code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
from math import sqrt
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_00_01 ) -> int:
"""simple docstring"""
_UpperCAmelCase = 0
_UpperCAmelCase = 1
while count != nth and number < 3:
number += 1
if is_prime(SCREAMING_SNAKE_CASE_ ):
count += 1
while count != nth:
number += 2
if is_prime(SCREAMING_SNAKE_CASE_ ):
count += 1
return number
if __name__ == "__main__":
print(f'''{solution() = }''') | 32 |
UpperCAmelCase_ = {
"A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.",
"H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.",
"O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-",
"V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----",
"2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...",
"8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.",
":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.",
"?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-",
"(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/"
} # Exclamation mark is not in ITU-R recommendation
# fmt: on
UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()}
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
return " ".join(MORSE_CODE_DICT[char] for char in message.upper() )
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
return "".join(REVERSE_DICT[char] for char in message.split() )
def A__ ( ) -> None:
"""simple docstring"""
_UpperCAmelCase = '''Morse code here!'''
print(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ )
print(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ )
print(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
main() | 32 | 1 |
import baseaa
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes:
"""simple docstring"""
return baseaa.baaencode(string.encode('''utf-8''' ) )
def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str:
"""simple docstring"""
return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' )
if __name__ == "__main__":
UpperCAmelCase_ = "Hello World!"
UpperCAmelCase_ = baseaa_encode(test)
print(encoded)
UpperCAmelCase_ = baseaa_decode(encoded)
print(decoded) | 32 |
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __UpperCamelCase ( A__ , unittest.TestCase ):
__A : Any = DanceDiffusionPipeline
__A : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
__A : Tuple = PipelineTesterMixin.required_optional_params - {
"""callback""",
"""latents""",
"""callback_steps""",
"""output_type""",
"""num_images_per_prompt""",
}
__A : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
__A : List[str] = False
__A : str = False
def UpperCamelCase( self ):
torch.manual_seed(0 )
_UpperCAmelCase = UNetaDModel(
block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , )
_UpperCAmelCase = IPNDMScheduler()
_UpperCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
}
return components
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ):
if str(_UpperCamelCase ).startswith('''mps''' ):
_UpperCAmelCase = torch.manual_seed(_UpperCamelCase )
else:
_UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase )
_UpperCAmelCase = {
'''batch_size''': 1,
'''generator''': generator,
'''num_inference_steps''': 4,
}
return inputs
def UpperCamelCase( self ):
_UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
_UpperCAmelCase = self.get_dummy_components()
_UpperCAmelCase = DanceDiffusionPipeline(**_UpperCamelCase )
_UpperCAmelCase = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase )
_UpperCAmelCase = pipe(**_UpperCamelCase )
_UpperCAmelCase = output.audios
_UpperCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
_UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def UpperCamelCase( self ):
return super().test_save_load_local()
@skip_mps
def UpperCamelCase( self ):
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
@skip_mps
def UpperCamelCase( self ):
return super().test_save_load_optional_components()
@skip_mps
def UpperCamelCase( self ):
return super().test_attention_slicing_forward_pass()
def UpperCamelCase( self ):
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def UpperCamelCase( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase( self ):
_UpperCAmelCase = torch_device
_UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' )
_UpperCAmelCase = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 )
_UpperCAmelCase = output.audios
_UpperCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCamelCase( self ):
_UpperCAmelCase = torch_device
_UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa )
_UpperCAmelCase = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 )
_UpperCAmelCase = output.audios
_UpperCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 | 32 | 1 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class __UpperCamelCase ( datasets.BeamBasedBuilder ):
def UpperCamelCase( self ):
return datasets.DatasetInfo(
features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=_UpperCamelCase , )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ):
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )]
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ):
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(_UpperCamelCase )
class __UpperCamelCase ( datasets.BeamBasedBuilder ):
def UpperCamelCase( self ):
return datasets.DatasetInfo(
features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=_UpperCamelCase , )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ):
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} )
]
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ):
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(_UpperCamelCase )
def A__ ( ) -> Dict:
"""simple docstring"""
return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )]
def A__ ( ) -> Dict:
"""simple docstring"""
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )]
class __UpperCamelCase ( A__ ):
@require_beam
def UpperCamelCase( self ):
_UpperCAmelCase = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
_UpperCAmelCase = DummyBeamDataset(cache_dir=_UpperCamelCase , beam_runner='''DirectRunner''' )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(_UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , f'''{builder.name}-train.arrow''' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) )
_UpperCAmelCase = builder.as_dataset()
self.assertEqual(dset['''train'''].num_rows , _UpperCamelCase )
self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , _UpperCamelCase )
self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(_UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) )
del dset
@require_beam
def UpperCamelCase( self ):
import apache_beam as beam
_UpperCAmelCase = beam.io.parquetio.WriteToParquet
_UpperCAmelCase = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
_UpperCAmelCase = DummyBeamDataset(cache_dir=_UpperCamelCase , beam_runner='''DirectRunner''' )
with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock:
_UpperCAmelCase = partial(_UpperCamelCase , num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
_UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
_UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) )
_UpperCAmelCase = builder.as_dataset()
self.assertEqual(dset['''train'''].num_rows , _UpperCamelCase )
self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , _UpperCamelCase )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) )
self.assertTrue(
os.path.exists(os.path.join(_UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) )
del dset
@require_beam
def UpperCamelCase( self ):
with tempfile.TemporaryDirectory() as tmp_cache_dir:
_UpperCAmelCase = DummyBeamDataset(cache_dir=_UpperCamelCase )
self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare )
@require_beam
def UpperCamelCase( self ):
_UpperCAmelCase = len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
_UpperCAmelCase = NestedBeamDataset(cache_dir=_UpperCamelCase , beam_runner='''DirectRunner''' )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(_UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , f'''{builder.name}-train.arrow''' ) ) )
self.assertDictEqual(
builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) )
_UpperCAmelCase = builder.as_dataset()
self.assertEqual(dset['''train'''].num_rows , _UpperCamelCase )
self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , _UpperCamelCase )
self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(_UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) )
del dset | 32 |
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = OrderedDict(
[
# Base model mapping
("albert", "FlaxAlbertModel"),
("bart", "FlaxBartModel"),
("beit", "FlaxBeitModel"),
("bert", "FlaxBertModel"),
("big_bird", "FlaxBigBirdModel"),
("blenderbot", "FlaxBlenderbotModel"),
("blenderbot-small", "FlaxBlenderbotSmallModel"),
("clip", "FlaxCLIPModel"),
("distilbert", "FlaxDistilBertModel"),
("electra", "FlaxElectraModel"),
("gpt-sw3", "FlaxGPT2Model"),
("gpt2", "FlaxGPT2Model"),
("gpt_neo", "FlaxGPTNeoModel"),
("gptj", "FlaxGPTJModel"),
("longt5", "FlaxLongT5Model"),
("marian", "FlaxMarianModel"),
("mbart", "FlaxMBartModel"),
("mt5", "FlaxMT5Model"),
("opt", "FlaxOPTModel"),
("pegasus", "FlaxPegasusModel"),
("regnet", "FlaxRegNetModel"),
("resnet", "FlaxResNetModel"),
("roberta", "FlaxRobertaModel"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"),
("roformer", "FlaxRoFormerModel"),
("t5", "FlaxT5Model"),
("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"),
("vit", "FlaxViTModel"),
("wav2vec2", "FlaxWav2Vec2Model"),
("whisper", "FlaxWhisperModel"),
("xglm", "FlaxXGLMModel"),
("xlm-roberta", "FlaxXLMRobertaModel"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for pre-training mapping
("albert", "FlaxAlbertForPreTraining"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForPreTraining"),
("big_bird", "FlaxBigBirdForPreTraining"),
("electra", "FlaxElectraForPreTraining"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("t5", "FlaxT5ForConditionalGeneration"),
("wav2vec2", "FlaxWav2Vec2ForPreTraining"),
("whisper", "FlaxWhisperForConditionalGeneration"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Masked LM mapping
("albert", "FlaxAlbertForMaskedLM"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForMaskedLM"),
("big_bird", "FlaxBigBirdForMaskedLM"),
("distilbert", "FlaxDistilBertForMaskedLM"),
("electra", "FlaxElectraForMaskedLM"),
("mbart", "FlaxMBartForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
("bart", "FlaxBartForConditionalGeneration"),
("blenderbot", "FlaxBlenderbotForConditionalGeneration"),
("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"),
("encoder-decoder", "FlaxEncoderDecoderModel"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("marian", "FlaxMarianMTModel"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("pegasus", "FlaxPegasusForConditionalGeneration"),
("t5", "FlaxT5ForConditionalGeneration"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Image-classsification
("beit", "FlaxBeitForImageClassification"),
("regnet", "FlaxRegNetForImageClassification"),
("resnet", "FlaxResNetForImageClassification"),
("vit", "FlaxViTForImageClassification"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Causal LM mapping
("bart", "FlaxBartForCausalLM"),
("bert", "FlaxBertForCausalLM"),
("big_bird", "FlaxBigBirdForCausalLM"),
("electra", "FlaxElectraForCausalLM"),
("gpt-sw3", "FlaxGPT2LMHeadModel"),
("gpt2", "FlaxGPT2LMHeadModel"),
("gpt_neo", "FlaxGPTNeoForCausalLM"),
("gptj", "FlaxGPTJForCausalLM"),
("opt", "FlaxOPTForCausalLM"),
("roberta", "FlaxRobertaForCausalLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"),
("xglm", "FlaxXGLMForCausalLM"),
("xlm-roberta", "FlaxXLMRobertaForCausalLM"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Sequence Classification mapping
("albert", "FlaxAlbertForSequenceClassification"),
("bart", "FlaxBartForSequenceClassification"),
("bert", "FlaxBertForSequenceClassification"),
("big_bird", "FlaxBigBirdForSequenceClassification"),
("distilbert", "FlaxDistilBertForSequenceClassification"),
("electra", "FlaxElectraForSequenceClassification"),
("mbart", "FlaxMBartForSequenceClassification"),
("roberta", "FlaxRobertaForSequenceClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"),
("roformer", "FlaxRoFormerForSequenceClassification"),
("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Question Answering mapping
("albert", "FlaxAlbertForQuestionAnswering"),
("bart", "FlaxBartForQuestionAnswering"),
("bert", "FlaxBertForQuestionAnswering"),
("big_bird", "FlaxBigBirdForQuestionAnswering"),
("distilbert", "FlaxDistilBertForQuestionAnswering"),
("electra", "FlaxElectraForQuestionAnswering"),
("mbart", "FlaxMBartForQuestionAnswering"),
("roberta", "FlaxRobertaForQuestionAnswering"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"),
("roformer", "FlaxRoFormerForQuestionAnswering"),
("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Token Classification mapping
("albert", "FlaxAlbertForTokenClassification"),
("bert", "FlaxBertForTokenClassification"),
("big_bird", "FlaxBigBirdForTokenClassification"),
("distilbert", "FlaxDistilBertForTokenClassification"),
("electra", "FlaxElectraForTokenClassification"),
("roberta", "FlaxRobertaForTokenClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"),
("roformer", "FlaxRoFormerForTokenClassification"),
("xlm-roberta", "FlaxXLMRobertaForTokenClassification"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Multiple Choice mapping
("albert", "FlaxAlbertForMultipleChoice"),
("bert", "FlaxBertForMultipleChoice"),
("big_bird", "FlaxBigBirdForMultipleChoice"),
("distilbert", "FlaxDistilBertForMultipleChoice"),
("electra", "FlaxElectraForMultipleChoice"),
("roberta", "FlaxRobertaForMultipleChoice"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"),
("roformer", "FlaxRoFormerForMultipleChoice"),
("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("bert", "FlaxBertForNextSentencePrediction"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"),
("whisper", "FlaxWhisperForConditionalGeneration"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("whisper", "FlaxWhisperForAudioClassification"),
]
)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[str] = FLAX_MODEL_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModel)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc="sequence classification"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc="token classification"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForImageClassification, head_doc="image classification"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling"
) | 32 | 1 |
import enum
import os
from hashlib import shaaaa
from typing import Optional
from .. import config
from .logging import get_logger
UpperCAmelCase_ = get_logger(__name__)
class __UpperCamelCase ( enum.Enum ):
__A : int = """all_checks"""
__A : Tuple = """basic_checks"""
__A : List[Any] = """no_checks"""
class __UpperCamelCase ( A__ ):
pass
class __UpperCamelCase ( A__ ):
pass
class __UpperCamelCase ( A__ ):
pass
class __UpperCamelCase ( A__ ):
pass
def A__ ( SCREAMING_SNAKE_CASE_ : Optional[dict] , SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : Dict=None ) -> Union[str, Any]:
"""simple docstring"""
if expected_checksums is None:
logger.info('''Unable to verify checksums.''' )
return
if len(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) > 0:
raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) )
if len(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) > 0:
raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) )
_UpperCAmelCase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]]
_UpperCAmelCase = ''' for ''' + verification_name if verification_name is not None else ''''''
if len(SCREAMING_SNAKE_CASE_ ) > 0:
raise NonMatchingChecksumError(
F'''Checksums didn\'t match{for_verification_name}:\n'''
F'''{bad_urls}\n'''
'''Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error''' )
logger.info('''All the checksums matched successfully''' + for_verification_name )
class __UpperCamelCase ( A__ ):
pass
class __UpperCamelCase ( A__ ):
pass
class __UpperCamelCase ( A__ ):
pass
class __UpperCamelCase ( A__ ):
pass
def A__ ( SCREAMING_SNAKE_CASE_ : Optional[dict] , SCREAMING_SNAKE_CASE_ : dict ) -> int:
"""simple docstring"""
if expected_splits is None:
logger.info('''Unable to verify splits sizes.''' )
return
if len(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) > 0:
raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) )
if len(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) > 0:
raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE_ ) - set(SCREAMING_SNAKE_CASE_ ) ) )
_UpperCAmelCase = [
{'''expected''': expected_splits[name], '''recorded''': recorded_splits[name]}
for name in expected_splits
if expected_splits[name].num_examples != recorded_splits[name].num_examples
]
if len(SCREAMING_SNAKE_CASE_ ) > 0:
raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE_ ) )
logger.info('''All the splits matched successfully.''' )
def A__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = True ) -> dict:
"""simple docstring"""
if record_checksum:
_UpperCAmelCase = shaaaa()
with open(SCREAMING_SNAKE_CASE_ , '''rb''' ) as f:
for chunk in iter(lambda: f.read(1 << 20 ) , B'''''' ):
m.update(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = m.hexdigest()
else:
_UpperCAmelCase = None
return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE_ ), "checksum": checksum}
def A__ ( SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]:
"""simple docstring"""
if dataset_size and config.IN_MEMORY_MAX_SIZE:
return dataset_size < config.IN_MEMORY_MAX_SIZE
else:
return False | 32 |
import baseaa
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes:
"""simple docstring"""
return baseaa.baaencode(string.encode('''utf-8''' ) )
def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str:
"""simple docstring"""
return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' )
if __name__ == "__main__":
UpperCAmelCase_ = "Hello World!"
