
snake_case__ = feed_forward_proj
snake_case__ = use_cache
snake_case__ = add_router_probs
snake_case__ = router_z_loss_coef
snake_case__ = router_aux_loss_coef
snake_case__ = self.feed_forward_proj.split('''-''' )
snake_case__ = act_info[-1]
snake_case__ = act_info[0] == '''gated'''
if len(_a ) > 1 and act_info[0] != "gated" or len(_a ) > 2:
raise ValueError(
F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '''
'''\'gated-gelu\' or \'relu\'''' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
snake_case__ = '''gelu_new'''
super().__init__(
pad_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , **_a , )
| 33 |
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int:
snake_case__ = set()
snake_case__ = 0
snake_case__ = n + 1 # maximum limit
for a in range(2 , __lowerCAmelCase ):
for b in range(2 , __lowerCAmelCase ):
snake_case__ = a**b # calculates the current power
collect_powers.add(__lowerCAmelCase ) # adds the result to the set
return len(__lowerCAmelCase )
if __name__ == "__main__":
print("""Number of terms """, solution(int(str(input()).strip())))
| 33 | 1 |
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int:
snake_case__ = [1]
snake_case__ , snake_case__ , snake_case__ = 0, 0, 0
snake_case__ = ugly_nums[ia] * 2
snake_case__ = ugly_nums[ia] * 3
snake_case__ = ugly_nums[ia] * 5
for _ in range(1 , __lowerCAmelCase ):
snake_case__ = min(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
ugly_nums.append(__lowerCAmelCase )
if next_num == next_a:
ia += 1
snake_case__ = ugly_nums[ia] * 2
if next_num == next_a:
ia += 1
snake_case__ = ugly_nums[ia] * 3
if next_num == next_a:
ia += 1
snake_case__ = ugly_nums[ia] * 5
return ugly_nums[-1]
if __name__ == "__main__":
from doctest import testmod
testmod(verbose=True)
print(F"""{ugly_numbers(2_0_0) = }""")
| 33 |
from copy import deepcopy
class __magic_name__ :
'''simple docstring'''
def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ):
if arr is None and size is not None:
snake_case__ = size
snake_case__ = [0] * size
elif arr is not None:
self.init(_a )
else:
raise ValueError('''Either arr or size must be specified''' )
def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ):
snake_case__ = len(_a )
snake_case__ = deepcopy(_a )
for i in range(1 , self.size ):
snake_case__ = self.next_(_a )
if j < self.size:
self.tree[j] += self.tree[i]
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
snake_case__ = self.next_(_a )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def SCREAMING_SNAKE_CASE__ ( _a:int ):
return index + (index & (-index))
@staticmethod
def SCREAMING_SNAKE_CASE__ ( _a:int ):
return index - (index & (-index))
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ):
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
snake_case__ = self.next_(_a )
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ):
self.add(_a , value - self.get(_a ) )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ):
if right == 0:
return 0
snake_case__ = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
snake_case__ = self.prev(_a )
return result
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ):
return self.prefix(_a ) - self.prefix(_a )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ):
return self.query(_a , index + 1 )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ):
value -= self.tree[0]
if value < 0:
return -1
snake_case__ = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
snake_case__ = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 33 | 1 |
def SCREAMING_SNAKE_CASE ( ) -> str:
snake_case__ = 0
for i in range(1 , 1001 ):
total += i**i
return str(__lowerCAmelCase )[-10:]
if __name__ == "__main__":
print(solution())
| 33 |
from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class __magic_name__ :
'''simple docstring'''
__lowercase : int = BlenderbotConfig
__lowercase : Any = {}
__lowercase : Optional[Any] = 'gelu'
def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[Any]=13 , _a:Tuple=7 , _a:Union[str, Any]=True , _a:int=False , _a:int=99 , _a:Optional[int]=32 , _a:List[str]=2 , _a:List[str]=4 , _a:List[Any]=37 , _a:Any=0.1 , _a:int=0.1 , _a:List[Any]=20 , _a:List[str]=2 , _a:int=1 , _a:Dict=0 , ):
snake_case__ = parent
snake_case__ = batch_size
snake_case__ = seq_length
snake_case__ = is_training
snake_case__ = use_labels
snake_case__ = vocab_size
snake_case__ = hidden_size
snake_case__ = num_hidden_layers
snake_case__ = num_attention_heads
snake_case__ = intermediate_size
snake_case__ = hidden_dropout_prob
snake_case__ = attention_probs_dropout_prob
snake_case__ = max_position_embeddings
snake_case__ = eos_token_id
snake_case__ = pad_token_id
snake_case__ = bos_token_id
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 )
snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case__ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
snake_case__ = prepare_blenderbot_inputs_dict(_a , _a , _a )
return config, inputs_dict
def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:int ):
snake_case__ = TFBlenderbotModel(config=_a ).get_decoder()
snake_case__ = inputs_dict['''input_ids''']
snake_case__ = input_ids[:1, :]
snake_case__ = inputs_dict['''attention_mask'''][:1, :]
snake_case__ = inputs_dict['''head_mask''']
snake_case__ = 1
# first forward pass
snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a )
snake_case__ , snake_case__ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1 )
snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
snake_case__ = model(_a , attention_mask=_a )[0]
snake_case__ = model(_a , attention_mask=_a , past_key_values=_a )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
snake_case__ = output_from_no_past[:, -3:, random_slice_idx]
snake_case__ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_a , _a , rtol=1e-3 )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Tuple:
if attention_mask is None:
snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
snake_case__ = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
__lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
__lowercase : Tuple = (
{
'conversational': TFBlenderbotForConditionalGeneration,
'feature-extraction': TFBlenderbotModel,
'summarization': TFBlenderbotForConditionalGeneration,
'text2text-generation': TFBlenderbotForConditionalGeneration,
'translation': TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
__lowercase : Any = True
__lowercase : int = False
__lowercase : int = False
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = TFBlenderbotModelTester(self )
snake_case__ = ConfigTester(self , config_class=_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_a )
@require_tokenizers
@require_tf
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
__lowercase : Optional[int] = ['My friends are cool but they eat too many carbs.']
__lowercase : Optional[int] = 'facebook/blenderbot-400M-distill'
@cached_property
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.tokenizer(self.src_text , return_tensors='''tf''' )
snake_case__ = self.model.generate(
model_inputs.input_ids , )
snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 33 | 1 |
import warnings
from ...utils import logging
from .image_processing_flava import FlavaImageProcessor
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
class __magic_name__ (snake_case_ ):
'''simple docstring'''
def __init__( self:List[str] , *_a:List[Any] , **_a:Optional[Any] ):
warnings.warn(
'''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use FlavaImageProcessor instead.''' , _a , )
super().__init__(*_a , **_a )
| 33 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = 0
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:str ):
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
snake_case__ = Path(_a ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
snake_case__ = Path(_a ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = CLIPConfig()
# Create a dummy config file with image_proceesor_type
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
snake_case__ = Path(_a ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
snake_case__ = AutoImageProcessor.from_pretrained(_a ).to_dict()
config_dict.pop('''image_processor_type''' )
snake_case__ = CLIPImageProcessor(**_a )
# save in new folder
model_config.save_pretrained(_a )
config.save_pretrained(_a )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
# make sure private variable is not incorrectly saved
snake_case__ = json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
with self.assertRaisesRegex(
_a , '''clip-base is not a local folder and is not a valid model identifier''' ):
snake_case__ = AutoImageProcessor.from_pretrained('''clip-base''' )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
with self.assertRaisesRegex(
_a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
snake_case__ = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
with self.assertRaisesRegex(
_a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(_a ):
snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(_a ):
snake_case__ = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a )
snake_case__ = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_a )
snake_case__ = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a )
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
try:
AutoConfig.register('''custom''' , _a )
AutoImageProcessor.register(_a , _a )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_a ):
AutoImageProcessor.register(_a , _a )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
snake_case__ = Path(_a ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) )
snake_case__ = CustomImageProcessor.from_pretrained(_a )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_a )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : List[str] = True
try:
AutoConfig.register('''custom''' , _a )
AutoImageProcessor.register(_a , _a )
# If remote code is not set, the default is to use local
snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
snake_case__ = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
snake_case__ = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(not hasattr(_a , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 33 | 1 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Optional[int] = ['image_processor', 'tokenizer']
__lowercase : List[str] = 'BlipImageProcessor'
__lowercase : int = 'AutoTokenizer'
def __init__( self:List[str] , _a:Union[str, Any] , _a:Any ):
snake_case__ = False
super().__init__(_a , _a )
snake_case__ = self.image_processor
def __call__( self:List[str] , _a:ImageInput = None , _a:Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _a:bool = True , _a:Union[bool, str, PaddingStrategy] = False , _a:Union[bool, str, TruncationStrategy] = None , _a:Optional[int] = None , _a:int = 0 , _a:Optional[int] = None , _a:Optional[bool] = None , _a:bool = False , _a:bool = False , _a:bool = False , _a:bool = False , _a:bool = False , _a:bool = True , _a:Optional[Union[str, TensorType]] = None , **_a:List[str] , ):
if images is None and text is None:
raise ValueError('''You have to specify either images or text.''' )
# Get only text
if images is None:
snake_case__ = self.tokenizer
snake_case__ = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
return text_encoding
# add pixel_values
snake_case__ = self.image_processor(_a , return_tensors=_a )
if text is not None:
snake_case__ = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
else:
snake_case__ = None
if text_encoding is not None:
encoding_image_processor.update(_a )
return encoding_image_processor
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:str ):
return self.tokenizer.batch_decode(*_a , **_a )
def SCREAMING_SNAKE_CASE__ ( self:List[str] , *_a:str , **_a:List[Any] ):
return self.tokenizer.decode(*_a , **_a )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = self.tokenizer.model_input_names
snake_case__ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 33 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ : int = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> int:
snake_case__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
('''cls_token''', '''vit.embeddings.cls_token'''),
('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''),
('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''),
('''pos_embed''', '''vit.embeddings.position_embeddings'''),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
('''pre_logits.fc.weight''', '''pooler.dense.weight'''),
('''pre_logits.fc.bias''', '''pooler.dense.bias'''),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
snake_case__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('''norm.weight''', '''vit.layernorm.weight'''),
('''norm.bias''', '''vit.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
return rename_keys
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict:
for i in range(config.num_hidden_layers ):
if base_model:
snake_case__ = ''''''
else:
snake_case__ = '''vit.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" )
snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
snake_case__ = in_proj_weight[
: config.hidden_size, :
]
snake_case__ = in_proj_bias[: config.hidden_size]
snake_case__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
snake_case__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
snake_case__ = in_proj_weight[
-config.hidden_size :, :
]
snake_case__ = in_proj_bias[-config.hidden_size :]
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]:
snake_case__ = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
snake_case__ = dct.pop(__lowerCAmelCase )
snake_case__ = val
def SCREAMING_SNAKE_CASE ( ) -> str:
snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
return im
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict:
snake_case__ = ViTConfig()
snake_case__ = False
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
if vit_name[-5:] == "in21k":
snake_case__ = True
snake_case__ = int(vit_name[-12:-10] )
snake_case__ = int(vit_name[-9:-6] )
else:
snake_case__ = 1000
snake_case__ = '''huggingface/label-files'''
snake_case__ = '''imagenet-1k-id2label.json'''
snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) )
snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
snake_case__ = idalabel
snake_case__ = {v: k for k, v in idalabel.items()}
snake_case__ = int(vit_name[-6:-4] )
snake_case__ = int(vit_name[-3:] )
# size of the architecture
if "deit" in vit_name:
if vit_name[9:].startswith('''tiny''' ):
snake_case__ = 192
snake_case__ = 768
snake_case__ = 12
snake_case__ = 3
elif vit_name[9:].startswith('''small''' ):
snake_case__ = 384
snake_case__ = 1536
snake_case__ = 12
snake_case__ = 6
else:
pass
else:
if vit_name[4:].startswith('''small''' ):
snake_case__ = 768
snake_case__ = 2304
snake_case__ = 8
snake_case__ = 8
elif vit_name[4:].startswith('''base''' ):
pass
elif vit_name[4:].startswith('''large''' ):
snake_case__ = 1024
snake_case__ = 4096
snake_case__ = 24
snake_case__ = 16
elif vit_name[4:].startswith('''huge''' ):
snake_case__ = 1280
snake_case__ = 5120
snake_case__ = 32
snake_case__ = 16
# load original model from timm
snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
snake_case__ = timm_model.state_dict()
if base_model:
remove_classification_head_(__lowerCAmelCase )
snake_case__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase )
for src, dest in rename_keys:
rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# load HuggingFace model
if vit_name[-5:] == "in21k":
snake_case__ = ViTModel(__lowerCAmelCase ).eval()
else:
snake_case__ = ViTForImageClassification(__lowerCAmelCase ).eval()
model.load_state_dict(__lowerCAmelCase )
# Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor
if "deit" in vit_name:
snake_case__ = DeiTImageProcessor(size=config.image_size )
else:
snake_case__ = ViTImageProcessor(size=config.image_size )
snake_case__ = image_processor(images=prepare_img() , return_tensors='''pt''' )
snake_case__ = encoding['''pixel_values''']
snake_case__ = model(__lowerCAmelCase )
if base_model:
snake_case__ = timm_model.forward_features(__lowerCAmelCase )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1e-3 )
else:
snake_case__ = timm_model(__lowerCAmelCase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 )
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCAmelCase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--vit_name""",
default="""vit_base_patch16_224""",
type=str,
help="""Name of the ViT timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
lowerCamelCase__ : str = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
| 33 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase__ : Union[str, Any] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : List[str] = ["""XLNetTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Any = ["""XLNetTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Any = [
"""XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XLNetForMultipleChoice""",
"""XLNetForQuestionAnswering""",
"""XLNetForQuestionAnsweringSimple""",
"""XLNetForSequenceClassification""",
"""XLNetForTokenClassification""",
"""XLNetLMHeadModel""",
"""XLNetModel""",
"""XLNetPreTrainedModel""",
"""load_tf_weights_in_xlnet""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : str = [
"""TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFXLNetForMultipleChoice""",
"""TFXLNetForQuestionAnsweringSimple""",
"""TFXLNetForSequenceClassification""",
"""TFXLNetForTokenClassification""",
"""TFXLNetLMHeadModel""",
"""TFXLNetMainLayer""",
"""TFXLNetModel""",
"""TFXLNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 33 |
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : List[str] = ['image_processor', 'tokenizer']
__lowercase : str = 'AutoImageProcessor'
__lowercase : Dict = 'AutoTokenizer'
def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ):
snake_case__ = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , _a , )
snake_case__ = kwargs.pop('''feature_extractor''' )
snake_case__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_a , _a )
snake_case__ = self.image_processor
snake_case__ = False
def __call__( self:Optional[int] , *_a:str , **_a:int ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*_a , **_a )
snake_case__ = kwargs.pop('''images''' , _a )
snake_case__ = kwargs.pop('''text''' , _a )
if len(_a ) > 0:
snake_case__ = args[0]
snake_case__ = args[1:]
if images is None and text is None:
raise ValueError('''You need to specify either an `images` or `text` input to process.''' )
if images is not None:
snake_case__ = self.image_processor(_a , *_a , **_a )
if text is not None:
snake_case__ = self.tokenizer(_a , **_a )
if text is None:
return inputs
elif images is None:
return encodings
else:
snake_case__ = encodings['''input_ids''']
return inputs
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ):
return self.tokenizer.batch_decode(*_a , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ):
return self.tokenizer.decode(*_a , **_a )
@contextmanager
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your images inputs, or in a separate call.''' )
snake_case__ = True
snake_case__ = self.tokenizer
yield
snake_case__ = self.image_processor
snake_case__ = False
def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ):
if added_vocab is None:
snake_case__ = self.tokenizer.get_added_vocab()
snake_case__ = {}
while tokens:
snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE )
if start_token is None:
break
snake_case__ = start_token.group(1 )
snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE )
snake_case__ = start_token.group()
if end_token is None:
snake_case__ = tokens.replace(_a , '''''' )
else:
snake_case__ = end_token.group()
snake_case__ = re.escape(_a )
snake_case__ = re.escape(_a )
snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE )
if content is not None:
snake_case__ = content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a )
if value:
if len(_a ) == 1:
snake_case__ = value[0]
snake_case__ = value
else: # leaf nodes
snake_case__ = []
for leaf in content.split(r'''<sep/>''' ):
snake_case__ = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
snake_case__ = leaf[1:-2] # for categorical special tokens
output[key].append(_a )
if len(output[key] ) == 1:
snake_case__ = output[key][0]
snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a )
if len(_a ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , )
return self.image_processor
| 33 | 1 |
import pytest
from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs
@pytest.mark.parametrize(
'''kwargs, expected''' , [
({'''num_shards''': 0, '''max_num_jobs''': 1}, []),
({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]),
({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__lowerCAmelCase , i + 1 ) for i in range(10 )]),
({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]),
({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]),
({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]),
] , )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
snake_case__ = _distribute_shards(**__lowerCAmelCase )
assert out == expected
@pytest.mark.parametrize(
'''gen_kwargs, max_num_jobs, expected''' , [
({'''foo''': 0}, 10, [{'''foo''': 0}]),
({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]),
({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]),
({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]),
({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]),
] , )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict:
snake_case__ = _split_gen_kwargs(__lowerCAmelCase , __lowerCAmelCase )
assert out == expected
@pytest.mark.parametrize(
'''gen_kwargs, expected''' , [
({'''foo''': 0}, 1),
({'''shards''': [0]}, 1),
({'''shards''': [0, 1, 2, 3]}, 4),
({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4),
({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4),
({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError),
] , )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
if expected is RuntimeError:
with pytest.raises(__lowerCAmelCase ):
_number_of_shards_in_gen_kwargs(__lowerCAmelCase )
else:
snake_case__ = _number_of_shards_in_gen_kwargs(__lowerCAmelCase )
assert out == expected
| 33 |
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __magic_name__ :
'''simple docstring'''
def __init__( self:Optional[Any] , _a:int , _a:str=3 , _a:Optional[int]=32 , _a:Optional[Any]=3 , _a:Tuple=10 , _a:List[Any]=[8, 16, 32, 64] , _a:str=[1, 1, 2, 1] , _a:Any=True , _a:List[Any]=True , _a:List[str]="relu" , _a:int=3 , _a:Tuple=None , _a:Tuple=["stage2", "stage3", "stage4"] , _a:List[Any]=[2, 3, 4] , _a:Union[str, Any]=1 , ):
snake_case__ = parent
snake_case__ = batch_size
snake_case__ = image_size
snake_case__ = num_channels
snake_case__ = embeddings_size
snake_case__ = hidden_sizes
snake_case__ = depths
snake_case__ = is_training
snake_case__ = use_labels
snake_case__ = hidden_act
snake_case__ = num_labels
snake_case__ = scope
snake_case__ = len(_a )
snake_case__ = out_features
snake_case__ = out_indices
snake_case__ = num_groups
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case__ = None
if self.use_labels:
snake_case__ = ids_tensor([self.batch_size] , self.num_labels )
snake_case__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[int] , _a:Tuple , _a:int ):
snake_case__ = BitModel(config=_a )
model.to(_a )
model.eval()
snake_case__ = model(_a )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def SCREAMING_SNAKE_CASE__ ( self:int , _a:Tuple , _a:Any , _a:Union[str, Any] ):
snake_case__ = self.num_labels
snake_case__ = BitForImageClassification(_a )
model.to(_a )
model.eval()
snake_case__ = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:str , _a:List[str] , _a:Any ):
snake_case__ = BitBackbone(config=_a )
model.to(_a )
model.eval()
snake_case__ = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case__ = None
snake_case__ = BitBackbone(config=_a )
model.to(_a )
model.eval()
snake_case__ = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = self.prepare_config_and_inputs()
snake_case__ , snake_case__ , snake_case__ = config_and_inputs
snake_case__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
__lowercase : int = (
{'feature-extraction': BitModel, 'image-classification': BitForImageClassification}
if is_torch_available()
else {}
)
__lowercase : Tuple = False
__lowercase : Optional[Any] = False
__lowercase : str = False
__lowercase : Tuple = False
__lowercase : Tuple = False
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = BitModelTester(self )
snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
return
@unittest.skip(reason='''Bit does not output attentions''' )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
pass
@unittest.skip(reason='''Bit does not use inputs_embeds''' )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
pass
@unittest.skip(reason='''Bit does not support input and output embeddings''' )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
pass
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ = model_class(_a )
snake_case__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case__ = [*signature.parameters.keys()]
snake_case__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _a )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_a )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ = model_class(config=_a )
for name, module in model.named_modules():
if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
def check_hidden_states_output(_a:List[Any] , _a:int , _a:Union[str, Any] ):
snake_case__ = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
snake_case__ = model(**self._prepare_for_class(_a , _a ) )
snake_case__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case__ = self.model_tester.num_stages
self.assertEqual(len(_a ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ = ['''preactivation''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
snake_case__ = layer_type
snake_case__ = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case__ = True
check_hidden_states_output(_a , _a , _a )
@unittest.skip(reason='''Bit does not use feedforward chunking''' )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
pass
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case__ = BitModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def SCREAMING_SNAKE_CASE ( ) -> Any:
snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a )
snake_case__ = self.default_image_processor
snake_case__ = prepare_img()
snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
snake_case__ = model(**_a )
# verify the logits
snake_case__ = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , _a )
snake_case__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
@require_torch
class __magic_name__ (snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : Optional[Any] = (BitBackbone,) if is_torch_available() else ()
__lowercase : int = BitConfig
__lowercase : Any = False
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = BitModelTester(self )
| 33 | 1 |
from __future__ import annotations
import math
from collections import Counter
from string import ascii_lowercase
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> None:
snake_case__ , snake_case__ = analyze_text(__lowerCAmelCase )
snake_case__ = list(''' ''' + ascii_lowercase )
# what is our total sum of probabilities.
snake_case__ = sum(single_char_strings.values() )
# one length string
snake_case__ = 0
# for each alpha we go in our dict and if it is in it we calculate entropy
for ch in my_alphas:
if ch in single_char_strings:
snake_case__ = single_char_strings[ch]
snake_case__ = my_str / all_sum
my_fir_sum += prob * math.loga(__lowerCAmelCase ) # entropy formula.
# print entropy
print(F"""{round(-1 * my_fir_sum ):.1f}""" )
# two len string
snake_case__ = sum(two_char_strings.values() )
snake_case__ = 0
# for each alpha (two in size) calculate entropy.
for cha in my_alphas:
for cha in my_alphas:
snake_case__ = cha + cha
if sequence in two_char_strings:
snake_case__ = two_char_strings[sequence]
snake_case__ = int(__lowerCAmelCase ) / all_sum
my_sec_sum += prob * math.loga(__lowerCAmelCase )
# print second entropy
print(F"""{round(-1 * my_sec_sum ):.1f}""" )
# print the difference between them
print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> tuple[dict, dict]:
snake_case__ = Counter() # type: ignore
snake_case__ = Counter() # type: ignore
single_char_strings[text[-1]] += 1
# first case when we have space at start.
two_char_strings[" " + text[0]] += 1
for i in range(0 , len(__lowerCAmelCase ) - 1 ):
single_char_strings[text[i]] += 1
two_char_strings[text[i : i + 2]] += 1
return single_char_strings, two_char_strings
def SCREAMING_SNAKE_CASE ( ) -> int:
import doctest
doctest.testmod()
# text = (
# "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark "
# "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest "
# "jointure saw horrible. He private he on be imagine suppose. Fertile "
# "beloved evident through no service elderly is. Blind there if every no so "
# "at. Own neglected you preferred way sincerity delivered his attempted. To "
# "of message cottage windows do besides against uncivil. Delightful "
# "unreserved impossible few estimating men favourable see entreaties. She "
# "propriety immediate was improving. He or entrance humoured likewise "
# "moderate. Much nor game son say feel. Fat make met can must form into "
# "gate. Me we offending prevailed discovery. "
# )
# calculate_prob(text)
if __name__ == "__main__":
main()
| 33 |
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
lowerCamelCase__ : Any = """\
"""
lowerCamelCase__ : List[str] = """
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence.
For more information, see https://huggingface.co/docs/transformers/perplexity
"""
lowerCamelCase__ : Any = """
Args:
model_id (str): model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
input_texts (list of str): input text, each separate text snippet
is one list entry.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
device (str): device to run on, defaults to 'cuda' when available
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
Examples:
Example 1:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]
>>> results = perplexity.compute(model_id='gpt2',
... add_start_token=False,
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
78.22
>>> print(round(results[\"perplexities\"][0], 2))
11.11
Example 2:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = datasets.load_dataset(\"wikitext\",
... \"wikitext-2-raw-v1\",
... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS
[...]
>>> input_texts = [s for s in input_texts if s!='']
>>> results = perplexity.compute(model_id='gpt2',
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
60.35
>>> print(round(results[\"perplexities\"][0], 2))
81.12
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class __magic_name__ (datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:int ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''input_texts''': datasets.Value('''string''' ),
} ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:List[Any] , _a:int = 16 , _a:bool = True , _a:Any=None ):
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
snake_case__ = '''cuda'''
else:
snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
snake_case__ = AutoModelForCausalLM.from_pretrained(_a )
snake_case__ = model.to(_a )
snake_case__ = AutoTokenizer.from_pretrained(_a )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
snake_case__ = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(_a ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
snake_case__ = model.config.max_length - 1
else:
snake_case__ = model.config.max_length
snake_case__ = tokenizer(
_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a )
snake_case__ = encodings['''input_ids''']
snake_case__ = encodings['''attention_mask''']
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
snake_case__ = []
snake_case__ = CrossEntropyLoss(reduction='''none''' )
for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ):
snake_case__ = min(start_index + batch_size , len(_a ) )
snake_case__ = encoded_texts[start_index:end_index]
snake_case__ = attn_masks[start_index:end_index]
if add_start_token:
snake_case__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a )
snake_case__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
snake_case__ = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 )
snake_case__ = encoded_batch
with torch.no_grad():
snake_case__ = model(_a , attention_mask=_a ).logits
snake_case__ = out_logits[..., :-1, :].contiguous()
snake_case__ = labels[..., 1:].contiguous()
snake_case__ = attn_mask[..., 1:].contiguous()
snake_case__ = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
| 33 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
lowerCamelCase__ : Optional[int] = {
"""microsoft/trocr-base-handwritten""": (
"""https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"""
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Union[str, Any] = 'trocr'
__lowercase : Optional[Any] = ['past_key_values']
__lowercase : Union[str, Any] = {
'num_attention_heads': 'decoder_attention_heads',
'hidden_size': 'd_model',
'num_hidden_layers': 'decoder_layers',
}
def __init__( self:Optional[Any] , _a:Optional[int]=5_02_65 , _a:List[Any]=10_24 , _a:Union[str, Any]=12 , _a:Any=16 , _a:int=40_96 , _a:int="gelu" , _a:Union[str, Any]=5_12 , _a:str=0.1 , _a:Dict=0.0 , _a:int=0.0 , _a:int=2 , _a:Union[str, Any]=0.02 , _a:List[Any]=0.0 , _a:Any=True , _a:Optional[Any]=False , _a:Union[str, Any]=True , _a:List[Any]=True , _a:Any=1 , _a:str=0 , _a:Optional[int]=2 , **_a:int , ):
snake_case__ = vocab_size
snake_case__ = d_model
snake_case__ = decoder_layers
snake_case__ = decoder_attention_heads
snake_case__ = decoder_ffn_dim
snake_case__ = activation_function
snake_case__ = max_position_embeddings
snake_case__ = dropout
snake_case__ = attention_dropout
snake_case__ = activation_dropout
snake_case__ = init_std
snake_case__ = decoder_layerdrop
snake_case__ = use_cache
snake_case__ = scale_embedding
snake_case__ = use_learned_position_embeddings
snake_case__ = layernorm_embedding
super().__init__(
pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , decoder_start_token_id=_a , **_a , )
| 33 |
import os
from datetime import datetime as dt
from github import Github
lowerCamelCase__ : int = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""enhancement""",
"""new pipeline/model""",
"""new scheduler""",
"""wip""",
]
def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
snake_case__ = Github(os.environ['''GITHUB_TOKEN'''] )
snake_case__ = g.get_repo('''huggingface/diffusers''' )
snake_case__ = repo.get_issues(state='''open''' )
for issue in open_issues:
snake_case__ = sorted(issue.get_comments() , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase )
snake_case__ = comments[0] if len(__lowerCAmelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state='''closed''' )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state='''open''' )
issue.remove_from_labels('''stale''' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
issue.add_to_labels('''stale''' )
if __name__ == "__main__":
main()
| 33 | 1 |
import torch
from diffusers import StableDiffusionPipeline
lowerCamelCase__ : Any = """path-to-your-trained-model"""
lowerCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""")
lowerCamelCase__ : int = """A photo of sks dog in a bucket"""
lowerCamelCase__ : Any = pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0]
image.save("""dog-bucket.png""")
| 33 |
import pytest
from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs
@pytest.mark.parametrize(
'''kwargs, expected''' , [
({'''num_shards''': 0, '''max_num_jobs''': 1}, []),
({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]),
({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__lowerCAmelCase , i + 1 ) for i in range(10 )]),
({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]),
({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]),
({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]),
] , )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
snake_case__ = _distribute_shards(**__lowerCAmelCase )
assert out == expected
@pytest.mark.parametrize(
'''gen_kwargs, max_num_jobs, expected''' , [
({'''foo''': 0}, 10, [{'''foo''': 0}]),
({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]),
({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]),
({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]),
({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]),
] , )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict:
snake_case__ = _split_gen_kwargs(__lowerCAmelCase , __lowerCAmelCase )
assert out == expected
@pytest.mark.parametrize(
'''gen_kwargs, expected''' , [
({'''foo''': 0}, 1),
({'''shards''': [0]}, 1),
({'''shards''': [0, 1, 2, 3]}, 4),
({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4),
({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4),
({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError),
] , )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
if expected is RuntimeError:
with pytest.raises(__lowerCAmelCase ):
_number_of_shards_in_gen_kwargs(__lowerCAmelCase )
else:
snake_case__ = _number_of_shards_in_gen_kwargs(__lowerCAmelCase )
assert out == expected
| 33 | 1 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class __magic_name__ :
'''simple docstring'''
__lowercase : Optional[int] = MBartConfig
__lowercase : Tuple = {}
__lowercase : Optional[int] = 'gelu'
def __init__( self:Tuple , _a:int , _a:List[Any]=13 , _a:List[str]=7 , _a:Tuple=True , _a:Union[str, Any]=False , _a:Any=99 , _a:List[Any]=32 , _a:List[Any]=2 , _a:int=4 , _a:Dict=37 , _a:int=0.1 , _a:List[str]=0.1 , _a:Any=20 , _a:Any=2 , _a:List[str]=1 , _a:List[str]=0 , ):
snake_case__ = parent
snake_case__ = batch_size
snake_case__ = seq_length
snake_case__ = is_training
snake_case__ = use_labels
snake_case__ = vocab_size
snake_case__ = hidden_size
snake_case__ = num_hidden_layers
snake_case__ = num_attention_heads
snake_case__ = intermediate_size
snake_case__ = hidden_dropout_prob
snake_case__ = attention_probs_dropout_prob
snake_case__ = max_position_embeddings
snake_case__ = eos_token_id
snake_case__ = pad_token_id
snake_case__ = bos_token_id
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 )
snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case__ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
snake_case__ = prepare_mbart_inputs_dict(_a , _a , _a )
return config, inputs_dict
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Tuple , _a:Any ):
snake_case__ = TFMBartModel(config=_a ).get_decoder()
snake_case__ = inputs_dict['''input_ids''']
snake_case__ = input_ids[:1, :]
snake_case__ = inputs_dict['''attention_mask'''][:1, :]
snake_case__ = inputs_dict['''head_mask''']
snake_case__ = 1
# first forward pass
snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a )
snake_case__ , snake_case__ = outputs.to_tuple()
snake_case__ = past_key_values[1]
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> List[str]:
if attention_mask is None:
snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
snake_case__ = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : str = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
__lowercase : Dict = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
__lowercase : Optional[int] = (
{
'conversational': TFMBartForConditionalGeneration,
'feature-extraction': TFMBartModel,
'summarization': TFMBartForConditionalGeneration,
'text2text-generation': TFMBartForConditionalGeneration,
'translation': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
__lowercase : Optional[int] = True
__lowercase : Tuple = False
__lowercase : List[str] = False
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:str , _a:Optional[int] , _a:Optional[int] , _a:List[Any] , _a:int ):
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = TFMBartModelTester(self )
snake_case__ = ConfigTester(self , config_class=_a )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_a )
@require_sentencepiece
@require_tokenizers
@require_tf
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
__lowercase : str = [
' UN Chief Says There Is No Military Solution in Syria',
]
__lowercase : Union[str, Any] = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
]
__lowercase : Any = 'facebook/mbart-large-en-ro'
@cached_property
def SCREAMING_SNAKE_CASE__ ( self:Any ):
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , **_a:Optional[Any] ):
snake_case__ = self.translate_src_text(**_a )
self.assertListEqual(self.expected_text , _a )
def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:Optional[int] ):
snake_case__ = self.tokenizer(self.src_text , **_a , return_tensors='''tf''' )
snake_case__ = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
snake_case__ = self.tokenizer.batch_decode(_a , skip_special_tokens=_a )
return generated_words
@slow
def SCREAMING_SNAKE_CASE__ ( self:int ):
self._assert_generated_batch_equal_expected()
| 33 |
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : str = IFImgaImgSuperResolutionPipeline
__lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'}
__lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} )
__lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'}
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
return self._get_superresolution_dummy_components()
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ):
if str(_a ).startswith('''mps''' ):
snake_case__ = torch.manual_seed(_a )
else:
snake_case__ = torch.Generator(device=_a ).manual_seed(_a )
snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a )
snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a )
snake_case__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''original_image''': original_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def SCREAMING_SNAKE_CASE__ ( self:str ):
self._test_save_load_local()
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 33 | 1 |
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 3 ) -> qiskit.result.counts.Counts:
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise TypeError('''number of qubits must be a integer.''' )
if number_of_qubits <= 0:
raise ValueError('''number of qubits must be > 0.''' )
if math.floor(__lowerCAmelCase ) != number_of_qubits:
raise ValueError('''number of qubits must be exact integer.''' )
if number_of_qubits > 10:
raise ValueError('''number of qubits too large to simulate(>10).''' )
snake_case__ = QuantumRegister(__lowerCAmelCase , '''qr''' )
snake_case__ = ClassicalRegister(__lowerCAmelCase , '''cr''' )
snake_case__ = QuantumCircuit(__lowerCAmelCase , __lowerCAmelCase )
snake_case__ = number_of_qubits
for i in range(__lowerCAmelCase ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(__lowerCAmelCase ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , __lowerCAmelCase , __lowerCAmelCase )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(__lowerCAmelCase , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(__lowerCAmelCase , __lowerCAmelCase )
# simulate with 10000 shots
snake_case__ = Aer.get_backend('''qasm_simulator''' )
snake_case__ = execute(__lowerCAmelCase , __lowerCAmelCase , shots=1_0000 )
return job.result().get_counts(__lowerCAmelCase )
if __name__ == "__main__":
print(
F"""Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}"""
)
| 33 |
import math
class __magic_name__ :
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:list[list[float]] , _a:list[int] ):
snake_case__ = 0.0
snake_case__ = 0.0
for i in range(len(_a ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:list[list[int | float]] , _a:list[int] , _a:int , _a:float ):
for i in range(len(_a ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def SCREAMING_SNAKE_CASE ( ) -> None:
# Training Examples ( m, n )
snake_case__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
snake_case__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
snake_case__ = SelfOrganizingMap()
snake_case__ = 3
snake_case__ = 0.5
for _ in range(__lowerCAmelCase ):
for j in range(len(__lowerCAmelCase ) ):
# training sample
snake_case__ = training_samples[j]
# Compute the winning vector
snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase )
# Update the winning vector
snake_case__ = self_organizing_map.update(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# classify test sample
snake_case__ = [0, 0, 0, 1]
snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase )
# results
print(F"""Clusters that the test sample belongs to : {winner}""" )
print(F"""Weights that have been trained : {weights}""" )
# running the main() function
if __name__ == "__main__":
main()
| 33 | 1 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list:
snake_case__ = []
snake_case__ , snake_case__ = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
snake_case__ = result + left + right
return input_list
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> list:
if len(__lowerCAmelCase ) <= 1:
return input_list
snake_case__ = list(__lowerCAmelCase )
# iteration for two-way merging
snake_case__ = 2
while p <= len(__lowerCAmelCase ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ):
snake_case__ = i
snake_case__ = i + p - 1
snake_case__ = (low + high + 1) // 2
snake_case__ = merge(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# final merge of last two parts
if p * 2 >= len(__lowerCAmelCase ):
snake_case__ = i
snake_case__ = merge(__lowerCAmelCase , 0 , __lowerCAmelCase , len(__lowerCAmelCase ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
lowerCamelCase__ : Optional[Any] = input("""Enter numbers separated by a comma:\n""").strip()
if user_input == "":
lowerCamelCase__ : str = []
else:
lowerCamelCase__ : List[Any] = [int(item.strip()) for item in user_input.split(""",""")]
print(iter_merge_sort(unsorted))
| 33 |
from __future__ import annotations
from statistics import mean
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]:
snake_case__ = [0] * no_of_processes
snake_case__ = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(__lowerCAmelCase ):
snake_case__ = burst_time[i]
snake_case__ = []
snake_case__ = 0
snake_case__ = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
snake_case__ = []
snake_case__ = -1
for i in range(__lowerCAmelCase ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(__lowerCAmelCase )
if len(__lowerCAmelCase ) > 0:
snake_case__ = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
snake_case__ = i
total_time += burst_time[target_process]
completed += 1
snake_case__ = 0
snake_case__ = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]:
snake_case__ = [0] * no_of_processes
for i in range(__lowerCAmelCase ):
snake_case__ = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("""[TEST CASE 01]""")
lowerCamelCase__ : Tuple = 4
lowerCamelCase__ : Union[str, Any] = [2, 5, 3, 7]
lowerCamelCase__ : Optional[Any] = [0, 0, 0, 0]
lowerCamelCase__ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
lowerCamelCase__ : Union[str, Any] = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""")
for i, process_id in enumerate(list(range(1, 5))):
print(
F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t"""
F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}"""
)
print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""")
print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
| 33 | 1 |
import argparse