UpperCAmelCase_ = baseaa_encode(test)
print(encoded)
UpperCAmelCase_ = baseaa_decode(encoded)
print(decoded) | 32 | 1 |
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def A__ ( ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = 9, 14 # noqa: F841
_UpperCAmelCase = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
_UpperCAmelCase = defaultdict(SCREAMING_SNAKE_CASE_ )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
_UpperCAmelCase = mst(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
_UpperCAmelCase = tuple(answer[:2] )
_UpperCAmelCase = tuple(edge[::-1] )
assert edge in result or reverse in result | 32 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
UpperCAmelCase_ = logging.get_logger(__name__)
class __UpperCamelCase ( A__ ):
__A : int = ["""pixel_values"""]
def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ):
super().__init__(**_UpperCamelCase )
_UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224}
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
_UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' )
_UpperCAmelCase = do_resize
_UpperCAmelCase = do_rescale
_UpperCAmelCase = do_normalize
_UpperCAmelCase = do_center_crop
_UpperCAmelCase = crop_size
_UpperCAmelCase = size
_UpperCAmelCase = resample
_UpperCAmelCase = rescale_factor
_UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
_UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ):
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
if "shortest_edge" in size:
_UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
_UpperCAmelCase = (size['''height'''], size['''width'''])
else:
raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' )
return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ):
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ):
return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ):
return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ):
_UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
_UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
_UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase )
_UpperCAmelCase = resample if resample is not None else self.resample
_UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
_UpperCAmelCase = image_std if image_std is not None else self.image_std
_UpperCAmelCase = size if size is not None else self.size
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
if not is_batched(_UpperCamelCase ):
_UpperCAmelCase = [images]
if not valid_images(_UpperCamelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
_UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images]
if do_resize:
_UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images]
if do_center_crop:
_UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images]
if do_rescale:
_UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images]
if do_normalize:
_UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images]
_UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images]
_UpperCAmelCase = {'''pixel_values''': images}
return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase ) | 32 | 1 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class __UpperCamelCase :
def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=32 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=None , ):
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_token_type_ids
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = type_sequence_label_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = num_labels
_UpperCAmelCase = num_choices
_UpperCAmelCase = scope
_UpperCAmelCase = self.vocab_size - 1
def UpperCamelCase( self ):
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase = None
if self.use_token_type_ids:
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
_UpperCAmelCase = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
_UpperCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , *_UpperCamelCase ):
_UpperCAmelCase = OpenAIGPTModel(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(_UpperCamelCase , token_type_ids=_UpperCamelCase , head_mask=_UpperCamelCase )
_UpperCAmelCase = model(_UpperCamelCase , token_type_ids=_UpperCamelCase )
_UpperCAmelCase = model(_UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , *_UpperCamelCase ):
_UpperCAmelCase = OpenAIGPTLMHeadModel(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , *_UpperCamelCase ):
_UpperCAmelCase = OpenAIGPTDoubleHeadsModel(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , *_UpperCamelCase ):
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = OpenAIGPTForSequenceClassification(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase = model(_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase( self ):
_UpperCAmelCase = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) = config_and_inputs
_UpperCAmelCase = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''head_mask''': head_mask,
}
return config, inputs_dict
@require_torch
class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ):
__A : List[str] = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
__A : Any = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
__A : str = (
{
"""feature-extraction""": OpenAIGPTModel,
"""text-classification""": OpenAIGPTForSequenceClassification,
"""text-generation""": OpenAIGPTLMHeadModel,
"""zero-shot""": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False ):
_UpperCAmelCase = super()._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
_UpperCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCamelCase , )
_UpperCAmelCase = inputs_dict['''labels''']
_UpperCAmelCase = inputs_dict['''labels''']
_UpperCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_UpperCamelCase , )
_UpperCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase )
return inputs_dict
def UpperCamelCase( self ):
_UpperCAmelCase = OpenAIGPTModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , n_embd=37 )
def UpperCamelCase( self ):
self.config_tester.run_common_tests()
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_UpperCamelCase )
@slow
def UpperCamelCase( self ):
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase = OpenAIGPTModel.from_pretrained(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase )
@require_torch
class __UpperCamelCase ( unittest.TestCase ):
@slow
def UpperCamelCase( self ):
_UpperCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' )
model.to(_UpperCamelCase )
_UpperCAmelCase = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=_UpperCamelCase ) # the president is
_UpperCAmelCase = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
40477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
_UpperCAmelCase = model.generate(_UpperCamelCase , do_sample=_UpperCamelCase )
self.assertListEqual(output_ids[0].tolist() , _UpperCamelCase ) | 32 |
from ..utils import DummyObject, requires_backends
class __UpperCamelCase ( metaclass=A__ ):
__A : str = ["""torch""", """scipy"""]
def __init__( self , *_UpperCamelCase , **_UpperCamelCase ):
requires_backends(self , ['''torch''', '''scipy'''] )
@classmethod
def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ):
requires_backends(cls , ['''torch''', '''scipy'''] )
@classmethod
def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ):
requires_backends(cls , ['''torch''', '''scipy'''] ) | 32 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCAmelCase_ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ["YolosFeatureExtractor"]
UpperCAmelCase_ = ["YolosImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST",
"YolosForObjectDetection",
"YolosModel",
"YolosPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_yolos import YolosFeatureExtractor
from .image_processing_yolos import YolosImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_yolos import (
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST,
YolosForObjectDetection,
YolosModel,
YolosPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) | 32 |
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int:
"""simple docstring"""
_UpperCAmelCase = [0 for i in range(n + 1 )]
_UpperCAmelCase = 1
_UpperCAmelCase = 1
for i in range(2 , int(n**0.5 ) + 1 ):
if primality_list[i] == 0:
for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ):
_UpperCAmelCase = 1
_UpperCAmelCase = 0
for i in range(SCREAMING_SNAKE_CASE_ ):
if primality_list[i] == 0:
sum_of_primes += i
return sum_of_primes
if __name__ == "__main__":
print(f'''{solution() = }''') | 32 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"SCUT-DLVCLab/lilt-roberta-en-base": (
"https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json"
),
}
class __UpperCamelCase ( A__ ):
__A : List[Any] = """lilt"""
def __init__( self , _UpperCamelCase=30522 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=0 , _UpperCamelCase="absolute" , _UpperCamelCase=None , _UpperCamelCase=4 , _UpperCamelCase=1024 , **_UpperCamelCase , ):
super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase )
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = hidden_act
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = position_embedding_type
_UpperCAmelCase = classifier_dropout
_UpperCAmelCase = channel_shrink_ratio
_UpperCAmelCase = max_ad_position_embeddings | 32 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
UpperCAmelCase_ = logging.get_logger(__name__)
class __UpperCamelCase ( A__ ):
def __init__( self , *_UpperCamelCase , **_UpperCamelCase ):
warnings.warn(
'''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use GLPNImageProcessor instead.''' , _UpperCamelCase , )
super().__init__(*_UpperCamelCase , **_UpperCamelCase ) | 32 | 1 |
import logging
from transformers import PretrainedConfig
UpperCAmelCase_ = logging.getLogger(__name__)
UpperCAmelCase_ = {
"bertabs-finetuned-cnndm": "https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json",
}
class __UpperCamelCase ( A__ ):
__A : Tuple = """bertabs"""
def __init__( self , _UpperCamelCase=30522 , _UpperCamelCase=512 , _UpperCamelCase=6 , _UpperCamelCase=512 , _UpperCamelCase=8 , _UpperCamelCase=512 , _UpperCamelCase=0.2 , _UpperCamelCase=6 , _UpperCamelCase=768 , _UpperCamelCase=8 , _UpperCamelCase=2048 , _UpperCamelCase=0.2 , **_UpperCamelCase , ):
super().__init__(**_UpperCamelCase )
_UpperCAmelCase = vocab_size
_UpperCAmelCase = max_pos
_UpperCAmelCase = enc_layers
_UpperCAmelCase = enc_hidden_size
_UpperCAmelCase = enc_heads
_UpperCAmelCase = enc_ff_size
_UpperCAmelCase = enc_dropout
_UpperCAmelCase = dec_layers
_UpperCAmelCase = dec_hidden_size
_UpperCAmelCase = dec_heads
_UpperCAmelCase = dec_ff_size
_UpperCAmelCase = dec_dropout | 32 |
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __UpperCamelCase ( A__ ):
__A : Dict = ["""image_processor""", """tokenizer"""]
__A : List[str] = """BridgeTowerImageProcessor"""
__A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""")
def __init__( self , _UpperCamelCase , _UpperCamelCase ):
super().__init__(_UpperCamelCase , _UpperCamelCase )
def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ):
_UpperCAmelCase = self.tokenizer(
text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , )
# add pixel_values + pixel_mask
_UpperCAmelCase = self.image_processor(
_UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase )
encoding.update(_UpperCamelCase )
return encoding
def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ):
return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ):
return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase )
@property
def UpperCamelCase( self ):
_UpperCAmelCase = self.tokenizer.model_input_names
_UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) | 32 | 1 |
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class __UpperCamelCase :
def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=32 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=50 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=None , ):
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_input_mask
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = initializer_range
_UpperCAmelCase = use_labels
_UpperCAmelCase = scope
def UpperCamelCase( self ):
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase = None
if self.use_input_mask:
_UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase = self.get_config()
return config, input_ids, input_mask, token_labels
def UpperCamelCase( self ):
return BertGenerationConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , )
def UpperCamelCase( self ):
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) = self.prepare_config_and_inputs()
_UpperCAmelCase = True
_UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase , ):
_UpperCAmelCase = BertGenerationEncoder(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase )
_UpperCAmelCase = model(_UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase , ):
_UpperCAmelCase = True
_UpperCAmelCase = BertGenerationEncoder(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(
_UpperCamelCase , attention_mask=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , )
_UpperCAmelCase = model(
_UpperCamelCase , attention_mask=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase , ):
_UpperCAmelCase = True
_UpperCAmelCase = True
_UpperCAmelCase = BertGenerationDecoder(config=_UpperCamelCase ).to(_UpperCamelCase ).eval()
# first forward pass
_UpperCAmelCase = model(
_UpperCamelCase , attention_mask=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase , )
_UpperCAmelCase = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
_UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
_UpperCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
_UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
_UpperCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 )
_UpperCAmelCase = model(
_UpperCamelCase , attention_mask=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , output_hidden_states=_UpperCamelCase , )['''hidden_states'''][0]
_UpperCAmelCase = model(
_UpperCamelCase , attention_mask=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase , output_hidden_states=_UpperCamelCase , )['''hidden_states'''][0]
# select random slice
_UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
_UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , *_UpperCamelCase , ):
_UpperCAmelCase = BertGenerationDecoder(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase( self ):
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs()
_UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ):
__A : Dict = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
__A : Tuple = (BertGenerationDecoder,) if is_torch_available() else ()
__A : Tuple = (
{"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder}
if is_torch_available()
else {}
)
def UpperCamelCase( self ):
_UpperCAmelCase = BertGenerationEncoderTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 )
def UpperCamelCase( self ):
self.config_tester.run_common_tests()
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
_UpperCAmelCase = '''bert'''
self.model_tester.create_and_check_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*_UpperCamelCase )
def UpperCamelCase( self ):
# This regression test was failing with PyTorch < 1.3
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
_UpperCAmelCase = None
self.model_tester.create_and_check_model_as_decoder(
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*_UpperCamelCase )
@slow
def UpperCamelCase( self ):
_UpperCAmelCase = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
self.assertIsNotNone(_UpperCamelCase )
@require_torch
class __UpperCamelCase ( unittest.TestCase ):
@slow
def UpperCamelCase( self ):
_UpperCAmelCase = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
_UpperCAmelCase = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] )
with torch.no_grad():
_UpperCAmelCase = model(_UpperCamelCase )[0]
_UpperCAmelCase = torch.Size([1, 8, 1024] )
self.assertEqual(output.shape , _UpperCamelCase )
_UpperCAmelCase = torch.tensor(
[[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) )
@require_torch
class __UpperCamelCase ( unittest.TestCase ):
@slow
def UpperCamelCase( self ):
_UpperCAmelCase = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
_UpperCAmelCase = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] )
with torch.no_grad():
_UpperCAmelCase = model(_UpperCamelCase )[0]
_UpperCAmelCase = torch.Size([1, 8, 50358] )
self.assertEqual(output.shape , _UpperCamelCase )
_UpperCAmelCase = torch.tensor(
[[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) | 32 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase_ = {
"configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"],
"tokenization_xlm": ["XLMTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMForMultipleChoice",
"XLMForQuestionAnswering",
"XLMForQuestionAnsweringSimple",
"XLMForSequenceClassification",
"XLMForTokenClassification",
"XLMModel",
"XLMPreTrainedModel",
"XLMWithLMHeadModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLMForMultipleChoice",
"TFXLMForQuestionAnsweringSimple",
"TFXLMForSequenceClassification",
"TFXLMForTokenClassification",
"TFXLMMainLayer",
"TFXLMModel",
"TFXLMPreTrainedModel",
"TFXLMWithLMHeadModel",
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) | 32 | 1 |
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __UpperCamelCase ( A__ ):
__A : Dict = ["""image_processor""", """tokenizer"""]
__A : List[str] = """BridgeTowerImageProcessor"""
__A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""")
def __init__( self , _UpperCamelCase , _UpperCamelCase ):
super().__init__(_UpperCamelCase , _UpperCamelCase )
def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ):
_UpperCAmelCase = self.tokenizer(
text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , )
# add pixel_values + pixel_mask
_UpperCAmelCase = self.image_processor(
_UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase )
encoding.update(_UpperCamelCase )
return encoding
def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ):
return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ):
return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase )
@property
def UpperCamelCase( self ):
_UpperCAmelCase = self.tokenizer.model_input_names
_UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) | 32 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json",
# See all BioGPT models at https://huggingface.co/models?filter=biogpt
}
class __UpperCamelCase ( A__ ):
__A : Any = """biogpt"""
def __init__( self , _UpperCamelCase=42384 , _UpperCamelCase=1024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1024 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ):
_UpperCAmelCase = vocab_size
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = initializer_range
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = scale_embedding
_UpperCAmelCase = use_cache
_UpperCAmelCase = layerdrop
_UpperCAmelCase = activation_dropout
super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) | 32 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase_ = {
"configuration_instructblip": [
"INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"InstructBlipConfig",
"InstructBlipQFormerConfig",
"InstructBlipVisionConfig",
],
"processing_instructblip": ["InstructBlipProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"InstructBlipQFormerModel",
"InstructBlipPreTrainedModel",
"InstructBlipForConditionalGeneration",
"InstructBlipVisionModel",
]
if TYPE_CHECKING:
from .configuration_instructblip import (
INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
InstructBlipConfig,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from .processing_instructblip import InstructBlipProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_instructblip import (
INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
InstructBlipForConditionalGeneration,
InstructBlipPreTrainedModel,
InstructBlipQFormerModel,
InstructBlipVisionModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) | 32 |
from typing import List
from .keymap import KEYMAP, get_character
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]:
"""simple docstring"""
def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ):
_UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] )
handle += [key]
setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ )
return func
return decorator
def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict:
"""simple docstring"""
def decorator(SCREAMING_SNAKE_CASE_ : Any ):
_UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] )
handle += keys
setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ )
return func
return decorator
class __UpperCamelCase ( A__ ):
def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
if not hasattr(_UpperCamelCase , '''key_handler''' ):
setattr(_UpperCamelCase , '''key_handler''' , {} )
setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input )
for value in attrs.values():
_UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] )
for key in handled_keys:
_UpperCAmelCase = value
return new_cls
@staticmethod
def UpperCamelCase( cls ):
_UpperCAmelCase = get_character()
if char != KEYMAP["undefined"]:
_UpperCAmelCase = ord(_UpperCamelCase )
_UpperCAmelCase = cls.key_handler.get(_UpperCamelCase )
if handler:
_UpperCAmelCase = char
return handler(cls )
else:
return None
def A__ ( cls : Union[str, Any] ) -> Any:
"""simple docstring"""
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() ) | 32 | 1 |
def A__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int ) -> list[str]:
"""simple docstring"""
return [sentence[i : i + ngram_size] for i in range(len(SCREAMING_SNAKE_CASE_ ) - ngram_size + 1 )]
if __name__ == "__main__":
from doctest import testmod
testmod() | 32 |
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __UpperCamelCase :
def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=24 , _UpperCamelCase=2 , _UpperCamelCase=6 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=None , _UpperCamelCase=1000 , ):
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_input_mask
_UpperCAmelCase = use_token_type_ids
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = type_sequence_label_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = num_labels
_UpperCAmelCase = scope
_UpperCAmelCase = range_bbox
def UpperCamelCase( self ):
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
_UpperCAmelCase = bbox[i, j, 3]
_UpperCAmelCase = bbox[i, j, 1]
_UpperCAmelCase = t
if bbox[i, j, 2] < bbox[i, j, 0]:
_UpperCAmelCase = bbox[i, j, 2]
_UpperCAmelCase = bbox[i, j, 0]
_UpperCAmelCase = t
_UpperCAmelCase = None
if self.use_input_mask:
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
_UpperCAmelCase = None
if self.use_token_type_ids:
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCAmelCase = None
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCAmelCase = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCamelCase( self ):
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ):
_UpperCAmelCase = LiltModel(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase )
_UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase )
_UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ):
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = LiltForTokenClassification(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(
_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ):
_UpperCAmelCase = LiltForQuestionAnswering(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(
_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase( self ):
_UpperCAmelCase = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) = config_and_inputs
_UpperCAmelCase = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ):
__A : Dict = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__A : Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__A : List[Any] = False
__A : Optional[int] = False
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
return True
def UpperCamelCase( self ):
_UpperCAmelCase = LiltModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 )
def UpperCamelCase( self ):
self.config_tester.run_common_tests()
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_UpperCAmelCase = type
self.model_tester.create_and_check_model(*_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase )
@slow
def UpperCamelCase( self ):
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase = LiltModel.from_pretrained(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase )
@require_torch
@slow
class __UpperCamelCase ( unittest.TestCase ):
def UpperCamelCase( self ):
_UpperCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_UpperCamelCase )
_UpperCAmelCase = torch.tensor([[1, 2]] , device=_UpperCamelCase )
_UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase )
# forward pass
with torch.no_grad():
_UpperCAmelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase )
_UpperCAmelCase = torch.Size([1, 2, 768] )
_UpperCAmelCase = torch.tensor(
[[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_UpperCamelCase , )
self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) ) | 32 | 1 |
import unittest
from transformers import AutoTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
if is_flax_available():
import jax.numpy as jnp
from transformers import FlaxXLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_flax
class __UpperCamelCase ( unittest.TestCase ):
@slow
def UpperCamelCase( self ):
_UpperCAmelCase = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
_UpperCAmelCase = AutoTokenizer.from_pretrained('''xlm-roberta-base''' )
_UpperCAmelCase = '''The dog is cute and lives in the garden house'''
_UpperCAmelCase = jnp.array([tokenizer.encode(_UpperCamelCase )] )
_UpperCAmelCase = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim
_UpperCAmelCase = jnp.array(
[[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] )
_UpperCAmelCase = model(_UpperCamelCase )['''last_hidden_state''']
self.assertEqual(output.shape , _UpperCamelCase )
# compare the actual values for a slice of last dim
self.assertTrue(jnp.allclose(output[:, :, -1] , _UpperCamelCase , atol=1e-3 ) ) | 32 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json",
"RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json",
"RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json",
"RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json",
"RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json",
"RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json",
"RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json",
"RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json",
"RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json",
"RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json",
}
class __UpperCamelCase ( A__ ):
__A : Tuple = """rwkv"""
__A : Any = {"""max_position_embeddings""": """context_length"""}
def __init__( self , _UpperCamelCase=50277 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ):
_UpperCAmelCase = vocab_size
_UpperCAmelCase = context_length
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size
_UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size
_UpperCAmelCase = layer_norm_epsilon
_UpperCAmelCase = rescale_every
_UpperCAmelCase = use_cache
_UpperCAmelCase = bos_token_id
_UpperCAmelCase = eos_token_id
super().__init__(
tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) | 32 | 1 |
from argparse import ArgumentParser, Namespace
from ..utils import logging
from . import BaseTransformersCLICommand
def A__ ( SCREAMING_SNAKE_CASE_ : Namespace ) -> Optional[int]:
"""simple docstring"""
return ConvertCommand(
args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name )
UpperCAmelCase_ = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n"
class __UpperCamelCase ( A__ ):
@staticmethod
def UpperCamelCase( _UpperCamelCase ):
_UpperCAmelCase = parser.add_parser(
'''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , )
train_parser.add_argument('''--model_type''' , type=_UpperCamelCase , required=_UpperCamelCase , help='''Model\'s type.''' )
train_parser.add_argument(
'''--tf_checkpoint''' , type=_UpperCamelCase , required=_UpperCamelCase , help='''TensorFlow checkpoint path or folder.''' )
train_parser.add_argument(
'''--pytorch_dump_output''' , type=_UpperCamelCase , required=_UpperCamelCase , help='''Path to the PyTorch saved model output.''' )
train_parser.add_argument('''--config''' , type=_UpperCamelCase , default='''''' , help='''Configuration file path or folder.''' )
train_parser.add_argument(
'''--finetuning_task_name''' , type=_UpperCamelCase , default=_UpperCamelCase , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , )
train_parser.set_defaults(func=_UpperCamelCase )
def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , *_UpperCamelCase , ):
_UpperCAmelCase = logging.get_logger('''transformers-cli/converting''' )
self._logger.info(f'''Loading model {model_type}''' )
_UpperCAmelCase = model_type
_UpperCAmelCase = tf_checkpoint
_UpperCAmelCase = pytorch_dump_output
_UpperCAmelCase = config
_UpperCAmelCase = finetuning_task_name
def UpperCamelCase( self ):
if self._model_type == "albert":
try:
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_UpperCamelCase )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "bert":
try:
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_UpperCamelCase )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "funnel":
try:
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_UpperCamelCase )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "t5":
try:
from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
raise ImportError(_UpperCamelCase )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "gpt":
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch,
)
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "transfo_xl":
try:
from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
convert_transfo_xl_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_UpperCamelCase )
if "ckpt" in self._tf_checkpoint.lower():
_UpperCAmelCase = self._tf_checkpoint
_UpperCAmelCase = ''''''
else:
_UpperCAmelCase = self._tf_checkpoint
_UpperCAmelCase = ''''''
convert_transfo_xl_checkpoint_to_pytorch(
_UpperCamelCase , self._config , self._pytorch_dump_output , _UpperCamelCase )
elif self._model_type == "gpt2":
try:
from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import (
convert_gpta_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_UpperCamelCase )
convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "xlnet":
try:
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_UpperCamelCase )
convert_xlnet_checkpoint_to_pytorch(
self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name )
elif self._model_type == "xlm":
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch,
)
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "rembert":
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
convert_rembert_tf_checkpoint_to_pytorch,
)
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
else:
raise ValueError(
'''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' ) | 32 |
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str:
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
_UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) )
return "0b" + "".join(
str(int(char_a == '''1''' and char_b == '''1''' ) )
for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 32 | 1 |
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __UpperCamelCase ( A__ , unittest.TestCase ):
__A : Any = DanceDiffusionPipeline
__A : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
__A : Tuple = PipelineTesterMixin.required_optional_params - {
"""callback""",
"""latents""",
"""callback_steps""",
"""output_type""",
"""num_images_per_prompt""",
}
__A : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
__A : List[str] = False
__A : str = False
def UpperCamelCase( self ):
torch.manual_seed(0 )
_UpperCAmelCase = UNetaDModel(
block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , )
_UpperCAmelCase = IPNDMScheduler()
_UpperCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
}
return components
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ):
if str(_UpperCamelCase ).startswith('''mps''' ):
_UpperCAmelCase = torch.manual_seed(_UpperCamelCase )
else:
_UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase )
_UpperCAmelCase = {
'''batch_size''': 1,
'''generator''': generator,
'''num_inference_steps''': 4,
}
return inputs
def UpperCamelCase( self ):
_UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
_UpperCAmelCase = self.get_dummy_components()
_UpperCAmelCase = DanceDiffusionPipeline(**_UpperCamelCase )
_UpperCAmelCase = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase )
_UpperCAmelCase = pipe(**_UpperCamelCase )
_UpperCAmelCase = output.audios
_UpperCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
_UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def UpperCamelCase( self ):
return super().test_save_load_local()
@skip_mps
def UpperCamelCase( self ):
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
@skip_mps
def UpperCamelCase( self ):
return super().test_save_load_optional_components()
@skip_mps
def UpperCamelCase( self ):
return super().test_attention_slicing_forward_pass()
def UpperCamelCase( self ):
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def UpperCamelCase( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase( self ):
_UpperCAmelCase = torch_device
_UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' )
_UpperCAmelCase = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 )
_UpperCAmelCase = output.audios
_UpperCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCamelCase( self ):
_UpperCAmelCase = torch_device
_UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa )
_UpperCAmelCase = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 )
_UpperCAmelCase = output.audios
_UpperCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 | 32 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
}
class __UpperCamelCase ( A__ ):
__A : Dict = """falcon"""
__A : Any = ["""past_key_values"""]
def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ):
_UpperCAmelCase = vocab_size
# Backward compatibility with n_embed kwarg
_UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase )
_UpperCAmelCase = hidden_size if n_embed is None else n_embed
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = layer_norm_epsilon
_UpperCAmelCase = initializer_range
_UpperCAmelCase = use_cache
_UpperCAmelCase = hidden_dropout
_UpperCAmelCase = attention_dropout
_UpperCAmelCase = bos_token_id
_UpperCAmelCase = eos_token_id
_UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads
_UpperCAmelCase = alibi
_UpperCAmelCase = new_decoder_architecture
_UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True
_UpperCAmelCase = parallel_attn
_UpperCAmelCase = bias
super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
@property
def UpperCamelCase( self ):
return self.hidden_size // self.num_attention_heads
@property
def UpperCamelCase( self ):
return not self.alibi | 32 | 1 |
from __future__ import annotations
def A__ ( SCREAMING_SNAKE_CASE_ : list[int] ) -> int:
"""simple docstring"""
if not nums:
return 0
_UpperCAmelCase = nums[0]
_UpperCAmelCase = 0
for num in nums[1:]:
_UpperCAmelCase , _UpperCAmelCase = (
max_excluding + num,
max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ),
)
return max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 32 |
from math import sqrt
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_00_01 ) -> int:
"""simple docstring"""
_UpperCAmelCase = 0
_UpperCAmelCase = 1
while count != nth and number < 3:
number += 1
if is_prime(SCREAMING_SNAKE_CASE_ ):
count += 1
while count != nth:
number += 2
if is_prime(SCREAMING_SNAKE_CASE_ ):
count += 1
return number
if __name__ == "__main__":
print(f'''{solution() = }''') | 32 | 1 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from accelerate import PartialState
from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce
def A__ ( SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict:
"""simple docstring"""
return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device )
def A__ ( SCREAMING_SNAKE_CASE_ : Tuple ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = create_tensor(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = gather(SCREAMING_SNAKE_CASE_ )
assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) )
def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase = [state.process_index]
_UpperCAmelCase = gather_object(SCREAMING_SNAKE_CASE_ )
assert len(SCREAMING_SNAKE_CASE_ ) == state.num_processes, F'''{gathered_obj}, {len(SCREAMING_SNAKE_CASE_ )} != {state.num_processes}'''
assert gathered_obj == list(range(state.num_processes ) ), F'''{gathered_obj} != {list(range(state.num_processes ) )}'''
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = create_tensor(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = broadcast(SCREAMING_SNAKE_CASE_ )
assert broadcasted_tensor.shape == torch.Size([state.num_processes] )
assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) )
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> Dict:
"""simple docstring"""
if state.is_main_process:
_UpperCAmelCase = torch.arange(state.num_processes + 1 ).to(state.device )
else:
_UpperCAmelCase = torch.arange(state.num_processes ).to(state.device )
_UpperCAmelCase = pad_across_processes(SCREAMING_SNAKE_CASE_ )
assert padded_tensor.shape == torch.Size([state.num_processes + 1] )
if not state.is_main_process:
assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0]
def A__ ( SCREAMING_SNAKE_CASE_ : Any ) -> Dict:
"""simple docstring"""
if state.num_processes != 2:
return
_UpperCAmelCase = create_tensor(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = reduce(SCREAMING_SNAKE_CASE_ , '''sum''' )
_UpperCAmelCase = torch.tensor([4.0, 6] ).to(state.device )
assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), F'''{reduced_tensor} != {truth_tensor}'''
def A__ ( SCREAMING_SNAKE_CASE_ : Tuple ) -> Optional[int]:
"""simple docstring"""
if state.num_processes != 2:
return
_UpperCAmelCase = create_tensor(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = reduce(SCREAMING_SNAKE_CASE_ , '''mean''' )
_UpperCAmelCase = torch.tensor([2.0, 3] ).to(state.device )
assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), F'''{reduced_tensor} != {truth_tensor}'''
def A__ ( SCREAMING_SNAKE_CASE_ : Any ) -> List[str]:
"""simple docstring"""
main()
def A__ ( ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = PartialState()
state.print(F'''State: {state}''' )
state.print('''testing gather''' )
test_gather(SCREAMING_SNAKE_CASE_ )
state.print('''testing gather_object''' )
test_gather_object(SCREAMING_SNAKE_CASE_ )
state.print('''testing broadcast''' )
test_broadcast(SCREAMING_SNAKE_CASE_ )
state.print('''testing pad_across_processes''' )
test_pad_across_processes(SCREAMING_SNAKE_CASE_ )
state.print('''testing reduce_sum''' )
test_reduce_sum(SCREAMING_SNAKE_CASE_ )
state.print('''testing reduce_mean''' )
test_reduce_mean(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
main() | 32 |
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool:
"""simple docstring"""
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
_UpperCAmelCase = F'''Input value of [number={number}] must be an integer'''
raise TypeError(SCREAMING_SNAKE_CASE_ )
if number < 0:
return False
_UpperCAmelCase = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod() | 32 | 1 |
import copy
from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
from ..detr import DetrConfig
from ..swin import SwinConfig
UpperCAmelCase_ = {
"facebook/maskformer-swin-base-ade": (
"https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json"
)
# See all MaskFormer models at https://huggingface.co/models?filter=maskformer
}
UpperCAmelCase_ = logging.get_logger(__name__)
class __UpperCamelCase ( A__ ):
__A : Optional[int] = """maskformer"""
__A : List[str] = {"""hidden_size""": """mask_feature_size"""}
__A : Union[str, Any] = ["""resnet""", """swin"""]
__A : Union[str, Any] = ["""detr"""]
def __init__( self , _UpperCamelCase = 256 , _UpperCamelCase = 256 , _UpperCamelCase = 0.1 , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0.02 , _UpperCamelCase = 1.0 , _UpperCamelCase = 1.0 , _UpperCamelCase = 1.0 , _UpperCamelCase = 20.0 , _UpperCamelCase = None , **_UpperCamelCase , ):
if backbone_config is None:
# fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k
_UpperCAmelCase = SwinConfig(
image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , )
if isinstance(_UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = backbone_config.pop('''model_type''' )
_UpperCAmelCase = CONFIG_MAPPING[backbone_model_type]
_UpperCAmelCase = config_class.from_dict(_UpperCamelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. '''
f'''Supported model types: {','.join(self.backbones_supported )}''' )
if decoder_config is None:
# fall back to https://huggingface.co/facebook/detr-resnet-50
_UpperCAmelCase = DetrConfig()
else:
# verify that the decoder is supported
_UpperCAmelCase = (
decoder_config.pop('''model_type''' ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else decoder_config.model_type
)
if decoder_type not in self.decoders_supported:
raise ValueError(
f'''Transformer Decoder {decoder_type} not supported, please use one of'''
f''' {','.join(self.decoders_supported )}''' )
if isinstance(_UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = CONFIG_MAPPING[decoder_type]
_UpperCAmelCase = config_class.from_dict(_UpperCamelCase )
_UpperCAmelCase = backbone_config
_UpperCAmelCase = decoder_config
# main feature dimension for the model
_UpperCAmelCase = fpn_feature_size
_UpperCAmelCase = mask_feature_size
# initializer
_UpperCAmelCase = init_std
_UpperCAmelCase = init_xavier_std
# Hungarian matcher && loss
_UpperCAmelCase = cross_entropy_weight
_UpperCAmelCase = dice_weight
_UpperCAmelCase = mask_weight
_UpperCAmelCase = use_auxiliary_loss
_UpperCAmelCase = no_object_weight
_UpperCAmelCase = output_auxiliary_logits
_UpperCAmelCase = self.decoder_config.encoder_attention_heads
_UpperCAmelCase = self.decoder_config.num_hidden_layers
super().__init__(**_UpperCamelCase )
@classmethod
def UpperCamelCase( cls , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ):
return cls(
backbone_config=_UpperCamelCase , decoder_config=_UpperCamelCase , **_UpperCamelCase , )
def UpperCamelCase( self ):
_UpperCAmelCase = copy.deepcopy(self.__dict__ )
_UpperCAmelCase = self.backbone_config.to_dict()
_UpperCAmelCase = self.decoder_config.to_dict()
_UpperCAmelCase = self.__class__.model_type
return output | 32 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=A__ )
class __UpperCamelCase ( A__ ):
__A : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} )
__A : ClassVar[Features] = Features({"""text""": Value("""string""" )} )
__A : ClassVar[Features] = Features({} )
__A : str = "text"
@property
def UpperCamelCase( self ):
return {self.text_column: "text"} | 32 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase_ = {
"configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"],
"tokenization_ctrl": ["CTRLTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"CTRL_PRETRAINED_MODEL_ARCHIVE_LIST",
"CTRLForSequenceClassification",
"CTRLLMHeadModel",
"CTRLModel",
"CTRLPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFCTRLForSequenceClassification",
"TFCTRLLMHeadModel",
"TFCTRLModel",
"TFCTRLPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig
from .tokenization_ctrl import CTRLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ctrl import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
CTRLPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_ctrl import (
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCTRLForSequenceClassification,
TFCTRLLMHeadModel,
TFCTRLModel,
TFCTRLPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) | 32 |
import os
import re
import warnings
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
if TYPE_CHECKING:
from ...tokenization_utils_base import TextInput
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {"vocab_file": "spiece.model"}
UpperCAmelCase_ = {
"vocab_file": {
"t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model",
"t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model",
"t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model",
}
}
# TODO(PVP) - this should be removed in Transformers v5
UpperCAmelCase_ = {
"t5-small": 5_12,
"t5-base": 5_12,
"t5-large": 5_12,
"t5-3b": 5_12,
"t5-11b": 5_12,
}
UpperCAmelCase_ = "▁"
class __UpperCamelCase ( A__ ):
__A : Any = VOCAB_FILES_NAMES
__A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
__A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__A : Tuple = ["""input_ids""", """attention_mask"""]
def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase=100 , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=True , **_UpperCamelCase , ):
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
_UpperCAmelCase = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
_UpperCAmelCase = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'''
''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids'''
''' tokens''' )
if legacy:
logger.warning_once(
f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to'''
''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' )
_UpperCAmelCase = legacy
_UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , )
_UpperCAmelCase = vocab_file
_UpperCAmelCase = extra_ids
_UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCamelCase )
@staticmethod
def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes:
_UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
'''This tokenizer was incorrectly instantiated with a model max length of'''
f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this'''
''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with'''
''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on'''
f''' {pretrained_model_name_or_path} automatically truncating your input to'''
f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences'''
f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with'''
''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please'''
''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , )
return max_model_length
@property
def UpperCamelCase( self ):
return self.sp_model.get_piece_size() + self._extra_ids
def UpperCamelCase( self ):
_UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(_UpperCamelCase )) + [1]
return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1]
def UpperCamelCase( self ):
return list(
set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) )
def UpperCamelCase( self ):
return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()]
def UpperCamelCase( self , _UpperCamelCase ):
if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'''
''' eos tokens being added.''' )
return token_ids
else:
return token_ids + [self.eos_token_id]
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ):
_UpperCAmelCase = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ):
_UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase )
if token_ids_a is None:
return token_ids_a
else:
_UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase )
return token_ids_a + token_ids_a
def __getstate__( self ):
_UpperCAmelCase = self.__dict__.copy()
_UpperCAmelCase = None
return state
def __setstate__( self , _UpperCamelCase ):
_UpperCAmelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_UpperCAmelCase = {}
_UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ):
# Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at
# the beginning of the text
if not self.legacy:
_UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' )
return super().tokenize(_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ):
if not self.legacy:
_UpperCAmelCase = text.startswith(_UpperCamelCase )
if is_first:
_UpperCAmelCase = text[1:]
_UpperCAmelCase = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase )
if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ):
_UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:]
return tokens
def UpperCamelCase( self , _UpperCamelCase ):
if token.startswith('''<extra_id_''' ):
_UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase )
_UpperCAmelCase = int(match.group(1 ) )
return self.vocab_size - num - 1
return self.sp_model.piece_to_id(_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase ):
if index < self.sp_model.get_piece_size():
_UpperCAmelCase = self.sp_model.IdToPiece(_UpperCamelCase )
else:
_UpperCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>'''
return token
def UpperCamelCase( self , _UpperCamelCase ):
_UpperCAmelCase = []
_UpperCAmelCase = ''''''
_UpperCAmelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_UpperCamelCase ) + token
_UpperCAmelCase = True
_UpperCAmelCase = []
else:
current_sub_tokens.append(_UpperCamelCase )
_UpperCAmelCase = False
out_string += self.sp_model.decode(_UpperCamelCase )
return out_string.strip()
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ):
if not os.path.isdir(_UpperCamelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_UpperCAmelCase = os.path.join(
_UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCamelCase , '''wb''' ) as fi:
_UpperCAmelCase = self.sp_model.serialized_model_proto()
fi.write(_UpperCamelCase )
return (out_vocab_file,) | 32 | 1 |
from . import __version__
# Backward compatibility imports, to make sure all those objects can be found in file_utils
from .utils import (
CLOUDFRONT_DISTRIB_PREFIX,
CONFIG_NAME,
DISABLE_TELEMETRY,
DUMMY_INPUTS,
DUMMY_MASK,
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
FEATURE_EXTRACTOR_NAME,
FLAX_WEIGHTS_NAME,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
MODEL_CARD_NAME,
MULTIPLE_CHOICE_DUMMY_INPUTS,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
SENTENCEPIECE_UNDERLINE,
SPIECE_UNDERLINE,
TF2_WEIGHTS_NAME,
TF_WEIGHTS_NAME,
TORCH_FX_REQUIRED_VERSION,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
USE_JAX,
USE_TF,
USE_TORCH,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
ContextManagers,
DummyObject,
EntryNotFoundError,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
TensorType,
_LazyModule,
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
cached_property,
copy_func,
default_cache_path,
define_sagemaker_information,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
get_torch_version,
has_file,
http_user_agent,
is_apex_available,
is_bsa_available,
is_coloredlogs_available,
is_datasets_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_librosa_available,
is_offline_mode,
is_onnx_available,
is_pandas_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_tensor,
is_tensorflow_probability_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_training_run_on_sagemaker,
is_vision_available,
replace_return_docstrings,
requires_backends,
to_numpy,
to_py_obj,
torch_only_method,
) | 32 |
from __future__ import annotations
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool:
"""simple docstring"""
_UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ )
return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' )
def A__ ( ) -> int | None:
"""simple docstring"""
for base_num in range(99_99 , 49_99 , -1 ):
_UpperCAmelCase = 10_00_02 * base_num
if is_9_pandigital(SCREAMING_SNAKE_CASE_ ):
return candidate
for base_num in range(3_33 , 99 , -1 ):
_UpperCAmelCase = 1_00_20_03 * base_num
if is_9_pandigital(SCREAMING_SNAKE_CASE_ ):
return candidate
return None
if __name__ == "__main__":
print(f'''{solution() = }''') | 32 | 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
UpperCAmelCase_ = logging.getLogger(__name__)
@dataclass
class __UpperCamelCase :
__A : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
__A : Optional[str] = field(
default=A__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
__A : Optional[str] = field(
default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} )
__A : Optional[str] = field(
default=A__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
__A : bool = field(default=A__ , metadata={"""help""": """Set this flag to use fast tokenization."""} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
__A : Optional[str] = field(
default=A__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
@dataclass
class __UpperCamelCase :
__A : str = field(
metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} )
__A : Optional[str] = field(
default=A__ , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , )
__A : int = field(
default=1_28 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__A : bool = field(
default=A__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def A__ ( ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
''' --overwrite_output_dir to overcome.''' )
_UpperCAmelCase = import_module('''tasks''' )
try:
_UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , model_args.task_type )
_UpperCAmelCase = token_classification_task_clazz()
except AttributeError:
raise ValueError(
F'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , SCREAMING_SNAKE_CASE_ )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
_UpperCAmelCase = token_classification_task.get_labels(data_args.labels )
_UpperCAmelCase = dict(enumerate(SCREAMING_SNAKE_CASE_ ) )
_UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=SCREAMING_SNAKE_CASE_ , idalabel=SCREAMING_SNAKE_CASE_ , labelaid={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE_ )} , cache_dir=model_args.cache_dir , )
_UpperCAmelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , )
_UpperCAmelCase = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , )
# Get datasets
_UpperCAmelCase = (
TokenClassificationDataset(
token_classification_task=SCREAMING_SNAKE_CASE_ , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
_UpperCAmelCase = (
TokenClassificationDataset(
token_classification_task=SCREAMING_SNAKE_CASE_ , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def align_predictions(SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray ) -> Tuple[List[int], List[int]]:
_UpperCAmelCase = np.argmax(SCREAMING_SNAKE_CASE_ , axis=2 )
_UpperCAmelCase , _UpperCAmelCase = preds.shape
_UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE_ )]
_UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE_ )]
for i in range(SCREAMING_SNAKE_CASE_ ):
for j in range(SCREAMING_SNAKE_CASE_ ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(SCREAMING_SNAKE_CASE_ : EvalPrediction ) -> Dict:
_UpperCAmelCase , _UpperCAmelCase = align_predictions(p.predictions , p.label_ids )
return {
"accuracy_score": accuracy_score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ),
"precision": precision_score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ),
"recall": recall_score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ),
"f1": fa_score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ),
}
# Data collator
_UpperCAmelCase = DataCollatorWithPadding(SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
_UpperCAmelCase = Trainer(
model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , compute_metrics=SCREAMING_SNAKE_CASE_ , data_collator=SCREAMING_SNAKE_CASE_ , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
_UpperCAmelCase = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
_UpperCAmelCase = trainer.evaluate()
_UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' )
if trainer.is_world_process_zero():
with open(SCREAMING_SNAKE_CASE_ , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in result.items():
logger.info(''' %s = %s''' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
writer.write('''%s = %s\n''' % (key, value) )
results.update(SCREAMING_SNAKE_CASE_ )
# Predict
if training_args.do_predict:
_UpperCAmelCase = TokenClassificationDataset(
token_classification_task=SCREAMING_SNAKE_CASE_ , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = trainer.predict(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase , _UpperCAmelCase = align_predictions(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = os.path.join(training_args.output_dir , '''test_results.txt''' )
if trainer.is_world_process_zero():
with open(SCREAMING_SNAKE_CASE_ , '''w''' ) as writer:
for key, value in metrics.items():
logger.info(''' %s = %s''' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
writer.write('''%s = %s\n''' % (key, value) )
# Save predictions
_UpperCAmelCase = os.path.join(training_args.output_dir , '''test_predictions.txt''' )
if trainer.is_world_process_zero():
with open(SCREAMING_SNAKE_CASE_ , '''w''' ) as writer:
with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f:
token_classification_task.write_predictions_to_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return results
def A__ ( SCREAMING_SNAKE_CASE_ : Dict ) -> Any:
"""simple docstring"""
main()
if __name__ == "__main__":
main() | 32 |
import numpy as np
def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray:
"""simple docstring"""
return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 32 | 1 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=A__ )
class __UpperCamelCase ( A__ ):
__A : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} )
__A : ClassVar[Features] = Features({"""text""": Value("""string""" )} )
__A : ClassVar[Features] = Features({} )
__A : str = "text"
@property
def UpperCamelCase( self ):
return {self.text_column: "text"} | 32 |
UpperCAmelCase_ = {
"A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.",
"H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.",
"O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-",
"V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----",
"2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...",
"8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.",
":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.",
"?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-",
"(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/"
} # Exclamation mark is not in ITU-R recommendation
# fmt: on
UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()}
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
return " ".join(MORSE_CODE_DICT[char] for char in message.upper() )
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
return "".join(REVERSE_DICT[char] for char in message.split() )
def A__ ( ) -> None:
"""simple docstring"""
_UpperCAmelCase = '''Morse code here!'''
print(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ )
print(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ )
print(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
main() | 32 | 1 |
import time
from dataclasses import dataclass
from multiprocessing import Pool
from unittest import TestCase
from unittest.mock import patch
import multiprocess
import numpy as np
import pytest
from datasets.utils.py_utils import (
NestedDataStructure,
asdict,
iflatmap_unordered,
map_nested,
temp_seed,
temporary_assignment,
zip_dict,
)
from .utils import require_tf, require_torch
def A__ ( SCREAMING_SNAKE_CASE_ : Tuple ) -> Any: # picklable for multiprocessing
"""simple docstring"""
return x.sum()
def A__ ( SCREAMING_SNAKE_CASE_ : Tuple ) -> Union[str, Any]: # picklable for multiprocessing
"""simple docstring"""
return i + 1
@dataclass
class __UpperCamelCase :
__A : int
__A : str
class __UpperCamelCase ( A__ ):
def UpperCamelCase( self ):
_UpperCAmelCase = {}
_UpperCAmelCase = []
_UpperCAmelCase = 1
_UpperCAmelCase = [1, 2]
_UpperCAmelCase = {'''a''': 1, '''b''': 2}
_UpperCAmelCase = {'''a''': [1, 2], '''b''': [3, 4]}
_UpperCAmelCase = {'''a''': {'''1''': 1}, '''b''': 2}
_UpperCAmelCase = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4}
_UpperCAmelCase = {}
_UpperCAmelCase = []
_UpperCAmelCase = 2
_UpperCAmelCase = [2, 3]
_UpperCAmelCase = {'''a''': 2, '''b''': 3}
_UpperCAmelCase = {'''a''': [2, 3], '''b''': [4, 5]}
_UpperCAmelCase = {'''a''': {'''1''': 2}, '''b''': 3}
_UpperCAmelCase = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5}
self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase )
self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase )
self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase )
self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase )
self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase )
self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase )
self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase )
self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase )
_UpperCAmelCase = 2
self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=_UpperCamelCase ) , _UpperCamelCase )
self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=_UpperCamelCase ) , _UpperCamelCase )
self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=_UpperCamelCase ) , _UpperCamelCase )
self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=_UpperCamelCase ) , _UpperCamelCase )
self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=_UpperCamelCase ) , _UpperCamelCase )
self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=_UpperCamelCase ) , _UpperCamelCase )
self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=_UpperCamelCase ) , _UpperCamelCase )
self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=_UpperCamelCase ) , _UpperCamelCase )
_UpperCAmelCase = {'''a''': np.eye(2 ), '''b''': np.zeros(3 ), '''c''': np.ones(2 )}
_UpperCAmelCase = {'''a''': 2, '''b''': 0, '''c''': 2}
_UpperCAmelCase = {
'''a''': np.eye(2 ).astype(_UpperCamelCase ),
'''b''': np.zeros(3 ).astype(_UpperCamelCase ),
'''c''': np.ones(2 ).astype(_UpperCamelCase ),
}
self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase , map_numpy=_UpperCamelCase ) , _UpperCamelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(_UpperCamelCase , _UpperCamelCase , map_numpy=_UpperCamelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
self.assertEqual(map_nested(_UpperCamelCase , _UpperCamelCase , map_numpy=_UpperCamelCase , num_proc=_UpperCamelCase ) , _UpperCamelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(_UpperCamelCase , _UpperCamelCase , map_numpy=_UpperCamelCase , num_proc=_UpperCamelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
with self.assertRaises(_UpperCamelCase ): # can't pickle a local lambda
map_nested(lambda _UpperCamelCase : x + 1 , _UpperCamelCase , num_proc=_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = {'''a''': 1, '''b''': 2}
_UpperCAmelCase = {'''a''': 3, '''b''': 4}
_UpperCAmelCase = {'''a''': 5, '''b''': 6}
_UpperCAmelCase = sorted([('''a''', (1, 3, 5)), ('''b''', (2, 4, 6))] )
self.assertEqual(sorted(zip_dict(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) , _UpperCamelCase )
def UpperCamelCase( self ):
class __UpperCamelCase :
__A : int = """bar"""
_UpperCAmelCase = Foo()
self.assertEqual(foo.my_attr , '''bar''' )
with temporary_assignment(_UpperCamelCase , '''my_attr''' , '''BAR''' ):
self.assertEqual(foo.my_attr , '''BAR''' )
self.assertEqual(foo.my_attr , '''bar''' )
@pytest.mark.parametrize(
'''iterable_length, num_proc, expected_num_proc''' , [
(1, None, 1),
(1, 1, 1),
(2, None, 1),
(2, 1, 1),
(2, 2, 1),
(2, 3, 1),
(3, 2, 1),
(16, 16, 16),
(16, 17, 16),
(17, 16, 16),
] , )
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple ) -> Tuple:
"""simple docstring"""
with patch('''datasets.utils.py_utils._single_map_nested''' ) as mock_single_map_nested, patch(
'''datasets.parallel.parallel.Pool''' ) as mock_multiprocessing_pool:
_UpperCAmelCase = {F'''{i}''': i for i in range(SCREAMING_SNAKE_CASE_ )}
_UpperCAmelCase = map_nested(lambda SCREAMING_SNAKE_CASE_ : x + 10 , SCREAMING_SNAKE_CASE_ , num_proc=SCREAMING_SNAKE_CASE_ , parallel_min_length=16 )
if expected_num_proc == 1:
assert mock_single_map_nested.called
assert not mock_multiprocessing_pool.called
else:
assert not mock_single_map_nested.called
assert mock_multiprocessing_pool.called
assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc
class __UpperCamelCase ( A__ ):
@require_tf
def UpperCamelCase( self ):
import tensorflow as tf
from tensorflow.keras import layers
_UpperCAmelCase = layers.Dense(2 )
def gen_random_output():
_UpperCAmelCase = tf.random.uniform((1, 3) )
return model(_UpperCamelCase ).numpy()
with temp_seed(42 , set_tensorflow=_UpperCamelCase ):
_UpperCAmelCase = gen_random_output()
with temp_seed(42 , set_tensorflow=_UpperCamelCase ):
_UpperCAmelCase = gen_random_output()
_UpperCAmelCase = gen_random_output()
np.testing.assert_equal(_UpperCamelCase , _UpperCamelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@require_torch
def UpperCamelCase( self ):
import torch
def gen_random_output():
_UpperCAmelCase = torch.nn.Linear(3 , 2 )
_UpperCAmelCase = torch.rand(1 , 3 )
return model(_UpperCamelCase ).detach().numpy()
with temp_seed(42 , set_pytorch=_UpperCamelCase ):
_UpperCAmelCase = gen_random_output()
with temp_seed(42 , set_pytorch=_UpperCamelCase ):
_UpperCAmelCase = gen_random_output()
_UpperCAmelCase = gen_random_output()
np.testing.assert_equal(_UpperCamelCase , _UpperCamelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
def UpperCamelCase( self ):
def gen_random_output():
return np.random.rand(1 , 3 )
with temp_seed(42 ):
_UpperCAmelCase = gen_random_output()
with temp_seed(42 ):
_UpperCAmelCase = gen_random_output()
_UpperCAmelCase = gen_random_output()
np.testing.assert_equal(_UpperCamelCase , _UpperCamelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@pytest.mark.parametrize('''input_data''' , [{}] )
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = NestedDataStructure(SCREAMING_SNAKE_CASE_ ).data
assert output_data == input_data
@pytest.mark.parametrize(
'''data, expected_output''' , [
({}, []),
([], []),
('''foo''', ['''foo''']),
(['''foo''', '''bar'''], ['''foo''', '''bar''']),
([['''foo''', '''bar''']], ['''foo''', '''bar''']),
([[['''foo'''], ['''bar''']]], ['''foo''', '''bar''']),
([[['''foo'''], '''bar''']], ['''foo''', '''bar''']),
({'''a''': 1, '''b''': 2}, [1, 2]),
({'''a''': [1, 2], '''b''': [3, 4]}, [1, 2, 3, 4]),
({'''a''': [[1, 2]], '''b''': [[3, 4]]}, [1, 2, 3, 4]),
({'''a''': [[1, 2]], '''b''': [3, 4]}, [1, 2, 3, 4]),
({'''a''': [[[1], [2]]], '''b''': [[[3], [4]]]}, [1, 2, 3, 4]),
({'''a''': [[[1], [2]]], '''b''': [[3, 4]]}, [1, 2, 3, 4]),
({'''a''': [[[1], [2]]], '''b''': [3, 4]}, [1, 2, 3, 4]),
({'''a''': [[[1], [2]]], '''b''': [3, [4]]}, [1, 2, 3, 4]),
({'''a''': {'''1''': 1}, '''b''': 2}, [1, 2]),
({'''a''': {'''1''': [1]}, '''b''': 2}, [1, 2]),
({'''a''': {'''1''': [1]}, '''b''': [2]}, [1, 2]),
] , )
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = NestedDataStructure(SCREAMING_SNAKE_CASE_ ).flatten()
assert output == expected_output
def A__ ( ) -> int:
"""simple docstring"""
_UpperCAmelCase = A(x=1 , y='''foobar''' )
_UpperCAmelCase = {'''x''': 1, '''y''': '''foobar'''}
assert asdict(SCREAMING_SNAKE_CASE_ ) == expected_output
_UpperCAmelCase = {'''a''': {'''b''': A(x=10 , y='''foo''' )}, '''c''': [A(x=20 , y='''bar''' )]}
_UpperCAmelCase = {'''a''': {'''b''': {'''x''': 10, '''y''': '''foo'''}}, '''c''': [{'''x''': 20, '''y''': '''bar'''}]}
assert asdict(SCREAMING_SNAKE_CASE_ ) == expected_output
with pytest.raises(SCREAMING_SNAKE_CASE_ ):
asdict([1, A(x=10 , y='''foo''' )] )
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> int:
"""simple docstring"""
return text.split()
def A__ ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Any:
"""simple docstring"""
yield (time.time(), content)
time.sleep(2 )
yield (time.time(), content)
def A__ ( ) -> str:
"""simple docstring"""
with Pool(2 ) as pool:
_UpperCAmelCase = list(iflatmap_unordered(SCREAMING_SNAKE_CASE_ , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) )
assert out.count('''hello''' ) == 10
assert out.count('''there''' ) == 10
assert len(SCREAMING_SNAKE_CASE_ ) == 20
# check multiprocess from pathos (uses dill for pickling)
with multiprocess.Pool(2 ) as pool:
_UpperCAmelCase = list(iflatmap_unordered(SCREAMING_SNAKE_CASE_ , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) )
assert out.count('''hello''' ) == 10
assert out.count('''there''' ) == 10
assert len(SCREAMING_SNAKE_CASE_ ) == 20
# check that we get items as fast as possible
with Pool(2 ) as pool:
_UpperCAmelCase = []
for yield_time, content in iflatmap_unordered(
SCREAMING_SNAKE_CASE_ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'''content''': '''a'''}, {'''content''': '''b'''}] ):
assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded"
out.append(SCREAMING_SNAKE_CASE_ )
assert out.count('''a''' ) == 2
assert out.count('''b''' ) == 2
assert len(SCREAMING_SNAKE_CASE_ ) == 4 | 32 |
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __UpperCamelCase ( A__ , unittest.TestCase ):
__A : Any = DanceDiffusionPipeline
__A : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
__A : Tuple = PipelineTesterMixin.required_optional_params - {
"""callback""",
"""latents""",
"""callback_steps""",
"""output_type""",
"""num_images_per_prompt""",
}
__A : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
__A : List[str] = False
__A : str = False
def UpperCamelCase( self ):
torch.manual_seed(0 )
_UpperCAmelCase = UNetaDModel(
block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , )
_UpperCAmelCase = IPNDMScheduler()
_UpperCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
}
return components
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ):
if str(_UpperCamelCase ).startswith('''mps''' ):
_UpperCAmelCase = torch.manual_seed(_UpperCamelCase )
else:
_UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase )
_UpperCAmelCase = {
'''batch_size''': 1,
'''generator''': generator,
'''num_inference_steps''': 4,
}
return inputs
def UpperCamelCase( self ):
_UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
_UpperCAmelCase = self.get_dummy_components()
_UpperCAmelCase = DanceDiffusionPipeline(**_UpperCamelCase )
_UpperCAmelCase = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase )
_UpperCAmelCase = pipe(**_UpperCamelCase )
_UpperCAmelCase = output.audios
_UpperCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
_UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def UpperCamelCase( self ):
return super().test_save_load_local()
@skip_mps
def UpperCamelCase( self ):
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
@skip_mps
def UpperCamelCase( self ):
return super().test_save_load_optional_components()
@skip_mps
def UpperCamelCase( self ):
return super().test_attention_slicing_forward_pass()
def UpperCamelCase( self ):
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def UpperCamelCase( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase( self ):
_UpperCAmelCase = torch_device
_UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' )
_UpperCAmelCase = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 )
_UpperCAmelCase = output.audios
_UpperCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCamelCase( self ):
_UpperCAmelCase = torch_device
_UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa )
_UpperCAmelCase = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 )
_UpperCAmelCase = output.audios
_UpperCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 | 32 | 1 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class __UpperCamelCase ( unittest.TestCase ):
def UpperCamelCase( self ):
_UpperCAmelCase = '''ylacombe/bark-small'''
_UpperCAmelCase = tempfile.mkdtemp()
_UpperCAmelCase = '''en_speaker_1'''
_UpperCAmelCase = '''This is a test string'''
_UpperCAmelCase = '''speaker_embeddings_path.json'''
_UpperCAmelCase = '''speaker_embeddings'''
def UpperCamelCase( self , **_UpperCamelCase ):
return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCamelCase )
def UpperCamelCase( self ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase( self ):
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BarkProcessor(tokenizer=_UpperCamelCase )
processor.save_pretrained(self.tmpdirname )
_UpperCAmelCase = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def UpperCamelCase( self ):
_UpperCAmelCase = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
_UpperCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
_UpperCAmelCase = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def UpperCamelCase( self ):
_UpperCAmelCase = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
_UpperCAmelCase = 35
_UpperCAmelCase = 2
_UpperCAmelCase = 8
_UpperCAmelCase = {
'''semantic_prompt''': np.ones(_UpperCamelCase ),
'''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ),
'''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
_UpperCAmelCase = processor(text=self.input_string , voice_preset=_UpperCamelCase )
_UpperCAmelCase = inputs['''history_prompt''']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCamelCase , np.array([] ) ).tolist() )
# test loading voice preset from npz file
_UpperCAmelCase = os.path.join(self.tmpdirname , '''file.npz''' )
np.savez(_UpperCamelCase , **_UpperCamelCase )
_UpperCAmelCase = processor(text=self.input_string , voice_preset=_UpperCamelCase )
_UpperCAmelCase = inputs['''history_prompt''']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCamelCase , np.array([] ) ).tolist() )
# test loading voice preset from the hub
_UpperCAmelCase = processor(text=self.input_string , voice_preset=self.voice_preset )
def UpperCamelCase( self ):
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BarkProcessor(tokenizer=_UpperCamelCase )
_UpperCAmelCase = processor(text=self.input_string )
_UpperCAmelCase = tokenizer(
self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() ) | 32 |
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = OrderedDict(
[
# Base model mapping
("albert", "FlaxAlbertModel"),
("bart", "FlaxBartModel"),
("beit", "FlaxBeitModel"),
("bert", "FlaxBertModel"),
("big_bird", "FlaxBigBirdModel"),
("blenderbot", "FlaxBlenderbotModel"),
("blenderbot-small", "FlaxBlenderbotSmallModel"),
("clip", "FlaxCLIPModel"),
("distilbert", "FlaxDistilBertModel"),
("electra", "FlaxElectraModel"),
("gpt-sw3", "FlaxGPT2Model"),
("gpt2", "FlaxGPT2Model"),
("gpt_neo", "FlaxGPTNeoModel"),
("gptj", "FlaxGPTJModel"),
("longt5", "FlaxLongT5Model"),
("marian", "FlaxMarianModel"),
("mbart", "FlaxMBartModel"),
("mt5", "FlaxMT5Model"),
("opt", "FlaxOPTModel"),
("pegasus", "FlaxPegasusModel"),
("regnet", "FlaxRegNetModel"),
("resnet", "FlaxResNetModel"),
("roberta", "FlaxRobertaModel"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"),
("roformer", "FlaxRoFormerModel"),
("t5", "FlaxT5Model"),
("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"),
("vit", "FlaxViTModel"),
("wav2vec2", "FlaxWav2Vec2Model"),
("whisper", "FlaxWhisperModel"),
("xglm", "FlaxXGLMModel"),
("xlm-roberta", "FlaxXLMRobertaModel"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for pre-training mapping
("albert", "FlaxAlbertForPreTraining"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForPreTraining"),
("big_bird", "FlaxBigBirdForPreTraining"),
("electra", "FlaxElectraForPreTraining"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("t5", "FlaxT5ForConditionalGeneration"),
("wav2vec2", "FlaxWav2Vec2ForPreTraining"),
("whisper", "FlaxWhisperForConditionalGeneration"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Masked LM mapping
("albert", "FlaxAlbertForMaskedLM"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForMaskedLM"),
("big_bird", "FlaxBigBirdForMaskedLM"),
("distilbert", "FlaxDistilBertForMaskedLM"),
("electra", "FlaxElectraForMaskedLM"),
("mbart", "FlaxMBartForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
("bart", "FlaxBartForConditionalGeneration"),
("blenderbot", "FlaxBlenderbotForConditionalGeneration"),
("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"),
("encoder-decoder", "FlaxEncoderDecoderModel"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("marian", "FlaxMarianMTModel"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("pegasus", "FlaxPegasusForConditionalGeneration"),
("t5", "FlaxT5ForConditionalGeneration"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Image-classsification
("beit", "FlaxBeitForImageClassification"),
("regnet", "FlaxRegNetForImageClassification"),
("resnet", "FlaxResNetForImageClassification"),
("vit", "FlaxViTForImageClassification"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Causal LM mapping
("bart", "FlaxBartForCausalLM"),
("bert", "FlaxBertForCausalLM"),
("big_bird", "FlaxBigBirdForCausalLM"),
("electra", "FlaxElectraForCausalLM"),
("gpt-sw3", "FlaxGPT2LMHeadModel"),
("gpt2", "FlaxGPT2LMHeadModel"),
("gpt_neo", "FlaxGPTNeoForCausalLM"),
("gptj", "FlaxGPTJForCausalLM"),
("opt", "FlaxOPTForCausalLM"),
("roberta", "FlaxRobertaForCausalLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"),
("xglm", "FlaxXGLMForCausalLM"),
("xlm-roberta", "FlaxXLMRobertaForCausalLM"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Sequence Classification mapping
("albert", "FlaxAlbertForSequenceClassification"),
("bart", "FlaxBartForSequenceClassification"),
("bert", "FlaxBertForSequenceClassification"),
("big_bird", "FlaxBigBirdForSequenceClassification"),
("distilbert", "FlaxDistilBertForSequenceClassification"),
("electra", "FlaxElectraForSequenceClassification"),
("mbart", "FlaxMBartForSequenceClassification"),
("roberta", "FlaxRobertaForSequenceClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"),
("roformer", "FlaxRoFormerForSequenceClassification"),
("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Question Answering mapping
("albert", "FlaxAlbertForQuestionAnswering"),
("bart", "FlaxBartForQuestionAnswering"),
("bert", "FlaxBertForQuestionAnswering"),
("big_bird", "FlaxBigBirdForQuestionAnswering"),
("distilbert", "FlaxDistilBertForQuestionAnswering"),
("electra", "FlaxElectraForQuestionAnswering"),
("mbart", "FlaxMBartForQuestionAnswering"),
("roberta", "FlaxRobertaForQuestionAnswering"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"),
("roformer", "FlaxRoFormerForQuestionAnswering"),
("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Token Classification mapping
("albert", "FlaxAlbertForTokenClassification"),
("bert", "FlaxBertForTokenClassification"),
("big_bird", "FlaxBigBirdForTokenClassification"),
("distilbert", "FlaxDistilBertForTokenClassification"),
("electra", "FlaxElectraForTokenClassification"),
("roberta", "FlaxRobertaForTokenClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"),
("roformer", "FlaxRoFormerForTokenClassification"),
("xlm-roberta", "FlaxXLMRobertaForTokenClassification"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Multiple Choice mapping
("albert", "FlaxAlbertForMultipleChoice"),
("bert", "FlaxBertForMultipleChoice"),
("big_bird", "FlaxBigBirdForMultipleChoice"),
("distilbert", "FlaxDistilBertForMultipleChoice"),
("electra", "FlaxElectraForMultipleChoice"),
("roberta", "FlaxRobertaForMultipleChoice"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"),
("roformer", "FlaxRoFormerForMultipleChoice"),
("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("bert", "FlaxBertForNextSentencePrediction"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"),
("whisper", "FlaxWhisperForConditionalGeneration"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("whisper", "FlaxWhisperForAudioClassification"),
]
)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[str] = FLAX_MODEL_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModel)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc="sequence classification"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc="token classification"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForImageClassification, head_doc="image classification"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling"
) | 32 | 1 |
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class __UpperCamelCase ( unittest.TestCase ):
def UpperCamelCase( self ):
_UpperCAmelCase = get_activation('''swish''' )
self.assertIsInstance(_UpperCamelCase , nn.SiLU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCamelCase( self ):
_UpperCAmelCase = get_activation('''silu''' )
self.assertIsInstance(_UpperCamelCase , nn.SiLU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCamelCase( self ):
_UpperCAmelCase = get_activation('''mish''' )
self.assertIsInstance(_UpperCamelCase , nn.Mish )
self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCamelCase( self ):
_UpperCAmelCase = get_activation('''gelu''' )
self.assertIsInstance(_UpperCamelCase , nn.GELU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) | 32 |
import baseaa
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes:
"""simple docstring"""
return baseaa.baaencode(string.encode('''utf-8''' ) )
def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str:
"""simple docstring"""
return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' )
if __name__ == "__main__":
UpperCAmelCase_ = "Hello World!"
UpperCAmelCase_ = baseaa_encode(test)
print(encoded)
UpperCAmelCase_ = baseaa_decode(encoded)
print(decoded) | 32 | 1 |
import numpy as np
import datasets
UpperCAmelCase_ = "\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n"
UpperCAmelCase_ = "\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n"
UpperCAmelCase_ = "\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {'mahalanobis': array([0.5])}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __UpperCamelCase ( datasets.Metric ):
def UpperCamelCase( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''X''': datasets.Sequence(datasets.Value('''float''' , id='''sequence''' ) , id='''X''' ),
} ) , )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ):
# convert to numpy arrays
_UpperCAmelCase = np.array(_UpperCamelCase )
_UpperCAmelCase = np.array(_UpperCamelCase )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError('''Expected `X` to be a 2D vector''' )
if len(reference_distribution.shape ) != 2:
raise ValueError('''Expected `reference_distribution` to be a 2D vector''' )
if reference_distribution.shape[0] < 2:
raise ValueError(
'''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' )
# Get mahalanobis distance for each prediction
_UpperCAmelCase = X - np.mean(_UpperCamelCase )
_UpperCAmelCase = np.cov(reference_distribution.T )
try:
_UpperCAmelCase = np.linalg.inv(_UpperCamelCase )
except np.linalg.LinAlgError:
_UpperCAmelCase = np.linalg.pinv(_UpperCamelCase )
_UpperCAmelCase = np.dot(_UpperCamelCase , _UpperCamelCase )
_UpperCAmelCase = np.dot(_UpperCamelCase , X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist} | 32 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
UpperCAmelCase_ = logging.get_logger(__name__)
class __UpperCamelCase ( A__ ):
__A : int = ["""pixel_values"""]
def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ):
super().__init__(**_UpperCamelCase )
_UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224}
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
_UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' )
_UpperCAmelCase = do_resize
_UpperCAmelCase = do_rescale
_UpperCAmelCase = do_normalize
_UpperCAmelCase = do_center_crop
_UpperCAmelCase = crop_size
_UpperCAmelCase = size
_UpperCAmelCase = resample
_UpperCAmelCase = rescale_factor
_UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
_UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ):
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
if "shortest_edge" in size:
_UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
_UpperCAmelCase = (size['''height'''], size['''width'''])
else:
raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' )
return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ):
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ):
return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ):
return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ):
_UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
_UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
_UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase )
_UpperCAmelCase = resample if resample is not None else self.resample
_UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
_UpperCAmelCase = image_std if image_std is not None else self.image_std
_UpperCAmelCase = size if size is not None else self.size
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
if not is_batched(_UpperCamelCase ):
_UpperCAmelCase = [images]
if not valid_images(_UpperCamelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
_UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images]
if do_resize:
_UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images]
if do_center_crop:
_UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images]
if do_rescale:
_UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images]
if do_normalize:
_UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images]
_UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images]
_UpperCAmelCase = {'''pixel_values''': images}
return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase ) | 32 | 1 |
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
UpperCAmelCase_ = logging.get_logger(__name__)
class __UpperCamelCase ( A__ ):
__A : str = ["""input_features"""]
def __init__( self , _UpperCamelCase=80 , _UpperCamelCase=16000 , _UpperCamelCase=160 , _UpperCamelCase=30 , _UpperCamelCase=400 , _UpperCamelCase=0.0 , _UpperCamelCase=False , **_UpperCamelCase , ):
super().__init__(
feature_size=_UpperCamelCase , sampling_rate=_UpperCamelCase , padding_value=_UpperCamelCase , return_attention_mask=_UpperCamelCase , **_UpperCamelCase , )
_UpperCAmelCase = n_fft
_UpperCAmelCase = hop_length
_UpperCAmelCase = chunk_length
_UpperCAmelCase = chunk_length * sampling_rate
_UpperCAmelCase = self.n_samples // hop_length
_UpperCAmelCase = sampling_rate
_UpperCAmelCase = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_UpperCamelCase , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=_UpperCamelCase , norm='''slaney''' , mel_scale='''slaney''' , )
def UpperCamelCase( self , _UpperCamelCase ):
_UpperCAmelCase = spectrogram(
_UpperCamelCase , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , )
_UpperCAmelCase = log_spec[:, :-1]
_UpperCAmelCase = np.maximum(_UpperCamelCase , log_spec.max() - 8.0 )
_UpperCAmelCase = (log_spec + 4.0) / 4.0
return log_spec
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0.0 ):
if attention_mask is not None:
_UpperCAmelCase = np.array(_UpperCamelCase , np.intaa )
_UpperCAmelCase = []
for vector, length in zip(_UpperCamelCase , attention_mask.sum(-1 ) ):
_UpperCAmelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 )
if length < normed_slice.shape[0]:
_UpperCAmelCase = padding_value
normed_input_values.append(_UpperCamelCase )
else:
_UpperCAmelCase = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values]
return normed_input_values
def __call__( self , _UpperCamelCase , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = "max_length" , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'''
f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'''
f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
_UpperCAmelCase = isinstance(_UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' )
_UpperCAmelCase = is_batched_numpy or (
isinstance(_UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_UpperCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(_UpperCamelCase , np.ndarray ):
_UpperCAmelCase = np.asarray(_UpperCamelCase , dtype=np.floataa )
elif isinstance(_UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
_UpperCAmelCase = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
_UpperCAmelCase = [np.asarray([raw_speech] ).T]
_UpperCAmelCase = BatchFeature({'''input_features''': raw_speech} )
# convert into correct format for padding
_UpperCAmelCase = self.pad(
_UpperCamelCase , padding=_UpperCamelCase , max_length=max_length if max_length else self.n_samples , truncation=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_attention_mask=return_attention_mask or do_normalize , )
# zero-mean and unit-variance normalization
if do_normalize:
_UpperCAmelCase = self.zero_mean_unit_var_norm(
padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , )
_UpperCAmelCase = np.stack(padded_inputs['''input_features'''] , axis=0 )
# make sure list is in array format
_UpperCAmelCase = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 )
_UpperCAmelCase = [self._np_extract_fbank_features(_UpperCamelCase ) for waveform in input_features[0]]
if isinstance(input_features[0] , _UpperCamelCase ):
_UpperCAmelCase = [np.asarray(_UpperCamelCase , dtype=np.floataa ) for feature in input_features]
else:
_UpperCAmelCase = input_features
if return_attention_mask:
# rescale from sample (48000) to feature (3000)
_UpperCAmelCase = padded_inputs['''attention_mask'''][:, :: self.hop_length]
if return_tensors is not None:
_UpperCAmelCase = padded_inputs.convert_to_tensors(_UpperCamelCase )
return padded_inputs
def UpperCamelCase( self ):
_UpperCAmelCase = copy.deepcopy(self.__dict__ )
_UpperCAmelCase = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
return output | 32 |
from ..utils import DummyObject, requires_backends
class __UpperCamelCase ( metaclass=A__ ):
__A : str = ["""torch""", """scipy"""]
def __init__( self , *_UpperCamelCase , **_UpperCamelCase ):
requires_backends(self , ['''torch''', '''scipy'''] )
@classmethod
def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ):
requires_backends(cls , ['''torch''', '''scipy'''] )
@classmethod
def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ):
requires_backends(cls , ['''torch''', '''scipy'''] ) | 32 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json",
"funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json",
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json",
"funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json",
}
class __UpperCamelCase ( A__ ):
__A : int = """funnel"""
__A : Union[str, Any] = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
}
def __init__( self , _UpperCamelCase=30522 , _UpperCamelCase=[4, 4, 4] , _UpperCamelCase=None , _UpperCamelCase=2 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=64 , _UpperCamelCase=3072 , _UpperCamelCase="gelu_new" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.0 , _UpperCamelCase=0.1 , _UpperCamelCase=None , _UpperCamelCase=1e-9 , _UpperCamelCase="mean" , _UpperCamelCase="relative_shift" , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , **_UpperCamelCase , ):
_UpperCAmelCase = vocab_size
_UpperCAmelCase = block_sizes
_UpperCAmelCase = [1] * len(_UpperCamelCase ) if block_repeats is None else block_repeats
assert len(_UpperCamelCase ) == len(
self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length."