import json
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[str]:
snake_case__ = SwinConfig()
snake_case__ = swin_name.split('''_''' )
snake_case__ = name_split[1]
snake_case__ = int(name_split[4] )
snake_case__ = int(name_split[3][-1] )
if model_size == "tiny":
snake_case__ = 96
snake_case__ = (2, 2, 6, 2)
snake_case__ = (3, 6, 12, 24)
elif model_size == "small":
snake_case__ = 96
snake_case__ = (2, 2, 18, 2)
snake_case__ = (3, 6, 12, 24)
elif model_size == "base":
snake_case__ = 128
snake_case__ = (2, 2, 18, 2)
snake_case__ = (4, 8, 16, 32)
else:
snake_case__ = 192
snake_case__ = (2, 2, 18, 2)
snake_case__ = (6, 12, 24, 48)
if "in22k" in swin_name:
snake_case__ = 2_1841
else:
snake_case__ = 1000
snake_case__ = '''huggingface/label-files'''
snake_case__ = '''imagenet-1k-id2label.json'''
snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) )
snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
snake_case__ = idalabel
snake_case__ = {v: k for k, v in idalabel.items()}
snake_case__ = img_size
snake_case__ = num_classes
snake_case__ = embed_dim
snake_case__ = depths
snake_case__ = num_heads
snake_case__ = window_size
return config
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]:
if "patch_embed.proj" in name:
snake_case__ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
snake_case__ = name.replace('''patch_embed.norm''' , '''embeddings.norm''' )
if "layers" in name:
snake_case__ = '''encoder.''' + name
if "attn.proj" in name:
snake_case__ = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
snake_case__ = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
snake_case__ = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
snake_case__ = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
snake_case__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
snake_case__ = name.replace('''mlp.fc2''' , '''output.dense''' )
if name == "norm.weight":
snake_case__ = '''layernorm.weight'''
if name == "norm.bias":
snake_case__ = '''layernorm.bias'''
if "head" in name:
snake_case__ = name.replace('''head''' , '''classifier''' )
else:
snake_case__ = '''swin.''' + name
return name
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
for key in orig_state_dict.copy().keys():
snake_case__ = orig_state_dict.pop(__lowerCAmelCase )
if "mask" in key:
continue
elif "qkv" in key:
snake_case__ = key.split('''.''' )
snake_case__ = int(key_split[1] )
snake_case__ = int(key_split[3] )
snake_case__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
snake_case__ = val[:dim, :]
snake_case__ = val[
dim : dim * 2, :
]
snake_case__ = val[-dim:, :]
else:
snake_case__ = val[
:dim
]
snake_case__ = val[
dim : dim * 2
]
snake_case__ = val[
-dim:
]
else:
snake_case__ = val
return orig_state_dict
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int:
snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase )
timm_model.eval()
snake_case__ = get_swin_config(__lowerCAmelCase )
snake_case__ = SwinForImageClassification(__lowerCAmelCase )
model.eval()
snake_case__ = convert_state_dict(timm_model.state_dict() , __lowerCAmelCase )
model.load_state_dict(__lowerCAmelCase )
snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
snake_case__ = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) )
snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
snake_case__ = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' )
snake_case__ = timm_model(inputs['''pixel_values'''] )
snake_case__ = model(**__lowerCAmelCase ).logits
assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-3 )
print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCAmelCase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
lowerCamelCase__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--swin_name""",
default="""swin_tiny_patch4_window7_224""",
type=str,
help="""Name of the Swin timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
lowerCamelCase__ : Dict = parser.parse_args()
convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
| 33 |
lowerCamelCase__ : List[str] = """Alexander Joslin"""
import operator as op
from .stack import Stack
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int:
snake_case__ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub}
snake_case__ = Stack()
snake_case__ = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(__lowerCAmelCase ) )
elif i in operators:
# RULE 2
operator_stack.push(__lowerCAmelCase )
elif i == ")":
# RULE 4
snake_case__ = operator_stack.peek()
operator_stack.pop()
snake_case__ = operand_stack.peek()
operand_stack.pop()
snake_case__ = operand_stack.peek()
operand_stack.pop()
snake_case__ = operators[opr](__lowerCAmelCase , __lowerCAmelCase )
operand_stack.push(__lowerCAmelCase )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
lowerCamelCase__ : Optional[Any] = """(5 + ((4 * 2) * (2 + 3)))"""
# answer = 45
print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
| 33 | 1 |
import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split()
snake_case__ = dict(zip(_a , range(len(_a ) ) ) )
snake_case__ = {
'''unk_token''': '''<unk>''',
'''bos_token''': '''<s>''',
'''eos_token''': '''</s>''',
}
snake_case__ = {
'''feature_size''': 1,
'''padding_value''': 0.0,
'''sampling_rate''': 1_60_00,
'''return_attention_mask''': False,
'''do_normalize''': True,
}
snake_case__ = tempfile.mkdtemp()
snake_case__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
snake_case__ = os.path.join(self.tmpdirname , _a )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(_a ) + '''\n''' )
with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(_a ) + '''\n''' )
# load decoder from hub
snake_case__ = '''hf-internal-testing/ngram-beam-search-decoder'''
def SCREAMING_SNAKE_CASE__ ( self:str , **_a:List[Any] ):
snake_case__ = self.add_kwargs_tokens_map.copy()
kwargs.update(_a )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:List[str] ):
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , **_a:int ):
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = self.get_tokenizer()
snake_case__ = self.get_feature_extractor()
snake_case__ = self.get_decoder()
snake_case__ = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a )
processor.save_pretrained(self.tmpdirname )
snake_case__ = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , _a )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , _a )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , _a )
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
snake_case__ = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(['''xx'''] )
with self.assertRaisesRegex(_a , '''include''' ):
WavaVecaProcessorWithLM(
tokenizer=_a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = self.get_feature_extractor()
snake_case__ = self.get_tokenizer()
snake_case__ = self.get_decoder()
snake_case__ = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a )
snake_case__ = floats_list((3, 10_00) )
snake_case__ = feature_extractor(_a , return_tensors='''np''' )
snake_case__ = processor(_a , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = self.get_feature_extractor()
snake_case__ = self.get_tokenizer()
snake_case__ = self.get_decoder()
snake_case__ = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a )
snake_case__ = '''This is a test string'''
snake_case__ = processor(text=_a )
snake_case__ = tokenizer(_a )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int=(2, 10, 16) , _a:Dict=77 ):
np.random.seed(_a )
return np.random.rand(*_a )
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = self.get_feature_extractor()
snake_case__ = self.get_tokenizer()
snake_case__ = self.get_decoder()
snake_case__ = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a )
snake_case__ = self._get_dummy_logits(shape=(10, 16) , seed=13 )
snake_case__ = processor.decode(_a )
snake_case__ = decoder.decode_beams(_a )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual('''</s> <s> </s>''' , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ['''fork'''], ['''spawn''']] )
def SCREAMING_SNAKE_CASE__ ( self:int , _a:Union[str, Any] ):
snake_case__ = self.get_feature_extractor()
snake_case__ = self.get_tokenizer()
snake_case__ = self.get_decoder()
snake_case__ = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a )
snake_case__ = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
snake_case__ = processor.batch_decode(_a )
else:
with get_context(_a ).Pool() as pool:
snake_case__ = processor.batch_decode(_a , _a )
snake_case__ = list(_a )
with get_context('''fork''' ).Pool() as p:
snake_case__ = decoder.decode_beams_batch(_a , _a )
snake_case__ , snake_case__ , snake_case__ = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(_a , decoded_processor.text )
self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text )
self.assertListEqual(_a , decoded_processor.logit_score )
self.assertListEqual(_a , decoded_processor.lm_score )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.get_feature_extractor()
snake_case__ = self.get_tokenizer()
snake_case__ = self.get_decoder()
snake_case__ = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a )
snake_case__ = self._get_dummy_logits()
snake_case__ = 15
snake_case__ = -20.0
snake_case__ = -4.0
snake_case__ = processor.batch_decode(
_a , beam_width=_a , beam_prune_logp=_a , token_min_logp=_a , )
snake_case__ = decoded_processor_out.text
snake_case__ = list(_a )
with get_context('''fork''' ).Pool() as pool:
snake_case__ = decoder.decode_beams_batch(
_a , _a , beam_width=_a , beam_prune_logp=_a , token_min_logp=_a , )
snake_case__ = [d[0][0] for d in decoded_decoder_out]
snake_case__ = [d[0][2] for d in decoded_decoder_out]
snake_case__ = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(_a , _a )
self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , _a )
self.assertTrue(np.array_equal(_a , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.054, -18.447] , _a , atol=1e-3 ) )
self.assertTrue(np.array_equal(_a , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.554, -13.9474] , _a , atol=1e-3 ) )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = self.get_feature_extractor()
snake_case__ = self.get_tokenizer()
snake_case__ = self.get_decoder()
snake_case__ = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a )
snake_case__ = self._get_dummy_logits()
snake_case__ = 2.0
snake_case__ = 5.0
snake_case__ = -20.0
snake_case__ = True
snake_case__ = processor.batch_decode(
_a , alpha=_a , beta=_a , unk_score_offset=_a , lm_score_boundary=_a , )
snake_case__ = decoded_processor_out.text
snake_case__ = list(_a )
decoder.reset_params(
alpha=_a , beta=_a , unk_score_offset=_a , lm_score_boundary=_a , )
with get_context('''fork''' ).Pool() as pool:
snake_case__ = decoder.decode_beams_batch(
_a , _a , )
snake_case__ = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(_a , _a )
self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , _a )
snake_case__ = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -20.0 )
self.assertEqual(lm_model.score_boundary , _a )
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
snake_case__ = processor.decoder.model_container[processor.decoder._model_key]
snake_case__ = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute()
snake_case__ = os.listdir(_a )
snake_case__ = ['''alphabet.json''', '''language_model''']
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = snapshot_download('''hf-internal-testing/processor_with_lm''' )
snake_case__ = WavaVecaProcessorWithLM.from_pretrained(_a )
snake_case__ = processor.decoder.model_container[processor.decoder._model_key]
snake_case__ = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute()
snake_case__ = os.listdir(_a )
snake_case__ = os.listdir(_a )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
snake_case__ = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' )
snake_case__ = floats_list((3, 10_00) )
snake_case__ = processor_wavaveca(_a , return_tensors='''np''' )
snake_case__ = processor_auto(_a , return_tensors='''np''' )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 )
snake_case__ = self._get_dummy_logits()
snake_case__ = processor_wavaveca.batch_decode(_a )
snake_case__ = processor_auto.batch_decode(_a )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
snake_case__ = self.get_feature_extractor()
snake_case__ = self.get_tokenizer()
snake_case__ = self.get_decoder()
snake_case__ = WavaVecaProcessorWithLM(tokenizer=_a , feature_extractor=_a , decoder=_a )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , )
@staticmethod
def SCREAMING_SNAKE_CASE__ ( _a:Union[str, Any] , _a:Dict ):
snake_case__ = [d[key] for d in offsets]
return retrieved_list
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
snake_case__ = self._get_dummy_logits()[0]
snake_case__ = processor.decode(_a , output_word_offsets=_a )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''word_offsets''' in outputs )
self.assertTrue(isinstance(_a , _a ) )
self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' )
snake_case__ = self._get_dummy_logits()
snake_case__ = processor.batch_decode(_a , output_word_offsets=_a )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''word_offsets''' in outputs )
self.assertTrue(isinstance(_a , _a ) )
self.assertListEqual(
[''' '''.join(self.get_from_offsets(_a , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def SCREAMING_SNAKE_CASE__ ( self:Any ):
import torch
snake_case__ = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=_a )
snake_case__ = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) )
snake_case__ = iter(_a )
snake_case__ = next(_a )
snake_case__ = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' )
snake_case__ = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
snake_case__ = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values
with torch.no_grad():
snake_case__ = model(_a ).logits.cpu().numpy()
snake_case__ = processor.decode(logits[0] , output_word_offsets=_a )
snake_case__ = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
snake_case__ = [
{
'''start_time''': d['''start_offset'''] * time_offset,
'''end_time''': d['''end_offset'''] * time_offset,
'''word''': d['''word'''],
}
for d in output['''word_offsets''']
]
snake_case__ = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL'''
# output words
self.assertEqual(''' '''.join(self.get_from_offsets(_a , '''word''' ) ) , _a )
self.assertEqual(''' '''.join(self.get_from_offsets(_a , '''word''' ) ) , output.text )
# output times
snake_case__ = torch.tensor(self.get_from_offsets(_a , '''start_time''' ) )
snake_case__ = torch.tensor(self.get_from_offsets(_a , '''end_time''' ) )
# fmt: off
snake_case__ = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] )
snake_case__ = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(_a , _a , atol=0.01 ) )
self.assertTrue(torch.allclose(_a , _a , atol=0.01 ) )
| 33 |
import warnings
from ...utils import logging
from .image_processing_perceiver import PerceiverImageProcessor
lowerCamelCase__ : int = logging.get_logger(__name__)
class __magic_name__ (snake_case_ ):
'''simple docstring'''
def __init__( self:List[Any] , *_a:Dict , **_a:Tuple ):
warnings.warn(
'''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use PerceiverImageProcessor instead.''' , _a , )
super().__init__(*_a , **_a )
| 33 | 1 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
snake_case__ = AutoTokenizer.from_pretrained('''google/mt5-small''' )
snake_case__ = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
snake_case__ = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
snake_case__ = shift_tokens_right(_a , model.config.pad_token_id , model.config.decoder_start_token_id )
snake_case__ = model(_a , decoder_input_ids=_a ).logits
snake_case__ = optax.softmax_cross_entropy(_a , onehot(_a , logits.shape[-1] ) ).mean()
snake_case__ = -(labels.shape[-1] * loss.item())
snake_case__ = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 33 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase__ : Tuple = {
"""configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""],
"""tokenization_roberta""": ["""RobertaTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = ["""RobertaTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Optional[int] = [
"""ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""RobertaForCausalLM""",
"""RobertaForMaskedLM""",
"""RobertaForMultipleChoice""",
"""RobertaForQuestionAnswering""",
"""RobertaForSequenceClassification""",
"""RobertaForTokenClassification""",
"""RobertaModel""",
"""RobertaPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : List[str] = [
"""TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFRobertaForCausalLM""",
"""TFRobertaForMaskedLM""",
"""TFRobertaForMultipleChoice""",
"""TFRobertaForQuestionAnswering""",
"""TFRobertaForSequenceClassification""",
"""TFRobertaForTokenClassification""",
"""TFRobertaMainLayer""",
"""TFRobertaModel""",
"""TFRobertaPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : str = [
"""FlaxRobertaForCausalLM""",
"""FlaxRobertaForMaskedLM""",
"""FlaxRobertaForMultipleChoice""",
"""FlaxRobertaForQuestionAnswering""",
"""FlaxRobertaForSequenceClassification""",
"""FlaxRobertaForTokenClassification""",
"""FlaxRobertaModel""",
"""FlaxRobertaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 33 | 1 |
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
lowerCamelCase__ : List[str] = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""")
lowerCamelCase__ : List[str] = (
subprocess.check_output(F"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode("""utf-8""").split()
)
lowerCamelCase__ : List[str] = """|""".join(sys.argv[1:])
lowerCamelCase__ : Optional[Any] = re.compile(rF"""^({joined_dirs}).*?\.py$""")
lowerCamelCase__ : List[Any] = [x for x in modified_files if regex.match(x)]
print(""" """.join(relevant_modified_files), end="""""")
| 33 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]:
snake_case__ = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:] )
class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : Dict = StableDiffusionLatentUpscalePipeline
__lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
'height',
'width',
'cross_attention_kwargs',
'negative_prompt_embeds',
'prompt_embeds',
}
__lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'}
__lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
__lowercase : int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__lowercase : List[Any] = frozenset([] )
__lowercase : Any = True
@property
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = 1
snake_case__ = 4
snake_case__ = (16, 16)
snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a )
return image
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
torch.manual_seed(0 )
snake_case__ = UNetaDConditionModel(
act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=(
'''KDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
) , in_channels=8 , mid_block_type=_a , only_cross_attention=_a , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , )
snake_case__ = AutoencoderKL(
block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
snake_case__ = EulerDiscreteScheduler(prediction_type='''sample''' )
snake_case__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , )
snake_case__ = CLIPTextModel(_a )
snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
snake_case__ = {
'''unet''': model.eval(),
'''vae''': vae.eval(),
'''scheduler''': scheduler,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:List[str]=0 ):
if str(_a ).startswith('''mps''' ):
snake_case__ = torch.manual_seed(_a )
else:
snake_case__ = torch.Generator(device=_a ).manual_seed(_a )
snake_case__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': self.dummy_image.cpu(),
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = '''cpu'''
snake_case__ = self.get_dummy_components()
snake_case__ = self.pipeline_class(**_a )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
snake_case__ = self.get_dummy_inputs(_a )
snake_case__ = pipe(**_a ).images
snake_case__ = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 2_56, 2_56, 3) )
snake_case__ = np.array(
[0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] )
snake_case__ = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_a , 1e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:str ):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
super().test_inference_batch_single_identical(expected_max_diff=7e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
super().test_save_load_local(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:str ):
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = [
'''DDIMScheduler''',
'''DDPMScheduler''',
'''PNDMScheduler''',
'''HeunDiscreteScheduler''',
'''EulerAncestralDiscreteScheduler''',
'''KDPM2DiscreteScheduler''',
'''KDPM2AncestralDiscreteScheduler''',
'''DPMSolverSDEScheduler''',
]
snake_case__ = self.get_dummy_components()
snake_case__ = self.pipeline_class(**_a )
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=_a )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
snake_case__ = self.get_dummy_inputs(_a )
snake_case__ = 2
snake_case__ = []
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
snake_case__ = getattr(_a , scheduler_enum.name )
snake_case__ = scheduler_cls.from_config(pipe.scheduler.config )
snake_case__ = pipe(**_a )[0]
outputs.append(_a )
assert check_same_shape(_a )
@require_torch_gpu
@slow
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = torch.manual_seed(33 )
snake_case__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa )
pipe.to('''cuda''' )
snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
snake_case__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic'''
snake_case__ = pipe(_a , generator=_a , output_type='''latent''' ).images
snake_case__ = upscaler(
prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0]
snake_case__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' )
assert np.abs((expected_image - image).mean() ) < 5e-2
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = torch.manual_seed(33 )
snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
snake_case__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas'''
snake_case__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' )
snake_case__ = upscaler(
prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0]
snake_case__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' )
assert np.abs((expected_image - image).max() ) < 5e-2
| 33 | 1 |
import argparse
import re
import numpy as np
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SamConfig,
SamImageProcessor,
SamModel,
SamProcessor,
SamVisionConfig,
)
lowerCamelCase__ : List[Any] = {
"""iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""",
"""iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""",
"""iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""",
"""mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""",
"""mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""",
"""mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""",
"""mask_downscaling.0""": """mask_embed.conv1""",
"""mask_downscaling.1""": """mask_embed.layer_norm1""",
"""mask_downscaling.3""": """mask_embed.conv2""",
"""mask_downscaling.4""": """mask_embed.layer_norm2""",
"""mask_downscaling.6""": """mask_embed.conv3""",
"""point_embeddings""": """point_embed""",
"""pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""",
"""image_encoder""": """vision_encoder""",
"""neck.0""": """neck.conv1""",
"""neck.1""": """neck.layer_norm1""",
"""neck.2""": """neck.conv2""",
"""neck.3""": """neck.layer_norm2""",
"""patch_embed.proj""": """patch_embed.projection""",
""".norm""": """.layer_norm""",
"""blocks""": """layers""",
}
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]:
snake_case__ = {}
state_dict.pop('''pixel_mean''' , __lowerCAmelCase )
state_dict.pop('''pixel_std''' , __lowerCAmelCase )
snake_case__ = r'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*'''
for key, value in state_dict.items():
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
snake_case__ = key.replace(__lowerCAmelCase , __lowerCAmelCase )
if re.match(__lowerCAmelCase , __lowerCAmelCase ):
snake_case__ = int(re.match(__lowerCAmelCase , __lowerCAmelCase ).group(2 ) )
if layer_nb == 0:
snake_case__ = key.replace('''layers.0''' , '''proj_in''' )
elif layer_nb == 1:
snake_case__ = key.replace('''layers.1''' , '''layers.0''' )
elif layer_nb == 2:
snake_case__ = key.replace('''layers.2''' , '''proj_out''' )
snake_case__ = value
snake_case__ = model_state_dict[
'''prompt_encoder.shared_embedding.positional_embedding'''
]
return model_state_dict
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="ybelkada/segment-anything" ) -> Tuple:
snake_case__ = hf_hub_download(__lowerCAmelCase , F"""checkpoints/{model_name}.pth""" )
if "sam_vit_b" in model_name:
snake_case__ = SamConfig()
elif "sam_vit_l" in model_name:
snake_case__ = SamVisionConfig(
hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , )
snake_case__ = SamConfig(
vision_config=__lowerCAmelCase , )
elif "sam_vit_h" in model_name:
snake_case__ = SamVisionConfig(
hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , )
snake_case__ = SamConfig(
vision_config=__lowerCAmelCase , )
snake_case__ = torch.load(__lowerCAmelCase , map_location='''cpu''' )
snake_case__ = replace_keys(__lowerCAmelCase )
snake_case__ = SamImageProcessor()
snake_case__ = SamProcessor(image_processor=__lowerCAmelCase )
snake_case__ = SamModel(__lowerCAmelCase )
hf_model.load_state_dict(__lowerCAmelCase )
snake_case__ = hf_model.to('''cuda''' )
snake_case__ = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png'''
snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert('''RGB''' )
snake_case__ = [[[400, 650]]]
snake_case__ = [[1]]
snake_case__ = processor(images=np.array(__lowerCAmelCase ) , return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
snake_case__ = hf_model(**__lowerCAmelCase )
snake_case__ = output.iou_scores.squeeze()
if model_name == "sam_vit_h_4b8939":
assert scores[-1].item() == 0.579_8902_5115_9668
snake_case__ = processor(
images=np.array(__lowerCAmelCase ) , input_points=__lowerCAmelCase , input_labels=__lowerCAmelCase , return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
snake_case__ = hf_model(**__lowerCAmelCase )
snake_case__ = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9712_6030_9219_3604
snake_case__ = ((75, 275, 1725, 850),)
snake_case__ = processor(images=np.array(__lowerCAmelCase ) , input_boxes=__lowerCAmelCase , return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
snake_case__ = hf_model(**__lowerCAmelCase )
snake_case__ = output.iou_scores.squeeze()
assert scores[-1].item() == 0.8686_0156_0592_6514
# Test with 2 points and 1 image.
snake_case__ = [[[400, 650], [800, 650]]]
snake_case__ = [[1, 1]]
snake_case__ = processor(
images=np.array(__lowerCAmelCase ) , input_points=__lowerCAmelCase , input_labels=__lowerCAmelCase , return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
snake_case__ = hf_model(**__lowerCAmelCase )
snake_case__ = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9936_0477_9243_4692
if __name__ == "__main__":
lowerCamelCase__ : Tuple = argparse.ArgumentParser()
lowerCamelCase__ : int = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""]
parser.add_argument(
"""--model_name""",
default="""sam_vit_h_4b8939""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub after converting""",
)
parser.add_argument(
"""--model_hub_id""",
default="""ybelkada/segment-anything""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
lowerCamelCase__ : Union[str, Any] = parser.parse_args()
convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
| 33 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import is_speech_available, is_vision_available
from transformers.testing_utils import require_torch
if is_vision_available():
from transformers import TvltImageProcessor
if is_speech_available():
from transformers import TvltFeatureExtractor
from transformers import TvltProcessor
@require_torch
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = '''ZinengTang/tvlt-base'''
snake_case__ = tempfile.mkdtemp()
def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:List[Any] ):
return TvltImageProcessor.from_pretrained(self.checkpoint , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , **_a:Tuple ):
return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
processor.save_pretrained(self.tmpdirname )
snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname )
self.assertIsInstance(processor.feature_extractor , _a )
self.assertIsInstance(processor.image_processor , _a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
snake_case__ = np.ones([1_20_00] )
snake_case__ = feature_extractor(_a , return_tensors='''np''' )
snake_case__ = processor(audio=_a , return_tensors='''np''' )
for key in audio_dict.keys():
self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
snake_case__ = np.ones([3, 2_24, 2_24] )
snake_case__ = image_processor(_a , return_tensors='''np''' )
snake_case__ = processor(images=_a , return_tensors='''np''' )
for key in image_dict.keys():
self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
snake_case__ = np.ones([1_20_00] )
snake_case__ = np.ones([3, 2_24, 2_24] )
snake_case__ = processor(audio=_a , images=_a )
self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] )
# test if it raises when no input is passed
with pytest.raises(_a ):
processor()
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
self.assertListEqual(
processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
| 33 | 1 |
from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class __magic_name__ :
'''simple docstring'''
__lowercase : int = BlenderbotConfig
__lowercase : Any = {}
__lowercase : Optional[Any] = 'gelu'
def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[Any]=13 , _a:Tuple=7 , _a:Union[str, Any]=True , _a:int=False , _a:int=99 , _a:Optional[int]=32 , _a:List[str]=2 , _a:List[str]=4 , _a:List[Any]=37 , _a:Any=0.1 , _a:int=0.1 , _a:List[Any]=20 , _a:List[str]=2 , _a:int=1 , _a:Dict=0 , ):
snake_case__ = parent
snake_case__ = batch_size
snake_case__ = seq_length
snake_case__ = is_training
snake_case__ = use_labels
snake_case__ = vocab_size
snake_case__ = hidden_size
snake_case__ = num_hidden_layers
snake_case__ = num_attention_heads
snake_case__ = intermediate_size
snake_case__ = hidden_dropout_prob
snake_case__ = attention_probs_dropout_prob
snake_case__ = max_position_embeddings
snake_case__ = eos_token_id
snake_case__ = pad_token_id
snake_case__ = bos_token_id
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 )
snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case__ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
snake_case__ = prepare_blenderbot_inputs_dict(_a , _a , _a )
return config, inputs_dict
def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:int ):
snake_case__ = TFBlenderbotModel(config=_a ).get_decoder()
snake_case__ = inputs_dict['''input_ids''']
snake_case__ = input_ids[:1, :]
snake_case__ = inputs_dict['''attention_mask'''][:1, :]
snake_case__ = inputs_dict['''head_mask''']
snake_case__ = 1
# first forward pass
snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a )
snake_case__ , snake_case__ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1 )
snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
snake_case__ = model(_a , attention_mask=_a )[0]
snake_case__ = model(_a , attention_mask=_a , past_key_values=_a )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
snake_case__ = output_from_no_past[:, -3:, random_slice_idx]
snake_case__ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_a , _a , rtol=1e-3 )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Tuple:
if attention_mask is None:
snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
snake_case__ = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
__lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
__lowercase : Tuple = (
{
'conversational': TFBlenderbotForConditionalGeneration,
'feature-extraction': TFBlenderbotModel,
'summarization': TFBlenderbotForConditionalGeneration,
'text2text-generation': TFBlenderbotForConditionalGeneration,
'translation': TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
__lowercase : Any = True
__lowercase : int = False
__lowercase : int = False
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = TFBlenderbotModelTester(self )
snake_case__ = ConfigTester(self , config_class=_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_a )
@require_tokenizers
@require_tf
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
__lowercase : Optional[int] = ['My friends are cool but they eat too many carbs.']
__lowercase : Optional[int] = 'facebook/blenderbot-400M-distill'
@cached_property
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.tokenizer(self.src_text , return_tensors='''tf''' )
snake_case__ = self.model.generate(
model_inputs.input_ids , )
snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 33 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Optional[int] = {
"""facebook/data2vec-vision-base-ft""": (
"""https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json"""
),
}
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Optional[int] = 'data2vec-vision'
def __init__( self:int , _a:Tuple=7_68 , _a:int=12 , _a:Any=12 , _a:Optional[int]=30_72 , _a:Optional[int]="gelu" , _a:Any=0.0 , _a:Any=0.0 , _a:List[str]=0.02 , _a:Dict=1e-12 , _a:Tuple=2_24 , _a:Any=16 , _a:str=3 , _a:str=False , _a:Union[str, Any]=False , _a:Optional[int]=False , _a:Any=False , _a:Dict=0.1 , _a:Dict=0.1 , _a:str=True , _a:str=[3, 5, 7, 11] , _a:List[str]=[1, 2, 3, 6] , _a:List[str]=True , _a:Any=0.4 , _a:str=2_56 , _a:Union[str, Any]=1 , _a:int=False , _a:Optional[int]=2_55 , **_a:Dict , ):
super().__init__(**_a )
snake_case__ = hidden_size
snake_case__ = num_hidden_layers
snake_case__ = num_attention_heads
snake_case__ = intermediate_size
snake_case__ = hidden_act
snake_case__ = hidden_dropout_prob
snake_case__ = attention_probs_dropout_prob
snake_case__ = initializer_range
snake_case__ = layer_norm_eps
snake_case__ = image_size
snake_case__ = patch_size
snake_case__ = num_channels
snake_case__ = use_mask_token
snake_case__ = use_absolute_position_embeddings
snake_case__ = use_relative_position_bias
snake_case__ = use_shared_relative_position_bias
snake_case__ = layer_scale_init_value
snake_case__ = drop_path_rate
snake_case__ = use_mean_pooling
# decode head attributes (semantic segmentation)
snake_case__ = out_indices
snake_case__ = pool_scales
# auxiliary head attributes (semantic segmentation)
snake_case__ = use_auxiliary_head
snake_case__ = auxiliary_loss_weight
snake_case__ = auxiliary_channels
snake_case__ = auxiliary_num_convs
snake_case__ = auxiliary_concat_input
snake_case__ = semantic_loss_ignore_index
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Any = version.parse('1.11' )
@property
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
return 1e-4
| 33 | 1 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int:
if len(__lowerCAmelCase ) < k or k < 0:
raise ValueError('''Invalid Input''' )
snake_case__ = snake_case__ = sum(array[:k] )
for i in range(len(__lowerCAmelCase ) - k ):
snake_case__ = current_sum - array[i] + array[i + k]
snake_case__ = max(__lowerCAmelCase , __lowerCAmelCase )
return max_sum
if __name__ == "__main__":
from doctest import testmod
from random import randint
testmod()
lowerCamelCase__ : List[Any] = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0_0)]
lowerCamelCase__ : List[Any] = randint(0, 1_1_0)
print(F"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
| 33 |
import os
import sys
lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(__file__), """src""")
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
lowerCamelCase__ : Optional[int] = [
"""torch""",
"""numpy""",
"""tokenizers""",
"""filelock""",
"""requests""",
"""tqdm""",
"""regex""",
"""sentencepiece""",
"""sacremoses""",
"""importlib_metadata""",
"""huggingface_hub""",
]
@add_start_docstrings(AutoConfig.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any:
return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoTokenizer.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]:
return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModel.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple:
return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]:
return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]:
return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]:
return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]:
return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
| 33 | 1 |
from typing import TYPE_CHECKING
from ...utils import _LazyModule
lowerCamelCase__ : Dict = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 33 |
import torch
from diffusers import CMStochasticIterativeScheduler
from .test_schedulers import SchedulerCommonTest
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : str = (CMStochasticIterativeScheduler,)
__lowercase : List[str] = 10
def SCREAMING_SNAKE_CASE__ ( self:int , **_a:Optional[int] ):
snake_case__ = {
'''num_train_timesteps''': 2_01,
'''sigma_min''': 0.002,
'''sigma_max''': 80.0,
}
config.update(**_a )
return config
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = 10
snake_case__ = self.get_scheduler_config()
snake_case__ = self.scheduler_classes[0](**_a )
scheduler.set_timesteps(_a )
snake_case__ = scheduler.timesteps[0]
snake_case__ = scheduler.timesteps[1]
snake_case__ = self.dummy_sample
snake_case__ = 0.1 * sample
snake_case__ = scheduler.step(_a , _a , _a ).prev_sample
snake_case__ = scheduler.step(_a , _a , _a ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_a )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
for clip_denoised in [True, False]:
self.check_over_configs(clip_denoised=_a )
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = 1
scheduler.set_timesteps(_a )
snake_case__ = scheduler.timesteps
snake_case__ = torch.manual_seed(0 )
snake_case__ = self.dummy_model()
snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(_a ):
# 1. scale model input
snake_case__ = scheduler.scale_model_input(_a , _a )
# 2. predict noise residual
snake_case__ = model(_a , _a )
# 3. predict previous sample x_t-1
snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
snake_case__ = pred_prev_sample
snake_case__ = torch.sum(torch.abs(_a ) )
snake_case__ = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 192.7614 ) < 1e-2
assert abs(result_mean.item() - 0.2510 ) < 1e-3
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [1_06, 0]
scheduler.set_timesteps(timesteps=_a )
snake_case__ = scheduler.timesteps
snake_case__ = torch.manual_seed(0 )
snake_case__ = self.dummy_model()
snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma
for t in timesteps:
# 1. scale model input
snake_case__ = scheduler.scale_model_input(_a , _a )
# 2. predict noise residual
snake_case__ = model(_a , _a )
# 3. predict previous sample x_t-1
snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
snake_case__ = pred_prev_sample
snake_case__ = torch.sum(torch.abs(_a ) )
snake_case__ = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 347.6357 ) < 1e-2
assert abs(result_mean.item() - 0.4527 ) < 1e-3
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [39, 30, 12, 15, 0]
with self.assertRaises(_a , msg='''`timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=_a )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [39, 30, 12, 1, 0]
snake_case__ = len(_a )
with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=_a )
| 33 | 1 |
from __future__ import annotations
from typing import Any
class __magic_name__ :
'''simple docstring'''
def __init__( self:Tuple , _a:int ):
snake_case__ = num_of_nodes
snake_case__ = []
snake_case__ = {}
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:int , _a:int , _a:int ):
self.m_edges.append([u_node, v_node, weight] )
def SCREAMING_SNAKE_CASE__ ( self:int , _a:int ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def SCREAMING_SNAKE_CASE__ ( self:int , _a:int ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
snake_case__ = self.find_component(_a )
def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] , _a:int , _a:int ):
if component_size[u_node] <= component_size[v_node]:
snake_case__ = v_node
component_size[v_node] += component_size[u_node]
self.set_component(_a )
elif component_size[u_node] >= component_size[v_node]:
snake_case__ = self.find_component(_a )
component_size[u_node] += component_size[v_node]
self.set_component(_a )
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = []
snake_case__ = 0
snake_case__ = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
snake_case__ = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
snake_case__ , snake_case__ , snake_case__ = edge
snake_case__ = self.m_component[u]
snake_case__ = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
snake_case__ = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(_a , _a ):
snake_case__ , snake_case__ , snake_case__ = edge
snake_case__ = self.m_component[u]
snake_case__ = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(_a , _a , _a )
print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
snake_case__ = [-1] * self.m_num_of_nodes
print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def SCREAMING_SNAKE_CASE ( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 33 |
import numpy as np
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray:
return 1 / (1 + np.exp(-vector ))
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray:
return vector * sigmoid(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 33 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCamelCase__ : str = logging.get_logger(__name__)
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : List[Any] = ['pixel_values']
def __init__( self:Dict , _a:bool = True , _a:Dict[str, int] = None , _a:float = None , _a:PILImageResampling = PILImageResampling.BILINEAR , _a:bool = True , _a:Union[int, float] = 1 / 2_55 , _a:bool = True , _a:Optional[Union[float, List[float]]] = None , _a:Optional[Union[float, List[float]]] = None , **_a:Union[str, Any] , ):
super().__init__(**_a )
snake_case__ = size if size is not None else {'''shortest_edge''': 3_84}
snake_case__ = get_size_dict(_a , default_to_square=_a )
snake_case__ = do_resize
snake_case__ = size
# Default value set here for backwards compatibility where the value in config is None
snake_case__ = crop_pct if crop_pct is not None else 2_24 / 2_56
snake_case__ = resample
snake_case__ = do_rescale
snake_case__ = rescale_factor
snake_case__ = do_normalize
snake_case__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
snake_case__ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:np.ndarray , _a:Dict[str, int] , _a:float , _a:PILImageResampling = PILImageResampling.BICUBIC , _a:Optional[Union[str, ChannelDimension]] = None , **_a:Optional[int] , ):
snake_case__ = get_size_dict(_a , default_to_square=_a )
if "shortest_edge" not in size:
raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" )
snake_case__ = size['''shortest_edge''']
if shortest_edge < 3_84:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
snake_case__ = int(shortest_edge / crop_pct )
snake_case__ = get_resize_output_image_size(_a , size=_a , default_to_square=_a )
snake_case__ = resize(image=_a , size=_a , resample=_a , data_format=_a , **_a )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=_a , size=(shortest_edge, shortest_edge) , data_format=_a , **_a )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
_a , size=(shortest_edge, shortest_edge) , resample=_a , data_format=_a , **_a )
def SCREAMING_SNAKE_CASE__ ( self:int , _a:np.ndarray , _a:Union[int, float] , _a:Optional[Union[str, ChannelDimension]] = None , **_a:int , ):
return rescale(_a , scale=_a , data_format=_a , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:np.ndarray , _a:Union[float, List[float]] , _a:Union[float, List[float]] , _a:Optional[Union[str, ChannelDimension]] = None , **_a:Tuple , ):
return normalize(_a , mean=_a , std=_a , data_format=_a , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:ImageInput , _a:bool = None , _a:Dict[str, int] = None , _a:float = None , _a:PILImageResampling = None , _a:bool = None , _a:float = None , _a:bool = None , _a:Optional[Union[float, List[float]]] = None , _a:Optional[Union[float, List[float]]] = None , _a:Optional[Union[str, TensorType]] = None , _a:ChannelDimension = ChannelDimension.FIRST , **_a:Any , ):
snake_case__ = do_resize if do_resize is not None else self.do_resize
snake_case__ = crop_pct if crop_pct is not None else self.crop_pct
snake_case__ = resample if resample is not None else self.resample
snake_case__ = do_rescale if do_rescale is not None else self.do_rescale
snake_case__ = rescale_factor if rescale_factor is not None else self.rescale_factor
snake_case__ = do_normalize if do_normalize is not None else self.do_normalize
snake_case__ = image_mean if image_mean is not None else self.image_mean
snake_case__ = image_std if image_std is not None else self.image_std
snake_case__ = size if size is not None else self.size
snake_case__ = get_size_dict(_a , default_to_square=_a )
snake_case__ = make_list_of_images(_a )
if not valid_images(_a ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_resize and size["shortest_edge"] < 3_84 and crop_pct is None:
raise ValueError('''crop_pct must be specified if size < 384.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
snake_case__ = [to_numpy_array(_a ) for image in images]
if do_resize:
snake_case__ = [self.resize(image=_a , size=_a , crop_pct=_a , resample=_a ) for image in images]
if do_rescale:
snake_case__ = [self.rescale(image=_a , scale=_a ) for image in images]
if do_normalize:
snake_case__ = [self.normalize(image=_a , mean=_a , std=_a ) for image in images]
snake_case__ = [to_channel_dimension_format(_a , _a ) for image in images]
snake_case__ = {'''pixel_values''': images}
return BatchFeature(data=_a , tensor_type=_a )
| 33 |
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int:
snake_case__ = set()
snake_case__ = 0
snake_case__ = n + 1 # maximum limit
for a in range(2 , __lowerCAmelCase ):
for b in range(2 , __lowerCAmelCase ):
snake_case__ = a**b # calculates the current power
collect_powers.add(__lowerCAmelCase ) # adds the result to the set
return len(__lowerCAmelCase )
if __name__ == "__main__":
print("""Number of terms """, solution(int(str(input()).strip())))
| 33 | 1 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPanoramaPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
@skip_mps
class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : Tuple = StableDiffusionPanoramaPipeline
__lowercase : int = TEXT_TO_IMAGE_PARAMS
__lowercase : Any = TEXT_TO_IMAGE_BATCH_PARAMS
__lowercase : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
__lowercase : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
torch.manual_seed(0 )
snake_case__ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
snake_case__ = DDIMScheduler()
torch.manual_seed(0 )
snake_case__ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
snake_case__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
snake_case__ = CLIPTextModel(_a )
snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
snake_case__ = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:str , _a:Optional[Any]=0 ):
snake_case__ = torch.manual_seed(_a )