_UpperCAmelCase = num_decoder_layers
_UpperCAmelCase = d_model
_UpperCAmelCase = n_head
_UpperCAmelCase = d_head
_UpperCAmelCase = d_inner
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout
_UpperCAmelCase = attention_dropout
_UpperCAmelCase = activation_dropout
_UpperCAmelCase = initializer_range
_UpperCAmelCase = initializer_std
_UpperCAmelCase = layer_norm_eps
assert pooling_type in [
"mean",
"max",
], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.'''
_UpperCAmelCase = pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.'''
_UpperCAmelCase = attention_type
_UpperCAmelCase = separate_cls
_UpperCAmelCase = truncate_seq
_UpperCAmelCase = pool_q_only
super().__init__(**_UpperCamelCase )
@property
def UpperCamelCase( self ):
return sum(self.block_sizes )
@num_hidden_layers.setter
def UpperCamelCase( self , _UpperCamelCase ):
raise NotImplementedError(
'''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' )
@property
def UpperCamelCase( self ):
return len(self.block_sizes )
@num_blocks.setter
def UpperCamelCase( self , _UpperCamelCase ):
raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' ) | 32 |
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int:
"""simple docstring"""
_UpperCAmelCase = [0 for i in range(n + 1 )]
_UpperCAmelCase = 1
_UpperCAmelCase = 1
for i in range(2 , int(n**0.5 ) + 1 ):
if primality_list[i] == 0:
for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ):
_UpperCAmelCase = 1
_UpperCAmelCase = 0
for i in range(SCREAMING_SNAKE_CASE_ ):
if primality_list[i] == 0:
sum_of_primes += i
return sum_of_primes
if __name__ == "__main__":
print(f'''{solution() = }''') | 32 | 1 |
from math import isqrt
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> list[int]:
"""simple docstring"""
_UpperCAmelCase = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
_UpperCAmelCase = False
return [i for i in range(2 , SCREAMING_SNAKE_CASE_ ) if is_prime[i]]
def A__ ( SCREAMING_SNAKE_CASE_ : int = 10**8 ) -> int:
"""simple docstring"""
_UpperCAmelCase = calculate_prime_numbers(max_number // 2 )
_UpperCAmelCase = 0
_UpperCAmelCase = 0
_UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) - 1
while left <= right:
while prime_numbers[left] * prime_numbers[right] >= max_number:
right -= 1
semiprimes_count += right - left + 1
left += 1
return semiprimes_count
if __name__ == "__main__":
print(f'''{solution() = }''') | 32 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
UpperCAmelCase_ = logging.get_logger(__name__)
class __UpperCamelCase ( A__ ):
def __init__( self , *_UpperCamelCase , **_UpperCamelCase ):
warnings.warn(
'''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use GLPNImageProcessor instead.''' , _UpperCamelCase , )
super().__init__(*_UpperCamelCase , **_UpperCamelCase ) | 32 | 1 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
UpperCAmelCase_ = logging.get_logger(__name__)
# General docstring
UpperCAmelCase_ = "RegNetConfig"
# Base docstring
UpperCAmelCase_ = "facebook/regnet-y-040"
UpperCAmelCase_ = [1, 10_88, 7, 7]
# Image classification docstring
UpperCAmelCase_ = "facebook/regnet-y-040"
UpperCAmelCase_ = "tabby, tabby cat"
UpperCAmelCase_ = [
"facebook/regnet-y-040",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class __UpperCamelCase ( nn.Module ):
def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 3 , _UpperCamelCase = 1 , _UpperCamelCase = 1 , _UpperCamelCase = "relu" , ):
super().__init__()
_UpperCAmelCase = nn.Convad(
_UpperCamelCase , _UpperCamelCase , kernel_size=_UpperCamelCase , stride=_UpperCamelCase , padding=kernel_size // 2 , groups=_UpperCamelCase , bias=_UpperCamelCase , )
_UpperCAmelCase = nn.BatchNormad(_UpperCamelCase )
_UpperCAmelCase = ACTaFN[activation] if activation is not None else nn.Identity()
def UpperCamelCase( self , _UpperCamelCase ):
_UpperCAmelCase = self.convolution(_UpperCamelCase )
_UpperCAmelCase = self.normalization(_UpperCamelCase )
_UpperCAmelCase = self.activation(_UpperCamelCase )
return hidden_state
class __UpperCamelCase ( nn.Module ):
def __init__( self , _UpperCamelCase ):
super().__init__()
_UpperCAmelCase = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act )
_UpperCAmelCase = config.num_channels
def UpperCamelCase( self , _UpperCamelCase ):
_UpperCAmelCase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
_UpperCAmelCase = self.embedder(_UpperCamelCase )
return hidden_state
class __UpperCamelCase ( nn.Module ):
def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 2 ):
super().__init__()
_UpperCAmelCase = nn.Convad(_UpperCamelCase , _UpperCamelCase , kernel_size=1 , stride=_UpperCamelCase , bias=_UpperCamelCase )
_UpperCAmelCase = nn.BatchNormad(_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase ):
_UpperCAmelCase = self.convolution(_UpperCamelCase )
_UpperCAmelCase = self.normalization(_UpperCamelCase )
return hidden_state
class __UpperCamelCase ( nn.Module ):
def __init__( self , _UpperCamelCase , _UpperCamelCase ):
super().__init__()
_UpperCAmelCase = nn.AdaptiveAvgPoolad((1, 1) )
_UpperCAmelCase = nn.Sequential(
nn.Convad(_UpperCamelCase , _UpperCamelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_UpperCamelCase , _UpperCamelCase , kernel_size=1 ) , nn.Sigmoid() , )
def UpperCamelCase( self , _UpperCamelCase ):
# b c h w -> b c 1 1
_UpperCAmelCase = self.pooler(_UpperCamelCase )
_UpperCAmelCase = self.attention(_UpperCamelCase )
_UpperCAmelCase = hidden_state * attention
return hidden_state
class __UpperCamelCase ( nn.Module ):
def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 ):
super().__init__()
_UpperCAmelCase = in_channels != out_channels or stride != 1
_UpperCAmelCase = max(1 , out_channels // config.groups_width )
_UpperCAmelCase = (
RegNetShortCut(_UpperCamelCase , _UpperCamelCase , stride=_UpperCamelCase ) if should_apply_shortcut else nn.Identity()
)
_UpperCAmelCase = nn.Sequential(
RegNetConvLayer(_UpperCamelCase , _UpperCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCamelCase , _UpperCamelCase , stride=_UpperCamelCase , groups=_UpperCamelCase , activation=config.hidden_act ) , RegNetConvLayer(_UpperCamelCase , _UpperCamelCase , kernel_size=1 , activation=_UpperCamelCase ) , )
_UpperCAmelCase = ACTaFN[config.hidden_act]
def UpperCamelCase( self , _UpperCamelCase ):
_UpperCAmelCase = hidden_state
_UpperCAmelCase = self.layer(_UpperCamelCase )
_UpperCAmelCase = self.shortcut(_UpperCamelCase )
hidden_state += residual
_UpperCAmelCase = self.activation(_UpperCamelCase )
return hidden_state
class __UpperCamelCase ( nn.Module ):
def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 ):
super().__init__()
_UpperCAmelCase = in_channels != out_channels or stride != 1
_UpperCAmelCase = max(1 , out_channels // config.groups_width )
_UpperCAmelCase = (
RegNetShortCut(_UpperCamelCase , _UpperCamelCase , stride=_UpperCamelCase ) if should_apply_shortcut else nn.Identity()
)
_UpperCAmelCase = nn.Sequential(
RegNetConvLayer(_UpperCamelCase , _UpperCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCamelCase , _UpperCamelCase , stride=_UpperCamelCase , groups=_UpperCamelCase , activation=config.hidden_act ) , RegNetSELayer(_UpperCamelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_UpperCamelCase , _UpperCamelCase , kernel_size=1 , activation=_UpperCamelCase ) , )
_UpperCAmelCase = ACTaFN[config.hidden_act]
def UpperCamelCase( self , _UpperCamelCase ):
_UpperCAmelCase = hidden_state
_UpperCAmelCase = self.layer(_UpperCamelCase )
_UpperCAmelCase = self.shortcut(_UpperCamelCase )
hidden_state += residual
_UpperCAmelCase = self.activation(_UpperCamelCase )
return hidden_state
class __UpperCamelCase ( nn.Module ):
def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 2 , _UpperCamelCase = 2 , ):
super().__init__()
_UpperCAmelCase = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer
_UpperCAmelCase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , stride=_UpperCamelCase , ) , *[layer(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for _ in range(depth - 1 )] , )
def UpperCamelCase( self , _UpperCamelCase ):
_UpperCAmelCase = self.layers(_UpperCamelCase )
return hidden_state
class __UpperCamelCase ( nn.Module ):
def __init__( self , _UpperCamelCase ):
super().__init__()
_UpperCAmelCase = nn.ModuleList([] )
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
_UpperCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
_UpperCAmelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(_UpperCamelCase , config.depths[1:] ):
self.stages.append(RegNetStage(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , depth=_UpperCamelCase ) )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = False , _UpperCamelCase = True ):
_UpperCAmelCase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
_UpperCAmelCase = hidden_states + (hidden_state,)
_UpperCAmelCase = stage_module(_UpperCamelCase )
if output_hidden_states:
_UpperCAmelCase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCamelCase , hidden_states=_UpperCamelCase )
class __UpperCamelCase ( A__ ):
__A : List[str] = RegNetConfig
__A : Any = """regnet"""
__A : Optional[int] = """pixel_values"""
__A : Any = True
def UpperCamelCase( self , _UpperCamelCase ):
if isinstance(_UpperCamelCase , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' )
elif isinstance(_UpperCamelCase , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=False ):
if isinstance(_UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = value
UpperCAmelCase_ = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n"
UpperCAmelCase_ = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
"""The bare RegNet model outputting raw features without any specific head on top.""" , A__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class __UpperCamelCase ( A__ ):
def __init__( self , _UpperCamelCase ):
super().__init__(_UpperCamelCase )
_UpperCAmelCase = config
_UpperCAmelCase = RegNetEmbeddings(_UpperCamelCase )
_UpperCAmelCase = RegNetEncoder(_UpperCamelCase )
_UpperCAmelCase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCamelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None ):
_UpperCAmelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCAmelCase = self.embedder(_UpperCamelCase )
_UpperCAmelCase = self.encoder(
_UpperCamelCase , output_hidden_states=_UpperCamelCase , return_dict=_UpperCamelCase )
_UpperCAmelCase = encoder_outputs[0]
_UpperCAmelCase = self.pooler(_UpperCamelCase )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_UpperCamelCase , pooler_output=_UpperCamelCase , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""" , A__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class __UpperCamelCase ( A__ ):
def __init__( self , _UpperCamelCase ):
super().__init__(_UpperCamelCase )
_UpperCAmelCase = config.num_labels
_UpperCAmelCase = RegNetModel(_UpperCamelCase )
# classification head
_UpperCAmelCase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCamelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def UpperCamelCase( self , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , ):
_UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCAmelCase = self.regnet(_UpperCamelCase , output_hidden_states=_UpperCamelCase , return_dict=_UpperCamelCase )
_UpperCAmelCase = outputs.pooler_output if return_dict else outputs[1]
_UpperCAmelCase = self.classifier(_UpperCamelCase )
_UpperCAmelCase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_UpperCAmelCase = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_UpperCAmelCase = '''single_label_classification'''
else:
_UpperCAmelCase = '''multi_label_classification'''
if self.config.problem_type == "regression":
_UpperCAmelCase = MSELoss()
if self.num_labels == 1:
_UpperCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
_UpperCAmelCase = loss_fct(_UpperCamelCase , _UpperCamelCase )
elif self.config.problem_type == "single_label_classification":
_UpperCAmelCase = CrossEntropyLoss()
_UpperCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
_UpperCAmelCase = BCEWithLogitsLoss()
_UpperCAmelCase = loss_fct(_UpperCamelCase , _UpperCamelCase )
if not return_dict:
_UpperCAmelCase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_UpperCamelCase , logits=_UpperCamelCase , hidden_states=outputs.hidden_states ) | 32 |
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __UpperCamelCase ( A__ ):
__A : Dict = ["""image_processor""", """tokenizer"""]
__A : List[str] = """BridgeTowerImageProcessor"""
__A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""")
def __init__( self , _UpperCamelCase , _UpperCamelCase ):
super().__init__(_UpperCamelCase , _UpperCamelCase )
def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ):
_UpperCAmelCase = self.tokenizer(
text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , )
# add pixel_values + pixel_mask
_UpperCAmelCase = self.image_processor(
_UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase )
encoding.update(_UpperCamelCase )
return encoding
def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ):
return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ):
return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase )
@property
def UpperCamelCase( self ):
_UpperCAmelCase = self.tokenizer.model_input_names
_UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) | 32 | 1 |
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = OrderedDict(
[
("audio-spectrogram-transformer", "ASTFeatureExtractor"),
("beit", "BeitFeatureExtractor"),
("chinese_clip", "ChineseCLIPFeatureExtractor"),
("clap", "ClapFeatureExtractor"),
("clip", "CLIPFeatureExtractor"),
("clipseg", "ViTFeatureExtractor"),
("conditional_detr", "ConditionalDetrFeatureExtractor"),
("convnext", "ConvNextFeatureExtractor"),
("cvt", "ConvNextFeatureExtractor"),
("data2vec-audio", "Wav2Vec2FeatureExtractor"),
("data2vec-vision", "BeitFeatureExtractor"),
("deformable_detr", "DeformableDetrFeatureExtractor"),
("deit", "DeiTFeatureExtractor"),
("detr", "DetrFeatureExtractor"),
("dinat", "ViTFeatureExtractor"),
("donut-swin", "DonutFeatureExtractor"),
("dpt", "DPTFeatureExtractor"),
("encodec", "EncodecFeatureExtractor"),
("flava", "FlavaFeatureExtractor"),
("glpn", "GLPNFeatureExtractor"),
("groupvit", "CLIPFeatureExtractor"),
("hubert", "Wav2Vec2FeatureExtractor"),
("imagegpt", "ImageGPTFeatureExtractor"),
("layoutlmv2", "LayoutLMv2FeatureExtractor"),
("layoutlmv3", "LayoutLMv3FeatureExtractor"),
("levit", "LevitFeatureExtractor"),
("maskformer", "MaskFormerFeatureExtractor"),
("mctct", "MCTCTFeatureExtractor"),
("mobilenet_v1", "MobileNetV1FeatureExtractor"),
("mobilenet_v2", "MobileNetV2FeatureExtractor"),
("mobilevit", "MobileViTFeatureExtractor"),
("nat", "ViTFeatureExtractor"),
("owlvit", "OwlViTFeatureExtractor"),
("perceiver", "PerceiverFeatureExtractor"),
("poolformer", "PoolFormerFeatureExtractor"),
("regnet", "ConvNextFeatureExtractor"),
("resnet", "ConvNextFeatureExtractor"),
("segformer", "SegformerFeatureExtractor"),
("sew", "Wav2Vec2FeatureExtractor"),
("sew-d", "Wav2Vec2FeatureExtractor"),
("speech_to_text", "Speech2TextFeatureExtractor"),
("speecht5", "SpeechT5FeatureExtractor"),
("swiftformer", "ViTFeatureExtractor"),
("swin", "ViTFeatureExtractor"),
("swinv2", "ViTFeatureExtractor"),
("table-transformer", "DetrFeatureExtractor"),
("timesformer", "VideoMAEFeatureExtractor"),
("tvlt", "TvltFeatureExtractor"),
("unispeech", "Wav2Vec2FeatureExtractor"),
("unispeech-sat", "Wav2Vec2FeatureExtractor"),
("van", "ConvNextFeatureExtractor"),
("videomae", "VideoMAEFeatureExtractor"),
("vilt", "ViltFeatureExtractor"),
("vit", "ViTFeatureExtractor"),
("vit_mae", "ViTFeatureExtractor"),
("vit_msn", "ViTFeatureExtractor"),
("wav2vec2", "Wav2Vec2FeatureExtractor"),
("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"),
("wavlm", "Wav2Vec2FeatureExtractor"),
("whisper", "WhisperFeatureExtractor"),
("xclip", "CLIPFeatureExtractor"),
("yolos", "YolosFeatureExtractor"),
]
)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[Any]:
"""simple docstring"""
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
_UpperCAmelCase = model_type_to_module_name(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = importlib.import_module(F'''.{module_name}''' , '''transformers.models''' )
try:
return getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(SCREAMING_SNAKE_CASE_ , '''__name__''' , SCREAMING_SNAKE_CASE_ ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
_UpperCAmelCase = importlib.import_module('''transformers''' )
if hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return None
def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, str]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[bool, str]] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : bool = False , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = get_file_from_repo(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , force_download=SCREAMING_SNAKE_CASE_ , resume_download=SCREAMING_SNAKE_CASE_ , proxies=SCREAMING_SNAKE_CASE_ , use_auth_token=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , local_files_only=SCREAMING_SNAKE_CASE_ , )
if resolved_config_file is None:
logger.info(
'''Could not locate the feature extractor configuration file, will try to use the model config instead.''' )
return {}
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as reader:
return json.load(SCREAMING_SNAKE_CASE_ )
class __UpperCamelCase :
def __init__( self ):
raise EnvironmentError(
'''AutoFeatureExtractor is designed to be instantiated '''
'''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' )
@classmethod
@replace_list_option_in_docstrings(_UpperCamelCase )
def UpperCamelCase( cls , _UpperCamelCase , **_UpperCamelCase ):
_UpperCAmelCase = kwargs.pop('''config''' , _UpperCamelCase )
_UpperCAmelCase = kwargs.pop('''trust_remote_code''' , _UpperCamelCase )
_UpperCAmelCase = True
_UpperCAmelCase , _UpperCAmelCase = FeatureExtractionMixin.get_feature_extractor_dict(_UpperCamelCase , **_UpperCamelCase )
_UpperCAmelCase = config_dict.get('''feature_extractor_type''' , _UpperCamelCase )
_UpperCAmelCase = None
if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ):
_UpperCAmelCase = config_dict['''auto_map''']['''AutoFeatureExtractor''']
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(_UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = AutoConfig.from_pretrained(_UpperCamelCase , **_UpperCamelCase )
# It could be in `config.feature_extractor_type``
_UpperCAmelCase = getattr(_UpperCamelCase , '''feature_extractor_type''' , _UpperCamelCase )
if hasattr(_UpperCamelCase , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map:
_UpperCAmelCase = config.auto_map['''AutoFeatureExtractor''']
if feature_extractor_class is not None:
_UpperCAmelCase = feature_extractor_class_from_name(_UpperCamelCase )
_UpperCAmelCase = feature_extractor_auto_map is not None
_UpperCAmelCase = feature_extractor_class is not None or type(_UpperCamelCase ) in FEATURE_EXTRACTOR_MAPPING
_UpperCAmelCase = resolve_trust_remote_code(
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
if has_remote_code and trust_remote_code:
_UpperCAmelCase = get_class_from_dynamic_module(
_UpperCamelCase , _UpperCamelCase , **_UpperCamelCase )
_UpperCAmelCase = kwargs.pop('''code_revision''' , _UpperCamelCase )
if os.path.isdir(_UpperCamelCase ):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(_UpperCamelCase , **_UpperCamelCase )
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(_UpperCamelCase , **_UpperCamelCase )
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(_UpperCamelCase ) in FEATURE_EXTRACTOR_MAPPING:
_UpperCAmelCase = FEATURE_EXTRACTOR_MAPPING[type(_UpperCamelCase )]
return feature_extractor_class.from_dict(_UpperCamelCase , **_UpperCamelCase )
raise ValueError(
f'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a '''
f'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following '''
f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' )
@staticmethod
def UpperCamelCase( _UpperCamelCase , _UpperCamelCase ):
FEATURE_EXTRACTOR_MAPPING.register(_UpperCamelCase , _UpperCamelCase ) | 32 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase_ = {
"configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"],
"tokenization_xlm": ["XLMTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMForMultipleChoice",
"XLMForQuestionAnswering",
"XLMForQuestionAnsweringSimple",
"XLMForSequenceClassification",
"XLMForTokenClassification",
"XLMModel",
"XLMPreTrainedModel",
"XLMWithLMHeadModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLMForMultipleChoice",
"TFXLMForQuestionAnsweringSimple",
"TFXLMForSequenceClassification",
"TFXLMForTokenClassification",
"TFXLMMainLayer",
"TFXLMModel",
"TFXLMPreTrainedModel",
"TFXLMWithLMHeadModel",