snake_case__ = {
'''prompt''': '''a photo of the dolomites''',
'''generator''': generator,
# Setting height and width to None to prevent OOMs on CPU.
'''height''': None,
'''width''': None,
'''num_inference_steps''': 1,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case__ = self.get_dummy_components()
snake_case__ = StableDiffusionPanoramaPipeline(**_a )
snake_case__ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
snake_case__ = self.get_dummy_inputs(_a )
snake_case__ = sd_pipe(**_a ).images
snake_case__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case__ = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
super().test_inference_batch_consistent(batch_sizes=[1, 2] )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 )
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case__ = self.get_dummy_components()
snake_case__ = StableDiffusionPanoramaPipeline(**_a )
snake_case__ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
snake_case__ = self.get_dummy_inputs(_a )
snake_case__ = '''french fries'''
snake_case__ = sd_pipe(**_a , negative_prompt=_a )
snake_case__ = output.images
snake_case__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case__ = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case__ = self.get_dummy_components()
snake_case__ = StableDiffusionPanoramaPipeline(**_a )
snake_case__ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
snake_case__ = self.get_dummy_inputs(_a )
snake_case__ = sd_pipe(**_a , view_batch_size=2 )
snake_case__ = output.images
snake_case__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case__ = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case__ = self.get_dummy_components()
snake_case__ = EulerAncestralDiscreteScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' )
snake_case__ = StableDiffusionPanoramaPipeline(**_a )
snake_case__ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
snake_case__ = self.get_dummy_inputs(_a )
snake_case__ = sd_pipe(**_a ).images
snake_case__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case__ = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case__ = self.get_dummy_components()
snake_case__ = PNDMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=_a )
snake_case__ = StableDiffusionPanoramaPipeline(**_a )
snake_case__ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
snake_case__ = self.get_dummy_inputs(_a )
snake_case__ = sd_pipe(**_a ).images
snake_case__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
snake_case__ = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Any=0 ):
snake_case__ = torch.manual_seed(_a )
snake_case__ = {
'''prompt''': '''a photo of the dolomites''',
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = '''stabilityai/stable-diffusion-2-base'''
snake_case__ = DDIMScheduler.from_pretrained(_a , subfolder='''scheduler''' )
snake_case__ = StableDiffusionPanoramaPipeline.from_pretrained(_a , scheduler=_a , safety_checker=_a )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
snake_case__ = self.get_inputs()
snake_case__ = pipe(**_a ).images
snake_case__ = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_12, 20_48, 3)
snake_case__ = np.array(
[
0.36968392,
0.27025372,
0.32446766,
0.28379387,
0.36363274,
0.30733347,
0.27100027,
0.27054125,
0.25536096,
] )
assert np.abs(expected_slice - image_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
snake_case__ = StableDiffusionPanoramaPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-base''' , safety_checker=_a )
snake_case__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
snake_case__ = self.get_inputs()
snake_case__ = pipe(**_a ).images
snake_case__ = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_12, 20_48, 3)
snake_case__ = np.array(
[
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
]
] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = 0
def callback_fn(_a:int , _a:int , _a:torch.FloatTensor ) -> None:
snake_case__ = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
snake_case__ = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 2_56)
snake_case__ = latents[0, -3:, -3:, -1]
snake_case__ = np.array(
[
0.18681869,
0.33907816,
0.5361276,
0.14432865,
-0.02856611,
-0.73941123,
0.23397987,
0.47322682,
-0.37823164,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
elif step == 2:
snake_case__ = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 2_56)
snake_case__ = latents[0, -3:, -3:, -1]
snake_case__ = np.array(
[
0.18539645,
0.33987248,
0.5378559,
0.14437142,
-0.02455261,
-0.7338317,
0.23990755,
0.47356272,
-0.3786505,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
snake_case__ = False
snake_case__ = '''stabilityai/stable-diffusion-2-base'''
snake_case__ = DDIMScheduler.from_pretrained(_a , subfolder='''scheduler''' )
snake_case__ = StableDiffusionPanoramaPipeline.from_pretrained(_a , scheduler=_a , safety_checker=_a )
snake_case__ = pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
snake_case__ = self.get_inputs()
pipe(**_a , callback=_a , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
snake_case__ = '''stabilityai/stable-diffusion-2-base'''
snake_case__ = DDIMScheduler.from_pretrained(_a , subfolder='''scheduler''' )
snake_case__ = StableDiffusionPanoramaPipeline.from_pretrained(_a , scheduler=_a , safety_checker=_a )
snake_case__ = pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
snake_case__ = self.get_inputs()
snake_case__ = pipe(**_a )
snake_case__ = torch.cuda.max_memory_allocated()
# make sure that less than 5.2 GB is allocated
assert mem_bytes < 5.5 * 10**9
| 33 |
from copy import deepcopy
class __magic_name__ :
'''simple docstring'''
def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ):
if arr is None and size is not None:
snake_case__ = size
snake_case__ = [0] * size
elif arr is not None:
self.init(_a )
else:
raise ValueError('''Either arr or size must be specified''' )
def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ):
snake_case__ = len(_a )
snake_case__ = deepcopy(_a )
for i in range(1 , self.size ):
snake_case__ = self.next_(_a )
if j < self.size:
self.tree[j] += self.tree[i]
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
snake_case__ = self.next_(_a )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def SCREAMING_SNAKE_CASE__ ( _a:int ):
return index + (index & (-index))
@staticmethod
def SCREAMING_SNAKE_CASE__ ( _a:int ):
return index - (index & (-index))
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ):
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
snake_case__ = self.next_(_a )
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ):
self.add(_a , value - self.get(_a ) )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ):
if right == 0:
return 0
snake_case__ = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
snake_case__ = self.prev(_a )
return result
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ):
return self.prefix(_a ) - self.prefix(_a )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ):
return self.query(_a , index + 1 )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ):
value -= self.tree[0]
if value < 0:
return -1
snake_case__ = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
snake_case__ = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 33 | 1 |
import warnings
from typing import Dict
import numpy as np
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int:
return 1.0 / (1.0 + np.exp(-_outputs ))
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Any:
snake_case__ = np.max(_outputs , axis=-1 , keepdims=__lowerCAmelCase )
snake_case__ = np.exp(_outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=__lowerCAmelCase )
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Optional[int] = 'sigmoid'
__lowercase : int = 'softmax'
__lowercase : Optional[Any] = 'none'
@add_end_docstrings(
snake_case_ ,R'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' ,)
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : List[str] = False
__lowercase : List[str] = ClassificationFunction.NONE
def __init__( self:Optional[Any] , **_a:Union[str, Any] ):
super().__init__(**_a )
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:int=None , _a:str=None , _a:Union[str, Any]="" , **_a:Tuple ):
# Using "" as default argument because we're going to use `top_k=None` in user code to declare
# "No top_k"
snake_case__ = tokenizer_kwargs
snake_case__ = {}
if hasattr(self.model.config , '''return_all_scores''' ) and return_all_scores is None:
snake_case__ = self.model.config.return_all_scores
if isinstance(_a , _a ) or top_k is None:
snake_case__ = top_k
snake_case__ = False
elif return_all_scores is not None:
warnings.warn(
'''`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of'''
''' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.''' , _a , )
if return_all_scores:
snake_case__ = None
else:
snake_case__ = 1
if isinstance(_a , _a ):
snake_case__ = ClassificationFunction[function_to_apply.upper()]
if function_to_apply is not None:
snake_case__ = function_to_apply
return preprocess_params, {}, postprocess_params
def __call__( self:List[str] , *_a:str , **_a:Optional[int] ):
snake_case__ = super().__call__(*_a , **_a )
# TODO try and retrieve it in a nicer way from _sanitize_parameters.
snake_case__ = '''top_k''' not in kwargs
if isinstance(args[0] , _a ) and _legacy:
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:Optional[int] , **_a:str ):
snake_case__ = self.framework
if isinstance(_a , _a ):
return self.tokenizer(**_a , return_tensors=_a , **_a )
elif isinstance(_a , _a ) and len(_a ) == 1 and isinstance(inputs[0] , _a ) and len(inputs[0] ) == 2:
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC
return self.tokenizer(
text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=_a , **_a )
elif isinstance(_a , _a ):
# This is likely an invalid usage of the pipeline attempting to pass text pairs.
raise ValueError(
'''The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a'''
''' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.''' )
return self.tokenizer(_a , return_tensors=_a , **_a )
def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Optional[int] ):
return self.model(**_a )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:List[Any] , _a:List[Any]=None , _a:Tuple=1 , _a:Tuple=True ):
# `_legacy` is used to determine if we're running the naked pipeline and in backward
# compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running
# the more natural result containing the list.
# Default value before `set_parameters`
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
snake_case__ = ClassificationFunction.SIGMOID
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
snake_case__ = ClassificationFunction.SOFTMAX
elif hasattr(self.model.config , '''function_to_apply''' ) and function_to_apply is None:
snake_case__ = self.model.config.function_to_apply
else:
snake_case__ = ClassificationFunction.NONE
snake_case__ = model_outputs['''logits'''][0]
snake_case__ = outputs.numpy()
if function_to_apply == ClassificationFunction.SIGMOID:
snake_case__ = sigmoid(_a )
elif function_to_apply == ClassificationFunction.SOFTMAX:
snake_case__ = softmax(_a )
elif function_to_apply == ClassificationFunction.NONE:
snake_case__ = outputs
else:
raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" )
if top_k == 1 and _legacy:
return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()}
snake_case__ = [
{'''label''': self.model.config.idalabel[i], '''score''': score.item()} for i, score in enumerate(_a )
]
if not _legacy:
dict_scores.sort(key=lambda _a : x["score"] , reverse=_a )
if top_k is not None:
snake_case__ = dict_scores[:top_k]
return dict_scores
| 33 |
from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class __magic_name__ :
'''simple docstring'''
__lowercase : int = BlenderbotConfig
__lowercase : Any = {}
__lowercase : Optional[Any] = 'gelu'
def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[Any]=13 , _a:Tuple=7 , _a:Union[str, Any]=True , _a:int=False , _a:int=99 , _a:Optional[int]=32 , _a:List[str]=2 , _a:List[str]=4 , _a:List[Any]=37 , _a:Any=0.1 , _a:int=0.1 , _a:List[Any]=20 , _a:List[str]=2 , _a:int=1 , _a:Dict=0 , ):
snake_case__ = parent
snake_case__ = batch_size
snake_case__ = seq_length
snake_case__ = is_training
snake_case__ = use_labels
snake_case__ = vocab_size
snake_case__ = hidden_size
snake_case__ = num_hidden_layers
snake_case__ = num_attention_heads
snake_case__ = intermediate_size
snake_case__ = hidden_dropout_prob
snake_case__ = attention_probs_dropout_prob
snake_case__ = max_position_embeddings
snake_case__ = eos_token_id
snake_case__ = pad_token_id
snake_case__ = bos_token_id
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 )
snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case__ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
snake_case__ = prepare_blenderbot_inputs_dict(_a , _a , _a )
return config, inputs_dict
def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:int ):
snake_case__ = TFBlenderbotModel(config=_a ).get_decoder()
snake_case__ = inputs_dict['''input_ids''']
snake_case__ = input_ids[:1, :]
snake_case__ = inputs_dict['''attention_mask'''][:1, :]
snake_case__ = inputs_dict['''head_mask''']
snake_case__ = 1
# first forward pass
snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a )
snake_case__ , snake_case__ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1 )
snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
snake_case__ = model(_a , attention_mask=_a )[0]
snake_case__ = model(_a , attention_mask=_a , past_key_values=_a )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
snake_case__ = output_from_no_past[:, -3:, random_slice_idx]
snake_case__ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_a , _a , rtol=1e-3 )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Tuple:
if attention_mask is None:
snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
snake_case__ = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
__lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
__lowercase : Tuple = (
{
'conversational': TFBlenderbotForConditionalGeneration,
'feature-extraction': TFBlenderbotModel,
'summarization': TFBlenderbotForConditionalGeneration,
'text2text-generation': TFBlenderbotForConditionalGeneration,
'translation': TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
__lowercase : Any = True
__lowercase : int = False
__lowercase : int = False
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = TFBlenderbotModelTester(self )
snake_case__ = ConfigTester(self , config_class=_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_a )
@require_tokenizers
@require_tf
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
__lowercase : Optional[int] = ['My friends are cool but they eat too many carbs.']
__lowercase : Optional[int] = 'facebook/blenderbot-400M-distill'
@cached_property
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.tokenizer(self.src_text , return_tensors='''tf''' )
snake_case__ = self.model.generate(
model_inputs.input_ids , )
snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 33 | 1 |
import enum
import warnings
from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING
from ..utils import add_end_docstrings, is_tf_available
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
class __magic_name__ (enum.Enum ):
'''simple docstring'''
__lowercase : Dict = 0
__lowercase : Tuple = 1
__lowercase : List[Any] = 2
@add_end_docstrings(snake_case_ )
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : List[Any] = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n '
def __init__( self:Dict , *_a:int , **_a:Dict ):
super().__init__(*_a , **_a )
self.check_model_type(
TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING )
if "prefix" not in self._preprocess_params:
# This is very specific. The logic is quite complex and needs to be done
# as a "default".
# It also defines both some preprocess_kwargs and generate_kwargs
# which is why we cannot put them in their respective methods.
snake_case__ = None
if self.model.config.prefix is not None:
snake_case__ = self.model.config.prefix
if prefix is None and self.model.__class__.__name__ in [
"XLNetLMHeadModel",
"TransfoXLLMHeadModel",
"TFXLNetLMHeadModel",
"TFTransfoXLLMHeadModel",
]:
# For XLNet and TransformerXL we add an article to the prompt to give more state to the model.
snake_case__ = self.XL_PREFIX
if prefix is not None:
# Recalculate some generate_kwargs linked to prefix.
snake_case__ , snake_case__ , snake_case__ = self._sanitize_parameters(prefix=_a , **self._forward_params )
snake_case__ = {**self._preprocess_params, **preprocess_params}
snake_case__ = {**self._forward_params, **forward_params}
def SCREAMING_SNAKE_CASE__ ( self:Any , _a:str=None , _a:Tuple=None , _a:Optional[Any]=None , _a:str=None , _a:Union[str, Any]=None , _a:Union[str, Any]=None , _a:str=None , _a:int=None , **_a:int , ):
snake_case__ = {}
if prefix is not None:
snake_case__ = prefix
if prefix:
snake_case__ = self.tokenizer(
_a , padding=_a , add_special_tokens=_a , return_tensors=self.framework )
snake_case__ = prefix_inputs['''input_ids'''].shape[-1]
if handle_long_generation is not None:
if handle_long_generation not in {"hole"}:
raise ValueError(
F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected"""
''' [None, \'hole\']''' )
snake_case__ = handle_long_generation
preprocess_params.update(_a )
snake_case__ = generate_kwargs
snake_case__ = {}
if return_full_text is not None and return_type is None:
if return_text is not None:
raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' )
if return_tensors is not None:
raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' )
snake_case__ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT
if return_tensors is not None and return_type is None:
if return_text is not None:
raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' )
snake_case__ = ReturnType.TENSORS
if return_type is not None:
snake_case__ = return_type
if clean_up_tokenization_spaces is not None:
snake_case__ = clean_up_tokenization_spaces
if stop_sequence is not None:
snake_case__ = self.tokenizer.encode(_a , add_special_tokens=_a )
if len(_a ) > 1:
warnings.warn(
'''Stopping on a multiple token sequence is not yet supported on transformers. The first token of'''
''' the stop sequence will be used as the stop sequence string in the interim.''' )
snake_case__ = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def SCREAMING_SNAKE_CASE__ ( self:List[str] , *_a:List[str] , **_a:Optional[int] ):
# Parse arguments
if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]:
kwargs.update({'''add_space_before_punct_symbol''': True} )
return super()._parse_and_tokenize(*_a , **_a )
def __call__( self:List[str] , _a:str , **_a:int ):
return super().__call__(_a , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:int , _a:int="" , _a:int=None , **_a:int ):
snake_case__ = self.tokenizer(
prefix + prompt_text , padding=_a , add_special_tokens=_a , return_tensors=self.framework )
snake_case__ = prompt_text
if handle_long_generation == "hole":
snake_case__ = inputs['''input_ids'''].shape[-1]
if "max_new_tokens" in generate_kwargs:
snake_case__ = generate_kwargs['''max_new_tokens''']
else:
snake_case__ = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len
if new_tokens < 0:
raise ValueError('''We cannot infer how many new tokens are expected''' )
if cur_len + new_tokens > self.tokenizer.model_max_length:
snake_case__ = self.tokenizer.model_max_length - new_tokens
if keep_length <= 0:
raise ValueError(
'''We cannot use `hole` to handle this generation the number of desired tokens exceeds the'''
''' models max length''' )
snake_case__ = inputs['''input_ids'''][:, -keep_length:]
if "attention_mask" in inputs:
snake_case__ = inputs['''attention_mask'''][:, -keep_length:]
return inputs
def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:List[str] , **_a:Any ):
snake_case__ = model_inputs['''input_ids''']
snake_case__ = model_inputs.get('''attention_mask''' , _a )
# Allow empty prompts
if input_ids.shape[1] == 0:
snake_case__ = None
snake_case__ = None
snake_case__ = 1
else:
snake_case__ = input_ids.shape[0]
snake_case__ = model_inputs.pop('''prompt_text''' )
# If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying
# generate_kwargs, as some of the parameterization may come from the initialization of the pipeline.
snake_case__ = generate_kwargs.pop('''prefix_length''' , 0 )
if prefix_length > 0:
snake_case__ = '''max_new_tokens''' in generate_kwargs or (
'''generation_config''' in generate_kwargs
and generate_kwargs['''generation_config'''].max_new_tokens is not None
)
if not has_max_new_tokens:
snake_case__ = generate_kwargs.get('''max_length''' ) or self.model.config.max_length
generate_kwargs["max_length"] += prefix_length
snake_case__ = '''min_new_tokens''' in generate_kwargs or (
'''generation_config''' in generate_kwargs
and generate_kwargs['''generation_config'''].min_new_tokens is not None
)
if not has_min_new_tokens and "min_length" in generate_kwargs:
generate_kwargs["min_length"] += prefix_length
# BS x SL
snake_case__ = self.model.generate(input_ids=_a , attention_mask=_a , **_a )
snake_case__ = generated_sequence.shape[0]
if self.framework == "pt":
snake_case__ = generated_sequence.reshape(_a , out_b // in_b , *generated_sequence.shape[1:] )
elif self.framework == "tf":
snake_case__ = tf.reshape(_a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) )
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text}
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Tuple , _a:Union[str, Any]=ReturnType.FULL_TEXT , _a:Optional[int]=True ):
snake_case__ = model_outputs['''generated_sequence'''][0]
snake_case__ = model_outputs['''input_ids''']
snake_case__ = model_outputs['''prompt_text''']
snake_case__ = generated_sequence.numpy().tolist()
snake_case__ = []
for sequence in generated_sequence:
if return_type == ReturnType.TENSORS:
snake_case__ = {'''generated_token_ids''': sequence}
elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}:
# Decode text
snake_case__ = self.tokenizer.decode(
_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , )
# Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used
if input_ids is None:
snake_case__ = 0
else:
snake_case__ = len(
self.tokenizer.decode(
input_ids[0] , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) )
if return_type == ReturnType.FULL_TEXT:
snake_case__ = prompt_text + text[prompt_length:]
else:
snake_case__ = text[prompt_length:]
snake_case__ = {'''generated_text''': all_text}
records.append(_a )
return records
| 33 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = 0
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:str ):
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
snake_case__ = Path(_a ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
snake_case__ = Path(_a ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = CLIPConfig()
# Create a dummy config file with image_proceesor_type
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
snake_case__ = Path(_a ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
snake_case__ = AutoImageProcessor.from_pretrained(_a ).to_dict()
config_dict.pop('''image_processor_type''' )
snake_case__ = CLIPImageProcessor(**_a )
# save in new folder
model_config.save_pretrained(_a )
config.save_pretrained(_a )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
# make sure private variable is not incorrectly saved
snake_case__ = json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
with self.assertRaisesRegex(
_a , '''clip-base is not a local folder and is not a valid model identifier''' ):
snake_case__ = AutoImageProcessor.from_pretrained('''clip-base''' )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
with self.assertRaisesRegex(
_a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
snake_case__ = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
with self.assertRaisesRegex(
_a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(_a ):
snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(_a ):
snake_case__ = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a )
snake_case__ = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_a )
snake_case__ = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a )
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
try:
AutoConfig.register('''custom''' , _a )
AutoImageProcessor.register(_a , _a )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_a ):
AutoImageProcessor.register(_a , _a )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
snake_case__ = Path(_a ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) )
snake_case__ = CustomImageProcessor.from_pretrained(_a )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_a )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : List[str] = True
try:
AutoConfig.register('''custom''' , _a )
AutoImageProcessor.register(_a , _a )
# If remote code is not set, the default is to use local
snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
snake_case__ = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
snake_case__ = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(not hasattr(_a , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 33 | 1 |
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __magic_name__ :
'''simple docstring'''
def __init__( self:Tuple , _a:int , _a:str=13 , _a:Optional[int]=30 , _a:List[str]=2 , _a:Dict=3 , _a:Tuple=True , _a:str=True , _a:Dict=32 , _a:str=5 , _a:Dict=4 , _a:Dict=37 , _a:Any="gelu" , _a:Union[str, Any]=0.1 , _a:Dict=0.1 , _a:Any=10 , _a:Union[str, Any]=0.02 , _a:Union[str, Any]=None , _a:str=2 , ):
snake_case__ = parent
snake_case__ = batch_size
snake_case__ = image_size
snake_case__ = patch_size
snake_case__ = num_channels
snake_case__ = is_training
snake_case__ = use_labels
snake_case__ = hidden_size
snake_case__ = num_hidden_layers
snake_case__ = num_attention_heads
snake_case__ = intermediate_size
snake_case__ = hidden_act
snake_case__ = hidden_dropout_prob
snake_case__ = attention_probs_dropout_prob
snake_case__ = type_sequence_label_size
snake_case__ = initializer_range
snake_case__ = scope
snake_case__ = encoder_stride
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
snake_case__ = (image_size // patch_size) ** 2
snake_case__ = num_patches + 1
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case__ = None
if self.use_labels:
snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Tuple , _a:Any , _a:Optional[int] ):
snake_case__ = ViTModel(config=_a )
model.to(_a )
model.eval()
snake_case__ = model(_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:Optional[Any] , _a:Dict , _a:Union[str, Any] ):
snake_case__ = ViTForMaskedImageModeling(config=_a )
model.to(_a )
model.eval()
snake_case__ = model(_a )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
snake_case__ = 1
snake_case__ = ViTForMaskedImageModeling(_a )
model.to(_a )
model.eval()
snake_case__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
snake_case__ = model(_a )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Tuple , _a:str , _a:Optional[int] ):
snake_case__ = self.type_sequence_label_size
snake_case__ = ViTForImageClassification(_a )
model.to(_a )
model.eval()
snake_case__ = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
snake_case__ = 1
snake_case__ = ViTForImageClassification(_a )
model.to(_a )
model.eval()
snake_case__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
snake_case__ = model(_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = self.prepare_config_and_inputs()
(
(
snake_case__
) , (
snake_case__
) , (
snake_case__
) ,
) = config_and_inputs
snake_case__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : Tuple = (
(
ViTModel,
ViTForImageClassification,
ViTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
__lowercase : Dict = (
{'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification}
if is_torch_available()
else {}
)
__lowercase : Any = True
__lowercase : Union[str, Any] = False
__lowercase : int = False
__lowercase : List[str] = False
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = ViTModelTester(self )
snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
pass
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ = model_class(_a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
snake_case__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_a , nn.Linear ) )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ = model_class(_a )
snake_case__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case__ = [*signature.parameters.keys()]
snake_case__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _a )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_a )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case__ = ViTModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]:
snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ).to(_a )
snake_case__ = self.default_image_processor
snake_case__ = prepare_img()
snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
snake_case__ = model(**_a )
# verify the logits
snake_case__ = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , _a )
snake_case__ = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
# ViT models have an `interpolate_pos_encoding` argument in their forward method,
# allowing to interpolate the pre-trained position embeddings in order to use
# the model on higher resolutions. The DINO model by Facebook AI leverages this
# to visualize self-attention on higher resolution images.
snake_case__ = ViTModel.from_pretrained('''facebook/dino-vits8''' ).to(_a )
snake_case__ = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''' , size=4_80 )
snake_case__ = prepare_img()
snake_case__ = image_processor(images=_a , return_tensors='''pt''' )
snake_case__ = inputs.pixel_values.to(_a )
# forward pass
with torch.no_grad():
snake_case__ = model(_a , interpolate_pos_encoding=_a )
# verify the logits
snake_case__ = torch.Size((1, 36_01, 3_84) )
self.assertEqual(outputs.last_hidden_state.shape , _a )
snake_case__ = torch.tensor(
[[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(_a )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _a , atol=1e-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = ViTModel.from_pretrained('''facebook/dino-vits8''' , torch_dtype=torch.floataa , device_map='''auto''' )
snake_case__ = self.default_image_processor
snake_case__ = prepare_img()
snake_case__ = image_processor(images=_a , return_tensors='''pt''' )
snake_case__ = inputs.pixel_values.to(_a )
# forward pass to make sure inference works in fp16
with torch.no_grad():
snake_case__ = model(_a )
| 33 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ : int = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> int:
snake_case__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
('''cls_token''', '''vit.embeddings.cls_token'''),
('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''),
('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''),
('''pos_embed''', '''vit.embeddings.position_embeddings'''),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
('''pre_logits.fc.weight''', '''pooler.dense.weight'''),
('''pre_logits.fc.bias''', '''pooler.dense.bias'''),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
snake_case__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('''norm.weight''', '''vit.layernorm.weight'''),
('''norm.bias''', '''vit.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
return rename_keys
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict:
for i in range(config.num_hidden_layers ):
if base_model:
snake_case__ = ''''''
else:
snake_case__ = '''vit.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" )
snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
snake_case__ = in_proj_weight[
: config.hidden_size, :
]
snake_case__ = in_proj_bias[: config.hidden_size]
snake_case__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
snake_case__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
snake_case__ = in_proj_weight[
-config.hidden_size :, :
]
snake_case__ = in_proj_bias[-config.hidden_size :]
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]:
snake_case__ = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
snake_case__ = dct.pop(__lowerCAmelCase )
snake_case__ = val
def SCREAMING_SNAKE_CASE ( ) -> str:
snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
return im
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict:
snake_case__ = ViTConfig()
snake_case__ = False
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
if vit_name[-5:] == "in21k":
snake_case__ = True
snake_case__ = int(vit_name[-12:-10] )
snake_case__ = int(vit_name[-9:-6] )
else:
snake_case__ = 1000
snake_case__ = '''huggingface/label-files'''
snake_case__ = '''imagenet-1k-id2label.json'''
snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) )
snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
snake_case__ = idalabel
snake_case__ = {v: k for k, v in idalabel.items()}
snake_case__ = int(vit_name[-6:-4] )
snake_case__ = int(vit_name[-3:] )
# size of the architecture
if "deit" in vit_name:
if vit_name[9:].startswith('''tiny''' ):
snake_case__ = 192
snake_case__ = 768
snake_case__ = 12
snake_case__ = 3
elif vit_name[9:].startswith('''small''' ):
snake_case__ = 384
snake_case__ = 1536
snake_case__ = 12
snake_case__ = 6
else:
pass
else:
if vit_name[4:].startswith('''small''' ):
snake_case__ = 768
snake_case__ = 2304
snake_case__ = 8
snake_case__ = 8
elif vit_name[4:].startswith('''base''' ):
pass
elif vit_name[4:].startswith('''large''' ):
snake_case__ = 1024
snake_case__ = 4096
snake_case__ = 24
snake_case__ = 16
elif vit_name[4:].startswith('''huge''' ):
snake_case__ = 1280
snake_case__ = 5120
snake_case__ = 32
snake_case__ = 16
# load original model from timm
snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
snake_case__ = timm_model.state_dict()
if base_model:
remove_classification_head_(__lowerCAmelCase )
snake_case__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase )
for src, dest in rename_keys:
rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# load HuggingFace model
if vit_name[-5:] == "in21k":
snake_case__ = ViTModel(__lowerCAmelCase ).eval()
else:
snake_case__ = ViTForImageClassification(__lowerCAmelCase ).eval()
model.load_state_dict(__lowerCAmelCase )
# Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor
if "deit" in vit_name:
snake_case__ = DeiTImageProcessor(size=config.image_size )
else:
snake_case__ = ViTImageProcessor(size=config.image_size )
snake_case__ = image_processor(images=prepare_img() , return_tensors='''pt''' )
snake_case__ = encoding['''pixel_values''']
snake_case__ = model(__lowerCAmelCase )
if base_model:
snake_case__ = timm_model.forward_features(__lowerCAmelCase )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1e-3 )
else:
snake_case__ = timm_model(__lowerCAmelCase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 )
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCAmelCase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--vit_name""",
default="""vit_base_patch16_224""",
type=str,
help="""Name of the ViT timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
lowerCamelCase__ : str = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
| 33 | 1 |
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int:
snake_case__ = (n * (n + 1) // 2) ** 2
snake_case__ = n * (n + 1) * (2 * n + 1) // 6
return sum_cubes - sum_squares
if __name__ == "__main__":
print(F"""{solution() = }""")
| 33 |
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : List[str] = ['image_processor', 'tokenizer']
__lowercase : str = 'AutoImageProcessor'
__lowercase : Dict = 'AutoTokenizer'
def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ):
snake_case__ = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , _a , )
snake_case__ = kwargs.pop('''feature_extractor''' )
snake_case__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_a , _a )
snake_case__ = self.image_processor
snake_case__ = False
def __call__( self:Optional[int] , *_a:str , **_a:int ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*_a , **_a )
snake_case__ = kwargs.pop('''images''' , _a )
snake_case__ = kwargs.pop('''text''' , _a )
if len(_a ) > 0:
snake_case__ = args[0]
snake_case__ = args[1:]
if images is None and text is None:
raise ValueError('''You need to specify either an `images` or `text` input to process.''' )
if images is not None:
snake_case__ = self.image_processor(_a , *_a , **_a )
if text is not None:
snake_case__ = self.tokenizer(_a , **_a )
if text is None:
return inputs
elif images is None:
return encodings
else:
snake_case__ = encodings['''input_ids''']
return inputs
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ):
return self.tokenizer.batch_decode(*_a , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ):
return self.tokenizer.decode(*_a , **_a )
@contextmanager
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your images inputs, or in a separate call.''' )
snake_case__ = True
snake_case__ = self.tokenizer
yield
snake_case__ = self.image_processor
snake_case__ = False
def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ):
if added_vocab is None:
snake_case__ = self.tokenizer.get_added_vocab()
snake_case__ = {}
while tokens:
snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE )
if start_token is None:
break
snake_case__ = start_token.group(1 )
snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE )
snake_case__ = start_token.group()
if end_token is None:
snake_case__ = tokens.replace(_a , '''''' )
else:
snake_case__ = end_token.group()
snake_case__ = re.escape(_a )
snake_case__ = re.escape(_a )
snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE )
if content is not None:
snake_case__ = content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a )
if value:
if len(_a ) == 1:
snake_case__ = value[0]
snake_case__ = value
else: # leaf nodes
snake_case__ = []
for leaf in content.split(r'''<sep/>''' ):
snake_case__ = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
snake_case__ = leaf[1:-2] # for categorical special tokens
output[key].append(_a )
if len(output[key] ) == 1:
snake_case__ = output[key][0]
snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a )
if len(_a ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , )
return self.image_processor
| 33 | 1 |
import numpy as np
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray:
return 1 / (1 + np.exp(-vector ))
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray:
return vector * sigmoid(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 33 |
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __magic_name__ :
'''simple docstring'''
def __init__( self:Optional[Any] , _a:int , _a:str=3 , _a:Optional[int]=32 , _a:Optional[Any]=3 , _a:Tuple=10 , _a:List[Any]=[8, 16, 32, 64] , _a:str=[1, 1, 2, 1] , _a:Any=True , _a:List[Any]=True , _a:List[str]="relu" , _a:int=3 , _a:Tuple=None , _a:Tuple=["stage2", "stage3", "stage4"] , _a:List[Any]=[2, 3, 4] , _a:Union[str, Any]=1 , ):
snake_case__ = parent
snake_case__ = batch_size
snake_case__ = image_size
snake_case__ = num_channels
snake_case__ = embeddings_size
snake_case__ = hidden_sizes
snake_case__ = depths
snake_case__ = is_training
snake_case__ = use_labels
snake_case__ = hidden_act
snake_case__ = num_labels
snake_case__ = scope
snake_case__ = len(_a )
snake_case__ = out_features
snake_case__ = out_indices
snake_case__ = num_groups
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case__ = None
if self.use_labels:
snake_case__ = ids_tensor([self.batch_size] , self.num_labels )
snake_case__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[int] , _a:Tuple , _a:int ):
snake_case__ = BitModel(config=_a )
model.to(_a )
model.eval()
snake_case__ = model(_a )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def SCREAMING_SNAKE_CASE__ ( self:int , _a:Tuple , _a:Any , _a:Union[str, Any] ):
snake_case__ = self.num_labels
snake_case__ = BitForImageClassification(_a )
model.to(_a )
model.eval()
snake_case__ = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:str , _a:List[str] , _a:Any ):
snake_case__ = BitBackbone(config=_a )
model.to(_a )
model.eval()
snake_case__ = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case__ = None
snake_case__ = BitBackbone(config=_a )
model.to(_a )
model.eval()
snake_case__ = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = self.prepare_config_and_inputs()
snake_case__ , snake_case__ , snake_case__ = config_and_inputs
snake_case__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
__lowercase : int = (
{'feature-extraction': BitModel, 'image-classification': BitForImageClassification}
if is_torch_available()
else {}
)
__lowercase : Tuple = False
__lowercase : Optional[Any] = False
__lowercase : str = False
__lowercase : Tuple = False
__lowercase : Tuple = False
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = BitModelTester(self )
snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
return
@unittest.skip(reason='''Bit does not output attentions''' )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
pass
@unittest.skip(reason='''Bit does not use inputs_embeds''' )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
pass
@unittest.skip(reason='''Bit does not support input and output embeddings''' )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
pass
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ = model_class(_a )
snake_case__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case__ = [*signature.parameters.keys()]
snake_case__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _a )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_a )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ = model_class(config=_a )
for name, module in model.named_modules():
if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
def check_hidden_states_output(_a:List[Any] , _a:int , _a:Union[str, Any] ):
snake_case__ = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
snake_case__ = model(**self._prepare_for_class(_a , _a ) )
snake_case__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case__ = self.model_tester.num_stages
self.assertEqual(len(_a ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ = ['''preactivation''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
snake_case__ = layer_type
snake_case__ = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case__ = True
check_hidden_states_output(_a , _a , _a )
@unittest.skip(reason='''Bit does not use feedforward chunking''' )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
pass
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case__ = BitModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def SCREAMING_SNAKE_CASE ( ) -> Any:
snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a )
snake_case__ = self.default_image_processor
snake_case__ = prepare_img()
snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
snake_case__ = model(**_a )
# verify the logits
snake_case__ = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , _a )
snake_case__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
@require_torch
class __magic_name__ (snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : Optional[Any] = (BitBackbone,) if is_torch_available() else ()
__lowercase : int = BitConfig
__lowercase : Any = False
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = BitModelTester(self )
| 33 | 1 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from typing import Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import randn_tensor
from .scheduling_utils import SchedulerMixin
class __magic_name__ (snake_case_ ,snake_case_ ):
'''simple docstring'''
__lowercase : Optional[int] = 1
@register_to_config
def __init__( self:List[Any] , _a:Dict=20_00 , _a:Optional[int]=0.1 , _a:List[Any]=20 , _a:Union[str, Any]=1e-3 ):
snake_case__ = None
snake_case__ = None
snake_case__ = None
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:Optional[Any] , _a:Union[str, torch.device] = None ):
snake_case__ = torch.linspace(1 , self.config.sampling_eps , _a , device=_a )
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:List[Any] , _a:Optional[int] , _a:Tuple=None ):
if self.timesteps is None:
raise ValueError(
'''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' )
# TODO(Patrick) better comments + non-PyTorch
# postprocess model score
snake_case__ = (
-0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min
)
snake_case__ = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) )
snake_case__ = std.flatten()
while len(std.shape ) < len(score.shape ):
snake_case__ = std.unsqueeze(-1 )
snake_case__ = -score / std
# compute
snake_case__ = -1.0 / len(self.timesteps )
snake_case__ = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min)
snake_case__ = beta_t.flatten()
while len(beta_t.shape ) < len(x.shape ):
snake_case__ = beta_t.unsqueeze(-1 )
snake_case__ = -0.5 * beta_t * x
snake_case__ = torch.sqrt(_a )
snake_case__ = drift - diffusion**2 * score
snake_case__ = x + drift * dt
# add noise
snake_case__ = randn_tensor(x.shape , layout=x.layout , generator=_a , device=x.device , dtype=x.dtype )
snake_case__ = x_mean + diffusion * math.sqrt(-dt ) * noise
return x, x_mean
def __len__( self:Dict ):
return self.config.num_train_timesteps
| 33 |
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
lowerCamelCase__ : Any = """\
"""
lowerCamelCase__ : List[str] = """
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence.
For more information, see https://huggingface.co/docs/transformers/perplexity
"""
lowerCamelCase__ : Any = """
Args:
model_id (str): model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
input_texts (list of str): input text, each separate text snippet
is one list entry.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
device (str): device to run on, defaults to 'cuda' when available
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
Examples:
Example 1:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]
>>> results = perplexity.compute(model_id='gpt2',
... add_start_token=False,
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
78.22
>>> print(round(results[\"perplexities\"][0], 2))
11.11
Example 2:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = datasets.load_dataset(\"wikitext\",
... \"wikitext-2-raw-v1\",
... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS
[...]
>>> input_texts = [s for s in input_texts if s!='']
>>> results = perplexity.compute(model_id='gpt2',
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
60.35
>>> print(round(results[\"perplexities\"][0], 2))
81.12
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class __magic_name__ (datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:int ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''input_texts''': datasets.Value('''string''' ),
} ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:List[Any] , _a:int = 16 , _a:bool = True , _a:Any=None ):
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
snake_case__ = '''cuda'''
else:
snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
snake_case__ = AutoModelForCausalLM.from_pretrained(_a )
snake_case__ = model.to(_a )
snake_case__ = AutoTokenizer.from_pretrained(_a )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
snake_case__ = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(_a ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
snake_case__ = model.config.max_length - 1
else:
snake_case__ = model.config.max_length
snake_case__ = tokenizer(
_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a )
snake_case__ = encodings['''input_ids''']
snake_case__ = encodings['''attention_mask''']
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
snake_case__ = []
snake_case__ = CrossEntropyLoss(reduction='''none''' )
for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ):
snake_case__ = min(start_index + batch_size , len(_a ) )
snake_case__ = encoded_texts[start_index:end_index]
snake_case__ = attn_masks[start_index:end_index]
if add_start_token:
snake_case__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a )
snake_case__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
snake_case__ = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 )
snake_case__ = encoded_batch
with torch.no_grad():
snake_case__ = model(_a , attention_mask=_a ).logits
snake_case__ = out_logits[..., :-1, :].contiguous()
snake_case__ = labels[..., 1:].contiguous()
snake_case__ = attn_mask[..., 1:].contiguous()
snake_case__ = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
| 33 | 1 |
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
lowerCamelCase__ : str = {
"""distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
"""roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
"""bert""": (BertConfig, BertForMaskedLM, BertTokenizer),
"""gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[str]:
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int:
if args.student_type == "roberta":
snake_case__ = False
elif args.student_type == "gpt2":
snake_case__ = False
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Any:
if args.student_type == "roberta":
snake_case__ = False
def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]:
snake_case__ = argparse.ArgumentParser(description='''Training''' )
parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' )
parser.add_argument(
'''--dump_path''' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='''The output directory (log, checkpoints, parameters, etc.)''' )
parser.add_argument(
'''--data_file''' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , )
parser.add_argument(
'''--student_type''' , type=__lowerCAmelCase , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=__lowerCAmelCase , help='''The student type (DistilBERT, RoBERTa).''' , )
parser.add_argument('''--student_config''' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='''Path to the student configuration.''' )
parser.add_argument(
'''--student_pretrained_weights''' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='''Load student initialization checkpoint.''' )
parser.add_argument(
'''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=__lowerCAmelCase , help='''Teacher type (BERT, RoBERTa).''' )
parser.add_argument('''--teacher_name''' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='''The teacher model.''' )
parser.add_argument('''--temperature''' , default=2.0 , type=__lowerCAmelCase , help='''Temperature for the softmax temperature.''' )
parser.add_argument(
'''--alpha_ce''' , default=0.5 , type=__lowerCAmelCase , help='''Linear weight for the distillation loss. Must be >=0.''' )
parser.add_argument(
'''--alpha_mlm''' , default=0.0 , type=__lowerCAmelCase , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , )
parser.add_argument('''--alpha_clm''' , default=0.5 , type=__lowerCAmelCase , help='''Linear weight for the CLM loss. Must be >=0.''' )
parser.add_argument('''--alpha_mse''' , default=0.0 , type=__lowerCAmelCase , help='''Linear weight of the MSE loss. Must be >=0.''' )
parser.add_argument(
'''--alpha_cos''' , default=0.0 , type=__lowerCAmelCase , help='''Linear weight of the cosine embedding loss. Must be >=0.''' )
parser.add_argument(
'''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' )
parser.add_argument(
'''--mlm_mask_prop''' , default=0.15 , type=__lowerCAmelCase , help='''Proportion of tokens for which we need to make a prediction.''' , )
parser.add_argument('''--word_mask''' , default=0.8 , type=__lowerCAmelCase , help='''Proportion of tokens to mask out.''' )
parser.add_argument('''--word_keep''' , default=0.1 , type=__lowerCAmelCase , help='''Proportion of tokens to keep.''' )
parser.add_argument('''--word_rand''' , default=0.1 , type=__lowerCAmelCase , help='''Proportion of tokens to randomly replace.''' )
parser.add_argument(
'''--mlm_smoothing''' , default=0.7 , type=__lowerCAmelCase , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , )
parser.add_argument('''--token_counts''' , type=__lowerCAmelCase , help='''The token counts in the data_file for MLM.''' )
parser.add_argument(
'''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , )
parser.add_argument(
'''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , )
parser.add_argument(
'''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , )
parser.add_argument('''--n_epoch''' , type=__lowerCAmelCase , default=3 , help='''Number of pass on the whole dataset.''' )
parser.add_argument('''--batch_size''' , type=__lowerCAmelCase , default=5 , help='''Batch size (for each process).''' )
parser.add_argument(
'''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , )
parser.add_argument(
'''--gradient_accumulation_steps''' , type=__lowerCAmelCase , default=50 , help='''Gradient accumulation for larger training batches.''' , )
parser.add_argument('''--warmup_prop''' , default=0.05 , type=__lowerCAmelCase , help='''Linear warmup proportion.''' )
parser.add_argument('''--weight_decay''' , default=0.0 , type=__lowerCAmelCase , help='''Weight decay if we apply some.''' )
parser.add_argument('''--learning_rate''' , default=5e-4 , type=__lowerCAmelCase , help='''The initial learning rate for Adam.''' )
parser.add_argument('''--adam_epsilon''' , default=1e-6 , type=__lowerCAmelCase , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--max_grad_norm''' , default=5.0 , type=__lowerCAmelCase , help='''Max gradient norm.''' )
parser.add_argument('''--initializer_range''' , default=0.02 , type=__lowerCAmelCase , help='''Random initialization range.''' )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=__lowerCAmelCase , default='''O1''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_gpu''' , type=__lowerCAmelCase , default=1 , help='''Number of GPUs in the node.''' )
parser.add_argument('''--local_rank''' , type=__lowerCAmelCase , default=-1 , help='''Distributed training - Local rank''' )
parser.add_argument('''--seed''' , type=__lowerCAmelCase , default=56 , help='''Random seed''' )
parser.add_argument('''--log_interval''' , type=__lowerCAmelCase , default=500 , help='''Tensorboard logging interval.''' )
parser.add_argument('''--checkpoint_interval''' , type=__lowerCAmelCase , default=4000 , help='''Checkpoint interval.''' )
snake_case__ = parser.parse_args()
sanity_checks(__lowerCAmelCase )
# ARGS #
init_gpu_params(__lowerCAmelCase )
set_seed(__lowerCAmelCase )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite"""
''' itUse `--force` if you want to overwrite it''' )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" )
# SAVE PARAMS #
logger.info(F"""Param: {args}""" )
with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f:
json.dump(vars(__lowerCAmelCase ) , __lowerCAmelCase , indent=4 )
git_log(args.dump_path )
snake_case__ , snake_case__ , snake_case__ = MODEL_CLASSES[args.student_type]
snake_case__ , snake_case__ , snake_case__ = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
snake_case__ = teacher_tokenizer_class.from_pretrained(args.teacher_name )
snake_case__ = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
snake_case__ = tokenizer.all_special_tokens.index(__lowerCAmelCase )
snake_case__ = tokenizer.all_special_ids[idx]
logger.info(F"""Special tokens {special_tok_ids}""" )
snake_case__ = special_tok_ids
snake_case__ = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F"""Loading data from {args.data_file}""" )
with open(args.data_file , '''rb''' ) as fp:
snake_case__ = pickle.load(__lowerCAmelCase )
if args.mlm:
logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" )
with open(args.token_counts , '''rb''' ) as fp:
snake_case__ = pickle.load(__lowerCAmelCase )
snake_case__ = np.maximum(__lowerCAmelCase , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
snake_case__ = 0.0 # do not predict special tokens
snake_case__ = torch.from_numpy(__lowerCAmelCase )
else:
snake_case__ = None
snake_case__ = LmSeqsDataset(params=__lowerCAmelCase , data=__lowerCAmelCase )
logger.info('''Data loader created.''' )
# STUDENT #
logger.info(F"""Loading student config from {args.student_config}""" )
snake_case__ = student_config_class.from_pretrained(args.student_config )
snake_case__ = True
if args.student_pretrained_weights is not None:
logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" )
snake_case__ = student_model_class.from_pretrained(args.student_pretrained_weights , config=__lowerCAmelCase )
else:
snake_case__ = student_model_class(__lowerCAmelCase )
if args.n_gpu > 0:
student.to(F"""cuda:{args.local_rank}""" )
logger.info('''Student loaded.''' )
# TEACHER #
snake_case__ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__lowerCAmelCase )
if args.n_gpu > 0:
teacher.to(F"""cuda:{args.local_rank}""" )
logger.info(F"""Teacher loaded from {args.teacher_name}.""" )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(__lowerCAmelCase , __lowerCAmelCase )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(__lowerCAmelCase , __lowerCAmelCase )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
snake_case__ = Distiller(
params=__lowerCAmelCase , dataset=__lowerCAmelCase , token_probs=__lowerCAmelCase , student=__lowerCAmelCase , teacher=__lowerCAmelCase )
distiller.train()
logger.info('''Let\'s go get some drinks.''' )
if __name__ == "__main__":
main()
| 33 |
import os
from datetime import datetime as dt
from github import Github
lowerCamelCase__ : int = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""enhancement""",
"""new pipeline/model""",
"""new scheduler""",
"""wip""",
]
def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
snake_case__ = Github(os.environ['''GITHUB_TOKEN'''] )
snake_case__ = g.get_repo('''huggingface/diffusers''' )
snake_case__ = repo.get_issues(state='''open''' )
for issue in open_issues:
snake_case__ = sorted(issue.get_comments() , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase )
snake_case__ = comments[0] if len(__lowerCAmelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state='''closed''' )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state='''open''' )
issue.remove_from_labels('''stale''' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
issue.add_to_labels('''stale''' )
if __name__ == "__main__":
main()
| 33 | 1 |
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
# Construct model
if gpta_config_file == "":
snake_case__ = GPTaConfig()
else:
snake_case__ = GPTaConfig.from_json_file(__lowerCAmelCase )
snake_case__ = GPTaModel(__lowerCAmelCase )
# Load weights from numpy
load_tf_weights_in_gpta(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Save pytorch-model
snake_case__ = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME
snake_case__ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME
print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" )
torch.save(model.state_dict() , __lowerCAmelCase )
print(F"""Save configuration file to {pytorch_config_dump_path}""" )
with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--gpt2_config_file""",
default="""""",
type=str,
help=(
"""An optional config json file corresponding to the pre-trained OpenAI model. \n"""
"""This specifies the model architecture."""
),
)
lowerCamelCase__ : int = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 33 |
import pytest
from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs
@pytest.mark.parametrize(
'''kwargs, expected''' , [
({'''num_shards''': 0, '''max_num_jobs''': 1}, []),
({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]),
({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__lowerCAmelCase , i + 1 ) for i in range(10 )]),
({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]),
({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]),
({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]),
] , )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
snake_case__ = _distribute_shards(**__lowerCAmelCase )
assert out == expected
@pytest.mark.parametrize(
'''gen_kwargs, max_num_jobs, expected''' , [
({'''foo''': 0}, 10, [{'''foo''': 0}]),
({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]),
({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]),
({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]),
({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]),
] , )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict:
snake_case__ = _split_gen_kwargs(__lowerCAmelCase , __lowerCAmelCase )
assert out == expected
@pytest.mark.parametrize(
'''gen_kwargs, expected''' , [
({'''foo''': 0}, 1),
({'''shards''': [0]}, 1),
({'''shards''': [0, 1, 2, 3]}, 4),
({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4),
({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4),
({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError),
] , )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
if expected is RuntimeError:
with pytest.raises(__lowerCAmelCase ):
_number_of_shards_in_gen_kwargs(__lowerCAmelCase )
else:
snake_case__ = _number_of_shards_in_gen_kwargs(__lowerCAmelCase )
assert out == expected
| 33 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]:
snake_case__ = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:] )
class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : Dict = StableDiffusionLatentUpscalePipeline
__lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
'height',
'width',
'cross_attention_kwargs',
'negative_prompt_embeds',
'prompt_embeds',
}
__lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'}
__lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
__lowercase : int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__lowercase : List[Any] = frozenset([] )
__lowercase : Any = True
@property
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = 1
snake_case__ = 4
snake_case__ = (16, 16)
snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a )
return image
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
torch.manual_seed(0 )
snake_case__ = UNetaDConditionModel(
act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=(
'''KDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
) , in_channels=8 , mid_block_type=_a , only_cross_attention=_a , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , )
snake_case__ = AutoencoderKL(
block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
snake_case__ = EulerDiscreteScheduler(prediction_type='''sample''' )
snake_case__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , )
snake_case__ = CLIPTextModel(_a )
snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
snake_case__ = {
'''unet''': model.eval(),
'''vae''': vae.eval(),
'''scheduler''': scheduler,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:List[str]=0 ):
if str(_a ).startswith('''mps''' ):
snake_case__ = torch.manual_seed(_a )
else:
snake_case__ = torch.Generator(device=_a ).manual_seed(_a )
snake_case__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': self.dummy_image.cpu(),
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = '''cpu'''
snake_case__ = self.get_dummy_components()
snake_case__ = self.pipeline_class(**_a )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
snake_case__ = self.get_dummy_inputs(_a )
snake_case__ = pipe(**_a ).images
snake_case__ = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 2_56, 2_56, 3) )
snake_case__ = np.array(
[0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] )
snake_case__ = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_a , 1e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:str ):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
super().test_inference_batch_single_identical(expected_max_diff=7e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
super().test_save_load_local(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:str ):
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = [
'''DDIMScheduler''',
'''DDPMScheduler''',
'''PNDMScheduler''',
'''HeunDiscreteScheduler''',
'''EulerAncestralDiscreteScheduler''',
'''KDPM2DiscreteScheduler''',
'''KDPM2AncestralDiscreteScheduler''',
'''DPMSolverSDEScheduler''',
]
snake_case__ = self.get_dummy_components()
snake_case__ = self.pipeline_class(**_a )
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=_a )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
snake_case__ = self.get_dummy_inputs(_a )
snake_case__ = 2
snake_case__ = []
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
snake_case__ = getattr(_a , scheduler_enum.name )
snake_case__ = scheduler_cls.from_config(pipe.scheduler.config )
snake_case__ = pipe(**_a )[0]
outputs.append(_a )
assert check_same_shape(_a )
@require_torch_gpu
@slow
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = torch.manual_seed(33 )
snake_case__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa )
pipe.to('''cuda''' )
snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
snake_case__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic'''
snake_case__ = pipe(_a , generator=_a , output_type='''latent''' ).images
snake_case__ = upscaler(
prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0]
snake_case__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' )
assert np.abs((expected_image - image).mean() ) < 5e-2
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = torch.manual_seed(33 )
snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
snake_case__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas'''
snake_case__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' )
snake_case__ = upscaler(
prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0]
snake_case__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' )
assert np.abs((expected_image - image).max() ) < 5e-2
| 33 |
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : str = IFImgaImgSuperResolutionPipeline
__lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'}
__lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} )
__lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'}
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
return self._get_superresolution_dummy_components()
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ):
if str(_a ).startswith('''mps''' ):
snake_case__ = torch.manual_seed(_a )
else:
snake_case__ = torch.Generator(device=_a ).manual_seed(_a )
snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a )
snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a )
snake_case__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''original_image''': original_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def SCREAMING_SNAKE_CASE__ ( self:str ):
self._test_save_load_local()
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 33 | 1 |
from math import factorial
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int:
# If either of the conditions are true, the function is being asked
# to calculate a factorial of a negative number, which is not possible
if n < k or k < 0:
raise ValueError('''Please enter positive integers for n and k where n >= k''' )
return factorial(__lowerCAmelCase ) // (factorial(__lowerCAmelCase ) * factorial(n - k ))
if __name__ == "__main__":
print(
"""The number of five-card hands possible from a standard""",
F"""fifty-two card deck is: {combinations(5_2, 5)}\n""",
)
print(
"""If a class of 40 students must be arranged into groups of""",
F"""4 for group projects, there are {combinations(4_0, 4)} ways""",
"""to arrange them.\n""",
)
print(
"""If 10 teams are competing in a Formula One race, there""",
F"""are {combinations(1_0, 3)} ways that first, second and""",
"""third place can be awarded.""",
)
| 33 |
import math
class __magic_name__ :
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:list[list[float]] , _a:list[int] ):
snake_case__ = 0.0
snake_case__ = 0.0
for i in range(len(_a ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:list[list[int | float]] , _a:list[int] , _a:int , _a:float ):
for i in range(len(_a ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def SCREAMING_SNAKE_CASE ( ) -> None:
# Training Examples ( m, n )
snake_case__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
snake_case__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
snake_case__ = SelfOrganizingMap()
snake_case__ = 3
snake_case__ = 0.5
for _ in range(__lowerCAmelCase ):
for j in range(len(__lowerCAmelCase ) ):
# training sample
snake_case__ = training_samples[j]
# Compute the winning vector
snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase )
# Update the winning vector
snake_case__ = self_organizing_map.update(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# classify test sample
snake_case__ = [0, 0, 0, 1]
snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase )
# results
print(F"""Clusters that the test sample belongs to : {winner}""" )
print(F"""Weights that have been trained : {weights}""" )
# running the main() function
if __name__ == "__main__":
main()
| 33 | 1 |
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int:
if not grid or not grid[0]:
raise TypeError('''The grid does not contain the appropriate information''' )
for cell_n in range(1 , len(grid[0] ) ):
grid[0][cell_n] += grid[0][cell_n - 1]
snake_case__ = grid[0]
for row_n in range(1 , len(__lowerCAmelCase ) ):
snake_case__ = grid[row_n]
snake_case__ = fill_row(__lowerCAmelCase , __lowerCAmelCase )
snake_case__ = grid[row_n]
return grid[-1][-1]
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> list:
current_row[0] += row_above[0]
for cell_n in range(1 , len(__lowerCAmelCase ) ):
current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] )
return current_row
if __name__ == "__main__":
import doctest
doctest.testmod()
| 33 |
from __future__ import annotations
from statistics import mean
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]:
snake_case__ = [0] * no_of_processes
snake_case__ = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(__lowerCAmelCase ):
snake_case__ = burst_time[i]
snake_case__ = []
snake_case__ = 0
snake_case__ = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
snake_case__ = []
snake_case__ = -1
for i in range(__lowerCAmelCase ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(__lowerCAmelCase )
if len(__lowerCAmelCase ) > 0:
snake_case__ = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
snake_case__ = i
total_time += burst_time[target_process]
completed += 1
snake_case__ = 0
snake_case__ = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]:
snake_case__ = [0] * no_of_processes
for i in range(__lowerCAmelCase ):
snake_case__ = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("""[TEST CASE 01]""")
lowerCamelCase__ : Tuple = 4
lowerCamelCase__ : Union[str, Any] = [2, 5, 3, 7]
lowerCamelCase__ : Optional[Any] = [0, 0, 0, 0]
lowerCamelCase__ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
lowerCamelCase__ : Union[str, Any] = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""")
for i, process_id in enumerate(list(range(1, 5))):
print(
F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t"""
F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}"""
)
print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""")
print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
| 33 | 1 |
import os
from datetime import datetime as dt
from github import Github
lowerCamelCase__ : int = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""enhancement""",
"""new pipeline/model""",
"""new scheduler""",
"""wip""",
]
def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
snake_case__ = Github(os.environ['''GITHUB_TOKEN'''] )
snake_case__ = g.get_repo('''huggingface/diffusers''' )
snake_case__ = repo.get_issues(state='''open''' )
for issue in open_issues:
snake_case__ = sorted(issue.get_comments() , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase )
snake_case__ = comments[0] if len(__lowerCAmelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state='''closed''' )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state='''open''' )
issue.remove_from_labels('''stale''' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
issue.add_to_labels('''stale''' )
if __name__ == "__main__":
main()
| 33 |
lowerCamelCase__ : List[str] = """Alexander Joslin"""
import operator as op
from .stack import Stack
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int:
snake_case__ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub}
snake_case__ = Stack()
snake_case__ = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(__lowerCAmelCase ) )
elif i in operators:
# RULE 2
operator_stack.push(__lowerCAmelCase )
elif i == ")":
# RULE 4
snake_case__ = operator_stack.peek()
operator_stack.pop()
snake_case__ = operand_stack.peek()
operand_stack.pop()
snake_case__ = operand_stack.peek()
operand_stack.pop()
snake_case__ = operators[opr](__lowerCAmelCase , __lowerCAmelCase )
operand_stack.push(__lowerCAmelCase )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
lowerCamelCase__ : Optional[Any] = """(5 + ((4 * 2) * (2 + 3)))"""
# answer = 45
print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
| 33 | 1 |
import torch
from diffusers import CMStochasticIterativeScheduler
from .test_schedulers import SchedulerCommonTest
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : str = (CMStochasticIterativeScheduler,)
__lowercase : List[str] = 10
def SCREAMING_SNAKE_CASE__ ( self:int , **_a:Optional[int] ):
snake_case__ = {
'''num_train_timesteps''': 2_01,
'''sigma_min''': 0.002,
'''sigma_max''': 80.0,
}
config.update(**_a )
return config
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = 10
snake_case__ = self.get_scheduler_config()
snake_case__ = self.scheduler_classes[0](**_a )
scheduler.set_timesteps(_a )
snake_case__ = scheduler.timesteps[0]
snake_case__ = scheduler.timesteps[1]
snake_case__ = self.dummy_sample
snake_case__ = 0.1 * sample
snake_case__ = scheduler.step(_a , _a , _a ).prev_sample
snake_case__ = scheduler.step(_a , _a , _a ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_a )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
for clip_denoised in [True, False]:
self.check_over_configs(clip_denoised=_a )
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = 1
scheduler.set_timesteps(_a )
snake_case__ = scheduler.timesteps
snake_case__ = torch.manual_seed(0 )
snake_case__ = self.dummy_model()
snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(_a ):
# 1. scale model input
snake_case__ = scheduler.scale_model_input(_a , _a )
# 2. predict noise residual
snake_case__ = model(_a , _a )
# 3. predict previous sample x_t-1
snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
snake_case__ = pred_prev_sample
snake_case__ = torch.sum(torch.abs(_a ) )
snake_case__ = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 192.7614 ) < 1e-2
assert abs(result_mean.item() - 0.2510 ) < 1e-3
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [1_06, 0]
scheduler.set_timesteps(timesteps=_a )
snake_case__ = scheduler.timesteps
snake_case__ = torch.manual_seed(0 )
snake_case__ = self.dummy_model()
snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma
for t in timesteps:
# 1. scale model input
snake_case__ = scheduler.scale_model_input(_a , _a )
# 2. predict noise residual
snake_case__ = model(_a , _a )
# 3. predict previous sample x_t-1
snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
snake_case__ = pred_prev_sample
snake_case__ = torch.sum(torch.abs(_a ) )
snake_case__ = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 347.6357 ) < 1e-2
assert abs(result_mean.item() - 0.4527 ) < 1e-3
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [39, 30, 12, 15, 0]
with self.assertRaises(_a , msg='''`timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=_a )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [39, 30, 12, 1, 0]
snake_case__ = len(_a )
with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=_a )
| 33 |
import warnings
from ...utils import logging
from .image_processing_perceiver import PerceiverImageProcessor
lowerCamelCase__ : int = logging.get_logger(__name__)
class __magic_name__ (snake_case_ ):
'''simple docstring'''
def __init__( self:List[Any] , *_a:Dict , **_a:Tuple ):
warnings.warn(
'''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use PerceiverImageProcessor instead.''' , _a , )
super().__init__(*_a , **_a )
| 33 | 1 |
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
snake_case__ = F"""Input value of [number={number}] must be an integer"""
raise TypeError(__lowerCAmelCase )
if number < 1:
snake_case__ = F"""Input value of [number={number}] must be > 0"""
raise ValueError(__lowerCAmelCase )
snake_case__ = 1
for i in range(1 , __lowerCAmelCase ):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 33 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase__ : Tuple = {
"""configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""],
"""tokenization_roberta""": ["""RobertaTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = ["""RobertaTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Optional[int] = [
"""ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""RobertaForCausalLM""",
"""RobertaForMaskedLM""",
"""RobertaForMultipleChoice""",
"""RobertaForQuestionAnswering""",
"""RobertaForSequenceClassification""",
"""RobertaForTokenClassification""",
"""RobertaModel""",
"""RobertaPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : List[str] = [
"""TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFRobertaForCausalLM""",
"""TFRobertaForMaskedLM""",
"""TFRobertaForMultipleChoice""",
"""TFRobertaForQuestionAnswering""",
"""TFRobertaForSequenceClassification""",
"""TFRobertaForTokenClassification""",
"""TFRobertaMainLayer""",
"""TFRobertaModel""",
"""TFRobertaPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : str = [
"""FlaxRobertaForCausalLM""",
"""FlaxRobertaForMaskedLM""",
"""FlaxRobertaForMultipleChoice""",
"""FlaxRobertaForQuestionAnswering""",
"""FlaxRobertaForSequenceClassification""",
"""FlaxRobertaForTokenClassification""",
"""FlaxRobertaModel""",
"""FlaxRobertaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 33 | 1 |
from __future__ import annotations
from statistics import mean
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]:
snake_case__ = [0] * no_of_processes
snake_case__ = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(__lowerCAmelCase ):
snake_case__ = burst_time[i]
snake_case__ = []
snake_case__ = 0
snake_case__ = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
snake_case__ = []
snake_case__ = -1
for i in range(__lowerCAmelCase ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(__lowerCAmelCase )
if len(__lowerCAmelCase ) > 0:
snake_case__ = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
snake_case__ = i
total_time += burst_time[target_process]
completed += 1
snake_case__ = 0
snake_case__ = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]:
snake_case__ = [0] * no_of_processes
for i in range(__lowerCAmelCase ):
snake_case__ = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("""[TEST CASE 01]""")
lowerCamelCase__ : Tuple = 4
lowerCamelCase__ : Union[str, Any] = [2, 5, 3, 7]
lowerCamelCase__ : Optional[Any] = [0, 0, 0, 0]
lowerCamelCase__ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
lowerCamelCase__ : Union[str, Any] = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""")
for i, process_id in enumerate(list(range(1, 5))):
print(
F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t"""
F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}"""
)
print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""")
print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
| 33 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]:
snake_case__ = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:] )
class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : Dict = StableDiffusionLatentUpscalePipeline
__lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
'height',
'width',
'cross_attention_kwargs',
'negative_prompt_embeds',
'prompt_embeds',
}
__lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'}
__lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
__lowercase : int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__lowercase : List[Any] = frozenset([] )
__lowercase : Any = True
@property
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = 1
snake_case__ = 4
snake_case__ = (16, 16)
snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a )
return image
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
torch.manual_seed(0 )
snake_case__ = UNetaDConditionModel(
act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=(
'''KDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
) , in_channels=8 , mid_block_type=_a , only_cross_attention=_a , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , )
snake_case__ = AutoencoderKL(
block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
snake_case__ = EulerDiscreteScheduler(prediction_type='''sample''' )
snake_case__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , )
snake_case__ = CLIPTextModel(_a )
snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
snake_case__ = {
'''unet''': model.eval(),
'''vae''': vae.eval(),
'''scheduler''': scheduler,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:List[str]=0 ):
if str(_a ).startswith('''mps''' ):
snake_case__ = torch.manual_seed(_a )
else:
snake_case__ = torch.Generator(device=_a ).manual_seed(_a )
snake_case__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': self.dummy_image.cpu(),
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = '''cpu'''
snake_case__ = self.get_dummy_components()
snake_case__ = self.pipeline_class(**_a )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
snake_case__ = self.get_dummy_inputs(_a )
snake_case__ = pipe(**_a ).images
snake_case__ = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 2_56, 2_56, 3) )
snake_case__ = np.array(
[0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] )
snake_case__ = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_a , 1e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:str ):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
super().test_inference_batch_single_identical(expected_max_diff=7e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
super().test_save_load_local(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:str ):
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = [
'''DDIMScheduler''',
'''DDPMScheduler''',
'''PNDMScheduler''',
'''HeunDiscreteScheduler''',
'''EulerAncestralDiscreteScheduler''',
'''KDPM2DiscreteScheduler''',
'''KDPM2AncestralDiscreteScheduler''',
'''DPMSolverSDEScheduler''',
]
snake_case__ = self.get_dummy_components()
snake_case__ = self.pipeline_class(**_a )
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=_a )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
snake_case__ = self.get_dummy_inputs(_a )
snake_case__ = 2
snake_case__ = []
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
snake_case__ = getattr(_a , scheduler_enum.name )
snake_case__ = scheduler_cls.from_config(pipe.scheduler.config )
snake_case__ = pipe(**_a )[0]
outputs.append(_a )
assert check_same_shape(_a )
@require_torch_gpu
@slow
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = torch.manual_seed(33 )
snake_case__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa )
pipe.to('''cuda''' )
snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
snake_case__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic'''
snake_case__ = pipe(_a , generator=_a , output_type='''latent''' ).images
snake_case__ = upscaler(
prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0]
snake_case__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' )
assert np.abs((expected_image - image).mean() ) < 5e-2
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = torch.manual_seed(33 )
snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
snake_case__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas'''
snake_case__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' )
snake_case__ = upscaler(
prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0]
snake_case__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' )
assert np.abs((expected_image - image).max() ) < 5e-2
| 33 | 1 |
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 33 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import is_speech_available, is_vision_available
from transformers.testing_utils import require_torch
if is_vision_available():
from transformers import TvltImageProcessor
if is_speech_available():
from transformers import TvltFeatureExtractor
from transformers import TvltProcessor
@require_torch
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = '''ZinengTang/tvlt-base'''
snake_case__ = tempfile.mkdtemp()
def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:List[Any] ):
return TvltImageProcessor.from_pretrained(self.checkpoint , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , **_a:Tuple ):
return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
processor.save_pretrained(self.tmpdirname )
snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname )
self.assertIsInstance(processor.feature_extractor , _a )
self.assertIsInstance(processor.image_processor , _a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
snake_case__ = np.ones([1_20_00] )
snake_case__ = feature_extractor(_a , return_tensors='''np''' )
snake_case__ = processor(audio=_a , return_tensors='''np''' )
for key in audio_dict.keys():
self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
snake_case__ = np.ones([3, 2_24, 2_24] )
snake_case__ = image_processor(_a , return_tensors='''np''' )
snake_case__ = processor(images=_a , return_tensors='''np''' )
for key in image_dict.keys():
self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
snake_case__ = np.ones([1_20_00] )
snake_case__ = np.ones([3, 2_24, 2_24] )
snake_case__ = processor(audio=_a , images=_a )
self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] )
# test if it raises when no input is passed
with pytest.raises(_a ):
processor()
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
self.assertListEqual(
processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
| 33 | 1 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
lowerCamelCase__ : List[str] = logging.get_logger(__name__)
lowerCamelCase__ : List[str] = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""adapter_layer""": """encoder.layers.*.adapter_layer""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
"""pooling_layer.linear""": """projector""",
"""pooling_layer.projection""": """classifier""",
}
lowerCamelCase__ : int = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""projector""",
"""classifier""",
]
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[int]:
snake_case__ = {}
with open(__lowerCAmelCase , '''r''' ) as file:
for line_number, line in enumerate(__lowerCAmelCase ):
snake_case__ = line.strip()
if line:
snake_case__ = line.split()
snake_case__ = line_number
snake_case__ = words[0]
snake_case__ = value
return result
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
for attribute in key.split('''.''' ):
snake_case__ = getattr(__lowerCAmelCase , __lowerCAmelCase )
snake_case__ = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__lowerCAmelCase ):
snake_case__ = PARAM_MAPPING[full_name.split('''.''' )[-1]]
snake_case__ = '''param'''
if weight_type is not None and weight_type != "param":
snake_case__ = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape
elif weight_type is not None and weight_type == "param":
snake_case__ = hf_pointer
for attribute in hf_param_name.split('''.''' ):
snake_case__ = getattr(__lowerCAmelCase , __lowerCAmelCase )
snake_case__ = shape_pointer.shape
# let's reduce dimension
snake_case__ = value[0]
else:
snake_case__ = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}""" )
if weight_type == "weight":
snake_case__ = value
elif weight_type == "weight_g":
snake_case__ = value
elif weight_type == "weight_v":
snake_case__ = value
elif weight_type == "bias":
snake_case__ = value
elif weight_type == "param":
for attribute in hf_param_name.split('''.''' ):
snake_case__ = getattr(__lowerCAmelCase , __lowerCAmelCase )
snake_case__ = value
else:
snake_case__ = value
logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
snake_case__ = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__lowerCAmelCase ):
snake_case__ = PARAM_MAPPING[full_name.split('''.''' )[-1]]
snake_case__ = '''param'''
if weight_type is not None and weight_type != "param":
snake_case__ = '''.'''.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
snake_case__ = '''.'''.join([key, hf_param_name] )
else:
snake_case__ = key
snake_case__ = value if '''lm_head''' in full_key else value[0]
lowerCamelCase__ : Optional[int] = {
"""W_a""": """linear_1.weight""",
"""W_b""": """linear_2.weight""",
"""b_a""": """linear_1.bias""",
"""b_b""": """linear_2.bias""",
"""ln_W""": """norm.weight""",
"""ln_b""": """norm.bias""",
}
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> Union[str, Any]:
snake_case__ = False
for key, mapped_key in MAPPING.items():
snake_case__ = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
snake_case__ = True
if "*" in mapped_key:
snake_case__ = name.split(__lowerCAmelCase )[0].split('''.''' )[-2]
snake_case__ = mapped_key.replace('''*''' , __lowerCAmelCase )
if "weight_g" in name:
snake_case__ = '''weight_g'''
elif "weight_v" in name:
snake_case__ = '''weight_v'''
elif "bias" in name:
snake_case__ = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
snake_case__ = '''weight'''
else:
snake_case__ = None
if hf_dict is not None:
rename_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
else:
set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
return is_used
return is_used
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
snake_case__ = []
snake_case__ = fairseq_model.state_dict()
snake_case__ = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
snake_case__ = False
if "conv_layers" in name:
load_conv_layer(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , )
snake_case__ = True
else:
snake_case__ = load_wavaveca_layer(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if not is_used:
unused_weights.append(__lowerCAmelCase )
logger.warning(F"""Unused weights: {unused_weights}""" )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int:
snake_case__ = full_name.split('''conv_layers.''' )[-1]
snake_case__ = name.split('''.''' )
snake_case__ = int(items[0] )
snake_case__ = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
snake_case__ = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
snake_case__ = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
snake_case__ = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
snake_case__ = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(__lowerCAmelCase )
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=False ) -> List[str]:
if config_path is not None:
snake_case__ = WavaVecaConfig.from_pretrained(__lowerCAmelCase )
else:
snake_case__ = WavaVecaConfig()
if is_seq_class:
snake_case__ = read_txt_into_dict(__lowerCAmelCase )
snake_case__ = idalabel
snake_case__ = WavaVecaForSequenceClassification(__lowerCAmelCase )
snake_case__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , )
feature_extractor.save_pretrained(__lowerCAmelCase )
elif is_finetuned:
if dict_path:
snake_case__ = Dictionary.load(__lowerCAmelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
snake_case__ = target_dict.pad_index
snake_case__ = target_dict.bos_index
snake_case__ = target_dict.eos_index
snake_case__ = len(target_dict.symbols )
snake_case__ = os.path.join(__lowerCAmelCase , '''vocab.json''' )
if not os.path.isdir(__lowerCAmelCase ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__lowerCAmelCase ) )
return
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
snake_case__ = target_dict.indices
# fairseq has the <pad> and <s> switched
snake_case__ = 0
snake_case__ = 1
with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(__lowerCAmelCase , __lowerCAmelCase )
snake_case__ = WavaVecaCTCTokenizer(
__lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__lowerCAmelCase , )
snake_case__ = True if config.feat_extract_norm == '''layer''' else False
snake_case__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , )
snake_case__ = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase )
processor.save_pretrained(__lowerCAmelCase )
snake_case__ = WavaVecaForCTC(__lowerCAmelCase )
else:
snake_case__ = WavaVecaForPreTraining(__lowerCAmelCase )
if is_finetuned or is_seq_class:
snake_case__ , snake_case__ , snake_case__ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
snake_case__ = argparse.Namespace(task='''audio_pretraining''' )
snake_case__ = fairseq.tasks.setup_task(__lowerCAmelCase )
snake_case__ , snake_case__ , snake_case__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCAmelCase )
snake_case__ = model[0].eval()
recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , not is_finetuned )
hf_wavavec.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
lowerCamelCase__ : Tuple = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
parser.add_argument(
"""--is_seq_class""",
action="""store_true""",
help="""Whether the model to convert is a fine-tuned sequence classification model or not""",
)
lowerCamelCase__ : Union[str, Any] = parser.parse_args()
lowerCamelCase__ : int = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 33 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Optional[int] = {
"""facebook/data2vec-vision-base-ft""": (
"""https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json"""
),
}
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Optional[int] = 'data2vec-vision'
def __init__( self:int , _a:Tuple=7_68 , _a:int=12 , _a:Any=12 , _a:Optional[int]=30_72 , _a:Optional[int]="gelu" , _a:Any=0.0 , _a:Any=0.0 , _a:List[str]=0.02 , _a:Dict=1e-12 , _a:Tuple=2_24 , _a:Any=16 , _a:str=3 , _a:str=False , _a:Union[str, Any]=False , _a:Optional[int]=False , _a:Any=False , _a:Dict=0.1 , _a:Dict=0.1 , _a:str=True , _a:str=[3, 5, 7, 11] , _a:List[str]=[1, 2, 3, 6] , _a:List[str]=True , _a:Any=0.4 , _a:str=2_56 , _a:Union[str, Any]=1 , _a:int=False , _a:Optional[int]=2_55 , **_a:Dict , ):
super().__init__(**_a )
snake_case__ = hidden_size
snake_case__ = num_hidden_layers
snake_case__ = num_attention_heads
snake_case__ = intermediate_size
snake_case__ = hidden_act
snake_case__ = hidden_dropout_prob
snake_case__ = attention_probs_dropout_prob
snake_case__ = initializer_range
snake_case__ = layer_norm_eps
snake_case__ = image_size
snake_case__ = patch_size
snake_case__ = num_channels
snake_case__ = use_mask_token
snake_case__ = use_absolute_position_embeddings
snake_case__ = use_relative_position_bias
snake_case__ = use_shared_relative_position_bias
snake_case__ = layer_scale_init_value
snake_case__ = drop_path_rate
snake_case__ = use_mean_pooling
# decode head attributes (semantic segmentation)
snake_case__ = out_indices
snake_case__ = pool_scales
# auxiliary head attributes (semantic segmentation)
snake_case__ = use_auxiliary_head
snake_case__ = auxiliary_loss_weight
snake_case__ = auxiliary_channels
snake_case__ = auxiliary_num_convs
snake_case__ = auxiliary_concat_input
snake_case__ = semantic_loss_ignore_index
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Any = version.parse('1.11' )
@property
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
return 1e-4
| 33 | 1 |
import random
import unittest
import numpy as np
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionImgaImgPipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __magic_name__ (snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : Tuple = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline'
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:Optional[int]=0 ):
snake_case__ = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(_a ) )
snake_case__ = np.random.RandomState(_a )
snake_case__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 3,
'''strength''': 0.75,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
pipe.set_progress_bar_config(disable=_a )
snake_case__ = self.get_dummy_inputs()
snake_case__ = pipe(**_a ).images
snake_case__ = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 1_28, 1_28, 3)
snake_case__ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] )
assert np.abs(image_slice - expected_slice ).max() < 1e-1
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
snake_case__ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_a )
pipe.set_progress_bar_config(disable=_a )
snake_case__ = self.get_dummy_inputs()
snake_case__ = pipe(**_a ).images
snake_case__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
snake_case__ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
snake_case__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_a )
# warmup pass to apply optimizations
snake_case__ = pipe(**self.get_dummy_inputs() )
snake_case__ = self.get_dummy_inputs()
snake_case__ = pipe(**_a ).images
snake_case__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
snake_case__ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
snake_case__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_a )
snake_case__ = self.get_dummy_inputs()
snake_case__ = pipe(**_a ).images
snake_case__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
snake_case__ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
snake_case__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_a )
snake_case__ = self.get_dummy_inputs()
snake_case__ = pipe(**_a ).images
snake_case__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
snake_case__ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
snake_case__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_a )
snake_case__ = self.get_dummy_inputs()
snake_case__ = pipe(**_a ).images
snake_case__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
snake_case__ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = ort.SessionOptions()
snake_case__ = False
return options
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
snake_case__ = init_image.resize((7_68, 5_12) )
# using the PNDM scheduler by default
snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_a )
snake_case__ = '''A fantasy landscape, trending on artstation'''
snake_case__ = np.random.RandomState(0 )
snake_case__ = pipe(
prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=_a , output_type='''np''' , )
snake_case__ = output.images
snake_case__ = images[0, 2_55:2_58, 3_83:3_86, -1]
assert images.shape == (1, 5_12, 7_68, 3)
snake_case__ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
snake_case__ = init_image.resize((7_68, 5_12) )
snake_case__ = LMSDiscreteScheduler.from_pretrained(
'''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' )
snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=_a , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_a )
snake_case__ = '''A fantasy landscape, trending on artstation'''
snake_case__ = np.random.RandomState(0 )
snake_case__ = pipe(
prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=_a , output_type='''np''' , )
snake_case__ = output.images
snake_case__ = images[0, 2_55:2_58, 3_83:3_86, -1]
assert images.shape == (1, 5_12, 7_68, 3)
snake_case__ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
| 33 |
import os
import sys
lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(__file__), """src""")
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
lowerCamelCase__ : Optional[int] = [
"""torch""",
"""numpy""",
"""tokenizers""",
"""filelock""",
"""requests""",
"""tqdm""",
"""regex""",
"""sentencepiece""",
"""sacremoses""",
"""importlib_metadata""",
"""huggingface_hub""",
]
@add_start_docstrings(AutoConfig.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any:
return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoTokenizer.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]:
return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModel.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple:
return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]:
return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]:
return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]:
return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]:
return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
| 33 | 1 |
from collections.abc import Sequence
from queue import Queue
class __magic_name__ :
'''simple docstring'''
def __init__( self:str , _a:List[Any] , _a:Optional[Any] , _a:List[Any] , _a:Dict=None , _a:List[Any]=None ):
snake_case__ = start
snake_case__ = end
snake_case__ = val
snake_case__ = (start + end) // 2
snake_case__ = left
snake_case__ = right
def __repr__( self:Dict ):
return F"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})"""
class __magic_name__ :
'''simple docstring'''
def __init__( self:Dict , _a:Sequence , _a:Dict ):
snake_case__ = collection