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) | 32 | 1 |
from __future__ import annotations
def A__ ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> list:
"""simple docstring"""
_UpperCAmelCase = []
_UpperCAmelCase , _UpperCAmelCase = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
_UpperCAmelCase = result + left + right
return input_list
def A__ ( SCREAMING_SNAKE_CASE_ : list ) -> list:
"""simple docstring"""
if len(SCREAMING_SNAKE_CASE_ ) <= 1:
return input_list
_UpperCAmelCase = list(SCREAMING_SNAKE_CASE_ )
# iteration for two-way merging
_UpperCAmelCase = 2
while p <= len(SCREAMING_SNAKE_CASE_ ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ):
_UpperCAmelCase = i
_UpperCAmelCase = i + p - 1
_UpperCAmelCase = (low + high + 1) // 2
_UpperCAmelCase = merge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# final merge of last two parts
if p * 2 >= len(SCREAMING_SNAKE_CASE_ ):
_UpperCAmelCase = i
_UpperCAmelCase = merge(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
UpperCAmelCase_ = input("Enter numbers separated by a comma:\n").strip()
if user_input == "":
UpperCAmelCase_ = []
else:
UpperCAmelCase_ = [int(item.strip()) for item in user_input.split(",")]
print(iter_merge_sort(unsorted)) | 32 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json",
# See all BioGPT models at https://huggingface.co/models?filter=biogpt
}
class __UpperCamelCase ( A__ ):
__A : Any = """biogpt"""
def __init__( self , _UpperCamelCase=42384 , _UpperCamelCase=1024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1024 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ):
_UpperCAmelCase = vocab_size
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = initializer_range
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = scale_embedding
_UpperCAmelCase = use_cache
_UpperCAmelCase = layerdrop
_UpperCAmelCase = activation_dropout
super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) | 32 | 1 |
import unittest
from transformers.testing_utils import require_bsa
from transformers.utils import is_bsa_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
if is_bsa_available():
from transformers import MarkupLMFeatureExtractor
class __UpperCamelCase ( unittest.TestCase ):
def __init__( self , _UpperCamelCase ):
_UpperCAmelCase = parent
def UpperCamelCase( self ):
return {}
def A__ ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = '''<HTML>
<HEAD>
<TITLE>sample document</TITLE>
</HEAD>
<BODY BGCOLOR="FFFFFF">
<HR>
<a href="http://google.com">Goog</a>
<H1>This is one header</H1>
<H2>This is a another Header</H2>
<P>Travel from
<P>
<B>SFO to JFK</B>
<BR>
<B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>
<HR>
<div style="color:#0000FF">
<h3>Traveler <b> name </b> is
<p> John Doe </p>
</div>'''
_UpperCAmelCase = '''
<!DOCTYPE html>
<html>
<body>
<h1>My First Heading</h1>
<p>My first paragraph.</p>
</body>
</html>
'''
return [html_string_a, html_string_a]
@require_bsa
class __UpperCamelCase ( A__ , unittest.TestCase ):
__A : Optional[int] = MarkupLMFeatureExtractor if is_bsa_available() else None
def UpperCamelCase( self ):
_UpperCAmelCase = MarkupLMFeatureExtractionTester(self )
@property
def UpperCamelCase( self ):
return self.feature_extract_tester.prepare_feat_extract_dict()
def UpperCamelCase( self ):
# Initialize feature_extractor
_UpperCAmelCase = self.feature_extraction_class()
# Test not batched input
_UpperCAmelCase = get_html_strings()[0]
_UpperCAmelCase = feature_extractor(_UpperCamelCase )
# fmt: off
_UpperCAmelCase = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']]
_UpperCAmelCase = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']]
# fmt: on
self.assertEqual(encoding.nodes , _UpperCamelCase )
self.assertEqual(encoding.xpaths , _UpperCamelCase )
# Test batched
_UpperCAmelCase = get_html_strings()
_UpperCAmelCase = feature_extractor(_UpperCamelCase )
# fmt: off
_UpperCAmelCase = expected_nodes + [['''My First Heading''', '''My first paragraph.''']]
_UpperCAmelCase = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']]
self.assertEqual(len(encoding.nodes ) , 2 )
self.assertEqual(len(encoding.xpaths ) , 2 )
self.assertEqual(encoding.nodes , _UpperCamelCase )
self.assertEqual(encoding.xpaths , _UpperCamelCase ) | 32 |
from typing import List
from .keymap import KEYMAP, get_character
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]:
"""simple docstring"""
def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ):
_UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] )
handle += [key]
setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ )
return func
return decorator
def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict:
"""simple docstring"""
def decorator(SCREAMING_SNAKE_CASE_ : Any ):
_UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] )
handle += keys
setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ )
return func
return decorator
class __UpperCamelCase ( A__ ):
def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
if not hasattr(_UpperCamelCase , '''key_handler''' ):
setattr(_UpperCamelCase , '''key_handler''' , {} )
setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input )
for value in attrs.values():
_UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] )
for key in handled_keys:
_UpperCAmelCase = value
return new_cls
@staticmethod
def UpperCamelCase( cls ):
_UpperCAmelCase = get_character()
if char != KEYMAP["undefined"]:
_UpperCAmelCase = ord(_UpperCamelCase )
_UpperCAmelCase = cls.key_handler.get(_UpperCamelCase )
if handler:
_UpperCAmelCase = char
return handler(cls )
else:
return None
def A__ ( cls : Union[str, Any] ) -> Any:
"""simple docstring"""
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() ) | 32 | 1 |
import argparse
import pickle
import numpy as np
import torch
from torch import nn
from transformers import ReformerConfig, ReformerModelWithLMHead
from transformers.utils import logging
logging.set_verbosity_info()
def A__ ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict=None ) -> str:
"""simple docstring"""
assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match'''
_UpperCAmelCase = nn.Parameter(SCREAMING_SNAKE_CASE_ )
if bias is not None:
assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match'''
_UpperCAmelCase = nn.Parameter(SCREAMING_SNAKE_CASE_ )
def A__ ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
_UpperCAmelCase = np.asarray(weights[0] )
_UpperCAmelCase = np.asarray(weights[1] )
_UpperCAmelCase = np.asarray(weights[2] )
set_param(
torch_layer.self_attention.query_key , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , )
set_param(
torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).view(-1 , SCREAMING_SNAKE_CASE_ ).contiguous().transpose(0 , 1 ) , )
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = np.asarray(weights[0] )
_UpperCAmelCase = np.asarray(weights[1] )
_UpperCAmelCase = np.asarray(weights[2] )
_UpperCAmelCase = np.asarray(weights[3] )
set_param(
torch_layer.self_attention.query , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , )
set_param(
torch_layer.self_attention.key , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , )
set_param(
torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).view(-1 , SCREAMING_SNAKE_CASE_ ).contiguous().transpose(0 , 1 ) , )
def A__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = weights[0][0][0]
_UpperCAmelCase = np.asarray(layer_norm_a[0] )
_UpperCAmelCase = np.asarray(layer_norm_a[1] )
set_param(
torch_block.attention.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE_ ) , torch.tensor(SCREAMING_SNAKE_CASE_ ) , )
# lsh weights + output
_UpperCAmelCase = weights[0][1]
if len(SCREAMING_SNAKE_CASE_ ) < 4:
set_layer_weights_in_torch_lsh(SCREAMING_SNAKE_CASE_ , torch_block.attention , SCREAMING_SNAKE_CASE_ )
else:
set_layer_weights_in_torch_local(SCREAMING_SNAKE_CASE_ , torch_block.attention , SCREAMING_SNAKE_CASE_ )
# intermediate weighs
_UpperCAmelCase = weights[2][0][1][2]
# Chunked Feed Forward
if len(SCREAMING_SNAKE_CASE_ ) == 4:
_UpperCAmelCase = intermediate_weights[2]
# layernorm 2
_UpperCAmelCase = np.asarray(intermediate_weights[0][0] )
_UpperCAmelCase = np.asarray(intermediate_weights[0][1] )
set_param(
torch_block.feed_forward.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE_ ) , torch.tensor(SCREAMING_SNAKE_CASE_ ) , )
# intermediate dense
_UpperCAmelCase = np.asarray(intermediate_weights[1][0] )
_UpperCAmelCase = np.asarray(intermediate_weights[1][1] )
set_param(
torch_block.feed_forward.dense.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE_ ) , )
# intermediate out
_UpperCAmelCase = np.asarray(intermediate_weights[4][0] )
_UpperCAmelCase = np.asarray(intermediate_weights[4][1] )
set_param(
torch_block.feed_forward.output.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE_ ) , )
def A__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any ) -> str:
"""simple docstring"""
_UpperCAmelCase = torch_model.reformer
# word embeds
_UpperCAmelCase = np.asarray(weights[1] )
set_param(
torch_model_reformer.embeddings.word_embeddings , torch.tensor(SCREAMING_SNAKE_CASE_ ) , )
if isinstance(weights[3] , SCREAMING_SNAKE_CASE_ ):
_UpperCAmelCase = torch_model_reformer.embeddings.position_embeddings
for emb_idx in range(len(position_embeddings.weights ) ):
_UpperCAmelCase = np.asarray(weights[3][emb_idx][0] )
assert (
position_embeddings.weights[emb_idx].shape == emb_weights.shape
), F'''{position_embeddings[emb_idx]} emb does not match'''
_UpperCAmelCase = nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE_ ) )
_UpperCAmelCase = weights[5]
assert len(torch_model_reformer.encoder.layers ) * 4 == len(
SCREAMING_SNAKE_CASE_ ), "HF and trax model do not have the same number of layers"
for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ):
_UpperCAmelCase = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
set_block_weights_in_torch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# output layer norm
_UpperCAmelCase = np.asarray(weights[7][0] )
_UpperCAmelCase = np.asarray(weights[7][1] )
set_param(
torch_model_reformer.encoder.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE_ ) , torch.tensor(SCREAMING_SNAKE_CASE_ ) , )
# output embeddings
_UpperCAmelCase = np.asarray(weights[9][0] )
_UpperCAmelCase = np.asarray(weights[9][1] )
set_param(
torch_model.lm_head.decoder , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE_ ) , )
def A__ ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = ReformerConfig.from_json_file(SCREAMING_SNAKE_CASE_ )
print(F'''Building PyTorch model from configuration: {config}''' )
_UpperCAmelCase = ReformerModelWithLMHead(SCREAMING_SNAKE_CASE_ )
with open(SCREAMING_SNAKE_CASE_ , '''rb''' ) as f:
_UpperCAmelCase = pickle.load(SCREAMING_SNAKE_CASE_ )['''weights''']
set_model_weights_in_torch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , config.hidden_size )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained Reformer model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
UpperCAmelCase_ = parser.parse_args()
convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path) | 32 |
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __UpperCamelCase :
def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=24 , _UpperCamelCase=2 , _UpperCamelCase=6 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=None , _UpperCamelCase=1000 , ):
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_input_mask
_UpperCAmelCase = use_token_type_ids
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = type_sequence_label_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = num_labels
_UpperCAmelCase = scope
_UpperCAmelCase = range_bbox
def UpperCamelCase( self ):
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
_UpperCAmelCase = bbox[i, j, 3]
_UpperCAmelCase = bbox[i, j, 1]
_UpperCAmelCase = t
if bbox[i, j, 2] < bbox[i, j, 0]:
_UpperCAmelCase = bbox[i, j, 2]
_UpperCAmelCase = bbox[i, j, 0]
_UpperCAmelCase = t
_UpperCAmelCase = None
if self.use_input_mask:
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
_UpperCAmelCase = None
if self.use_token_type_ids:
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCAmelCase = None
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCAmelCase = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCamelCase( self ):
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ):
_UpperCAmelCase = LiltModel(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase )
_UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase )
_UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ):
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = LiltForTokenClassification(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(
_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ):
_UpperCAmelCase = LiltForQuestionAnswering(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(
_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase( self ):
_UpperCAmelCase = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) = config_and_inputs
_UpperCAmelCase = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ):
__A : Dict = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__A : Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__A : List[Any] = False
__A : Optional[int] = False
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
return True
def UpperCamelCase( self ):
_UpperCAmelCase = LiltModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 )
def UpperCamelCase( self ):
self.config_tester.run_common_tests()
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_UpperCAmelCase = type
self.model_tester.create_and_check_model(*_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase )
@slow
def UpperCamelCase( self ):
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase = LiltModel.from_pretrained(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase )
@require_torch
@slow
class __UpperCamelCase ( unittest.TestCase ):
def UpperCamelCase( self ):
_UpperCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_UpperCamelCase )
_UpperCAmelCase = torch.tensor([[1, 2]] , device=_UpperCamelCase )
_UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase )
# forward pass
with torch.no_grad():
_UpperCAmelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase )
_UpperCAmelCase = torch.Size([1, 2, 768] )
_UpperCAmelCase = torch.tensor(
[[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_UpperCamelCase , )
self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) ) | 32 | 1 |
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch)
# also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml
# same for Vicuna-13b
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipImageProcessor,
InstructBlipConfig,
InstructBlipForConditionalGeneration,
InstructBlipProcessor,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
LlamaConfig,
LlamaTokenizerFast,
TaConfig,
TaTokenizerFast,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def A__ ( ) -> str:
"""simple docstring"""
_UpperCAmelCase = '''https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg'''
_UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ).convert('''RGB''' )
return image
def A__ ( SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = []
# fmt: off
# vision encoder
rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') )
rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') )
rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') )
rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') )
rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') )
rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) )
rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') )
# QFormer
rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.embeddings.layernorm.weight''') )
rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.embeddings.layernorm.bias''') )
# fmt: on
return rename_keys
def A__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = val
def A__ ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]:
"""simple docstring"""
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
_UpperCAmelCase = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' )
_UpperCAmelCase = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' )
# next, set bias in the state dict
_UpperCAmelCase = torch.cat((q_bias, torch.zeros_like(SCREAMING_SNAKE_CASE_ , requires_grad=SCREAMING_SNAKE_CASE_ ), v_bias) )
_UpperCAmelCase = qkv_bias
def A__ ( SCREAMING_SNAKE_CASE_ : Dict ) -> int:
"""simple docstring"""
_UpperCAmelCase = 3_64 if '''coco''' in model_name else 2_24
_UpperCAmelCase = InstructBlipVisionConfig(image_size=SCREAMING_SNAKE_CASE_ ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "t5-xl" in model_name:
_UpperCAmelCase = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
_UpperCAmelCase = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict()
elif "vicuna-7b" in model_name:
_UpperCAmelCase = LlamaConfig.from_pretrained('''decapoda-research/llama-7b-hf''' , vocab_size=3_20_01 ).to_dict()
elif "vicuna-13b" in model_name:
_UpperCAmelCase = LlamaConfig.from_pretrained('''decapoda-research/llama-13b-hf''' , vocab_size=3_20_01 ).to_dict()
else:
raise ValueError('''Model name not supported''' )
# the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1
_UpperCAmelCase = InstructBlipQFormerConfig(vocab_size=3_05_23 ).to_dict()
_UpperCAmelCase = InstructBlipConfig(vision_config=SCREAMING_SNAKE_CASE_ , text_config=SCREAMING_SNAKE_CASE_ , qformer_config=SCREAMING_SNAKE_CASE_ )
return config, image_size
@torch.no_grad()
def A__ ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : Dict=False ) -> int:
"""simple docstring"""
_UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-uncased''' , truncation_side='''left''' )
qformer_tokenizer.add_special_tokens({'''bos_token''': '''[DEC]'''} )
if "t5" in model_name:
_UpperCAmelCase = TaTokenizerFast.from_pretrained('''google/flan-t5-xl''' , truncation_side='''left''' )
elif "vicuna" in model_name:
# the following was used in the original implementation:
# tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left")
# tokenizer.add_special_tokens({"pad_token": "[PAD]"})
# tokenizer.add_special_tokens({"bos_token": "</s>"})
# tokenizer.add_special_tokens({"eos_token": "</s>"})
# tokenizer.add_special_tokens({"unk_token": "</s>"})
_UpperCAmelCase = LlamaTokenizerFast.from_pretrained(
'''huggyllama/llama-7b''' , truncation_side='''left''' , bos_token='''</s>''' , unk_token='''</s>''' )
tokenizer.add_special_tokens({'''pad_token''': '''[PAD]'''} )
_UpperCAmelCase , _UpperCAmelCase = get_blipa_config(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = InstructBlipForConditionalGeneration(SCREAMING_SNAKE_CASE_ ).eval()
_UpperCAmelCase = {
'''instructblip-vicuna-7b''': ('''blip2_vicuna_instruct''', '''vicuna7b'''),
'''instructblip-vicuna-13b''': ('''blip2_vicuna_instruct''', '''vicuna13b'''),
'''instructblip-flan-t5-xl''': ('''blip2_t5_instruct''', '''flant5xl'''),
'''instructblip-flan-t5-xxl''': ('''blip2_t5_instruct''', '''flant5xxl'''),
}
_UpperCAmelCase , _UpperCAmelCase = model_name_to_original[model_name]
# load original model
print('''Loading original model...''' )
_UpperCAmelCase = '''cuda:1''' if torch.cuda.is_available() else '''cpu'''
_UpperCAmelCase = '''cuda:2''' if torch.cuda.is_available() else '''cpu'''
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = load_model_and_preprocess(
name=SCREAMING_SNAKE_CASE_ , model_type=SCREAMING_SNAKE_CASE_ , is_eval=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ )
original_model.eval()
print('''Done!''' )
# update state dict keys
_UpperCAmelCase = original_model.state_dict()
_UpperCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ )
for src, dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
_UpperCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE_ )
if key.startswith('''Qformer.bert''' ):
_UpperCAmelCase = key.replace('''Qformer.bert''' , '''qformer''' )
if "attention.self" in key:
_UpperCAmelCase = key.replace('''self''' , '''attention''' )
if "llm_proj" in key:
_UpperCAmelCase = key.replace('''llm_proj''' , '''language_projection''' )
if "t5_proj" in key:
_UpperCAmelCase = key.replace('''t5_proj''' , '''language_projection''' )
if key.startswith('''llm_model''' ):
_UpperCAmelCase = key.replace('''llm_model''' , '''language_model''' )
if key.startswith('''t5''' ):
_UpperCAmelCase = key.replace('''t5''' , '''language''' )
_UpperCAmelCase = val
# read in qv biases
read_in_q_v_bias(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# note: weights get loaded in torch.float32 by default
hf_model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = load_demo_image()
_UpperCAmelCase = '''What is unusual about this image?'''