snake_case__ = function
if self.collection:
snake_case__ = self._build_tree(0 , len(_a ) - 1 )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:Optional[Any] , _a:Optional[Any] ):
self._update_tree(self.root , _a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:str , _a:str ):
return self._query_range(self.root , _a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:str , _a:List[Any] ):
if start == end:
return SegmentTreeNode(_a , _a , self.collection[start] )
snake_case__ = (start + end) // 2
snake_case__ = self._build_tree(_a , _a )
snake_case__ = self._build_tree(mid + 1 , _a )
return SegmentTreeNode(_a , _a , self.fn(left.val , right.val ) , _a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:Any , _a:Union[str, Any] , _a:Optional[Any] ):
if node.start == i and node.end == i:
snake_case__ = val
return
if i <= node.mid:
self._update_tree(node.left , _a , _a )
else:
self._update_tree(node.right , _a , _a )
snake_case__ = self.fn(node.left.val , node.right.val )
def SCREAMING_SNAKE_CASE__ ( self:int , _a:List[str] , _a:Any , _a:Any ):
if node.start == i and node.end == j:
return node.val
if i <= node.mid:
if j <= node.mid:
# range in left child tree
return self._query_range(node.left , _a , _a )
else:
# range in left child tree and right child tree
return self.fn(
self._query_range(node.left , _a , node.mid ) , self._query_range(node.right , node.mid + 1 , _a ) , )
else:
# range in right child tree
return self._query_range(node.right , _a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
if self.root is not None:
snake_case__ = Queue()
queue.put(self.root )
while not queue.empty():
snake_case__ = queue.get()
yield node
if node.left is not None:
queue.put(node.left )
if node.right is not None:
queue.put(node.right )
if __name__ == "__main__":
import operator
for fn in [operator.add, max, min]:
print("""*""" * 5_0)
lowerCamelCase__ : int = SegmentTree([2, 1, 5, 3, 4], fn)
for node in arr.traverse():
print(node)
print()
arr.update(1, 5)
for node in arr.traverse():
print(node)
print()
print(arr.query_range(3, 4)) # 7
print(arr.query_range(2, 2)) # 5
print(arr.query_range(1, 3)) # 13
print()
| 33 |
import torch
from diffusers import CMStochasticIterativeScheduler
from .test_schedulers import SchedulerCommonTest
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : str = (CMStochasticIterativeScheduler,)
__lowercase : List[str] = 10
def SCREAMING_SNAKE_CASE__ ( self:int , **_a:Optional[int] ):
snake_case__ = {
'''num_train_timesteps''': 2_01,
'''sigma_min''': 0.002,
'''sigma_max''': 80.0,
}
config.update(**_a )
return config
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = 10
snake_case__ = self.get_scheduler_config()
snake_case__ = self.scheduler_classes[0](**_a )
scheduler.set_timesteps(_a )
snake_case__ = scheduler.timesteps[0]
snake_case__ = scheduler.timesteps[1]
snake_case__ = self.dummy_sample
snake_case__ = 0.1 * sample
snake_case__ = scheduler.step(_a , _a , _a ).prev_sample
snake_case__ = scheduler.step(_a , _a , _a ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_a )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
for clip_denoised in [True, False]:
self.check_over_configs(clip_denoised=_a )
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = 1
scheduler.set_timesteps(_a )
snake_case__ = scheduler.timesteps
snake_case__ = torch.manual_seed(0 )
snake_case__ = self.dummy_model()
snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(_a ):
# 1. scale model input
snake_case__ = scheduler.scale_model_input(_a , _a )
# 2. predict noise residual
snake_case__ = model(_a , _a )
# 3. predict previous sample x_t-1
snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
snake_case__ = pred_prev_sample
snake_case__ = torch.sum(torch.abs(_a ) )
snake_case__ = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 192.7614 ) < 1e-2
assert abs(result_mean.item() - 0.2510 ) < 1e-3
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [1_06, 0]
scheduler.set_timesteps(timesteps=_a )
snake_case__ = scheduler.timesteps
snake_case__ = torch.manual_seed(0 )
snake_case__ = self.dummy_model()
snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma
for t in timesteps:
# 1. scale model input
snake_case__ = scheduler.scale_model_input(_a , _a )
# 2. predict noise residual
snake_case__ = model(_a , _a )
# 3. predict previous sample x_t-1
snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
snake_case__ = pred_prev_sample
snake_case__ = torch.sum(torch.abs(_a ) )
snake_case__ = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 347.6357 ) < 1e-2
assert abs(result_mean.item() - 0.4527 ) < 1e-3
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [39, 30, 12, 15, 0]
with self.assertRaises(_a , msg='''`timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=_a )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [39, 30, 12, 1, 0]
snake_case__ = len(_a )
with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=_a )
| 33 | 1 |
import os
import sys
lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(__file__), """src""")
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
lowerCamelCase__ : Optional[int] = [
"""torch""",
"""numpy""",
"""tokenizers""",
"""filelock""",
"""requests""",
"""tqdm""",
"""regex""",
"""sentencepiece""",
"""sacremoses""",
"""importlib_metadata""",
"""huggingface_hub""",
]
@add_start_docstrings(AutoConfig.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any:
return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoTokenizer.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]:
return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModel.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple:
return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]:
return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]:
return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]:
return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]:
return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
| 33 |
import numpy as np
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray:
return 1 / (1 + np.exp(-vector ))
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray:
return vector * sigmoid(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 33 | 1 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=10 ) -> List[str]:
snake_case__ = []
for _ in range(__lowerCAmelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=10 ) -> Dict:
snake_case__ = []
for step in range(__lowerCAmelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = os.path.join(__lowerCAmelCase , '''schedule.bin''' )
torch.save(scheduler.state_dict() , __lowerCAmelCase )
snake_case__ = torch.load(__lowerCAmelCase )
scheduler.load_state_dict(__lowerCAmelCase )
return lrs
@require_torch
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:int , _a:List[Any] , _a:Optional[Any] , _a:int ):
self.assertEqual(len(_a ) , len(_a ) )
for a, b in zip(_a , _a ):
self.assertAlmostEqual(_a , _a , delta=_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_a )
snake_case__ = torch.tensor([0.4, 0.2, -0.5] )
snake_case__ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
snake_case__ = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 )
for _ in range(1_00 ):
snake_case__ = criterion(_a , _a )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_a )
snake_case__ = torch.tensor([0.4, 0.2, -0.5] )
snake_case__ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
snake_case__ = Adafactor(
params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_a , weight_decay=0.0 , relative_step=_a , scale_parameter=_a , warmup_init=_a , )
for _ in range(10_00 ):
snake_case__ = criterion(_a , _a )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
@require_torch
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
__lowercase : int = nn.Linear(50 ,50 ) if is_torch_available() else None
__lowercase : Optional[Any] = AdamW(m.parameters() ,lr=10.0 ) if is_torch_available() else None
__lowercase : List[str] = 10
def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Optional[int] , _a:Optional[int] , _a:Union[str, Any] , _a:int=None ):
self.assertEqual(len(_a ) , len(_a ) )
for a, b in zip(_a , _a ):
self.assertAlmostEqual(_a , _a , delta=_a , msg=_a )
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = {'''num_warmup_steps''': 2, '''num_training_steps''': 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
snake_case__ = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'''num_warmup_steps''': 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, '''num_cycles''': 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, '''power''': 2.0, '''lr_end''': 1e-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{'''num_warmup_steps''': 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
snake_case__ , snake_case__ = data
snake_case__ = scheduler_func(self.optimizer , **_a )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
snake_case__ = unwrap_schedule(_a , self.num_steps )
self.assertListAlmostEqual(
_a , _a , tol=1e-2 , msg=F"""failed for {scheduler_func} in normal scheduler""" , )
snake_case__ = scheduler_func(self.optimizer , **_a )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(_a ) # wrap to test picklability of the schedule
snake_case__ = unwrap_and_save_reload_schedule(_a , self.num_steps )
self.assertListEqual(_a , _a , msg=F"""failed for {scheduler_func} in save and reload""" )
class __magic_name__ :
'''simple docstring'''
def __init__( self:Any , _a:Dict ):
snake_case__ = fn
def __call__( self:Any , *_a:Dict , **_a:List[str] ):
return self.fn(*_a , **_a )
@classmethod
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:Tuple ):
snake_case__ = list(map(self , scheduler.lr_lambdas ) )
| 33 |
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int:
snake_case__ = set()
snake_case__ = 0
snake_case__ = n + 1 # maximum limit
for a in range(2 , __lowerCAmelCase ):
for b in range(2 , __lowerCAmelCase ):
snake_case__ = a**b # calculates the current power
collect_powers.add(__lowerCAmelCase ) # adds the result to the set
return len(__lowerCAmelCase )
if __name__ == "__main__":
print("""Number of terms """, solution(int(str(input()).strip())))
| 33 | 1 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = '''ylacombe/bark-small'''
snake_case__ = tempfile.mkdtemp()
snake_case__ = '''en_speaker_1'''
snake_case__ = '''This is a test string'''
snake_case__ = '''speaker_embeddings_path.json'''
snake_case__ = '''speaker_embeddings'''
def SCREAMING_SNAKE_CASE__ ( self:Any , **_a:List[Any] ):
return AutoTokenizer.from_pretrained(self.checkpoint , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = self.get_tokenizer()
snake_case__ = BarkProcessor(tokenizer=_a )
processor.save_pretrained(self.tmpdirname )
snake_case__ = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
snake_case__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
snake_case__ = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
snake_case__ = 35
snake_case__ = 2
snake_case__ = 8
snake_case__ = {
'''semantic_prompt''': np.ones(_a ),
'''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ),
'''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
snake_case__ = processor(text=self.input_string , voice_preset=_a )
snake_case__ = inputs['''history_prompt''']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_a , np.array([] ) ).tolist() )
# test loading voice preset from npz file
snake_case__ = os.path.join(self.tmpdirname , '''file.npz''' )
np.savez(_a , **_a )
snake_case__ = processor(text=self.input_string , voice_preset=_a )
snake_case__ = inputs['''history_prompt''']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_a , np.array([] ) ).tolist() )
# test loading voice preset from the hub
snake_case__ = processor(text=self.input_string , voice_preset=self.voice_preset )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = self.get_tokenizer()
snake_case__ = BarkProcessor(tokenizer=_a )
snake_case__ = processor(text=self.input_string )
snake_case__ = tokenizer(
self.input_string , padding='''max_length''' , max_length=2_56 , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 33 |
from copy import deepcopy
class __magic_name__ :
'''simple docstring'''
def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ):
if arr is None and size is not None:
snake_case__ = size
snake_case__ = [0] * size
elif arr is not None:
self.init(_a )
else:
raise ValueError('''Either arr or size must be specified''' )
def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ):
snake_case__ = len(_a )
snake_case__ = deepcopy(_a )
for i in range(1 , self.size ):
snake_case__ = self.next_(_a )
if j < self.size:
self.tree[j] += self.tree[i]
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
snake_case__ = self.next_(_a )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def SCREAMING_SNAKE_CASE__ ( _a:int ):
return index + (index & (-index))
@staticmethod
def SCREAMING_SNAKE_CASE__ ( _a:int ):
return index - (index & (-index))
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ):
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
snake_case__ = self.next_(_a )
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ):
self.add(_a , value - self.get(_a ) )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ):
if right == 0:
return 0
snake_case__ = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
snake_case__ = self.prev(_a )
return result
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ):
return self.prefix(_a ) - self.prefix(_a )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ):
return self.query(_a , index + 1 )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ):
value -= self.tree[0]
if value < 0:
return -1
snake_case__ = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
snake_case__ = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 33 | 1 |
lowerCamelCase__ : Any = {
"""meter""": """m""",
"""kilometer""": """km""",
"""megametre""": """Mm""",
"""gigametre""": """Gm""",
"""terametre""": """Tm""",
"""petametre""": """Pm""",
"""exametre""": """Em""",
"""zettametre""": """Zm""",
"""yottametre""": """Ym""",
}
# Exponent of the factor(meter)
lowerCamelCase__ : int = {
"""m""": 0,
"""km""": 3,
"""Mm""": 6,
"""Gm""": 9,
"""Tm""": 1_2,
"""Pm""": 1_5,
"""Em""": 1_8,
"""Zm""": 2_1,
"""Ym""": 2_4,
}
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float:
snake_case__ = from_type.lower().strip('''s''' )
snake_case__ = to_type.lower().strip('''s''' )
snake_case__ = UNIT_SYMBOL.get(__lowerCAmelCase , __lowerCAmelCase )
snake_case__ = UNIT_SYMBOL.get(__lowerCAmelCase , __lowerCAmelCase )
if from_sanitized not in METRIC_CONVERSION:
snake_case__ = (
F"""Invalid 'from_type' value: {from_type!r}.\n"""
F"""Conversion abbreviations are: {', '.join(__lowerCAmelCase )}"""
)
raise ValueError(__lowerCAmelCase )
if to_sanitized not in METRIC_CONVERSION:
snake_case__ = (
F"""Invalid 'to_type' value: {to_type!r}.\n"""
F"""Conversion abbreviations are: {', '.join(__lowerCAmelCase )}"""
)
raise ValueError(__lowerCAmelCase )
snake_case__ = METRIC_CONVERSION[from_sanitized]
snake_case__ = METRIC_CONVERSION[to_sanitized]
snake_case__ = 1
if from_exponent > to_exponent:
snake_case__ = from_exponent - to_exponent
else:
snake_case__ = -(to_exponent - from_exponent)
return value * pow(10 , __lowerCAmelCase )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 33 |
from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class __magic_name__ :
'''simple docstring'''
__lowercase : int = BlenderbotConfig
__lowercase : Any = {}
__lowercase : Optional[Any] = 'gelu'
def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[Any]=13 , _a:Tuple=7 , _a:Union[str, Any]=True , _a:int=False , _a:int=99 , _a:Optional[int]=32 , _a:List[str]=2 , _a:List[str]=4 , _a:List[Any]=37 , _a:Any=0.1 , _a:int=0.1 , _a:List[Any]=20 , _a:List[str]=2 , _a:int=1 , _a:Dict=0 , ):
snake_case__ = parent
snake_case__ = batch_size
snake_case__ = seq_length
snake_case__ = is_training
snake_case__ = use_labels
snake_case__ = vocab_size
snake_case__ = hidden_size
snake_case__ = num_hidden_layers
snake_case__ = num_attention_heads
snake_case__ = intermediate_size
snake_case__ = hidden_dropout_prob
snake_case__ = attention_probs_dropout_prob
snake_case__ = max_position_embeddings
snake_case__ = eos_token_id
snake_case__ = pad_token_id
snake_case__ = bos_token_id
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 )
snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case__ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
snake_case__ = prepare_blenderbot_inputs_dict(_a , _a , _a )
return config, inputs_dict
def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:int ):
snake_case__ = TFBlenderbotModel(config=_a ).get_decoder()
snake_case__ = inputs_dict['''input_ids''']
snake_case__ = input_ids[:1, :]
snake_case__ = inputs_dict['''attention_mask'''][:1, :]
snake_case__ = inputs_dict['''head_mask''']
snake_case__ = 1
# first forward pass
snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a )
snake_case__ , snake_case__ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1 )
snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
snake_case__ = model(_a , attention_mask=_a )[0]
snake_case__ = model(_a , attention_mask=_a , past_key_values=_a )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
snake_case__ = output_from_no_past[:, -3:, random_slice_idx]
snake_case__ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_a , _a , rtol=1e-3 )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Tuple:
if attention_mask is None:
snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
snake_case__ = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
__lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
__lowercase : Tuple = (
{
'conversational': TFBlenderbotForConditionalGeneration,
'feature-extraction': TFBlenderbotModel,
'summarization': TFBlenderbotForConditionalGeneration,
'text2text-generation': TFBlenderbotForConditionalGeneration,
'translation': TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
__lowercase : Any = True
__lowercase : int = False
__lowercase : int = False
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = TFBlenderbotModelTester(self )
snake_case__ = ConfigTester(self , config_class=_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_a )
@require_tokenizers
@require_tf
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
__lowercase : Optional[int] = ['My friends are cool but they eat too many carbs.']
__lowercase : Optional[int] = 'facebook/blenderbot-400M-distill'
@cached_property
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.tokenizer(self.src_text , return_tensors='''tf''' )
snake_case__ = self.model.generate(
model_inputs.input_ids , )
snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 33 | 1 |
import warnings
from ...utils import logging
from .image_processing_perceiver import PerceiverImageProcessor
lowerCamelCase__ : int = logging.get_logger(__name__)
class __magic_name__ (snake_case_ ):
'''simple docstring'''
def __init__( self:List[Any] , *_a:Dict , **_a:Tuple ):
warnings.warn(
'''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use PerceiverImageProcessor instead.''' , _a , )
super().__init__(*_a , **_a )
| 33 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = 0
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:str ):
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
snake_case__ = Path(_a ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
snake_case__ = Path(_a ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = CLIPConfig()
# Create a dummy config file with image_proceesor_type
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
snake_case__ = Path(_a ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
snake_case__ = AutoImageProcessor.from_pretrained(_a ).to_dict()
config_dict.pop('''image_processor_type''' )
snake_case__ = CLIPImageProcessor(**_a )
# save in new folder
model_config.save_pretrained(_a )
config.save_pretrained(_a )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
# make sure private variable is not incorrectly saved
snake_case__ = json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
with self.assertRaisesRegex(
_a , '''clip-base is not a local folder and is not a valid model identifier''' ):
snake_case__ = AutoImageProcessor.from_pretrained('''clip-base''' )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
with self.assertRaisesRegex(
_a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
snake_case__ = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
with self.assertRaisesRegex(
_a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(_a ):
snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(_a ):
snake_case__ = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a )
snake_case__ = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_a )
snake_case__ = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a )
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
try:
AutoConfig.register('''custom''' , _a )
AutoImageProcessor.register(_a , _a )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_a ):
AutoImageProcessor.register(_a , _a )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
snake_case__ = Path(_a ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) )
snake_case__ = CustomImageProcessor.from_pretrained(_a )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_a )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : List[str] = True
try:
AutoConfig.register('''custom''' , _a )
AutoImageProcessor.register(_a , _a )
# If remote code is not set, the default is to use local
snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
snake_case__ = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
snake_case__ = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(not hasattr(_a , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 33 | 1 |
import os
import jsonlines
import numpy as np
from tqdm import tqdm
lowerCamelCase__ : Optional[Any] = 2_0_4_8
lowerCamelCase__ : Tuple = 4_0_9_6
lowerCamelCase__ : Any = 4_2
lowerCamelCase__ : str = os.environ.pop("""PROCESS_TRAIN""", """false""")
lowerCamelCase__ : Any = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4}
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Union[str, Any]:
def choose_first(__lowerCAmelCase , __lowerCAmelCase=False ):
assert isinstance(__lowerCAmelCase , __lowerCAmelCase )
if len(__lowerCAmelCase ) == 1:
snake_case__ = answer[0]
return {k: [answer[k]] for k in answer} if is_long_answer else answer
for a in answer:
if is_long_answer:
snake_case__ = {k: [a[k]] for k in a}
if len(a['''start_token'''] ) > 0:
break
return a
snake_case__ = {'''id''': example['''id''']}
snake_case__ = example['''annotations''']
snake_case__ = annotation['''yes_no_answer''']
if 0 in yes_no_answer or 1 in yes_no_answer:
snake_case__ = ['''yes'''] if 1 in yes_no_answer else ['''no''']
snake_case__ = snake_case__ = []
snake_case__ = snake_case__ = []
snake_case__ = ['''<cls>''']
else:
snake_case__ = ['''short''']
snake_case__ = choose_first(annotation['''short_answers'''] )
if len(out['''start_token'''] ) == 0:
# answer will be long if short is not available
snake_case__ = ['''long''']
snake_case__ = choose_first(annotation['''long_answer'''] , is_long_answer=__lowerCAmelCase )
snake_case__ = []
answer.update(__lowerCAmelCase )
# disregard some samples
if len(answer['''start_token'''] ) > 1 or answer["start_token"] == answer["end_token"]:
snake_case__ = True
else:
snake_case__ = False
snake_case__ = ['''start_token''', '''end_token''', '''start_byte''', '''end_byte''', '''text''']
if not all(isinstance(answer[k] , __lowerCAmelCase ) for k in cols ):
raise ValueError('''Issue in ID''' , example['''id'''] )
return answer
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict:
snake_case__ = _get_single_answer(__lowerCAmelCase )
# bytes are of no use
del answer["start_byte"]
del answer["end_byte"]
# handle yes_no answers explicitly
if answer["category"][0] in ["yes", "no"]: # category is list with one element
snake_case__ = example['''document''']['''tokens''']
snake_case__ = []
for i in range(len(doc['''token'''] ) ):
if not doc["is_html"][i]:
context.append(doc['''token'''][i] )
return {
"context": " ".join(__lowerCAmelCase ),
"answer": {
"start_token": -100, # ignore index in cross-entropy
"end_token": -100, # ignore index in cross-entropy
"category": answer["category"],
"span": answer["category"], # extra
},
}
# later, help in removing all no answers
if answer["start_token"] == [-1]:
return {
"context": "None",
"answer": {
"start_token": -1,
"end_token": -1,
"category": "null",
"span": "None", # extra
},
}
# handling normal samples
snake_case__ = ['''start_token''', '''end_token''']
answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10
snake_case__ = example['''document''']['''tokens''']
snake_case__ = answer['''start_token''']
snake_case__ = answer['''end_token''']
snake_case__ = []
for i in range(len(doc['''token'''] ) ):
if not doc["is_html"][i]:
context.append(doc['''token'''][i] )
else:
if answer["start_token"] > i:
start_token -= 1
if answer["end_token"] > i:
end_token -= 1
snake_case__ = ''' '''.join(context[start_token:end_token] )
# checking above code
if assertion:
snake_case__ = doc['''is_html'''][answer['''start_token'''] : answer['''end_token''']]
snake_case__ = doc['''token'''][answer['''start_token'''] : answer['''end_token''']]
snake_case__ = ''' '''.join([old[i] for i in range(len(__lowerCAmelCase ) ) if not is_html[i]] )
if new != old:
print('''ID:''' , example['''id'''] )
print('''New:''' , __lowerCAmelCase , end='''\n''' )
print('''Old:''' , __lowerCAmelCase , end='''\n\n''' )
return {
"context": " ".join(__lowerCAmelCase ),
"answer": {
"start_token": start_token,
"end_token": end_token - 1, # this makes it inclusive
"category": answer["category"], # either long or short
"span": new, # extra
},
}
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=2048 , __lowerCAmelCase=4096 , __lowerCAmelCase=True ) -> Dict:
# overlap will be of doc_stride - q_len
snake_case__ = get_context_and_ans(__lowerCAmelCase , assertion=__lowerCAmelCase )
snake_case__ = out['''answer''']
# later, removing these samples
if answer["start_token"] == -1:
return {
"example_id": example["id"],
"input_ids": [[-1]],
"labels": {
"start_token": [-1],
"end_token": [-1],
"category": ["null"],
},
}
snake_case__ = tokenizer(example['''question''']['''text'''] , out['''context'''] ).input_ids
snake_case__ = input_ids.index(tokenizer.sep_token_id ) + 1
# return yes/no
if answer["category"][0] in ["yes", "no"]: # category is list with one element
snake_case__ = []
snake_case__ = []
snake_case__ = input_ids[:q_len]
snake_case__ = range(__lowerCAmelCase , len(__lowerCAmelCase ) , max_length - doc_stride )
for i in doc_start_indices:
snake_case__ = i + max_length - q_len
snake_case__ = input_ids[i:end_index]
inputs.append(q_indices + slice )
category.append(answer['''category'''][0] )
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": [-100] * len(__lowerCAmelCase ),
"end_token": [-100] * len(__lowerCAmelCase ),
"category": category,
},
}
snake_case__ = out['''context'''].split()
snake_case__ = splitted_context[answer['''end_token''']]
snake_case__ = len(
tokenizer(
''' '''.join(splitted_context[: answer['''start_token''']] ) , add_special_tokens=__lowerCAmelCase , ).input_ids )
snake_case__ = len(
tokenizer(''' '''.join(splitted_context[: answer['''end_token''']] ) , add_special_tokens=__lowerCAmelCase ).input_ids )
answer["start_token"] += q_len
answer["end_token"] += q_len
# fixing end token
snake_case__ = len(tokenizer(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids )
if num_sub_tokens > 1:
answer["end_token"] += num_sub_tokens - 1
snake_case__ = input_ids[answer['''start_token'''] : answer['''end_token'''] + 1] # right & left are inclusive
snake_case__ = answer['''start_token''']
snake_case__ = answer['''end_token''']
if assertion:
snake_case__ = tokenizer.decode(__lowerCAmelCase )
if answer["span"] != new:
print('''ISSUE IN TOKENIZATION''' )
print('''OLD:''' , answer['''span'''] )
print('''NEW:''' , __lowerCAmelCase , end='''\n\n''' )
if len(__lowerCAmelCase ) <= max_length:
return {
"example_id": example["id"],
"input_ids": [input_ids],
"labels": {
"start_token": [answer["start_token"]],
"end_token": [answer["end_token"]],
"category": answer["category"],
},
}
snake_case__ = input_ids[:q_len]
snake_case__ = range(__lowerCAmelCase , len(__lowerCAmelCase ) , max_length - doc_stride )
snake_case__ = []
snake_case__ = []
snake_case__ = []
snake_case__ = [] # null, yes, no, long, short
for i in doc_start_indices:
snake_case__ = i + max_length - q_len
snake_case__ = input_ids[i:end_index]
inputs.append(q_indices + slice )
assert len(inputs[-1] ) <= max_length, "Issue in truncating length"
if start_token >= i and end_token <= end_index - 1:
snake_case__ = start_token - i + q_len
snake_case__ = end_token - i + q_len
answers_category.append(answer['''category'''][0] ) # ["short"] -> "short"
else:
snake_case__ = -100
snake_case__ = -100
answers_category.append('''null''' )
snake_case__ = inputs[-1][start_token : end_token + 1]
answers_start_token.append(__lowerCAmelCase )
answers_end_token.append(__lowerCAmelCase )
if assertion:
if new != old and new != [tokenizer.cls_token_id]:
print('''ISSUE in strided for ID:''' , example['''id'''] )
print('''New:''' , tokenizer.decode(__lowerCAmelCase ) )
print('''Old:''' , tokenizer.decode(__lowerCAmelCase ) , end='''\n\n''' )
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": answers_start_token,
"end_token": answers_end_token,
"category": answers_category,
},
}
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=2048 , __lowerCAmelCase=4096 , __lowerCAmelCase=False ) -> List[Any]:
snake_case__ = get_strided_contexts_and_ans(
__lowerCAmelCase , __lowerCAmelCase , doc_stride=__lowerCAmelCase , max_length=__lowerCAmelCase , assertion=__lowerCAmelCase , )
return example
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
with jsonlines.open(__lowerCAmelCase , '''a''' ) as writer:
for example in tqdm(__lowerCAmelCase , total=len(__lowerCAmelCase ) , desc='''Saving samples ... ''' ):
snake_case__ = example['''labels''']
for ids, start, end, cat in zip(
example['''input_ids'''] , labels['''start_token'''] , labels['''end_token'''] , labels['''category'''] , ):
if start == -1 and end == -1:
continue # leave waste samples with no answer
if cat == "null" and np.random.rand() < 0.6:
continue # removing 50 % samples
writer.write(
{
'''input_ids''': ids,
'''start_token''': start,
'''end_token''': end,
'''category''': CATEGORY_MAPPING[cat],
} )
if __name__ == "__main__":
from datasets import load_dataset
from transformers import BigBirdTokenizer
lowerCamelCase__ : Union[str, Any] = load_dataset("""natural_questions""")
lowerCamelCase__ : str = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""")
lowerCamelCase__ : List[str] = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""]
lowerCamelCase__ : List[str] = {
"""tokenizer""": tokenizer,
"""doc_stride""": DOC_STRIDE,
"""max_length""": MAX_LENGTH,
"""assertion""": False,
}
lowerCamelCase__ : List[Any] = data.map(prepare_inputs, fn_kwargs=fn_kwargs)
lowerCamelCase__ : Any = data.remove_columns(["""annotations""", """document""", """id""", """question"""])
print(data)
np.random.seed(SEED)
lowerCamelCase__ : Tuple = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl"""
save_to_disk(data, file_name=cache_file_name)
| 33 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ : int = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> int:
snake_case__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
('''cls_token''', '''vit.embeddings.cls_token'''),
('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''),
('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''),
('''pos_embed''', '''vit.embeddings.position_embeddings'''),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
('''pre_logits.fc.weight''', '''pooler.dense.weight'''),
('''pre_logits.fc.bias''', '''pooler.dense.bias'''),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
snake_case__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('''norm.weight''', '''vit.layernorm.weight'''),
('''norm.bias''', '''vit.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
return rename_keys
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict:
for i in range(config.num_hidden_layers ):
if base_model:
snake_case__ = ''''''
else:
snake_case__ = '''vit.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" )
snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
snake_case__ = in_proj_weight[
: config.hidden_size, :
]
snake_case__ = in_proj_bias[: config.hidden_size]
snake_case__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
snake_case__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
snake_case__ = in_proj_weight[
-config.hidden_size :, :
]
snake_case__ = in_proj_bias[-config.hidden_size :]
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]:
snake_case__ = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
snake_case__ = dct.pop(__lowerCAmelCase )
snake_case__ = val
def SCREAMING_SNAKE_CASE ( ) -> str:
snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
return im
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict:
snake_case__ = ViTConfig()
snake_case__ = False
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
if vit_name[-5:] == "in21k":
snake_case__ = True
snake_case__ = int(vit_name[-12:-10] )
snake_case__ = int(vit_name[-9:-6] )
else:
snake_case__ = 1000
snake_case__ = '''huggingface/label-files'''
snake_case__ = '''imagenet-1k-id2label.json'''
snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) )
snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
snake_case__ = idalabel
snake_case__ = {v: k for k, v in idalabel.items()}
snake_case__ = int(vit_name[-6:-4] )
snake_case__ = int(vit_name[-3:] )
# size of the architecture
if "deit" in vit_name:
if vit_name[9:].startswith('''tiny''' ):
snake_case__ = 192
snake_case__ = 768
snake_case__ = 12
snake_case__ = 3
elif vit_name[9:].startswith('''small''' ):
snake_case__ = 384
snake_case__ = 1536
snake_case__ = 12
snake_case__ = 6
else:
pass
else:
if vit_name[4:].startswith('''small''' ):
snake_case__ = 768
snake_case__ = 2304
snake_case__ = 8
snake_case__ = 8
elif vit_name[4:].startswith('''base''' ):
pass
elif vit_name[4:].startswith('''large''' ):
snake_case__ = 1024
snake_case__ = 4096
snake_case__ = 24
snake_case__ = 16
elif vit_name[4:].startswith('''huge''' ):
snake_case__ = 1280
snake_case__ = 5120
snake_case__ = 32
snake_case__ = 16
# load original model from timm
snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
snake_case__ = timm_model.state_dict()
if base_model:
remove_classification_head_(__lowerCAmelCase )
snake_case__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase )
for src, dest in rename_keys:
rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# load HuggingFace model
if vit_name[-5:] == "in21k":
snake_case__ = ViTModel(__lowerCAmelCase ).eval()
else:
snake_case__ = ViTForImageClassification(__lowerCAmelCase ).eval()
model.load_state_dict(__lowerCAmelCase )
# Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor
if "deit" in vit_name:
snake_case__ = DeiTImageProcessor(size=config.image_size )
else:
snake_case__ = ViTImageProcessor(size=config.image_size )
snake_case__ = image_processor(images=prepare_img() , return_tensors='''pt''' )
snake_case__ = encoding['''pixel_values''']
snake_case__ = model(__lowerCAmelCase )
if base_model:
snake_case__ = timm_model.forward_features(__lowerCAmelCase )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1e-3 )
else:
snake_case__ = timm_model(__lowerCAmelCase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 )
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCAmelCase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--vit_name""",
default="""vit_base_patch16_224""",
type=str,
help="""Name of the ViT timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
lowerCamelCase__ : str = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
| 33 | 1 |
import pickle
import numpy as np
from matplotlib import pyplot as plt
class __magic_name__ :
'''simple docstring'''
def __init__( self:List[str] , _a:str , _a:Optional[Any] , _a:Union[str, Any] , _a:Union[str, Any] , _a:Optional[Any] , _a:int=0.2 , _a:Optional[int]=0.2 ):
snake_case__ = bp_numa
snake_case__ = bp_numa
snake_case__ = bp_numa
snake_case__ = conva_get[:2]
snake_case__ = conva_get[2]
snake_case__ = size_pa
snake_case__ = rate_w
snake_case__ = rate_t
snake_case__ = [
np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
snake_case__ = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
snake_case__ = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
snake_case__ = -2 * np.random.rand(self.conva[1] ) + 1
snake_case__ = -2 * np.random.rand(self.num_bpa ) + 1
snake_case__ = -2 * np.random.rand(self.num_bpa ) + 1
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:Optional[Any] ):
# save model dict with pickle
snake_case__ = {
'''num_bp1''': self.num_bpa,
'''num_bp2''': self.num_bpa,
'''num_bp3''': self.num_bpa,
'''conv1''': self.conva,
'''step_conv1''': self.step_conva,
'''size_pooling1''': self.size_poolinga,
'''rate_weight''': self.rate_weight,
'''rate_thre''': self.rate_thre,
'''w_conv1''': self.w_conva,
'''wkj''': self.wkj,
'''vji''': self.vji,
'''thre_conv1''': self.thre_conva,
'''thre_bp2''': self.thre_bpa,
'''thre_bp3''': self.thre_bpa,
}
with open(_a , '''wb''' ) as f:
pickle.dump(_a , _a )
print(F"""Model saved: {save_path}""" )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:Any , _a:Tuple ):
# read saved model
with open(_a , '''rb''' ) as f:
snake_case__ = pickle.load(_a ) # noqa: S301
snake_case__ = model_dic.get('''conv1''' )
conv_get.append(model_dic.get('''step_conv1''' ) )
snake_case__ = model_dic.get('''size_pooling1''' )
snake_case__ = model_dic.get('''num_bp1''' )
snake_case__ = model_dic.get('''num_bp2''' )
snake_case__ = model_dic.get('''num_bp3''' )
snake_case__ = model_dic.get('''rate_weight''' )
snake_case__ = model_dic.get('''rate_thre''' )
# create model instance
snake_case__ = CNN(_a , _a , _a , _a , _a , _a , _a )
# modify model parameter
snake_case__ = model_dic.get('''w_conv1''' )
snake_case__ = model_dic.get('''wkj''' )
snake_case__ = model_dic.get('''vji''' )
snake_case__ = model_dic.get('''thre_conv1''' )
snake_case__ = model_dic.get('''thre_bp2''' )
snake_case__ = model_dic.get('''thre_bp3''' )
return conv_ins
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int ):
return 1 / (1 + np.exp(-1 * x ))
def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Dict ):
return round(_a , 3 )
def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Any , _a:Optional[Any] , _a:Union[str, Any] , _a:int , _a:List[Any] ):
# convolution process
snake_case__ = convs[0]
snake_case__ = convs[1]
snake_case__ = np.shape(_a )[0]
# get the data slice of original image data, data_focus
snake_case__ = []
for i_focus in range(0 , size_data - size_conv + 1 , _a ):
for j_focus in range(0 , size_data - size_conv + 1 , _a ):
snake_case__ = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(_a )
# calculate the feature map of every single kernel, and saved as list of matrix
snake_case__ = []
snake_case__ = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(_a ):
snake_case__ = []
for i_focus in range(len(_a ) ):
snake_case__ = (
np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(_a ) )
snake_case__ = np.asmatrix(_a ).reshape(
_a , _a )
data_featuremap.append(_a )
# expanding the data slice to One dimenssion
snake_case__ = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(_a ) )
snake_case__ = np.asarray(_a )
return focus_list, data_featuremap
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:List[str] , _a:str , _a:List[Any]="average_pool" ):
# pooling process
snake_case__ = len(featuremaps[0] )
snake_case__ = int(size_map / size_pooling )
snake_case__ = []
for i_map in range(len(_a ) ):
snake_case__ = featuremaps[i_map]
snake_case__ = []
for i_focus in range(0 , _a , _a ):
for j_focus in range(0 , _a , _a ):
snake_case__ = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(_a ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(_a ) )
snake_case__ = np.asmatrix(_a ).reshape(_a , _a )
featuremap_pooled.append(_a )
return featuremap_pooled
def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Union[str, Any] ):
# expanding three dimension data to one dimension list
snake_case__ = []
for i in range(len(_a ) ):
snake_case__ = np.shape(data[i] )
snake_case__ = data[i].reshape(1 , shapes[0] * shapes[1] )
snake_case__ = data_listed.getA().tolist()[0]
data_expanded.extend(_a )
snake_case__ = np.asarray(_a )
return data_expanded
def SCREAMING_SNAKE_CASE__ ( self:str , _a:Optional[Any] ):
# expanding matrix to one dimension list
snake_case__ = np.asarray(_a )
snake_case__ = np.shape(_a )
snake_case__ = data_mat.reshape(1 , shapes[0] * shapes[1] )
return data_expanded
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:List[Any] , _a:Any , _a:str , _a:Tuple , _a:Union[str, Any] ):
snake_case__ = []
snake_case__ = 0
for i_map in range(_a ):
snake_case__ = np.ones((size_map, size_map) )
for i in range(0 , _a , _a ):
for j in range(0 , _a , _a ):
snake_case__ = pd_pool[
i_pool
]
snake_case__ = i_pool + 1
snake_case__ = np.multiply(
_a , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) )
pd_all.append(_a )
return pd_all
def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:Dict , _a:List[str] , _a:Optional[int] , _a:Tuple , _a:Any , _a:Dict=bool ):
# model traning
print('''----------------------Start Training-------------------------''' )
print((''' - - Shape: Train_Data ''', np.shape(_a )) )
print((''' - - Shape: Teach_Data ''', np.shape(_a )) )
snake_case__ = 0
snake_case__ = []
snake_case__ = 1_00_00
while rp < n_repeat and mse >= error_accuracy:
snake_case__ = 0
print(F"""-------------Learning Time {rp}--------------""" )
for p in range(len(_a ) ):
# print('------------Learning Image: %d--------------'%p)
snake_case__ = np.asmatrix(datas_train[p] )
snake_case__ = np.asarray(datas_teach[p] )
snake_case__ , snake_case__ = self.convolute(
_a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
snake_case__ = self.pooling(_a , self.size_poolinga )
snake_case__ = np.shape(_a )
snake_case__ = self._expand(_a )
snake_case__ = data_bp_input
snake_case__ = np.dot(_a , self.vji.T ) - self.thre_bpa
snake_case__ = self.sig(_a )
snake_case__ = np.dot(_a , self.wkj.T ) - self.thre_bpa
snake_case__ = self.sig(_a )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
snake_case__ = np.multiply(
(data_teach - bp_outa) , np.multiply(_a , (1 - bp_outa) ) )
snake_case__ = np.multiply(
np.dot(_a , self.wkj ) , np.multiply(_a , (1 - bp_outa) ) )
snake_case__ = np.dot(_a , self.vji )
snake_case__ = pd_i_all / (self.size_poolinga * self.size_poolinga)
snake_case__ = pd_conva_pooled.T.getA().tolist()
snake_case__ = self._calculate_gradient_from_pool(
_a , _a , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , )
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
snake_case__ = self._expand_mat(pd_conva_all[k_conv] )
snake_case__ = self.rate_weight * np.dot(_a , _a )
snake_case__ = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
snake_case__ = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
snake_case__ = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
snake_case__ = self.vji + pd_j_all.T * bp_outa * self.rate_weight
snake_case__ = self.thre_bpa - pd_k_all * self.rate_thre
snake_case__ = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
snake_case__ = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
snake_case__ = rp + 1
snake_case__ = error_count / patterns
all_mse.append(_a )
def draw_error():
snake_case__ = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(_a , '''+-''' )
plt.plot(_a , '''r--''' )
plt.xlabel('''Learning Times''' )
plt.ylabel('''All_mse''' )
plt.grid(_a , alpha=0.5 )
plt.show()
print('''------------------Training Complished---------------------''' )
print((''' - - Training epoch: ''', rp, F""" - - Mse: {mse:.6f}""") )
if draw_e:
draw_error()
return mse
def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Optional[Any] ):
# model predict
snake_case__ = []
print('''-------------------Start Testing-------------------------''' )
print((''' - - Shape: Test_Data ''', np.shape(_a )) )
for p in range(len(_a ) ):
snake_case__ = np.asmatrix(datas_test[p] )
snake_case__ , snake_case__ = self.convolute(
_a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
snake_case__ = self.pooling(_a , self.size_poolinga )
snake_case__ = self._expand(_a )
snake_case__ = data_bp_input
snake_case__ = bp_outa * self.vji.T - self.thre_bpa
snake_case__ = self.sig(_a )
snake_case__ = bp_outa * self.wkj.T - self.thre_bpa
snake_case__ = self.sig(_a )
produce_out.extend(bp_outa.getA().tolist() )
snake_case__ = [list(map(self.do_round , _a ) ) for each in produce_out]
return np.asarray(_a )
def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:str ):
# return the data of image after convoluting process so we can check it out
snake_case__ = np.asmatrix(_a )
snake_case__ , snake_case__ = self.convolute(
_a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
snake_case__ = self.pooling(_a , self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 33 |
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : List[str] = ['image_processor', 'tokenizer']
__lowercase : str = 'AutoImageProcessor'
__lowercase : Dict = 'AutoTokenizer'
def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ):
snake_case__ = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , _a , )
snake_case__ = kwargs.pop('''feature_extractor''' )
snake_case__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_a , _a )
snake_case__ = self.image_processor
snake_case__ = False
def __call__( self:Optional[int] , *_a:str , **_a:int ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*_a , **_a )
snake_case__ = kwargs.pop('''images''' , _a )
snake_case__ = kwargs.pop('''text''' , _a )
if len(_a ) > 0:
snake_case__ = args[0]
snake_case__ = args[1:]
if images is None and text is None:
raise ValueError('''You need to specify either an `images` or `text` input to process.''' )
if images is not None:
snake_case__ = self.image_processor(_a , *_a , **_a )
if text is not None:
snake_case__ = self.tokenizer(_a , **_a )
if text is None:
return inputs
elif images is None:
return encodings
else:
snake_case__ = encodings['''input_ids''']
return inputs
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ):
return self.tokenizer.batch_decode(*_a , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ):
return self.tokenizer.decode(*_a , **_a )
@contextmanager
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your images inputs, or in a separate call.''' )
snake_case__ = True
snake_case__ = self.tokenizer
yield
snake_case__ = self.image_processor
snake_case__ = False
def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ):
if added_vocab is None:
snake_case__ = self.tokenizer.get_added_vocab()
snake_case__ = {}
while tokens:
snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE )
if start_token is None:
break
snake_case__ = start_token.group(1 )
snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE )
snake_case__ = start_token.group()
if end_token is None:
snake_case__ = tokens.replace(_a , '''''' )
else:
snake_case__ = end_token.group()
snake_case__ = re.escape(_a )
snake_case__ = re.escape(_a )
snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE )
if content is not None:
snake_case__ = content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a )
if value:
if len(_a ) == 1:
snake_case__ = value[0]
snake_case__ = value
else: # leaf nodes
snake_case__ = []
for leaf in content.split(r'''<sep/>''' ):
snake_case__ = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
snake_case__ = leaf[1:-2] # for categorical special tokens
output[key].append(_a )
if len(output[key] ) == 1:
snake_case__ = output[key][0]
snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a )
if len(_a ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , )
return self.image_processor
| 33 | 1 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=snake_case_ )
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : str = field(default='image-classification' ,metadata={'include_in_asdict_even_if_is_default': True} )
__lowercase : ClassVar[Features] = Features({'image': Image()} )
__lowercase : ClassVar[Features] = Features({'labels': ClassLabel} )
__lowercase : str = "image"
__lowercase : str = "labels"
def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:Union[str, Any] ):
if self.label_column not in features:
raise ValueError(F"""Column {self.label_column} is not present in features.""" )
if not isinstance(features[self.label_column] , _a ):
raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" )
snake_case__ = copy.deepcopy(self )
snake_case__ = self.label_schema.copy()
snake_case__ = features[self.label_column]
snake_case__ = label_schema
return task_template
@property
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
return {
self.image_column: "image",
self.label_column: "labels",
}
| 33 |
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __magic_name__ :
'''simple docstring'''
def __init__( self:Optional[Any] , _a:int , _a:str=3 , _a:Optional[int]=32 , _a:Optional[Any]=3 , _a:Tuple=10 , _a:List[Any]=[8, 16, 32, 64] , _a:str=[1, 1, 2, 1] , _a:Any=True , _a:List[Any]=True , _a:List[str]="relu" , _a:int=3 , _a:Tuple=None , _a:Tuple=["stage2", "stage3", "stage4"] , _a:List[Any]=[2, 3, 4] , _a:Union[str, Any]=1 , ):
snake_case__ = parent
snake_case__ = batch_size
snake_case__ = image_size
snake_case__ = num_channels
snake_case__ = embeddings_size
snake_case__ = hidden_sizes
snake_case__ = depths
snake_case__ = is_training
snake_case__ = use_labels
snake_case__ = hidden_act
snake_case__ = num_labels
snake_case__ = scope
snake_case__ = len(_a )
snake_case__ = out_features
snake_case__ = out_indices
snake_case__ = num_groups
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case__ = None
if self.use_labels:
snake_case__ = ids_tensor([self.batch_size] , self.num_labels )
snake_case__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[int] , _a:Tuple , _a:int ):
snake_case__ = BitModel(config=_a )
model.to(_a )
model.eval()
snake_case__ = model(_a )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def SCREAMING_SNAKE_CASE__ ( self:int , _a:Tuple , _a:Any , _a:Union[str, Any] ):
snake_case__ = self.num_labels
snake_case__ = BitForImageClassification(_a )
model.to(_a )
model.eval()
snake_case__ = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:str , _a:List[str] , _a:Any ):
snake_case__ = BitBackbone(config=_a )
model.to(_a )
model.eval()
snake_case__ = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case__ = None
snake_case__ = BitBackbone(config=_a )
model.to(_a )
model.eval()
snake_case__ = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = self.prepare_config_and_inputs()
snake_case__ , snake_case__ , snake_case__ = config_and_inputs
snake_case__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
__lowercase : int = (
{'feature-extraction': BitModel, 'image-classification': BitForImageClassification}
if is_torch_available()
else {}
)
__lowercase : Tuple = False
__lowercase : Optional[Any] = False
__lowercase : str = False
__lowercase : Tuple = False
__lowercase : Tuple = False
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = BitModelTester(self )
snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
return
@unittest.skip(reason='''Bit does not output attentions''' )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
pass
@unittest.skip(reason='''Bit does not use inputs_embeds''' )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
pass
@unittest.skip(reason='''Bit does not support input and output embeddings''' )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
pass
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ = model_class(_a )
snake_case__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case__ = [*signature.parameters.keys()]
snake_case__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _a )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_a )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ = model_class(config=_a )
for name, module in model.named_modules():
if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
def check_hidden_states_output(_a:List[Any] , _a:int , _a:Union[str, Any] ):
snake_case__ = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
snake_case__ = model(**self._prepare_for_class(_a , _a ) )
snake_case__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case__ = self.model_tester.num_stages
self.assertEqual(len(_a ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ = ['''preactivation''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
snake_case__ = layer_type
snake_case__ = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case__ = True
check_hidden_states_output(_a , _a , _a )
@unittest.skip(reason='''Bit does not use feedforward chunking''' )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
pass
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case__ = BitModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def SCREAMING_SNAKE_CASE ( ) -> Any:
snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a )
snake_case__ = self.default_image_processor
snake_case__ = prepare_img()
snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
snake_case__ = model(**_a )
# verify the logits
snake_case__ = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , _a )
snake_case__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
@require_torch
class __magic_name__ (snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : Optional[Any] = (BitBackbone,) if is_torch_available() else ()
__lowercase : int = BitConfig
__lowercase : Any = False
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = BitModelTester(self )
| 33 | 1 |
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
lowerCamelCase__ : List[str] = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
lowerCamelCase__ : List[str] = [0, 2_5, 5_0]
lowerCamelCase__ : Any = [2_5, 5_0, 7_5]
lowerCamelCase__ : Optional[int] = fuzz.membership.trimf(X, abca)
lowerCamelCase__ : Optional[Any] = fuzz.membership.trimf(X, abca)
# Compute the different operations using inbuilt functions.
lowerCamelCase__ : List[Any] = np.ones(7_5)
lowerCamelCase__ : Dict = np.zeros((7_5,))
# 1. Union = max(µA(x), µB(x))
lowerCamelCase__ : List[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
lowerCamelCase__ : int = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
lowerCamelCase__ : Dict = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
lowerCamelCase__ : str = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
lowerCamelCase__ : str = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
lowerCamelCase__ : Union[str, Any] = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
lowerCamelCase__ : List[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
lowerCamelCase__ : Any = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title("""Young""")
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title("""Middle aged""")
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title("""union""")
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title("""intersection""")
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title("""complement_a""")
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title("""difference a/b""")
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title("""alg_sum""")
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title("""alg_product""")
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title("""bdd_sum""")
plt.grid(True)
plt.subplot(4, 3, 1_0)
plt.plot(X, bdd_difference)
plt.title("""bdd_difference""")
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| 33 |
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
lowerCamelCase__ : Any = """\
"""
lowerCamelCase__ : List[str] = """
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence.
For more information, see https://huggingface.co/docs/transformers/perplexity
"""
lowerCamelCase__ : Any = """
Args:
model_id (str): model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
input_texts (list of str): input text, each separate text snippet
is one list entry.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
device (str): device to run on, defaults to 'cuda' when available
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
Examples:
Example 1:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]
>>> results = perplexity.compute(model_id='gpt2',
... add_start_token=False,
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
78.22
>>> print(round(results[\"perplexities\"][0], 2))
11.11
Example 2:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = datasets.load_dataset(\"wikitext\",
... \"wikitext-2-raw-v1\",
... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS
[...]
>>> input_texts = [s for s in input_texts if s!='']
>>> results = perplexity.compute(model_id='gpt2',
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
60.35
>>> print(round(results[\"perplexities\"][0], 2))
81.12
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class __magic_name__ (datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:int ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''input_texts''': datasets.Value('''string''' ),
} ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:List[Any] , _a:int = 16 , _a:bool = True , _a:Any=None ):
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
snake_case__ = '''cuda'''
else:
snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
snake_case__ = AutoModelForCausalLM.from_pretrained(_a )
snake_case__ = model.to(_a )
snake_case__ = AutoTokenizer.from_pretrained(_a )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
snake_case__ = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(_a ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
snake_case__ = model.config.max_length - 1
else:
snake_case__ = model.config.max_length
snake_case__ = tokenizer(
_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a )
snake_case__ = encodings['''input_ids''']
snake_case__ = encodings['''attention_mask''']
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
snake_case__ = []
snake_case__ = CrossEntropyLoss(reduction='''none''' )
for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ):
snake_case__ = min(start_index + batch_size , len(_a ) )
snake_case__ = encoded_texts[start_index:end_index]
snake_case__ = attn_masks[start_index:end_index]
if add_start_token:
snake_case__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a )
snake_case__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
snake_case__ = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 )
snake_case__ = encoded_batch
with torch.no_grad():
snake_case__ = model(_a , attention_mask=_a ).logits
snake_case__ = out_logits[..., :-1, :].contiguous()
snake_case__ = labels[..., 1:].contiguous()
snake_case__ = attn_mask[..., 1:].contiguous()
snake_case__ = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
| 33 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCamelCase__ : int = {"""configuration_unispeech""": ["""UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP""", """UniSpeechConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : List[str] = [
"""UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""UniSpeechForCTC""",
"""UniSpeechForPreTraining""",
"""UniSpeechForSequenceClassification""",
"""UniSpeechModel""",
"""UniSpeechPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
lowerCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 33 |
import os
from datetime import datetime as dt
from github import Github
lowerCamelCase__ : int = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""enhancement""",
"""new pipeline/model""",
"""new scheduler""",
"""wip""",
]
def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
snake_case__ = Github(os.environ['''GITHUB_TOKEN'''] )
snake_case__ = g.get_repo('''huggingface/diffusers''' )
snake_case__ = repo.get_issues(state='''open''' )
for issue in open_issues:
snake_case__ = sorted(issue.get_comments() , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase )
snake_case__ = comments[0] if len(__lowerCAmelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state='''closed''' )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state='''open''' )
issue.remove_from_labels('''stale''' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
issue.add_to_labels('''stale''' )
if __name__ == "__main__":
main()
| 33 | 1 |
import os
import shutil
import sys
import tempfile
import unittest
from pathlib import Path
import pytest
import transformers
from transformers import (
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoTokenizer,
BertConfig,
BertTokenizer,
BertTokenizerFast,
CTRLTokenizer,
GPTaTokenizer,
GPTaTokenizerFast,
PreTrainedTokenizerFast,
RobertaTokenizer,
RobertaTokenizerFast,
is_tokenizers_available,
)
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.auto.tokenization_auto import (
TOKENIZER_MAPPING,
get_tokenizer_config,
tokenizer_class_from_name,
)
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import (
DUMMY_DIFF_TOKENIZER_IDENTIFIER,
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tokenizers,
slow,
)
sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = 0
@slow
def SCREAMING_SNAKE_CASE__ ( self:Any ):
for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x):
snake_case__ = AutoTokenizer.from_pretrained(_a )
self.assertIsNotNone(_a )
self.assertIsInstance(_a , (BertTokenizer, BertTokenizerFast) )
self.assertGreater(len(_a ) , 0 )
for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys():
snake_case__ = AutoTokenizer.from_pretrained(_a )
self.assertIsNotNone(_a )
self.assertIsInstance(_a , (GPTaTokenizer, GPTaTokenizerFast) )
self.assertGreater(len(_a ) , 0 )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = AutoTokenizer.from_pretrained(_a )
self.assertIsInstance(_a , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 12 )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = AutoTokenizer.from_pretrained(_a )
self.assertIsInstance(_a , (RobertaTokenizer, RobertaTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 20 )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = AutoConfig.from_pretrained(_a )
self.assertIsInstance(_a , _a )
# Check that tokenizer_type ≠ model_type
snake_case__ = AutoTokenizer.from_pretrained(_a , config=_a )
self.assertIsInstance(_a , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 12 )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_a , '''vocab.txt''' ) )
snake_case__ = AutoTokenizer.from_pretrained(_a , tokenizer_type='''bert''' , use_fast=_a )
self.assertIsInstance(_a , _a )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_a , '''vocab.json''' ) )
shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_a , '''merges.txt''' ) )
snake_case__ = AutoTokenizer.from_pretrained(_a , tokenizer_type='''gpt2''' , use_fast=_a )
self.assertIsInstance(_a , _a )
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_a , '''vocab.txt''' ) )
snake_case__ = AutoTokenizer.from_pretrained(_a , tokenizer_type='''bert''' )
self.assertIsInstance(_a , _a )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_a , '''vocab.json''' ) )
shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_a , '''merges.txt''' ) )
snake_case__ = AutoTokenizer.from_pretrained(_a , tokenizer_type='''gpt2''' )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
with pytest.raises(_a ):
AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' )
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
snake_case__ = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' )
self.assertIsInstance(_a , (BertTokenizer, BertTokenizerFast) )
if isinstance(_a , _a ):
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _a )
else:
self.assertEqual(tokenizer.do_lower_case , _a )
self.assertEqual(tokenizer.model_max_length , 5_12 )
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
with self.assertRaisesRegex(
_a , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ):
snake_case__ = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
# tests: https://github.com/huggingface/transformers/pull/13251
# 1. models with `-`, e.g. xlm-roberta -> xlm_roberta
# 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai
snake_case__ = TOKENIZER_MAPPING.values()
snake_case__ = []
for slow_tok, fast_tok in tokenizers:
if slow_tok is not None:
tokenizer_names.append(slow_tok.__name__ )
if fast_tok is not None:
tokenizer_names.append(fast_tok.__name__ )
for tokenizer_name in tokenizer_names:
# must find the right class
tokenizer_class_from_name(_a )
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self:int ):
self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=_a ) , _a )
self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , _a )
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=_a )
snake_case__ = '''Hello, world. How are you?'''
snake_case__ = tokenizer.tokenize(_a )
self.assertEqual('''[UNK]''' , tokens[0] )
snake_case__ = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=_a )
snake_case__ = tokenizer.tokenize(_a )
self.assertEqual('''[UNK]''' , tokens[0] )
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' )
self.assertEqual(type(_a ) , _a )
self.assertEqual(tokenizer.model_max_length , 5_12 )
self.assertEqual(tokenizer.vocab_size , 3_00_00 )
self.assertEqual(tokenizer.unk_token , '''[UNK]''' )
self.assertEqual(tokenizer.padding_side , '''right''' )
self.assertEqual(tokenizer.truncation_side , '''right''' )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = AutoTokenizer.from_pretrained(_a )
self.assertIsInstance(_a , (BertTokenizer, BertTokenizerFast) )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_a )
snake_case__ = AutoTokenizer.from_pretrained(_a )
self.assertIsInstance(_a , tokenizer.__class__ )
self.assertEqual(tokenizera.vocab_size , 12 )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = AutoTokenizer.from_pretrained('''ctrl''' )
# There is no fast CTRL so this always gives us a slow tokenizer.
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
# Check we can load the tokenizer config of an online model.
snake_case__ = get_tokenizer_config('''bert-base-cased''' )
snake_case__ = config.pop('''_commit_hash''' , _a )
# If we ever update bert-base-cased tokenizer config, this dict here will need to be updated.
self.assertEqual(_a , {'''do_lower_case''': False} )
# This model does not have a tokenizer_config so we get back an empty dict.
snake_case__ = get_tokenizer_config(_a )
self.assertDictEqual(_a , {} )
# A tokenizer saved with `save_pretrained` always creates a tokenizer config.
snake_case__ = AutoTokenizer.from_pretrained(_a )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_a )
snake_case__ = get_tokenizer_config(_a )
# Check the class of the tokenizer was properly saved (note that it always saves the slow class).
self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
try:
AutoConfig.register('''custom''' , _a )
AutoTokenizer.register(_a , slow_tokenizer_class=_a )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_a ):
AutoTokenizer.register(_a , slow_tokenizer_class=_a )
snake_case__ = CustomTokenizer.from_pretrained(_a )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_a )
snake_case__ = AutoTokenizer.from_pretrained(_a )
self.assertIsInstance(_a , _a )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self:str ):
try:
AutoConfig.register('''custom''' , _a )
# Can register in two steps
AutoTokenizer.register(_a , slow_tokenizer_class=_a )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) )
AutoTokenizer.register(_a , fast_tokenizer_class=_a )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
del TOKENIZER_MAPPING._extra_content[CustomConfig]
# Can register in one step
AutoTokenizer.register(
_a , slow_tokenizer_class=_a , fast_tokenizer_class=_a )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_a ):
AutoTokenizer.register(_a , fast_tokenizer_class=_a )
# We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer
# and that model does not have a tokenizer.json
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case__ = BertTokenizerFast.from_pretrained(_a )
bert_tokenizer.save_pretrained(_a )
snake_case__ = CustomTokenizerFast.from_pretrained(_a )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_a )
snake_case__ = AutoTokenizer.from_pretrained(_a )
self.assertIsInstance(_a , _a )
snake_case__ = AutoTokenizer.from_pretrained(_a , use_fast=_a )
self.assertIsInstance(_a , _a )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(_a ):
snake_case__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(_a ):
snake_case__ = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_a )
snake_case__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_a )
self.assertTrue(tokenizer.special_attribute_present )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_a )
snake_case__ = AutoTokenizer.from_pretrained(_a , trust_remote_code=_a )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' )
# Test we can also load the slow version
snake_case__ = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_a , use_fast=_a )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_a )
snake_case__ = AutoTokenizer.from_pretrained(_a , trust_remote_code=_a , use_fast=_a )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
else:
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' )
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self:str ):
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Tuple = False
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : List[str] = NewTokenizer
__lowercase : List[str] = False
try:
AutoConfig.register('''custom''' , _a )
AutoTokenizer.register(_a , slow_tokenizer_class=_a )
AutoTokenizer.register(_a , fast_tokenizer_class=_a )
# If remote code is not set, the default is to use local
snake_case__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' )
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' )
self.assertFalse(tokenizer.special_attribute_present )
snake_case__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=_a )
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' )
self.assertFalse(tokenizer.special_attribute_present )
# If remote code is disabled, we load the local one.
snake_case__ = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_a )
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' )
self.assertFalse(tokenizer.special_attribute_present )
snake_case__ = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_a , use_fast=_a )
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' )
self.assertFalse(tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub
snake_case__ = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_a )
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' )
self.assertTrue(tokenizer.special_attribute_present )
snake_case__ = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_a , use_fast=_a )
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' )
self.assertTrue(tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_a )
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' )
# Test we can also load the slow version
snake_case__ = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_a , use_fast=_a )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' )
else:
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' )
def SCREAMING_SNAKE_CASE__ ( self:str ):
with self.assertRaisesRegex(
_a , '''bert-base is not a local folder and is not a valid model identifier''' ):
snake_case__ = AutoTokenizer.from_pretrained('''bert-base''' )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
with self.assertRaisesRegex(
_a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
snake_case__ = AutoTokenizer.from_pretrained(_a , revision='''aaaaaa''' )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
# Make sure we have cached the tokenizer.
snake_case__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
with RequestCounter() as counter:
snake_case__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
| 33 |
import pytest
from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs
@pytest.mark.parametrize(
'''kwargs, expected''' , [
({'''num_shards''': 0, '''max_num_jobs''': 1}, []),
({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]),
({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__lowerCAmelCase , i + 1 ) for i in range(10 )]),
({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]),
({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]),
({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]),
] , )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
snake_case__ = _distribute_shards(**__lowerCAmelCase )
assert out == expected
@pytest.mark.parametrize(
'''gen_kwargs, max_num_jobs, expected''' , [
({'''foo''': 0}, 10, [{'''foo''': 0}]),
({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]),
({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]),
({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]),
({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]),
] , )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict:
snake_case__ = _split_gen_kwargs(__lowerCAmelCase , __lowerCAmelCase )
assert out == expected
@pytest.mark.parametrize(
'''gen_kwargs, expected''' , [
({'''foo''': 0}, 1),
({'''shards''': [0]}, 1),
({'''shards''': [0, 1, 2, 3]}, 4),
({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4),
({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4),
({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError),
] , )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
if expected is RuntimeError:
with pytest.raises(__lowerCAmelCase ):
_number_of_shards_in_gen_kwargs(__lowerCAmelCase )
else:
snake_case__ = _number_of_shards_in_gen_kwargs(__lowerCAmelCase )
assert out == expected
| 33 | 1 |
import numpy as np
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> np.ndarray:
return np.where(vector > 0 , __lowerCAmelCase , (alpha * (np.exp(__lowerCAmelCase ) - 1)) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 33 |
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : str = IFImgaImgSuperResolutionPipeline
__lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'}
__lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} )
__lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'}
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
return self._get_superresolution_dummy_components()
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ):
if str(_a ).startswith('''mps''' ):
snake_case__ = torch.manual_seed(_a )
else:
snake_case__ = torch.Generator(device=_a ).manual_seed(_a )
snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a )
snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a )
snake_case__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''original_image''': original_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def SCREAMING_SNAKE_CASE__ ( self:str ):
self._test_save_load_local()
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 33 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ : int = {
"""configuration_jukebox""": [
"""JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""JukeboxConfig""",
"""JukeboxPriorConfig""",
"""JukeboxVQVAEConfig""",
],
"""tokenization_jukebox""": ["""JukeboxTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Dict = [
"""JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""JukeboxModel""",
"""JukeboxPreTrainedModel""",
"""JukeboxVQVAE""",
"""JukeboxPrior""",
]
if TYPE_CHECKING:
from .configuration_jukebox import (
JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP,
JukeboxConfig,
JukeboxPriorConfig,
JukeboxVQVAEConfig,
)
from .tokenization_jukebox import JukeboxTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_jukebox import (
JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST,
JukeboxModel,
JukeboxPreTrainedModel,
JukeboxPrior,
JukeboxVQVAE,
)
else:
import sys
lowerCamelCase__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 33 |
import math
class __magic_name__ :
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:list[list[float]] , _a:list[int] ):
snake_case__ = 0.0
snake_case__ = 0.0
for i in range(len(_a ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:list[list[int | float]] , _a:list[int] , _a:int , _a:float ):
for i in range(len(_a ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def SCREAMING_SNAKE_CASE ( ) -> None:
# Training Examples ( m, n )
snake_case__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
snake_case__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
snake_case__ = SelfOrganizingMap()
snake_case__ = 3
snake_case__ = 0.5
for _ in range(__lowerCAmelCase ):
for j in range(len(__lowerCAmelCase ) ):
# training sample
snake_case__ = training_samples[j]
# Compute the winning vector
snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase )
# Update the winning vector
snake_case__ = self_organizing_map.update(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# classify test sample
snake_case__ = [0, 0, 0, 1]
snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase )
# results
print(F"""Clusters that the test sample belongs to : {winner}""" )
print(F"""Weights that have been trained : {weights}""" )
# running the main() function
if __name__ == "__main__":
main()
| 33 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
lowerCamelCase__ : List[Any] = {
"""configuration_rag""": ["""RagConfig"""],
"""retrieval_rag""": ["""RagRetriever"""],
"""tokenization_rag""": ["""RagTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Optional[Any] = [
"""RagModel""",
"""RagPreTrainedModel""",
"""RagSequenceForGeneration""",
"""RagTokenForGeneration""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Any = [
"""TFRagModel""",
"""TFRagPreTrainedModel""",
"""TFRagSequenceForGeneration""",
"""TFRagTokenForGeneration""",
]
if TYPE_CHECKING:
from .configuration_rag import RagConfig
from .retrieval_rag import RagRetriever
from .tokenization_rag import RagTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rag import (
TFRagModel,
TFRagPreTrainedModel,
TFRagSequenceForGeneration,
TFRagTokenForGeneration,
)
else:
import sys
lowerCamelCase__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 33 |
from __future__ import annotations
from statistics import mean
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]:
snake_case__ = [0] * no_of_processes
snake_case__ = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(__lowerCAmelCase ):
snake_case__ = burst_time[i]
snake_case__ = []
snake_case__ = 0
snake_case__ = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
snake_case__ = []
snake_case__ = -1
for i in range(__lowerCAmelCase ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(__lowerCAmelCase )
if len(__lowerCAmelCase ) > 0:
snake_case__ = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
snake_case__ = i
total_time += burst_time[target_process]
completed += 1
snake_case__ = 0
snake_case__ = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]:
snake_case__ = [0] * no_of_processes
for i in range(__lowerCAmelCase ):
snake_case__ = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("""[TEST CASE 01]""")
lowerCamelCase__ : Tuple = 4
lowerCamelCase__ : Union[str, Any] = [2, 5, 3, 7]
lowerCamelCase__ : Optional[Any] = [0, 0, 0, 0]
lowerCamelCase__ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
lowerCamelCase__ : Union[str, Any] = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""")
for i, process_id in enumerate(list(range(1, 5))):
print(
F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t"""
F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}"""
)
print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""")
print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
| 33 | 1 |
lowerCamelCase__ : List[str] = """Alexander Joslin"""
import operator as op
from .stack import Stack
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int:
snake_case__ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub}
snake_case__ = Stack()
snake_case__ = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(__lowerCAmelCase ) )
elif i in operators:
# RULE 2
operator_stack.push(__lowerCAmelCase )
elif i == ")":
# RULE 4
snake_case__ = operator_stack.peek()
operator_stack.pop()
snake_case__ = operand_stack.peek()
operand_stack.pop()
snake_case__ = operand_stack.peek()
operand_stack.pop()
snake_case__ = operators[opr](__lowerCAmelCase , __lowerCAmelCase )
operand_stack.push(__lowerCAmelCase )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
lowerCamelCase__ : Optional[Any] = """(5 + ((4 * 2) * (2 + 3)))"""
# answer = 45
print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
| 33 |
lowerCamelCase__ : List[str] = """Alexander Joslin"""
import operator as op
from .stack import Stack
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int:
snake_case__ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub}
snake_case__ = Stack()
snake_case__ = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(__lowerCAmelCase ) )
elif i in operators:
# RULE 2
operator_stack.push(__lowerCAmelCase )
elif i == ")":
# RULE 4
snake_case__ = operator_stack.peek()
operator_stack.pop()
snake_case__ = operand_stack.peek()
operand_stack.pop()
snake_case__ = operand_stack.peek()
operand_stack.pop()
snake_case__ = operators[opr](__lowerCAmelCase , __lowerCAmelCase )
operand_stack.push(__lowerCAmelCase )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
lowerCamelCase__ : Optional[Any] = """(5 + ((4 * 2) * (2 + 3)))"""
# answer = 45
print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
| 33 | 1 |
from __future__ import annotations
from fractions import Fraction
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> bool:
return (
num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den
)
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> list[str]:
snake_case__ = []
snake_case__ = 11
snake_case__ = int('''1''' + '''0''' * digit_len )
for num in range(__lowerCAmelCase , __lowerCAmelCase ):
while den <= 99:
if (num != den) and (num % 10 == den // 10) and (den % 10 != 0):
if is_digit_cancelling(__lowerCAmelCase , __lowerCAmelCase ):
solutions.append(F"""{num}/{den}""" )
den += 1
num += 1
snake_case__ = 10
return solutions
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 2 ) -> int:
snake_case__ = 1.0
for fraction in fraction_list(__lowerCAmelCase ):
snake_case__ = Fraction(__lowerCAmelCase )
result *= frac.denominator / frac.numerator
return int(__lowerCAmelCase )
if __name__ == "__main__":
print(solution())
| 33 |
import warnings
from ...utils import logging
from .image_processing_perceiver import PerceiverImageProcessor
lowerCamelCase__ : int = logging.get_logger(__name__)
class __magic_name__ (snake_case_ ):
'''simple docstring'''
def __init__( self:List[Any] , *_a:Dict , **_a:Tuple ):
warnings.warn(
'''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use PerceiverImageProcessor instead.''' , _a , )
super().__init__(*_a , **_a )
| 33 | 1 |
import datasets
from .evaluate import evaluate
lowerCamelCase__ : Dict = """\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
"""
lowerCamelCase__ : Dict = """
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
"""
lowerCamelCase__ : List[str] = """
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair as given in the references (see below)
- 'prediction_text': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair (see above),
- 'answers': a Dict in the CUAD dataset format
{
'text': list of possible texts for the answer, as a list of strings
'answer_start': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
'exact_match': Exact match (the normalized answer exactly match the gold answer)
'f1': The F-score of predicted tokens versus the gold answer
'aupr': Area Under the Precision-Recall curve
'prec_at_80_recall': Precision at 80% recall
'prec_at_90_recall': Precision at 90% recall
Examples:
>>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> cuad_metric = datasets.load_metric(\"cuad\")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class __magic_name__ (datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': {
'''id''': datasets.Value('''string''' ),
'''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ),
},
'''references''': {
'''id''': datasets.Value('''string''' ),
'''answers''': datasets.features.Sequence(
{
'''text''': datasets.Value('''string''' ),
'''answer_start''': datasets.Value('''int32''' ),
} ),
},
} ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:Tuple , _a:Optional[Any] ):
snake_case__ = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions}
snake_case__ = [
{
'''paragraphs''': [
{
'''qas''': [
{
'''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']],
'''id''': ref['''id'''],
}
for ref in references
]
}
]
}
]
snake_case__ = evaluate(dataset=_a , predictions=_a )
return score
| 33 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase__ : Tuple = {
"""configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""],
"""tokenization_roberta""": ["""RobertaTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Tuple = ["""RobertaTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Optional[int] = [
"""ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""RobertaForCausalLM""",
"""RobertaForMaskedLM""",
"""RobertaForMultipleChoice""",
"""RobertaForQuestionAnswering""",
"""RobertaForSequenceClassification""",
"""RobertaForTokenClassification""",
"""RobertaModel""",
"""RobertaPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : List[str] = [
"""TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFRobertaForCausalLM""",
"""TFRobertaForMaskedLM""",
"""TFRobertaForMultipleChoice""",
"""TFRobertaForQuestionAnswering""",
"""TFRobertaForSequenceClassification""",
"""TFRobertaForTokenClassification""",
"""TFRobertaMainLayer""",
"""TFRobertaModel""",
"""TFRobertaPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : str = [
"""FlaxRobertaForCausalLM""",
"""FlaxRobertaForMaskedLM""",
"""FlaxRobertaForMultipleChoice""",
"""FlaxRobertaForQuestionAnswering""",
"""FlaxRobertaForSequenceClassification""",
"""FlaxRobertaForTokenClassification""",
"""FlaxRobertaModel""",
"""FlaxRobertaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 33 | 1 |
import itertools
import string
from collections.abc import Generator, Iterable
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Generator[tuple[str, ...], None, None]:
snake_case__ = iter(__lowerCAmelCase )
while True:
snake_case__ = tuple(itertools.islice(__lowerCAmelCase , __lowerCAmelCase ) )
if not chunk:
return
yield chunk
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> str:
snake_case__ = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] )
snake_case__ = ''''''
if len(__lowerCAmelCase ) < 2:
return dirty
for i in range(len(__lowerCAmelCase ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(__lowerCAmelCase ) & 1:
clean += "X"
return clean
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> list[str]:
# I and J are used interchangeably to allow
# us to use a 5x5 table (25 letters)
snake_case__ = '''ABCDEFGHIKLMNOPQRSTUVWXYZ'''
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
snake_case__ = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(__lowerCAmelCase )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(__lowerCAmelCase )
return table
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> str:
snake_case__ = generate_table(__lowerCAmelCase )
snake_case__ = prepare_input(__lowerCAmelCase )
snake_case__ = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(__lowerCAmelCase , 2 ):
snake_case__ , snake_case__ = divmod(table.index(__lowerCAmelCase ) , 5 )
snake_case__ , snake_case__ = divmod(table.index(__lowerCAmelCase ) , 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> str:
snake_case__ = generate_table(__lowerCAmelCase )
snake_case__ = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(__lowerCAmelCase , 2 ):
snake_case__ , snake_case__ = divmod(table.index(__lowerCAmelCase ) , 5 )
snake_case__ , snake_case__ = divmod(table.index(__lowerCAmelCase ) , 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 33 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]:
snake_case__ = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:] )
class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : Dict = StableDiffusionLatentUpscalePipeline
__lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
'height',
'width',
'cross_attention_kwargs',
'negative_prompt_embeds',
'prompt_embeds',
}
__lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'}
__lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
__lowercase : int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__lowercase : List[Any] = frozenset([] )
__lowercase : Any = True
@property
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = 1
snake_case__ = 4
snake_case__ = (16, 16)
snake_case__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a )
return image
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
torch.manual_seed(0 )
snake_case__ = UNetaDConditionModel(
act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_a , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=(
'''KDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
) , in_channels=8 , mid_block_type=_a , only_cross_attention=_a , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , )
snake_case__ = AutoencoderKL(
block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
snake_case__ = EulerDiscreteScheduler(prediction_type='''sample''' )
snake_case__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , )
snake_case__ = CLIPTextModel(_a )
snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
snake_case__ = {
'''unet''': model.eval(),
'''vae''': vae.eval(),
'''scheduler''': scheduler,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:List[str]=0 ):
if str(_a ).startswith('''mps''' ):
snake_case__ = torch.manual_seed(_a )
else:
snake_case__ = torch.Generator(device=_a ).manual_seed(_a )
snake_case__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': self.dummy_image.cpu(),
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = '''cpu'''
snake_case__ = self.get_dummy_components()
snake_case__ = self.pipeline_class(**_a )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
snake_case__ = self.get_dummy_inputs(_a )
snake_case__ = pipe(**_a ).images
snake_case__ = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 2_56, 2_56, 3) )
snake_case__ = np.array(
[0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] )
snake_case__ = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_a , 1e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:str ):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
super().test_inference_batch_single_identical(expected_max_diff=7e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
super().test_save_load_local(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:str ):
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = [
'''DDIMScheduler''',
'''DDPMScheduler''',
'''PNDMScheduler''',
'''HeunDiscreteScheduler''',
'''EulerAncestralDiscreteScheduler''',
'''KDPM2DiscreteScheduler''',
'''KDPM2AncestralDiscreteScheduler''',
'''DPMSolverSDEScheduler''',
]
snake_case__ = self.get_dummy_components()
snake_case__ = self.pipeline_class(**_a )
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=_a )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
snake_case__ = self.get_dummy_inputs(_a )
snake_case__ = 2
snake_case__ = []
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
snake_case__ = getattr(_a , scheduler_enum.name )
snake_case__ = scheduler_cls.from_config(pipe.scheduler.config )
snake_case__ = pipe(**_a )[0]
outputs.append(_a )
assert check_same_shape(_a )
@require_torch_gpu
@slow
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = torch.manual_seed(33 )
snake_case__ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa )
pipe.to('''cuda''' )
snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
snake_case__ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic'''
snake_case__ = pipe(_a , generator=_a , output_type='''latent''' ).images
snake_case__ = upscaler(
prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0]
snake_case__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' )
assert np.abs((expected_image - image).mean() ) < 5e-2
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = torch.manual_seed(33 )
snake_case__ = StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
snake_case__ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas'''
snake_case__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' )
snake_case__ = upscaler(
prompt=_a , image=_a , num_inference_steps=20 , guidance_scale=0 , generator=_a , output_type='''np''' , ).images[0]
snake_case__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' )
assert np.abs((expected_image - image).max() ) < 5e-2
| 33 | 1 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ : Dict = logging.get_logger(__name__)
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Any = 'encoder-decoder'
__lowercase : Optional[Any] = True
def __init__( self:Dict , **_a:Optional[Any] ):
super().__init__(**_a )
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
snake_case__ = kwargs.pop('''encoder''' )
snake_case__ = encoder_config.pop('''model_type''' )
snake_case__ = kwargs.pop('''decoder''' )
snake_case__ = decoder_config.pop('''model_type''' )
from ..auto.configuration_auto import AutoConfig
snake_case__ = AutoConfig.for_model(_a , **_a )
snake_case__ = AutoConfig.for_model(_a , **_a )
snake_case__ = True
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:List[Any] , _a:PretrainedConfig , _a:PretrainedConfig , **_a:int ):
logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' )
snake_case__ = True
snake_case__ = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = copy.deepcopy(self.__dict__ )
snake_case__ = self.encoder.to_dict()
snake_case__ = self.decoder.to_dict()
snake_case__ = self.__class__.model_type
return output
| 33 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import is_speech_available, is_vision_available
from transformers.testing_utils import require_torch
if is_vision_available():
from transformers import TvltImageProcessor
if is_speech_available():
from transformers import TvltFeatureExtractor
from transformers import TvltProcessor
@require_torch
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = '''ZinengTang/tvlt-base'''
snake_case__ = tempfile.mkdtemp()
def SCREAMING_SNAKE_CASE__ ( self:Dict , **_a:List[Any] ):
return TvltImageProcessor.from_pretrained(self.checkpoint , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , **_a:Tuple ):
return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
processor.save_pretrained(self.tmpdirname )
snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname )
self.assertIsInstance(processor.feature_extractor , _a )
self.assertIsInstance(processor.image_processor , _a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
snake_case__ = np.ones([1_20_00] )
snake_case__ = feature_extractor(_a , return_tensors='''np''' )
snake_case__ = processor(audio=_a , return_tensors='''np''' )
for key in audio_dict.keys():
self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
snake_case__ = np.ones([3, 2_24, 2_24] )
snake_case__ = image_processor(_a , return_tensors='''np''' )
snake_case__ = processor(images=_a , return_tensors='''np''' )
for key in image_dict.keys():
self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
snake_case__ = np.ones([1_20_00] )
snake_case__ = np.ones([3, 2_24, 2_24] )
snake_case__ = processor(audio=_a , images=_a )
self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] )
# test if it raises when no input is passed
with pytest.raises(_a ):
processor()
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.get_image_processor()
snake_case__ = self.get_feature_extractor()
snake_case__ = TvltProcessor(image_processor=_a , feature_extractor=_a )
self.assertListEqual(
processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
| 33 | 1 |
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Union[str, Any] = ['image_processor', 'tokenizer']
__lowercase : Any = 'OwlViTImageProcessor'
__lowercase : Optional[Any] = ('CLIPTokenizer', 'CLIPTokenizerFast')
def __init__( self:Optional[int] , _a:List[Any]=None , _a:str=None , **_a:Any ):
snake_case__ = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , _a , )
snake_case__ = kwargs.pop('''feature_extractor''' )
snake_case__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_a , _a )
def __call__( self:Dict , _a:Any=None , _a:Optional[Any]=None , _a:Tuple=None , _a:List[str]="max_length" , _a:Dict="np" , **_a:Any ):
if text is None and query_images is None and images is None:
raise ValueError(
'''You have to specify at least one text or query image or image. All three cannot be none.''' )
if text is not None:
if isinstance(_a , _a ) or (isinstance(_a , _a ) and not isinstance(text[0] , _a )):
snake_case__ = [self.tokenizer(_a , padding=_a , return_tensors=_a , **_a )]
elif isinstance(_a , _a ) and isinstance(text[0] , _a ):
snake_case__ = []
# Maximum number of queries across batch
snake_case__ = max([len(_a ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(_a ) != max_num_queries:
snake_case__ = t + [''' '''] * (max_num_queries - len(_a ))
snake_case__ = self.tokenizer(_a , padding=_a , return_tensors=_a , **_a )
encodings.append(_a )
else:
raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' )
if return_tensors == "np":
snake_case__ = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
snake_case__ = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
snake_case__ = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
snake_case__ = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
snake_case__ = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 )
snake_case__ = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
snake_case__ = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
snake_case__ = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
else:
raise ValueError('''Target return tensor type could not be returned''' )
snake_case__ = BatchEncoding()
snake_case__ = input_ids
snake_case__ = attention_mask
if query_images is not None:
snake_case__ = BatchEncoding()
snake_case__ = self.image_processor(
_a , return_tensors=_a , **_a ).pixel_values
snake_case__ = query_pixel_values
if images is not None:
snake_case__ = self.image_processor(_a , return_tensors=_a , **_a )
if text is not None and images is not None:
snake_case__ = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
snake_case__ = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**_a ) , tensor_type=_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , *_a:Tuple , **_a:Optional[Any] ):
return self.image_processor.post_process(*_a , **_a )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , *_a:int , **_a:Optional[Any] ):
return self.image_processor.post_process_object_detection(*_a , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Any , *_a:Any , **_a:List[Any] ):
return self.image_processor.post_process_image_guided_detection(*_a , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , *_a:Optional[Any] , **_a:List[str] ):
return self.tokenizer.batch_decode(*_a , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , *_a:int , **_a:str ):
return self.tokenizer.decode(*_a , **_a )
@property
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , )
return self.image_processor
| 33 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Optional[int] = {
"""facebook/data2vec-vision-base-ft""": (
"""https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json"""
),
}
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Optional[int] = 'data2vec-vision'
def __init__( self:int , _a:Tuple=7_68 , _a:int=12 , _a:Any=12 , _a:Optional[int]=30_72 , _a:Optional[int]="gelu" , _a:Any=0.0 , _a:Any=0.0 , _a:List[str]=0.02 , _a:Dict=1e-12 , _a:Tuple=2_24 , _a:Any=16 , _a:str=3 , _a:str=False , _a:Union[str, Any]=False , _a:Optional[int]=False , _a:Any=False , _a:Dict=0.1 , _a:Dict=0.1 , _a:str=True , _a:str=[3, 5, 7, 11] , _a:List[str]=[1, 2, 3, 6] , _a:List[str]=True , _a:Any=0.4 , _a:str=2_56 , _a:Union[str, Any]=1 , _a:int=False , _a:Optional[int]=2_55 , **_a:Dict , ):
super().__init__(**_a )
snake_case__ = hidden_size
snake_case__ = num_hidden_layers
snake_case__ = num_attention_heads
snake_case__ = intermediate_size
snake_case__ = hidden_act
snake_case__ = hidden_dropout_prob
snake_case__ = attention_probs_dropout_prob
snake_case__ = initializer_range
snake_case__ = layer_norm_eps
snake_case__ = image_size
snake_case__ = patch_size
snake_case__ = num_channels
snake_case__ = use_mask_token
snake_case__ = use_absolute_position_embeddings
snake_case__ = use_relative_position_bias
snake_case__ = use_shared_relative_position_bias
snake_case__ = layer_scale_init_value
snake_case__ = drop_path_rate
snake_case__ = use_mean_pooling
# decode head attributes (semantic segmentation)
snake_case__ = out_indices
snake_case__ = pool_scales
# auxiliary head attributes (semantic segmentation)
snake_case__ = use_auxiliary_head
snake_case__ = auxiliary_loss_weight
snake_case__ = auxiliary_channels
snake_case__ = auxiliary_num_convs
snake_case__ = auxiliary_concat_input
snake_case__ = semantic_loss_ignore_index
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Any = version.parse('1.11' )
@property
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
return 1e-4
| 33 | 1 |
from ..utils import DummyObject, requires_backends
class __magic_name__ (metaclass=snake_case_ ):
'''simple docstring'''
__lowercase : Union[str, Any] = ['flax']
def __init__( self:str , *_a:Tuple , **_a:str ):
requires_backends(self , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:str , *_a:Optional[int] , **_a:Optional[Any] ):
requires_backends(cls , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:str , *_a:Union[str, Any] , **_a:List[str] ):
requires_backends(cls , ['''flax'''] )
class __magic_name__ (metaclass=snake_case_ ):
'''simple docstring'''
__lowercase : List[Any] = ['flax']
def __init__( self:Dict , *_a:int , **_a:List[str] ):
requires_backends(self , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:List[Any] , *_a:List[str] , **_a:List[Any] ):
requires_backends(cls , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:Any , *_a:Tuple , **_a:List[str] ):
requires_backends(cls , ['''flax'''] )
class __magic_name__ (metaclass=snake_case_ ):
'''simple docstring'''
__lowercase : Optional[int] = ['flax']
def __init__( self:List[Any] , *_a:Any , **_a:int ):
requires_backends(self , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:Any , *_a:List[str] , **_a:Tuple ):
requires_backends(cls , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:int , *_a:str , **_a:int ):
requires_backends(cls , ['''flax'''] )
class __magic_name__ (metaclass=snake_case_ ):
'''simple docstring'''
__lowercase : Optional[Any] = ['flax']
def __init__( self:Tuple , *_a:List[Any] , **_a:Tuple ):
requires_backends(self , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:Union[str, Any] , *_a:Any , **_a:int ):
requires_backends(cls , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:List[Any] , *_a:Optional[int] , **_a:List[str] ):
requires_backends(cls , ['''flax'''] )
class __magic_name__ (metaclass=snake_case_ ):
'''simple docstring'''
__lowercase : Optional[Any] = ['flax']
def __init__( self:List[str] , *_a:Any , **_a:int ):
requires_backends(self , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:Any , *_a:Optional[Any] , **_a:Optional[int] ):
requires_backends(cls , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:Optional[int] , *_a:Any , **_a:Tuple ):
requires_backends(cls , ['''flax'''] )
class __magic_name__ (metaclass=snake_case_ ):
'''simple docstring'''
__lowercase : List[Any] = ['flax']
def __init__( self:Optional[Any] , *_a:int , **_a:List[str] ):
requires_backends(self , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:Union[str, Any] , *_a:Tuple , **_a:Any ):
requires_backends(cls , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:List[Any] , *_a:Any , **_a:Any ):
requires_backends(cls , ['''flax'''] )
class __magic_name__ (metaclass=snake_case_ ):
'''simple docstring'''
__lowercase : Optional[Any] = ['flax']
def __init__( self:Any , *_a:Any , **_a:Tuple ):
requires_backends(self , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:int , *_a:Dict , **_a:Union[str, Any] ):
requires_backends(cls , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:int , *_a:int , **_a:List[str] ):
requires_backends(cls , ['''flax'''] )
class __magic_name__ (metaclass=snake_case_ ):
'''simple docstring'''
__lowercase : Optional[Any] = ['flax']
def __init__( self:Any , *_a:Optional[int] , **_a:Any ):
requires_backends(self , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:Optional[Any] , *_a:List[Any] , **_a:Tuple ):
requires_backends(cls , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:List[str] , *_a:Any , **_a:List[Any] ):
requires_backends(cls , ['''flax'''] )
class __magic_name__ (metaclass=snake_case_ ):
'''simple docstring'''
__lowercase : str = ['flax']
def __init__( self:Optional[Any] , *_a:Any , **_a:List[Any] ):
requires_backends(self , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:Any , *_a:List[Any] , **_a:List[str] ):
requires_backends(cls , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:str , *_a:Dict , **_a:List[str] ):
requires_backends(cls , ['''flax'''] )
class __magic_name__ (metaclass=snake_case_ ):
'''simple docstring'''
__lowercase : List[str] = ['flax']
def __init__( self:int , *_a:Union[str, Any] , **_a:Tuple ):
requires_backends(self , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:List[Any] , *_a:Optional[int] , **_a:int ):
requires_backends(cls , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:Union[str, Any] , *_a:List[str] , **_a:Optional[Any] ):
requires_backends(cls , ['''flax'''] )
class __magic_name__ (metaclass=snake_case_ ):
'''simple docstring'''
__lowercase : List[str] = ['flax']
def __init__( self:str , *_a:List[str] , **_a:List[Any] ):
requires_backends(self , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:List[Any] , *_a:int , **_a:Union[str, Any] ):
requires_backends(cls , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:Tuple , *_a:Optional[int] , **_a:List[str] ):
requires_backends(cls , ['''flax'''] )
class __magic_name__ (metaclass=snake_case_ ):
'''simple docstring'''
__lowercase : Tuple = ['flax']
def __init__( self:Optional[Any] , *_a:Optional[int] , **_a:Optional[Any] ):
requires_backends(self , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:Any , *_a:Any , **_a:Any ):
requires_backends(cls , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:Any , *_a:Optional[Any] , **_a:Union[str, Any] ):
requires_backends(cls , ['''flax'''] )
class __magic_name__ (metaclass=snake_case_ ):
'''simple docstring'''
__lowercase : List[Any] = ['flax']
def __init__( self:Optional[Any] , *_a:Optional[Any] , **_a:Any ):
requires_backends(self , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:List[Any] , *_a:Union[str, Any] , **_a:Dict ):
requires_backends(cls , ['''flax'''] )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:Optional[int] , *_a:Any , **_a:str ):
requires_backends(cls , ['''flax'''] )
| 33 |
import os
import sys
lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(__file__), """src""")
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
lowerCamelCase__ : Optional[int] = [
"""torch""",
"""numpy""",
"""tokenizers""",
"""filelock""",
"""requests""",
"""tqdm""",
"""regex""",
"""sentencepiece""",
"""sacremoses""",
"""importlib_metadata""",
"""huggingface_hub""",
]
@add_start_docstrings(AutoConfig.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any:
return AutoConfig.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoTokenizer.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]:
return AutoTokenizer.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModel.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple:
return AutoModel.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]:
return AutoModelForCausalLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]:
return AutoModelForMaskedLM.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[str]:
return AutoModelForSequenceClassification.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]:
return AutoModelForQuestionAnswering.from_pretrained(*__lowerCAmelCase , **__lowerCAmelCase )
| 33 | 1 |
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' ,snake_case_ ,)
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Tuple = RobertaConfig
__lowercase : List[str] = 'roberta'
def __init__( self:List[str] , _a:Union[str, Any] ):
super().__init__(_a )
snake_case__ = RobertaEmbeddings(_a )
self.init_weights()
@add_start_docstrings(
'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' ,snake_case_ ,)
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : List[str] = RobertaConfig
__lowercase : int = 'roberta'
def __init__( self:str , _a:Optional[Any] ):
super().__init__(_a )
snake_case__ = config.num_labels
snake_case__ = config.num_hidden_layers
snake_case__ = DeeRobertaModel(_a )
snake_case__ = nn.Dropout(config.hidden_dropout_prob )
snake_case__ = nn.Linear(config.hidden_size , self.config.num_labels )
@add_start_docstrings_to_model_forward(_a )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:Any=None , _a:Any=None , _a:str=None , _a:Optional[Any]=None , _a:Union[str, Any]=None , _a:Optional[Any]=None , _a:Dict=None , _a:str=-1 , _a:Optional[int]=False , ):
snake_case__ = self.num_layers
try:
snake_case__ = self.roberta(
_a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , )
snake_case__ = outputs[1]
snake_case__ = self.dropout(_a )
snake_case__ = self.classifier(_a )
snake_case__ = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
snake_case__ = e.message
snake_case__ = e.exit_layer
snake_case__ = outputs[0]
if not self.training:
snake_case__ = entropy(_a )
snake_case__ = []
snake_case__ = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
snake_case__ = MSELoss()
snake_case__ = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
snake_case__ = CrossEntropyLoss()
snake_case__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
snake_case__ = []
for highway_exit in outputs[-1]:
snake_case__ = highway_exit[0]
if not self.training:
highway_logits_all.append(_a )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
snake_case__ = MSELoss()
snake_case__ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
snake_case__ = CrossEntropyLoss()
snake_case__ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(_a )
if train_highway:
snake_case__ = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
snake_case__ = (loss,) + outputs
if not self.training:
snake_case__ = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
snake_case__ = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 33 |
import torch
from diffusers import CMStochasticIterativeScheduler
from .test_schedulers import SchedulerCommonTest
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : str = (CMStochasticIterativeScheduler,)
__lowercase : List[str] = 10
def SCREAMING_SNAKE_CASE__ ( self:int , **_a:Optional[int] ):
snake_case__ = {
'''num_train_timesteps''': 2_01,
'''sigma_min''': 0.002,
'''sigma_max''': 80.0,
}
config.update(**_a )
return config
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = 10
snake_case__ = self.get_scheduler_config()
snake_case__ = self.scheduler_classes[0](**_a )
scheduler.set_timesteps(_a )
snake_case__ = scheduler.timesteps[0]
snake_case__ = scheduler.timesteps[1]
snake_case__ = self.dummy_sample
snake_case__ = 0.1 * sample
snake_case__ = scheduler.step(_a , _a , _a ).prev_sample
snake_case__ = scheduler.step(_a , _a , _a ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_a )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
for clip_denoised in [True, False]:
self.check_over_configs(clip_denoised=_a )
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = 1
scheduler.set_timesteps(_a )
snake_case__ = scheduler.timesteps
snake_case__ = torch.manual_seed(0 )
snake_case__ = self.dummy_model()
snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(_a ):
# 1. scale model input
snake_case__ = scheduler.scale_model_input(_a , _a )
# 2. predict noise residual
snake_case__ = model(_a , _a )
# 3. predict previous sample x_t-1
snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
snake_case__ = pred_prev_sample
snake_case__ = torch.sum(torch.abs(_a ) )
snake_case__ = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 192.7614 ) < 1e-2
assert abs(result_mean.item() - 0.2510 ) < 1e-3
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [1_06, 0]
scheduler.set_timesteps(timesteps=_a )
snake_case__ = scheduler.timesteps
snake_case__ = torch.manual_seed(0 )
snake_case__ = self.dummy_model()
snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma
for t in timesteps:
# 1. scale model input
snake_case__ = scheduler.scale_model_input(_a , _a )
# 2. predict noise residual
snake_case__ = model(_a , _a )
# 3. predict previous sample x_t-1
snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
snake_case__ = pred_prev_sample
snake_case__ = torch.sum(torch.abs(_a ) )
snake_case__ = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 347.6357 ) < 1e-2
assert abs(result_mean.item() - 0.4527 ) < 1e-3
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [39, 30, 12, 15, 0]
with self.assertRaises(_a , msg='''`timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=_a )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [39, 30, 12, 1, 0]
snake_case__ = len(_a )
with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=_a )
| 33 | 1 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
lowerCamelCase__ : Optional[Any] = """\
@inproceedings{pillutla-etal:mauve:neurips2021,
title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},
author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},
booktitle = {NeurIPS},
year = {2021}
}
"""
lowerCamelCase__ : int = """\
MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.
MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.
For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).
This metrics is a wrapper around the official implementation of MAUVE:
https://github.com/krishnap25/mauve
"""
lowerCamelCase__ : Any = """
Calculates MAUVE scores between two lists of generated text and reference text.
Args:
predictions: list of generated text to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Optional Args:
num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer
pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1
kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9
kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5
kmeans_max_iter: maximum number of k-means iterations. Default 500
featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].
device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU
max_text_length: maximum number of tokens to consider. Default 1024
divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25
mauve_scaling_factor: \"c\" from the paper. Default 5.
verbose: If True (default), print running time updates
seed: random seed to initialize k-means cluster assignments.
Returns:
mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,
frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,
divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,
p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,
q_hist: same as above, but with q_text.
Examples:
>>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest
>>> import datasets
>>> mauve = datasets.load_metric('mauve')
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP
>>> print(out.mauve) # doctest: +SKIP
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class __magic_name__ (datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:int ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[
'''https://arxiv.org/abs/2102.01454''',
'''https://github.com/krishnap25/mauve''',
] , )
def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Any , _a:Tuple , _a:str=None , _a:str=None , _a:List[Any]=None , _a:Dict=None , _a:List[Any]="auto" , _a:Optional[int]=-1 , _a:int=0.9 , _a:str=5 , _a:List[str]=5_00 , _a:Tuple="gpt2-large" , _a:Union[str, Any]=-1 , _a:Optional[int]=10_24 , _a:Optional[Any]=25 , _a:Optional[Any]=5 , _a:Optional[Any]=True , _a:List[str]=25 , ):
snake_case__ = compute_mauve(
p_text=_a , q_text=_a , p_features=_a , q_features=_a , p_tokens=_a , q_tokens=_a , num_buckets=_a , pca_max_data=_a , kmeans_explained_var=_a , kmeans_num_redo=_a , kmeans_max_iter=_a , featurize_model_name=_a , device_id=_a , max_text_length=_a , divergence_curve_discretization_size=_a , mauve_scaling_factor=_a , verbose=_a , seed=_a , )
return out
| 33 |
import numpy as np
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray:
return 1 / (1 + np.exp(-vector ))
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> np.ndarray:
return vector * sigmoid(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 33 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
class __magic_name__ (snake_case_ ,snake_case_ ):
'''simple docstring'''
__lowercase : Optional[Any] = 'maskformer-swin'
__lowercase : Tuple = {
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self:Optional[Any] , _a:int=2_24 , _a:Any=4 , _a:str=3 , _a:Tuple=96 , _a:Any=[2, 2, 6, 2] , _a:Any=[3, 6, 12, 24] , _a:Union[str, Any]=7 , _a:List[Any]=4.0 , _a:Optional[Any]=True , _a:Union[str, Any]=0.0 , _a:int=0.0 , _a:Optional[int]=0.1 , _a:Tuple="gelu" , _a:Union[str, Any]=False , _a:List[Any]=0.02 , _a:List[str]=1e-5 , _a:str=None , _a:Tuple=None , **_a:Dict , ):
super().__init__(**_a )
snake_case__ = image_size
snake_case__ = patch_size
snake_case__ = num_channels
snake_case__ = embed_dim
snake_case__ = depths
snake_case__ = len(_a )
snake_case__ = num_heads
snake_case__ = window_size
snake_case__ = mlp_ratio
snake_case__ = qkv_bias
snake_case__ = hidden_dropout_prob
snake_case__ = attention_probs_dropout_prob
snake_case__ = drop_path_rate
snake_case__ = hidden_act
snake_case__ = use_absolute_embeddings
snake_case__ = layer_norm_eps
snake_case__ = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
snake_case__ = int(embed_dim * 2 ** (len(_a ) - 1) )
snake_case__ = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(_a ) + 1 )]
snake_case__ , snake_case__ = get_aligned_output_features_output_indices(
out_features=_a , out_indices=_a , stage_names=self.stage_names )
| 33 |
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int:
snake_case__ = set()
snake_case__ = 0
snake_case__ = n + 1 # maximum limit
for a in range(2 , __lowerCAmelCase ):
for b in range(2 , __lowerCAmelCase ):
snake_case__ = a**b # calculates the current power
collect_powers.add(__lowerCAmelCase ) # adds the result to the set
return len(__lowerCAmelCase )
if __name__ == "__main__":
print("""Number of terms """, solution(int(str(input()).strip())))
| 33 | 1 |
lowerCamelCase__ : List[Any] = """0.18.2"""
from .configuration_utils import ConfigMixin
from .utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_inflect_available,
is_invisible_watermark_available,
is_k_diffusion_available,
is_k_diffusion_version,
is_librosa_available,
is_note_seq_available,
is_onnx_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
is_transformers_available,
is_transformers_version,
is_unidecode_available,
logging,
)
try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_onnx_objects import * # noqa F403
else:
from .pipelines import OnnxRuntimeModel
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_pt_objects import * # noqa F403
else:
from .models import (
AutoencoderKL,
ControlNetModel,
ModelMixin,
PriorTransformer,
TaFilmDecoder,
TransformeraDModel,
UNetaDModel,
UNetaDConditionModel,
UNetaDModel,
UNetaDConditionModel,
VQModel,
)
from .optimization import (
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
get_scheduler,
)
from .pipelines import (
AudioPipelineOutput,
ConsistencyModelPipeline,
DanceDiffusionPipeline,
DDIMPipeline,
DDPMPipeline,
DiffusionPipeline,
DiTPipeline,
ImagePipelineOutput,
KarrasVePipeline,
LDMPipeline,
LDMSuperResolutionPipeline,
PNDMPipeline,
RePaintPipeline,
ScoreSdeVePipeline,
)
from .schedulers import (
CMStochasticIterativeScheduler,
DDIMInverseScheduler,
DDIMParallelScheduler,
DDIMScheduler,
DDPMParallelScheduler,
DDPMScheduler,
DEISMultistepScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
IPNDMScheduler,
KarrasVeScheduler,
KDPMaAncestralDiscreteScheduler,
KDPMaDiscreteScheduler,
PNDMScheduler,
RePaintScheduler,
SchedulerMixin,
ScoreSdeVeScheduler,
UnCLIPScheduler,
UniPCMultistepScheduler,
VQDiffusionScheduler,
)
from .training_utils import EMAModel
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .schedulers import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .schedulers import DPMSolverSDEScheduler
try:
if not (is_torch_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
AltDiffusionImgaImgPipeline,
AltDiffusionPipeline,
AudioLDMPipeline,
CycleDiffusionPipeline,
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
ImageTextPipelineOutput,
KandinskyImgaImgPipeline,
KandinskyInpaintPipeline,
KandinskyPipeline,
KandinskyPriorPipeline,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaControlnetPipeline,
KandinskyVaaImgaImgPipeline,
KandinskyVaaInpaintPipeline,
KandinskyVaaPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
KandinskyVaaPriorPipeline,
LDMTextToImagePipeline,
PaintByExamplePipeline,
SemanticStableDiffusionPipeline,
ShapEImgaImgPipeline,
ShapEPipeline,
StableDiffusionAttendAndExcitePipeline,
StableDiffusionControlNetImgaImgPipeline,
StableDiffusionControlNetInpaintPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionDepthaImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionImageVariationPipeline,
StableDiffusionImgaImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionInstructPixaPixPipeline,
StableDiffusionLatentUpscalePipeline,
StableDiffusionLDMaDPipeline,
StableDiffusionModelEditingPipeline,
StableDiffusionPanoramaPipeline,
StableDiffusionParadigmsPipeline,
StableDiffusionPipeline,
StableDiffusionPipelineSafe,
StableDiffusionPixaPixZeroPipeline,
StableDiffusionSAGPipeline,
StableDiffusionUpscalePipeline,
StableUnCLIPImgaImgPipeline,
StableUnCLIPPipeline,
TextToVideoSDPipeline,
TextToVideoZeroPipeline,
UnCLIPImageVariationPipeline,
UnCLIPPipeline,
UniDiffuserModel,
UniDiffuserPipeline,
UniDiffuserTextDecoder,
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
VideoToVideoSDPipeline,
VQDiffusionPipeline,
)
try:
if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403
else:
from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
else:
from .pipelines import StableDiffusionKDiffusionPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403
else:
from .pipelines import (
OnnxStableDiffusionImgaImgPipeline,
OnnxStableDiffusionInpaintPipeline,
OnnxStableDiffusionInpaintPipelineLegacy,
OnnxStableDiffusionPipeline,
OnnxStableDiffusionUpscalePipeline,
StableDiffusionOnnxPipeline,
)
try:
if not (is_torch_available() and is_librosa_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_librosa_objects import * # noqa F403
else:
from .pipelines import AudioDiffusionPipeline, Mel
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .pipelines import SpectrogramDiffusionPipeline
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_objects import * # noqa F403
else:
from .models.controlnet_flax import FlaxControlNetModel
from .models.modeling_flax_utils import FlaxModelMixin
from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel
from .models.vae_flax import FlaxAutoencoderKL
from .pipelines import FlaxDiffusionPipeline
from .schedulers import (
FlaxDDIMScheduler,
FlaxDDPMScheduler,
FlaxDPMSolverMultistepScheduler,
FlaxKarrasVeScheduler,
FlaxLMSDiscreteScheduler,
FlaxPNDMScheduler,
FlaxSchedulerMixin,
FlaxScoreSdeVeScheduler,
)
try:
if not (is_flax_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
FlaxStableDiffusionControlNetPipeline,
FlaxStableDiffusionImgaImgPipeline,
FlaxStableDiffusionInpaintPipeline,
FlaxStableDiffusionPipeline,
)
try:
if not (is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_note_seq_objects import * # noqa F403
else:
from .pipelines import MidiProcessor
| 33 |
from copy import deepcopy
class __magic_name__ :
'''simple docstring'''
def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ):
if arr is None and size is not None:
snake_case__ = size
snake_case__ = [0] * size
elif arr is not None:
self.init(_a )
else:
raise ValueError('''Either arr or size must be specified''' )
def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ):
snake_case__ = len(_a )
snake_case__ = deepcopy(_a )
for i in range(1 , self.size ):
snake_case__ = self.next_(_a )
if j < self.size:
self.tree[j] += self.tree[i]
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
snake_case__ = self.next_(_a )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def SCREAMING_SNAKE_CASE__ ( _a:int ):
return index + (index & (-index))
@staticmethod
def SCREAMING_SNAKE_CASE__ ( _a:int ):
return index - (index & (-index))
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ):
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
snake_case__ = self.next_(_a )
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ):
self.add(_a , value - self.get(_a ) )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ):
if right == 0:
return 0
snake_case__ = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
snake_case__ = self.prev(_a )
return result
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ):
return self.prefix(_a ) - self.prefix(_a )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ):
return self.query(_a , index + 1 )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ):
value -= self.tree[0]
if value < 0:
return -1
snake_case__ = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
snake_case__ = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 33 | 1 |
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ : Dict = logging.get_logger(__name__)
lowerCamelCase__ : str = ["""model.decoder.embed_positions.weights"""]
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Union[str, Any]:
if "emb" in name:
snake_case__ = name.replace('''emb''' , '''model.decoder.embed_tokens''' )
if "transformer" in name:
snake_case__ = name.replace('''transformer''' , '''model.decoder''' )
if "cross_attention" in name:
snake_case__ = name.replace('''cross_attention''' , '''encoder_attn''' )
if "linear1" in name:
snake_case__ = name.replace('''linear1''' , '''fc1''' )
if "linear2" in name:
snake_case__ = name.replace('''linear2''' , '''fc2''' )
if "norm1" in name:
snake_case__ = name.replace('''norm1''' , '''self_attn_layer_norm''' )
if "norm_cross" in name:
snake_case__ = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' )
if "norm2" in name:
snake_case__ = name.replace('''norm2''' , '''final_layer_norm''' )
if "out_norm" in name:
snake_case__ = name.replace('''out_norm''' , '''model.decoder.layer_norm''' )
if "linears" in name:
snake_case__ = name.replace('''linears''' , '''lm_heads''' )
if "condition_provider.conditioners.description.output_proj" in name:
snake_case__ = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' )
return name
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple[Dict, Dict]:
snake_case__ = list(state_dict.keys() )
snake_case__ = {}
for key in keys:
snake_case__ = state_dict.pop(__lowerCAmelCase )
snake_case__ = rename_keys(__lowerCAmelCase )
if "in_proj_weight" in key:
# split fused qkv proj
snake_case__ = val[:hidden_size, :]
snake_case__ = val[hidden_size : 2 * hidden_size, :]
snake_case__ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
snake_case__ = val
else:
snake_case__ = val
return state_dict, enc_dec_proj_state_dict
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
snake_case__ = 1024
snake_case__ = 24
snake_case__ = 16
elif checkpoint == "medium":
snake_case__ = 1536
snake_case__ = 48
snake_case__ = 24
elif checkpoint == "large":
snake_case__ = 2048
snake_case__ = 48
snake_case__ = 32
else:
raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
snake_case__ = MusicgenDecoderConfig(
hidden_size=__lowerCAmelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=__lowerCAmelCase , num_attention_heads=__lowerCAmelCase , )
return config
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="cpu" ) -> Union[str, Any]:
snake_case__ = MusicGen.get_pretrained(__lowerCAmelCase , device=__lowerCAmelCase )
snake_case__ = decoder_config_from_checkpoint(__lowerCAmelCase )
snake_case__ = fairseq_model.lm.state_dict()
snake_case__ , snake_case__ = rename_state_dict(
__lowerCAmelCase , hidden_size=decoder_config.hidden_size )
snake_case__ = TaEncoderModel.from_pretrained('''t5-base''' )
snake_case__ = EncodecModel.from_pretrained('''facebook/encodec_32khz''' )
snake_case__ = MusicgenForCausalLM(__lowerCAmelCase ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
snake_case__ , snake_case__ = decoder.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
for key in missing_keys.copy():
if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(__lowerCAmelCase )
if len(__lowerCAmelCase ) > 0:
raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" )
if len(__lowerCAmelCase ) > 0:
raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
snake_case__ = MusicgenForConditionalGeneration(text_encoder=__lowerCAmelCase , audio_encoder=__lowerCAmelCase , decoder=__lowerCAmelCase )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(__lowerCAmelCase )
# check we can do a forward pass
snake_case__ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
snake_case__ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
snake_case__ = model(input_ids=__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase ).logits
if logits.shape != (8, 1, 2048):
raise ValueError('''Incorrect shape for logits''' )
# now construct the processor
snake_case__ = AutoTokenizer.from_pretrained('''t5-base''' )
snake_case__ = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' )
snake_case__ = MusicgenProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase )
# set the appropriate bos/pad token ids
snake_case__ = 2048
snake_case__ = 2048
# set other default generation config params
snake_case__ = int(30 * audio_encoder.config.frame_rate )
snake_case__ = True
snake_case__ = 3.0
if pytorch_dump_folder is not None:
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(__lowerCAmelCase )
processor.save_pretrained(__lowerCAmelCase )
if repo_id:
logger.info(F"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(__lowerCAmelCase )
processor.push_to_hub(__lowerCAmelCase )
if __name__ == "__main__":
lowerCamelCase__ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint""",
default="""small""",
type=str,
help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""",
)
parser.add_argument(
"""--pytorch_dump_folder""",
required=True,
default=None,
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub."""
)
parser.add_argument(
"""--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda."""
)
lowerCamelCase__ : Optional[int] = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 33 |
from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class __magic_name__ :
'''simple docstring'''
__lowercase : int = BlenderbotConfig
__lowercase : Any = {}
__lowercase : Optional[Any] = 'gelu'
def __init__( self:Tuple , _a:Optional[Any] , _a:Optional[Any]=13 , _a:Tuple=7 , _a:Union[str, Any]=True , _a:int=False , _a:int=99 , _a:Optional[int]=32 , _a:List[str]=2 , _a:List[str]=4 , _a:List[Any]=37 , _a:Any=0.1 , _a:int=0.1 , _a:List[Any]=20 , _a:List[str]=2 , _a:int=1 , _a:Dict=0 , ):
snake_case__ = parent
snake_case__ = batch_size
snake_case__ = seq_length
snake_case__ = is_training
snake_case__ = use_labels
snake_case__ = vocab_size
snake_case__ = hidden_size
snake_case__ = num_hidden_layers
snake_case__ = num_attention_heads
snake_case__ = intermediate_size
snake_case__ = hidden_dropout_prob
snake_case__ = attention_probs_dropout_prob
snake_case__ = max_position_embeddings
snake_case__ = eos_token_id
snake_case__ = pad_token_id
snake_case__ = bos_token_id
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
snake_case__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
snake_case__ = tf.concat([input_ids, eos_tensor] , axis=1 )
snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case__ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
snake_case__ = prepare_blenderbot_inputs_dict(_a , _a , _a )
return config, inputs_dict
def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[Any] , _a:int ):
snake_case__ = TFBlenderbotModel(config=_a ).get_decoder()
snake_case__ = inputs_dict['''input_ids''']
snake_case__ = input_ids[:1, :]
snake_case__ = inputs_dict['''attention_mask'''][:1, :]
snake_case__ = inputs_dict['''head_mask''']
snake_case__ = 1
# first forward pass
snake_case__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a )
snake_case__ , snake_case__ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
snake_case__ = tf.concat([input_ids, next_tokens] , axis=-1 )
snake_case__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
snake_case__ = model(_a , attention_mask=_a )[0]
snake_case__ = model(_a , attention_mask=_a , past_key_values=_a )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
snake_case__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
snake_case__ = output_from_no_past[:, -3:, random_slice_idx]
snake_case__ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_a , _a , rtol=1e-3 )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Tuple:
if attention_mask is None:
snake_case__ = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
snake_case__ = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
snake_case__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
snake_case__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
__lowercase : Any = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
__lowercase : Tuple = (
{
'conversational': TFBlenderbotForConditionalGeneration,
'feature-extraction': TFBlenderbotModel,
'summarization': TFBlenderbotForConditionalGeneration,
'text2text-generation': TFBlenderbotForConditionalGeneration,
'translation': TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
__lowercase : Any = True
__lowercase : int = False
__lowercase : int = False
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = TFBlenderbotModelTester(self )
snake_case__ = ConfigTester(self , config_class=_a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_a )
@require_tokenizers
@require_tf
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
__lowercase : Optional[int] = ['My friends are cool but they eat too many carbs.']
__lowercase : Optional[int] = 'facebook/blenderbot-400M-distill'
@cached_property
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.tokenizer(self.src_text , return_tensors='''tf''' )
snake_case__ = self.model.generate(
model_inputs.input_ids , )
snake_case__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_a )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 33 | 1 |
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCamelCase__ : Tuple = logging.get_logger(__name__)
lowerCamelCase__ : str = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
"""tokenizer_config_file""": """tokenizer_config.json""",
}
lowerCamelCase__ : List[str] = {
"""vocab_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"""
},
"""merges_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"""
},
"""tokenizer_config_file""": {
"""facebook/blenderbot_small-90M""": (
"""https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"""
)
},
}
lowerCamelCase__ : str = {"""facebook/blenderbot_small-90M""": 5_1_2}
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[int]:
snake_case__ = set()
snake_case__ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
snake_case__ = char
snake_case__ = set(__lowerCAmelCase )
return pairs
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Tuple = VOCAB_FILES_NAMES
__lowercase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase : Union[str, Any] = ['input_ids', 'attention_mask']
def __init__( self:Dict , _a:List[Any] , _a:List[Any] , _a:Dict="__start__" , _a:Optional[Any]="__end__" , _a:Tuple="__unk__" , _a:int="__null__" , **_a:Optional[Any] , ):
super().__init__(unk_token=_a , bos_token=_a , eos_token=_a , pad_token=_a , **_a )
with open(_a , encoding='''utf-8''' ) as vocab_handle:
snake_case__ = json.load(_a )
snake_case__ = {v: k for k, v in self.encoder.items()}
with open(_a , encoding='''utf-8''' ) as merges_handle:
snake_case__ = merges_handle.read().split('''\n''' )[1:-1]
snake_case__ = [tuple(merge.split() ) for merge in merges]
snake_case__ = dict(zip(_a , range(len(_a ) ) ) )
snake_case__ = {}
@property
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
return len(self.encoder )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
return dict(self.encoder , **self.added_tokens_encoder )
def SCREAMING_SNAKE_CASE__ ( self:Any , _a:str ):
if token in self.cache:
return self.cache[token]
snake_case__ = re.sub('''([.,!?()])''' , r''' \1''' , _a )
snake_case__ = re.sub('''(\')''' , r''' \1 ''' , _a )
snake_case__ = re.sub(r'''\s{2,}''' , ''' ''' , _a )
if "\n" in token:
snake_case__ = token.replace('''\n''' , ''' __newln__''' )
snake_case__ = token.split(''' ''' )
snake_case__ = []
for token in tokens:
if not len(_a ):
continue
snake_case__ = token.lower()
snake_case__ = tuple(_a )
snake_case__ = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] )
snake_case__ = get_pairs(_a )
if not pairs:
words.append(_a )
continue
while True:
snake_case__ = min(_a , key=lambda _a : self.bpe_ranks.get(_a , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
snake_case__ , snake_case__ = bigram
snake_case__ = []
snake_case__ = 0
while i < len(_a ):
try:
snake_case__ = word.index(_a , _a )
new_word.extend(word[i:j] )
snake_case__ = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(_a ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
snake_case__ = tuple(_a )
snake_case__ = new_word
if len(_a ) == 1:
break
else:
snake_case__ = get_pairs(_a )
snake_case__ = '''@@ '''.join(_a )
snake_case__ = word[:-4]
snake_case__ = word
words.append(_a )
return " ".join(_a )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:str ):
snake_case__ = []
snake_case__ = re.findall(r'''\S+\n?''' , _a )
for token in words:
split_tokens.extend(list(self.bpe(_a ).split(''' ''' ) ) )
return split_tokens
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:str ):
snake_case__ = token.lower()
return self.encoder.get(_a , self.encoder.get(self.unk_token ) )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int ):
return self.decoder.get(_a , self.unk_token )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:List[str] ):
snake_case__ = ''' '''.join(_a ).replace('''@@ ''' , '''''' ).strip()
return out_string
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:str , _a:Optional[str] = None ):
if not os.path.isdir(_a ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case__ = os.path.join(
_a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
snake_case__ = os.path.join(
_a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(_a , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=_a , ensure_ascii=_a ) + '''\n''' )
snake_case__ = 0
with open(_a , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _a : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
''' Please check that the tokenizer is not corrupted!''' )
snake_case__ = token_index
writer.write(''' '''.join(_a ) + '''\n''' )
index += 1
return vocab_file, merge_file
| 33 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = 0
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:str ):
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
snake_case__ = Path(_a ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
snake_case__ = Path(_a ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = CLIPConfig()
# Create a dummy config file with image_proceesor_type
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
snake_case__ = Path(_a ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
snake_case__ = AutoImageProcessor.from_pretrained(_a ).to_dict()
config_dict.pop('''image_processor_type''' )
snake_case__ = CLIPImageProcessor(**_a )
# save in new folder
model_config.save_pretrained(_a )
config.save_pretrained(_a )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
# make sure private variable is not incorrectly saved
snake_case__ = json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
with self.assertRaisesRegex(
_a , '''clip-base is not a local folder and is not a valid model identifier''' ):
snake_case__ = AutoImageProcessor.from_pretrained('''clip-base''' )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
with self.assertRaisesRegex(
_a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
snake_case__ = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
with self.assertRaisesRegex(
_a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(_a ):
snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(_a ):
snake_case__ = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a )
snake_case__ = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_a )
snake_case__ = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a )
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
try:
AutoConfig.register('''custom''' , _a )
AutoImageProcessor.register(_a , _a )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_a ):
AutoImageProcessor.register(_a , _a )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case__ = Path(_a ) / '''preprocessor_config.json'''
snake_case__ = Path(_a ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) )
snake_case__ = CustomImageProcessor.from_pretrained(_a )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_a )
snake_case__ = AutoImageProcessor.from_pretrained(_a )
self.assertIsInstance(_a , _a )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : List[str] = True
try:
AutoConfig.register('''custom''' , _a )
AutoImageProcessor.register(_a , _a )
# If remote code is not set, the default is to use local
snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
snake_case__ = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
snake_case__ = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(not hasattr(_a , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| 33 | 1 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
lowerCamelCase__ : int = datasets.utils.logging.get_logger(__name__)
@dataclass
class __magic_name__ (datasets.BuilderConfig ):
'''simple docstring'''
__lowercase : Optional[datasets.Features] = None
__lowercase : str = "utf-8"
__lowercase : Optional[str] = None
__lowercase : Optional[str] = None
__lowercase : bool = True # deprecated
__lowercase : Optional[int] = None # deprecated
__lowercase : int = 10 << 20 # 10MB
__lowercase : Optional[bool] = None
class __magic_name__ (datasets.ArrowBasedBuilder ):
'''simple docstring'''
__lowercase : int = JsonConfig
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
if self.config.block_size is not None:
logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' )
snake_case__ = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
'''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' )
if self.config.newlines_in_values is not None:
raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' )
return datasets.DatasetInfo(features=self.config.features )
def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:int ):
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
snake_case__ = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_a , (str, list, tuple) ):
snake_case__ = data_files
if isinstance(_a , _a ):
snake_case__ = [files]
snake_case__ = [dl_manager.iter_files(_a ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
snake_case__ = []
for split_name, files in data_files.items():
if isinstance(_a , _a ):
snake_case__ = [files]
snake_case__ = [dl_manager.iter_files(_a ) for file in files]
splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) )
return splits
def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:pa.Table ):
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
snake_case__ = self.config.features.arrow_schema.field(_a ).type
snake_case__ = pa_table.append_column(_a , pa.array([None] * len(_a ) , type=_a ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
snake_case__ = table_cast(_a , self.config.features.arrow_schema )
return pa_table
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:List[Any] ):
for file_idx, file in enumerate(itertools.chain.from_iterable(_a ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(_a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
snake_case__ = json.load(_a )
# We keep only the field we are interested in
snake_case__ = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(_a , (list, tuple) ):
snake_case__ = set().union(*[row.keys() for row in dataset] )
snake_case__ = {col: [row.get(_a ) for row in dataset] for col in keys}
else:
snake_case__ = dataset
snake_case__ = pa.Table.from_pydict(_a )
yield file_idx, self._cast_table(_a )
# If the file has one json object per line
else:
with open(_a , '''rb''' ) as f:
snake_case__ = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
snake_case__ = max(self.config.chunksize // 32 , 16 << 10 )
snake_case__ = (
self.config.encoding_errors if self.config.encoding_errors is not None else '''strict'''
)
while True:
snake_case__ = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(_a )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
snake_case__ = batch.decode(self.config.encoding , errors=_a ).encode('''utf-8''' )
try:
while True:
try:
snake_case__ = paj.read_json(
io.BytesIO(_a ) , read_options=paj.ReadOptions(block_size=_a ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(_a , pa.ArrowInvalid )
and "straddling" not in str(_a )
or block_size > len(_a )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
F"""Batch of {len(_a )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
_a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
snake_case__ = json.load(_a )
except json.JSONDecodeError:
logger.error(F"""Failed to read file '{file}' with error {type(_a )}: {e}""" )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(_a , _a ): # list is the only sequence type supported in JSON
try:
snake_case__ = set().union(*[row.keys() for row in dataset] )
snake_case__ = {col: [row.get(_a ) for row in dataset] for col in keys}
snake_case__ = pa.Table.from_pydict(_a )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(F"""Failed to read file '{file}' with error {type(_a )}: {e}""" )
raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None
yield file_idx, self._cast_table(_a )
break
else:
logger.error(F"""Failed to read file '{file}' with error {type(_a )}: {e}""" )
raise ValueError(
F"""Not able to read records in the JSON file at {file}. """
F"""You should probably indicate the field of the JSON file containing your records. """
F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """
F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(_a )
batch_idx += 1
| 33 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ : int = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> int:
snake_case__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
('''cls_token''', '''vit.embeddings.cls_token'''),
('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''),
('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''),
('''pos_embed''', '''vit.embeddings.position_embeddings'''),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
('''pre_logits.fc.weight''', '''pooler.dense.weight'''),
('''pre_logits.fc.bias''', '''pooler.dense.bias'''),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
snake_case__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('''norm.weight''', '''vit.layernorm.weight'''),
('''norm.bias''', '''vit.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
return rename_keys
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict:
for i in range(config.num_hidden_layers ):
if base_model:
snake_case__ = ''''''
else:
snake_case__ = '''vit.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" )
snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
snake_case__ = in_proj_weight[
: config.hidden_size, :
]
snake_case__ = in_proj_bias[: config.hidden_size]
snake_case__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
snake_case__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
snake_case__ = in_proj_weight[
-config.hidden_size :, :
]
snake_case__ = in_proj_bias[-config.hidden_size :]
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]:
snake_case__ = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
snake_case__ = dct.pop(__lowerCAmelCase )
snake_case__ = val
def SCREAMING_SNAKE_CASE ( ) -> str:
snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
return im
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict:
snake_case__ = ViTConfig()
snake_case__ = False
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
if vit_name[-5:] == "in21k":
snake_case__ = True
snake_case__ = int(vit_name[-12:-10] )
snake_case__ = int(vit_name[-9:-6] )
else:
snake_case__ = 1000
snake_case__ = '''huggingface/label-files'''
snake_case__ = '''imagenet-1k-id2label.json'''
snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) )
snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
snake_case__ = idalabel
snake_case__ = {v: k for k, v in idalabel.items()}
snake_case__ = int(vit_name[-6:-4] )
snake_case__ = int(vit_name[-3:] )
# size of the architecture
if "deit" in vit_name:
if vit_name[9:].startswith('''tiny''' ):
snake_case__ = 192
snake_case__ = 768
snake_case__ = 12
snake_case__ = 3
elif vit_name[9:].startswith('''small''' ):
snake_case__ = 384
snake_case__ = 1536
snake_case__ = 12
snake_case__ = 6
else:
pass
else:
if vit_name[4:].startswith('''small''' ):
snake_case__ = 768
snake_case__ = 2304
snake_case__ = 8
snake_case__ = 8
elif vit_name[4:].startswith('''base''' ):
pass
elif vit_name[4:].startswith('''large''' ):
snake_case__ = 1024
snake_case__ = 4096
snake_case__ = 24
snake_case__ = 16
elif vit_name[4:].startswith('''huge''' ):
snake_case__ = 1280
snake_case__ = 5120
snake_case__ = 32
snake_case__ = 16
# load original model from timm
snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
snake_case__ = timm_model.state_dict()
if base_model:
remove_classification_head_(__lowerCAmelCase )
snake_case__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase )
for src, dest in rename_keys:
rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# load HuggingFace model
if vit_name[-5:] == "in21k":
snake_case__ = ViTModel(__lowerCAmelCase ).eval()
else:
snake_case__ = ViTForImageClassification(__lowerCAmelCase ).eval()
model.load_state_dict(__lowerCAmelCase )
# Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor
if "deit" in vit_name:
snake_case__ = DeiTImageProcessor(size=config.image_size )
else:
snake_case__ = ViTImageProcessor(size=config.image_size )
snake_case__ = image_processor(images=prepare_img() , return_tensors='''pt''' )
snake_case__ = encoding['''pixel_values''']
snake_case__ = model(__lowerCAmelCase )
if base_model:
snake_case__ = timm_model.forward_features(__lowerCAmelCase )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1e-3 )
else:
snake_case__ = timm_model(__lowerCAmelCase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 )
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCAmelCase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--vit_name""",
default="""vit_base_patch16_224""",
type=str,
help="""Name of the ViT timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
lowerCamelCase__ : str = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
| 33 | 1 |
from cva import destroyAllWindows, imread, imshow, waitKey
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Any:
# getting number of pixels in the image
snake_case__ , snake_case__ = img.shape[0], img.shape[1]
# converting each pixel's color to its negative
for i in range(__lowerCAmelCase ):
for j in range(__lowerCAmelCase ):
snake_case__ = [255, 255, 255] - img[i][j]
return img
if __name__ == "__main__":
# read original image
lowerCamelCase__ : Any = imread("""image_data/lena.jpg""", 1)
# convert to its negative
lowerCamelCase__ : str = convert_to_negative(img)
# show result image
imshow("""negative of original image""", img)
waitKey(0)
destroyAllWindows()
| 33 |
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : List[str] = ['image_processor', 'tokenizer']
__lowercase : str = 'AutoImageProcessor'
__lowercase : Dict = 'AutoTokenizer'
def __init__( self:int , _a:List[str]=None , _a:Optional[Any]=None , **_a:List[str] ):
snake_case__ = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , _a , )
snake_case__ = kwargs.pop('''feature_extractor''' )
snake_case__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_a , _a )
snake_case__ = self.image_processor
snake_case__ = False
def __call__( self:Optional[int] , *_a:str , **_a:int ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*_a , **_a )
snake_case__ = kwargs.pop('''images''' , _a )
snake_case__ = kwargs.pop('''text''' , _a )
if len(_a ) > 0:
snake_case__ = args[0]
snake_case__ = args[1:]
if images is None and text is None:
raise ValueError('''You need to specify either an `images` or `text` input to process.''' )
if images is not None:
snake_case__ = self.image_processor(_a , *_a , **_a )
if text is not None:
snake_case__ = self.tokenizer(_a , **_a )
if text is None:
return inputs
elif images is None:
return encodings
else:
snake_case__ = encodings['''input_ids''']
return inputs
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , *_a:Union[str, Any] , **_a:Any ):
return self.tokenizer.batch_decode(*_a , **_a )
def SCREAMING_SNAKE_CASE__ ( self:Tuple , *_a:Union[str, Any] , **_a:Optional[int] ):
return self.tokenizer.decode(*_a , **_a )
@contextmanager
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your images inputs, or in a separate call.''' )
snake_case__ = True
snake_case__ = self.tokenizer
yield
snake_case__ = self.image_processor
snake_case__ = False
def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Dict , _a:Dict=False , _a:Optional[int]=None ):
if added_vocab is None:
snake_case__ = self.tokenizer.get_added_vocab()
snake_case__ = {}
while tokens:
snake_case__ = re.search(r'''<s_(.*?)>''' , _a , re.IGNORECASE )
if start_token is None:
break
snake_case__ = start_token.group(1 )
snake_case__ = re.search(rF"""</s_{key}>""" , _a , re.IGNORECASE )
snake_case__ = start_token.group()
if end_token is None:
snake_case__ = tokens.replace(_a , '''''' )
else:
snake_case__ = end_token.group()
snake_case__ = re.escape(_a )
snake_case__ = re.escape(_a )
snake_case__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _a , re.IGNORECASE )
if content is not None:
snake_case__ = content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
snake_case__ = self.tokenajson(_a , is_inner_value=_a , added_vocab=_a )
if value:
if len(_a ) == 1:
snake_case__ = value[0]
snake_case__ = value
else: # leaf nodes
snake_case__ = []
for leaf in content.split(r'''<sep/>''' ):
snake_case__ = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
snake_case__ = leaf[1:-2] # for categorical special tokens
output[key].append(_a )
if len(output[key] ) == 1:
snake_case__ = output[key][0]
snake_case__ = tokens[tokens.find(_a ) + len(_a ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:] , is_inner_value=_a , added_vocab=_a )
if len(_a ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , )
return self.image_processor
| 33 | 1 |
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]:
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
snake_case__ = mf_knapsack(i - 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
else:
snake_case__ = max(
mf_knapsack(i - 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , mf_knapsack(i - 1 , __lowerCAmelCase , __lowerCAmelCase , j - wt[i - 1] ) + val[i - 1] , )
snake_case__ = val
return f[i][j]
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
snake_case__ = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
snake_case__ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
snake_case__ = dp[i - 1][w_]
return dp[n][w_], dp
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any:
if not (isinstance(__lowerCAmelCase , (list, tuple) ) and isinstance(__lowerCAmelCase , (list, tuple) )):
raise ValueError(
'''Both the weights and values vectors must be either lists or tuples''' )
snake_case__ = len(__lowerCAmelCase )
if num_items != len(__lowerCAmelCase ):
snake_case__ = (
'''The number of weights must be the same as the number of values.\n'''
F"""But got {num_items} weights and {len(__lowerCAmelCase )} values"""
)
raise ValueError(__lowerCAmelCase )
for i in range(__lowerCAmelCase ):
if not isinstance(wt[i] , __lowerCAmelCase ):
snake_case__ = (
'''All weights must be integers but got weight of '''
F"""type {type(wt[i] )} at index {i}"""
)
raise TypeError(__lowerCAmelCase )
snake_case__ , snake_case__ = knapsack(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
snake_case__ = set()
_construct_solution(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
return optimal_val, example_optional_set
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
# for the current item i at a maximum weight j to be part of an optimal subset,
# the optimal value at (i, j) must be greater than the optimal value at (i-1, j).
# where i - 1 means considering only the previous items at the given maximum weight
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(__lowerCAmelCase , __lowerCAmelCase , i - 1 , __lowerCAmelCase , __lowerCAmelCase )
else:
optimal_set.add(__lowerCAmelCase )
_construct_solution(__lowerCAmelCase , __lowerCAmelCase , i - 1 , j - wt[i - 1] , __lowerCAmelCase )
if __name__ == "__main__":
lowerCamelCase__ : Tuple = [3, 2, 4, 4]
lowerCamelCase__ : List[Any] = [4, 3, 2, 3]
lowerCamelCase__ : Optional[Any] = 4
lowerCamelCase__ : Tuple = 6
lowerCamelCase__ : str = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
lowerCamelCase__ , lowerCamelCase__ : str = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("""optimal_value = """, optimal_solution)
print("""An optimal subset corresponding to the optimal value""", optimal_subset)
| 33 |
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __magic_name__ :
'''simple docstring'''
def __init__( self:Optional[Any] , _a:int , _a:str=3 , _a:Optional[int]=32 , _a:Optional[Any]=3 , _a:Tuple=10 , _a:List[Any]=[8, 16, 32, 64] , _a:str=[1, 1, 2, 1] , _a:Any=True , _a:List[Any]=True , _a:List[str]="relu" , _a:int=3 , _a:Tuple=None , _a:Tuple=["stage2", "stage3", "stage4"] , _a:List[Any]=[2, 3, 4] , _a:Union[str, Any]=1 , ):
snake_case__ = parent
snake_case__ = batch_size
snake_case__ = image_size
snake_case__ = num_channels
snake_case__ = embeddings_size
snake_case__ = hidden_sizes
snake_case__ = depths
snake_case__ = is_training
snake_case__ = use_labels
snake_case__ = hidden_act
snake_case__ = num_labels
snake_case__ = scope
snake_case__ = len(_a )
snake_case__ = out_features
snake_case__ = out_indices
snake_case__ = num_groups
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case__ = None
if self.use_labels:
snake_case__ = ids_tensor([self.batch_size] , self.num_labels )
snake_case__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[int] , _a:Tuple , _a:int ):
snake_case__ = BitModel(config=_a )
model.to(_a )
model.eval()
snake_case__ = model(_a )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def SCREAMING_SNAKE_CASE__ ( self:int , _a:Tuple , _a:Any , _a:Union[str, Any] ):
snake_case__ = self.num_labels
snake_case__ = BitForImageClassification(_a )
model.to(_a )
model.eval()
snake_case__ = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:str , _a:List[str] , _a:Any ):
snake_case__ = BitBackbone(config=_a )
model.to(_a )
model.eval()
snake_case__ = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
snake_case__ = None
snake_case__ = BitBackbone(config=_a )
model.to(_a )
model.eval()
snake_case__ = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = self.prepare_config_and_inputs()
snake_case__ , snake_case__ , snake_case__ = config_and_inputs
snake_case__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
__lowercase : int = (
{'feature-extraction': BitModel, 'image-classification': BitForImageClassification}
if is_torch_available()
else {}
)
__lowercase : Tuple = False
__lowercase : Optional[Any] = False
__lowercase : str = False
__lowercase : Tuple = False
__lowercase : Tuple = False
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
snake_case__ = BitModelTester(self )
snake_case__ = ConfigTester(self , config_class=_a , has_text_modality=_a )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
return
@unittest.skip(reason='''Bit does not output attentions''' )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
pass
@unittest.skip(reason='''Bit does not use inputs_embeds''' )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
pass
@unittest.skip(reason='''Bit does not support input and output embeddings''' )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
pass
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ = model_class(_a )
snake_case__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case__ = [*signature.parameters.keys()]
snake_case__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _a )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_a )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ = model_class(config=_a )
for name, module in model.named_modules():
if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] ):
def check_hidden_states_output(_a:List[Any] , _a:int , _a:Union[str, Any] ):
snake_case__ = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
snake_case__ = model(**self._prepare_for_class(_a , _a ) )
snake_case__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case__ = self.model_tester.num_stages
self.assertEqual(len(_a ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ = ['''preactivation''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
snake_case__ = layer_type
snake_case__ = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case__ = True
check_hidden_states_output(_a , _a , _a )
@unittest.skip(reason='''Bit does not use feedforward chunking''' )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
pass
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
snake_case__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ):
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case__ = BitModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def SCREAMING_SNAKE_CASE ( ) -> Any:
snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a )
snake_case__ = self.default_image_processor
snake_case__ = prepare_img()
snake_case__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a )
# forward pass
with torch.no_grad():
snake_case__ = model(**_a )
# verify the logits
snake_case__ = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , _a )
snake_case__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
@require_torch
class __magic_name__ (snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : Optional[Any] = (BitBackbone,) if is_torch_available() else ()
__lowercase : int = BitConfig
__lowercase : Any = False
def SCREAMING_SNAKE_CASE__ ( self:str ):
snake_case__ = BitModelTester(self )
| 33 | 1 |
import argparse
import torch
from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
# Construct model
if openai_config_file == "":
snake_case__ = OpenAIGPTConfig()
else:
snake_case__ = OpenAIGPTConfig.from_json_file(__lowerCAmelCase )
snake_case__ = OpenAIGPTModel(__lowerCAmelCase )
# Load weights from numpy
load_tf_weights_in_openai_gpt(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Save pytorch-model
snake_case__ = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME
snake_case__ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME
print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" )
torch.save(model.state_dict() , __lowerCAmelCase )
print(F"""Save configuration file to {pytorch_config_dump_path}""" )
with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowerCamelCase__ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--openai_checkpoint_folder_path""",
default=None,
type=str,
required=True,
help="""Path to the TensorFlow checkpoint path.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--openai_config_file""",
default="""""",
type=str,
help=(
"""An optional config json file corresponding to the pre-trained OpenAI model. \n"""
"""This specifies the model architecture."""
),
)
lowerCamelCase__ : Any = parser.parse_args()
convert_openai_checkpoint_to_pytorch(
args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path
)
| 33 |
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
lowerCamelCase__ : Any = """\
"""
lowerCamelCase__ : List[str] = """
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence.
For more information, see https://huggingface.co/docs/transformers/perplexity
"""
lowerCamelCase__ : Any = """
Args:
model_id (str): model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
input_texts (list of str): input text, each separate text snippet
is one list entry.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
device (str): device to run on, defaults to 'cuda' when available
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
Examples:
Example 1:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]
>>> results = perplexity.compute(model_id='gpt2',
... add_start_token=False,
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
78.22
>>> print(round(results[\"perplexities\"][0], 2))
11.11
Example 2:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = datasets.load_dataset(\"wikitext\",
... \"wikitext-2-raw-v1\",
... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS
[...]
>>> input_texts = [s for s in input_texts if s!='']
>>> results = perplexity.compute(model_id='gpt2',
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
60.35
>>> print(round(results[\"perplexities\"][0], 2))
81.12
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class __magic_name__ (datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:int ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''input_texts''': datasets.Value('''string''' ),
} ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:List[Any] , _a:int = 16 , _a:bool = True , _a:Any=None ):
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
snake_case__ = '''cuda'''
else:
snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
snake_case__ = AutoModelForCausalLM.from_pretrained(_a )
snake_case__ = model.to(_a )
snake_case__ = AutoTokenizer.from_pretrained(_a )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
snake_case__ = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(_a ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
snake_case__ = model.config.max_length - 1
else:
snake_case__ = model.config.max_length
snake_case__ = tokenizer(
_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a )
snake_case__ = encodings['''input_ids''']
snake_case__ = encodings['''attention_mask''']
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
snake_case__ = []
snake_case__ = CrossEntropyLoss(reduction='''none''' )
for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ):
snake_case__ = min(start_index + batch_size , len(_a ) )
snake_case__ = encoded_texts[start_index:end_index]
snake_case__ = attn_masks[start_index:end_index]
if add_start_token:
snake_case__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a )
snake_case__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
snake_case__ = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 )
snake_case__ = encoded_batch
with torch.no_grad():
snake_case__ = model(_a , attention_mask=_a ).logits
snake_case__ = out_logits[..., :-1, :].contiguous()
snake_case__ = labels[..., 1:].contiguous()
snake_case__ = attn_mask[..., 1:].contiguous()
snake_case__ = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
| 33 | 1 |
from __future__ import annotations
import csv
import requests
from bsa import BeautifulSoup
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = "" ) -> dict[str, float]:
snake_case__ = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250'''
snake_case__ = BeautifulSoup(requests.get(__lowerCAmelCase ).text , '''html.parser''' )
snake_case__ = soup.find_all('''td''' , attrs='''titleColumn''' )
snake_case__ = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' )
return {
title.a.text: float(rating.strong.text )
for title, rating in zip(__lowerCAmelCase , __lowerCAmelCase )
}
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = "IMDb_Top_250_Movies.csv" ) -> None:
snake_case__ = get_imdb_top_aaa_movies()
with open(__lowerCAmelCase , '''w''' , newline='''''' ) as out_file:
snake_case__ = csv.writer(__lowerCAmelCase )
writer.writerow(['''Movie title''', '''IMDb rating'''] )
for title, rating in movies.items():
writer.writerow([title, rating] )
if __name__ == "__main__":
write_movies()
| 33 |
import os
from datetime import datetime as dt
from github import Github
lowerCamelCase__ : int = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""enhancement""",
"""new pipeline/model""",
"""new scheduler""",
"""wip""",
]
def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
snake_case__ = Github(os.environ['''GITHUB_TOKEN'''] )
snake_case__ = g.get_repo('''huggingface/diffusers''' )
snake_case__ = repo.get_issues(state='''open''' )
for issue in open_issues:
snake_case__ = sorted(issue.get_comments() , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase )
snake_case__ = comments[0] if len(__lowerCAmelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state='''closed''' )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state='''open''' )
issue.remove_from_labels('''stale''' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
issue.add_to_labels('''stale''' )
if __name__ == "__main__":
main()
| 33 | 1 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ : str = logging.get_logger(__name__)
lowerCamelCase__ : Optional[int] = {
"""microsoft/unispeech-large-1500h-cv""": (
"""https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json"""
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Tuple = 'unispeech'
def __init__( self:str , _a:int=32 , _a:List[Any]=7_68 , _a:List[Any]=12 , _a:Optional[int]=12 , _a:str=30_72 , _a:Any="gelu" , _a:List[str]=0.1 , _a:Optional[Any]=0.1 , _a:List[str]=0.1 , _a:Optional[Any]=0.0 , _a:Union[str, Any]=0.0 , _a:List[Any]=0.1 , _a:List[str]=0.1 , _a:Any=0.02 , _a:Optional[Any]=1e-5 , _a:List[str]="group" , _a:Optional[int]="gelu" , _a:List[str]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _a:str=(5, 2, 2, 2, 2, 2, 2) , _a:Any=(10, 3, 3, 3, 3, 2, 2) , _a:Any=False , _a:List[Any]=1_28 , _a:List[Any]=16 , _a:Any=False , _a:Optional[int]=True , _a:Optional[int]=0.05 , _a:List[Any]=10 , _a:Any=2 , _a:Dict=0.0 , _a:List[str]=10 , _a:Dict=0 , _a:int=3_20 , _a:Union[str, Any]=2 , _a:str=0.1 , _a:Tuple=1_00 , _a:Optional[Any]=2_56 , _a:Optional[int]=2_56 , _a:Optional[int]=0.1 , _a:Union[str, Any]="mean" , _a:Optional[Any]=False , _a:List[Any]=False , _a:Optional[Any]=2_56 , _a:Any=80 , _a:Optional[Any]=0 , _a:Optional[Any]=1 , _a:Any=2 , _a:Optional[int]=0.5 , **_a:List[str] , ):
super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a )
snake_case__ = hidden_size
snake_case__ = feat_extract_norm
snake_case__ = feat_extract_activation
snake_case__ = list(_a )
snake_case__ = list(_a )
snake_case__ = list(_a )
snake_case__ = conv_bias
snake_case__ = num_conv_pos_embeddings
snake_case__ = num_conv_pos_embedding_groups
snake_case__ = len(self.conv_dim )
snake_case__ = num_hidden_layers
snake_case__ = intermediate_size
snake_case__ = hidden_act
snake_case__ = num_attention_heads
snake_case__ = hidden_dropout
snake_case__ = attention_dropout
snake_case__ = activation_dropout
snake_case__ = feat_proj_dropout
snake_case__ = final_dropout
snake_case__ = layerdrop
snake_case__ = layer_norm_eps
snake_case__ = initializer_range
snake_case__ = num_ctc_classes
snake_case__ = vocab_size
snake_case__ = do_stable_layer_norm
snake_case__ = use_weighted_layer_sum
snake_case__ = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
snake_case__ = apply_spec_augment
snake_case__ = mask_time_prob
snake_case__ = mask_time_length
snake_case__ = mask_time_min_masks
snake_case__ = mask_feature_prob
snake_case__ = mask_feature_length
snake_case__ = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
snake_case__ = num_codevectors_per_group
snake_case__ = num_codevector_groups
snake_case__ = contrastive_logits_temperature
snake_case__ = feat_quantizer_dropout
snake_case__ = num_negatives
snake_case__ = codevector_dim
snake_case__ = proj_codevector_dim
snake_case__ = diversity_loss_weight
# ctc loss
snake_case__ = ctc_loss_reduction
snake_case__ = ctc_zero_infinity
# pretraining loss
snake_case__ = replace_prob
@property
def SCREAMING_SNAKE_CASE__ ( self:str ):
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 33 |
import pytest
from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs
@pytest.mark.parametrize(
'''kwargs, expected''' , [
({'''num_shards''': 0, '''max_num_jobs''': 1}, []),
({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]),
({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(__lowerCAmelCase , i + 1 ) for i in range(10 )]),
({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]),
({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]),
({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]),
] , )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
snake_case__ = _distribute_shards(**__lowerCAmelCase )
assert out == expected
@pytest.mark.parametrize(
'''gen_kwargs, max_num_jobs, expected''' , [
({'''foo''': 0}, 10, [{'''foo''': 0}]),
({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]),
({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]),
({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]),
({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]),
] , )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict:
snake_case__ = _split_gen_kwargs(__lowerCAmelCase , __lowerCAmelCase )
assert out == expected
@pytest.mark.parametrize(
'''gen_kwargs, expected''' , [
({'''foo''': 0}, 1),
({'''shards''': [0]}, 1),
({'''shards''': [0, 1, 2, 3]}, 4),
({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4),
({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4),
({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError),
] , )
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
if expected is RuntimeError:
with pytest.raises(__lowerCAmelCase ):
_number_of_shards_in_gen_kwargs(__lowerCAmelCase )
else:
snake_case__ = _number_of_shards_in_gen_kwargs(__lowerCAmelCase )
assert out == expected
| 33 | 1 |
from collections import Counter
from pathlib import Path
from typing import Optional, Tuple
import yaml
class __magic_name__ (yaml.SafeLoader ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:List[str] ):
snake_case__ = [self.constructed_objects[key_node] for key_node, _ in node.value]
snake_case__ = [tuple(_a ) if isinstance(_a , _a ) else key for key in keys]
snake_case__ = Counter(_a )
snake_case__ = [key for key in counter if counter[key] > 1]
if duplicate_keys:
raise TypeError(F"""Got duplicate yaml keys: {duplicate_keys}""" )
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Any , _a:Any=False ):
snake_case__ = super().construct_mapping(_a , deep=_a )
self._check_no_duplicates_on_constructed_node(_a )
return mapping
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Tuple[Optional[str], str]:
snake_case__ = list(readme_content.splitlines() )
if full_content and full_content[0] == "---" and "---" in full_content[1:]:
snake_case__ = full_content[1:].index('''---''' ) + 1
snake_case__ = '''\n'''.join(full_content[1:sep_idx] )
return yamlblock, "\n".join(full_content[sep_idx + 1 :] )
return None, "\n".join(__lowerCAmelCase )
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Tuple = {'train_eval_index'} # train-eval-index in the YAML metadata
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:Tuple , _a:Path ):
with open(_a , encoding='''utf-8''' ) as readme_file:
snake_case__ , snake_case__ = _split_yaml_from_readme(readme_file.read() )
if yaml_string is not None:
return cls.from_yaml_string(_a )
else:
return cls()
def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Path ):
if path.exists():
with open(_a , encoding='''utf-8''' ) as readme_file:
snake_case__ = readme_file.read()
else:
snake_case__ = None
snake_case__ = self._to_readme(_a )
with open(_a , '''w''' , encoding='''utf-8''' ) as readme_file:
readme_file.write(_a )
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Optional[str] = None ):
if readme_content is not None:
snake_case__ , snake_case__ = _split_yaml_from_readme(_a )
snake_case__ = '''---\n''' + self.to_yaml_string() + '''---\n''' + content
else:
snake_case__ = '''---\n''' + self.to_yaml_string() + '''---\n'''
return full_content
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls:str , _a:str ):
snake_case__ = yaml.load(_a , Loader=_NoDuplicateSafeLoader ) or {}
# Convert the YAML keys to DatasetMetadata fields
snake_case__ = {
(key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value
for key, value in metadata_dict.items()
}
return cls(**_a )
def SCREAMING_SNAKE_CASE__ ( self:str ):
return yaml.safe_dump(
{
(key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value
for key, value in self.items()
} , sort_keys=_a , allow_unicode=_a , encoding='''utf-8''' , ).decode('''utf-8''' )
lowerCamelCase__ : List[str] = {
"""image-classification""": [],
"""translation""": [],
"""image-segmentation""": [],
"""fill-mask""": [],
"""automatic-speech-recognition""": [],
"""token-classification""": [],
"""sentence-similarity""": [],
"""audio-classification""": [],
"""question-answering""": [],
"""summarization""": [],
"""zero-shot-classification""": [],
"""table-to-text""": [],
"""feature-extraction""": [],
"""other""": [],
"""multiple-choice""": [],
"""text-classification""": [],
"""text-to-image""": [],
"""text2text-generation""": [],
"""zero-shot-image-classification""": [],
"""tabular-classification""": [],
"""tabular-regression""": [],
"""image-to-image""": [],
"""tabular-to-text""": [],
"""unconditional-image-generation""": [],
"""text-retrieval""": [],
"""text-to-speech""": [],
"""object-detection""": [],
"""audio-to-audio""": [],
"""text-generation""": [],
"""conversational""": [],
"""table-question-answering""": [],
"""visual-question-answering""": [],
"""image-to-text""": [],
"""reinforcement-learning""": [],
"""voice-activity-detection""": [],
"""time-series-forecasting""": [],
"""document-question-answering""": [],
}
if __name__ == "__main__":
from argparse import ArgumentParser
lowerCamelCase__ : str = ArgumentParser(usage="""Validate the yaml metadata block of a README.md file.""")
ap.add_argument("""readme_filepath""")
lowerCamelCase__ : Optional[Any] = ap.parse_args()
lowerCamelCase__ : List[Any] = Path(args.readme_filepath)
lowerCamelCase__ : Optional[Any] = DatasetMetadata.from_readme(readme_filepath)
print(dataset_metadata)
dataset_metadata.to_readme(readme_filepath)
| 33 |
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : str = IFImgaImgSuperResolutionPipeline
__lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'}
__lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} )
__lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'}
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
return self._get_superresolution_dummy_components()
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ):
if str(_a ).startswith('''mps''' ):
snake_case__ = torch.manual_seed(_a )
else:
snake_case__ = torch.Generator(device=_a ).manual_seed(_a )
snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a )
snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a )
snake_case__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''original_image''': original_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def SCREAMING_SNAKE_CASE__ ( self:str ):
self._test_save_load_local()
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 33 | 1 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> tuple[str, float]:
if (stress, tangential_force, area).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif stress < 0:
raise ValueError('''Stress cannot be negative''' )
elif tangential_force < 0:
raise ValueError('''Tangential Force cannot be negative''' )
elif area < 0:
raise ValueError('''Area cannot be negative''' )
elif stress == 0:
return (
"stress",
tangential_force / area,
)
elif tangential_force == 0:
return (
"tangential_force",
stress * area,
)
else:
return (
"area",
tangential_force / stress,
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 33 |
import math
class __magic_name__ :
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:list[list[float]] , _a:list[int] ):
snake_case__ = 0.0
snake_case__ = 0.0
for i in range(len(_a ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:list[list[int | float]] , _a:list[int] , _a:int , _a:float ):
for i in range(len(_a ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def SCREAMING_SNAKE_CASE ( ) -> None:
# Training Examples ( m, n )
snake_case__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
snake_case__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
snake_case__ = SelfOrganizingMap()
snake_case__ = 3
snake_case__ = 0.5
for _ in range(__lowerCAmelCase ):
for j in range(len(__lowerCAmelCase ) ):
# training sample
snake_case__ = training_samples[j]
# Compute the winning vector
snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase )
# Update the winning vector
snake_case__ = self_organizing_map.update(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# classify test sample
snake_case__ = [0, 0, 0, 1]
snake_case__ = self_organizing_map.get_winner(__lowerCAmelCase , __lowerCAmelCase )
# results
print(F"""Clusters that the test sample belongs to : {winner}""" )
print(F"""Weights that have been trained : {weights}""" )
# running the main() function
if __name__ == "__main__":
main()
| 33 | 1 |
import functools
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int:
# Validation
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for day in days ):
raise ValueError('''The parameter days should be a list of integers''' )
if len(__lowerCAmelCase ) != 3 or not all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for cost in costs ):
raise ValueError('''The parameter costs should be a list of three integers''' )
if len(__lowerCAmelCase ) == 0:
return 0
if min(__lowerCAmelCase ) <= 0:
raise ValueError('''All days elements should be greater than 0''' )
if max(__lowerCAmelCase ) >= 366:
raise ValueError('''All days elements should be less than 366''' )
snake_case__ = set(__lowerCAmelCase )
@functools.cache
def dynamic_programming(__lowerCAmelCase ) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 33 |
from __future__ import annotations
from statistics import mean
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]:
snake_case__ = [0] * no_of_processes
snake_case__ = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(__lowerCAmelCase ):
snake_case__ = burst_time[i]
snake_case__ = []
snake_case__ = 0
snake_case__ = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
snake_case__ = []
snake_case__ = -1
for i in range(__lowerCAmelCase ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(__lowerCAmelCase )
if len(__lowerCAmelCase ) > 0:
snake_case__ = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
snake_case__ = i
total_time += burst_time[target_process]
completed += 1
snake_case__ = 0
snake_case__ = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[int]:
snake_case__ = [0] * no_of_processes
for i in range(__lowerCAmelCase ):
snake_case__ = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("""[TEST CASE 01]""")
lowerCamelCase__ : Tuple = 4
lowerCamelCase__ : Union[str, Any] = [2, 5, 3, 7]
lowerCamelCase__ : Optional[Any] = [0, 0, 0, 0]
lowerCamelCase__ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
lowerCamelCase__ : Union[str, Any] = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""")
for i, process_id in enumerate(list(range(1, 5))):
print(
F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t"""
F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}"""
)
print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""")
print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
| 33 | 1 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case_ )
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : str = field(default='language-modeling' ,metadata={'include_in_asdict_even_if_is_default': True} )
__lowercase : ClassVar[Features] = Features({'text': Value('string' )} )
__lowercase : ClassVar[Features] = Features({} )
__lowercase : str = "text"
@property
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
return {self.text_column: "text"}
| 33 |
lowerCamelCase__ : List[str] = """Alexander Joslin"""
import operator as op
from .stack import Stack
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int:
snake_case__ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub}
snake_case__ = Stack()
snake_case__ = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(__lowerCAmelCase ) )
elif i in operators:
# RULE 2
operator_stack.push(__lowerCAmelCase )
elif i == ")":
# RULE 4
snake_case__ = operator_stack.peek()
operator_stack.pop()
snake_case__ = operand_stack.peek()
operand_stack.pop()
snake_case__ = operand_stack.peek()
operand_stack.pop()
snake_case__ = operators[opr](__lowerCAmelCase , __lowerCAmelCase )
operand_stack.push(__lowerCAmelCase )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
lowerCamelCase__ : Optional[Any] = """(5 + ((4 * 2) * (2 + 3)))"""
# answer = 45
print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
| 33 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.