# create processor
_UpperCAmelCase = BlipImageProcessor(
size={'''height''': image_size, '''width''': image_size} , image_mean=SCREAMING_SNAKE_CASE_ , image_std=SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = InstructBlipProcessor(
image_processor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ , )
_UpperCAmelCase = processor(images=SCREAMING_SNAKE_CASE_ , text=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ )
# make sure processor creates exact same pixel values
_UpperCAmelCase = vis_processors['''eval'''](SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ).to(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = inputs.pixel_values
assert torch.allclose(original_pixel_values.to(pixel_values.device ) , SCREAMING_SNAKE_CASE_ )
original_model.to(SCREAMING_SNAKE_CASE_ )
hf_model.to(SCREAMING_SNAKE_CASE_ )
with torch.no_grad():
if "vicuna" in model_name:
_UpperCAmelCase = original_model({'''image''': original_pixel_values, '''text_input''': [prompt]} ).logits
_UpperCAmelCase = hf_model(**SCREAMING_SNAKE_CASE_ ).logits
else:
_UpperCAmelCase = original_model(
{'''image''': original_pixel_values, '''text_input''': [prompt], '''text_output''': ['''\n''']} ).logits
_UpperCAmelCase = tokenizer('''\n''' , return_tensors='''pt''' ).input_ids.to(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_00 )
_UpperCAmelCase = hf_model(**SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ).logits
print('''First values of original logits:''' , original_logits[0, :3, :3] )
print('''First values of HF logits:''' , logits[0, :3, :3] )
# assert values
assert original_logits.shape == logits.shape
_UpperCAmelCase = 1E-4 if '''vicuna''' in model_name else 1E-5
assert torch.allclose(original_logits.to(logits.device ) , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ )
print('''Looks ok!''' )
print('''Generating with original model...''' )
_UpperCAmelCase = original_model.generate({'''image''': original_pixel_values, '''prompt''': prompt} , num_beams=5 )
# important: we need to cast the weights of the HF model to the appropriate type
print('''Generating with HF model...''' )
_UpperCAmelCase = hf_model.generate(
**SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=5 , max_length=2_56 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , )
if "vicuna" in model_name:
# convert output id 0 to 2 (eos_token_id)
# TODO add this in the generate method?
_UpperCAmelCase = 2
print('''Original generation:''' , SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = processor.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = [text.strip() for text in output_text]
print('''HF generation:''' , SCREAMING_SNAKE_CASE_ )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ )
if push_to_hub:
processor.push_to_hub(F'''Salesforce/{model_name}''' )
hf_model.push_to_hub(F'''Salesforce/{model_name}''' )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
UpperCAmelCase_ = [
"instructblip-vicuna-7b",
"instructblip-vicuna-13b",
"instructblip-flan-t5-xl",
"instructblip-flan-t5-xxl",
]
parser.add_argument(
"--model_name",
default="instructblip-flan-t5-xl",
choices=choices,
type=str,
help="Path to hf config.json of model to convert",
)
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model and processor to the hub after converting",
)
UpperCAmelCase_ = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) | 32 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json",
"RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json",
"RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json",
"RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json",
"RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json",
"RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json",
"RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json",
"RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json",
"RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json",
"RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json",
}
class __UpperCamelCase ( A__ ):
__A : Tuple = """rwkv"""
__A : Any = {"""max_position_embeddings""": """context_length"""}
def __init__( self , _UpperCamelCase=50277 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ):
_UpperCAmelCase = vocab_size
_UpperCAmelCase = context_length
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size
_UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size
_UpperCAmelCase = layer_norm_epsilon
_UpperCAmelCase = rescale_every
_UpperCAmelCase = use_cache
_UpperCAmelCase = bos_token_id
_UpperCAmelCase = eos_token_id
super().__init__(
tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) | 32 | 1 |
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class __UpperCamelCase ( A__ ):
__A : UNetaDModel
__A : ScoreSdeVeScheduler
def __init__( self , _UpperCamelCase , _UpperCamelCase ):
super().__init__()
self.register_modules(unet=_UpperCamelCase , scheduler=_UpperCamelCase )
@torch.no_grad()
def __call__( self , _UpperCamelCase = 1 , _UpperCamelCase = 2000 , _UpperCamelCase = None , _UpperCamelCase = "pil" , _UpperCamelCase = True , **_UpperCamelCase , ):
_UpperCAmelCase = self.unet.config.sample_size
_UpperCAmelCase = (batch_size, 3, img_size, img_size)
_UpperCAmelCase = self.unet
_UpperCAmelCase = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase ) * self.scheduler.init_noise_sigma
_UpperCAmelCase = sample.to(self.device )
self.scheduler.set_timesteps(_UpperCamelCase )
self.scheduler.set_sigmas(_UpperCamelCase )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
_UpperCAmelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
_UpperCAmelCase = self.unet(_UpperCamelCase , _UpperCamelCase ).sample
_UpperCAmelCase = self.scheduler.step_correct(_UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ).prev_sample
# prediction step
_UpperCAmelCase = model(_UpperCamelCase , _UpperCamelCase ).sample
_UpperCAmelCase = self.scheduler.step_pred(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase )
_UpperCAmelCase , _UpperCAmelCase = output.prev_sample, output.prev_sample_mean
_UpperCAmelCase = sample_mean.clamp(0 , 1 )
_UpperCAmelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_UpperCAmelCase = self.numpy_to_pil(_UpperCamelCase )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=_UpperCamelCase ) | 32 |
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str:
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
_UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) )
return "0b" + "".join(
str(int(char_a == '''1''' and char_b == '''1''' ) )
for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 32 | 1 |
UpperCAmelCase_ = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
UpperCAmelCase_ = [{"type": "code", "content": INSTALL_CONTENT}]
UpperCAmelCase_ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
} | 32 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
}
class __UpperCamelCase ( A__ ):
__A : Dict = """falcon"""
__A : Any = ["""past_key_values"""]
def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ):
_UpperCAmelCase = vocab_size
# Backward compatibility with n_embed kwarg
_UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase )
_UpperCAmelCase = hidden_size if n_embed is None else n_embed
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = layer_norm_epsilon
_UpperCAmelCase = initializer_range
_UpperCAmelCase = use_cache
_UpperCAmelCase = hidden_dropout
_UpperCAmelCase = attention_dropout
_UpperCAmelCase = bos_token_id
_UpperCAmelCase = eos_token_id
_UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads
_UpperCAmelCase = alibi
_UpperCAmelCase = new_decoder_architecture
_UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True
_UpperCAmelCase = parallel_attn
_UpperCAmelCase = bias
super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
@property
def UpperCamelCase( self ):
return self.hidden_size // self.num_attention_heads
@property
def UpperCamelCase( self ):
return not self.alibi | 32 | 1 |
from __future__ import annotations
def A__ ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int ) -> list[int]:
"""simple docstring"""
_UpperCAmelCase = 0
_UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
_UpperCAmelCase = i + 1
else:
_UpperCAmelCase = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f'''{two_pointer([2, 7, 11, 15], 9) = }''') | 32 |
from math import sqrt
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_00_01 ) -> int:
"""simple docstring"""
_UpperCAmelCase = 0
_UpperCAmelCase = 1
while count != nth and number < 3:
number += 1
if is_prime(SCREAMING_SNAKE_CASE_ ):
count += 1
while count != nth:
number += 2
if is_prime(SCREAMING_SNAKE_CASE_ ):
count += 1
return number
if __name__ == "__main__":
print(f'''{solution() = }''') | 32 | 1 |
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = OrderedDict(
[
# Base model mapping
("albert", "FlaxAlbertModel"),
("bart", "FlaxBartModel"),
("beit", "FlaxBeitModel"),
("bert", "FlaxBertModel"),
("big_bird", "FlaxBigBirdModel"),
("blenderbot", "FlaxBlenderbotModel"),
("blenderbot-small", "FlaxBlenderbotSmallModel"),
("clip", "FlaxCLIPModel"),
("distilbert", "FlaxDistilBertModel"),
("electra", "FlaxElectraModel"),
("gpt-sw3", "FlaxGPT2Model"),
("gpt2", "FlaxGPT2Model"),
("gpt_neo", "FlaxGPTNeoModel"),
("gptj", "FlaxGPTJModel"),
("longt5", "FlaxLongT5Model"),
("marian", "FlaxMarianModel"),
("mbart", "FlaxMBartModel"),
("mt5", "FlaxMT5Model"),
("opt", "FlaxOPTModel"),
("pegasus", "FlaxPegasusModel"),
("regnet", "FlaxRegNetModel"),
("resnet", "FlaxResNetModel"),
("roberta", "FlaxRobertaModel"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"),
("roformer", "FlaxRoFormerModel"),
("t5", "FlaxT5Model"),
("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"),
("vit", "FlaxViTModel"),
("wav2vec2", "FlaxWav2Vec2Model"),
("whisper", "FlaxWhisperModel"),
("xglm", "FlaxXGLMModel"),
("xlm-roberta", "FlaxXLMRobertaModel"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for pre-training mapping
("albert", "FlaxAlbertForPreTraining"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForPreTraining"),
("big_bird", "FlaxBigBirdForPreTraining"),
("electra", "FlaxElectraForPreTraining"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("t5", "FlaxT5ForConditionalGeneration"),
("wav2vec2", "FlaxWav2Vec2ForPreTraining"),
("whisper", "FlaxWhisperForConditionalGeneration"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Masked LM mapping
("albert", "FlaxAlbertForMaskedLM"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForMaskedLM"),
("big_bird", "FlaxBigBirdForMaskedLM"),
("distilbert", "FlaxDistilBertForMaskedLM"),
("electra", "FlaxElectraForMaskedLM"),
("mbart", "FlaxMBartForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
("bart", "FlaxBartForConditionalGeneration"),
("blenderbot", "FlaxBlenderbotForConditionalGeneration"),
("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"),
("encoder-decoder", "FlaxEncoderDecoderModel"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("marian", "FlaxMarianMTModel"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("pegasus", "FlaxPegasusForConditionalGeneration"),
("t5", "FlaxT5ForConditionalGeneration"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Image-classsification
("beit", "FlaxBeitForImageClassification"),
("regnet", "FlaxRegNetForImageClassification"),
("resnet", "FlaxResNetForImageClassification"),
("vit", "FlaxViTForImageClassification"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Causal LM mapping
("bart", "FlaxBartForCausalLM"),
("bert", "FlaxBertForCausalLM"),
("big_bird", "FlaxBigBirdForCausalLM"),
("electra", "FlaxElectraForCausalLM"),
("gpt-sw3", "FlaxGPT2LMHeadModel"),
("gpt2", "FlaxGPT2LMHeadModel"),
("gpt_neo", "FlaxGPTNeoForCausalLM"),
("gptj", "FlaxGPTJForCausalLM"),
("opt", "FlaxOPTForCausalLM"),
("roberta", "FlaxRobertaForCausalLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"),
("xglm", "FlaxXGLMForCausalLM"),
("xlm-roberta", "FlaxXLMRobertaForCausalLM"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Sequence Classification mapping
("albert", "FlaxAlbertForSequenceClassification"),
("bart", "FlaxBartForSequenceClassification"),
("bert", "FlaxBertForSequenceClassification"),
("big_bird", "FlaxBigBirdForSequenceClassification"),
("distilbert", "FlaxDistilBertForSequenceClassification"),
("electra", "FlaxElectraForSequenceClassification"),
("mbart", "FlaxMBartForSequenceClassification"),
("roberta", "FlaxRobertaForSequenceClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"),
("roformer", "FlaxRoFormerForSequenceClassification"),
("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Question Answering mapping
("albert", "FlaxAlbertForQuestionAnswering"),
("bart", "FlaxBartForQuestionAnswering"),
("bert", "FlaxBertForQuestionAnswering"),
("big_bird", "FlaxBigBirdForQuestionAnswering"),
("distilbert", "FlaxDistilBertForQuestionAnswering"),
("electra", "FlaxElectraForQuestionAnswering"),
("mbart", "FlaxMBartForQuestionAnswering"),
("roberta", "FlaxRobertaForQuestionAnswering"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"),
("roformer", "FlaxRoFormerForQuestionAnswering"),
("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Token Classification mapping
("albert", "FlaxAlbertForTokenClassification"),
("bert", "FlaxBertForTokenClassification"),
("big_bird", "FlaxBigBirdForTokenClassification"),
("distilbert", "FlaxDistilBertForTokenClassification"),
("electra", "FlaxElectraForTokenClassification"),
("roberta", "FlaxRobertaForTokenClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"),
("roformer", "FlaxRoFormerForTokenClassification"),
("xlm-roberta", "FlaxXLMRobertaForTokenClassification"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Multiple Choice mapping
("albert", "FlaxAlbertForMultipleChoice"),
("bert", "FlaxBertForMultipleChoice"),
("big_bird", "FlaxBigBirdForMultipleChoice"),
("distilbert", "FlaxDistilBertForMultipleChoice"),
("electra", "FlaxElectraForMultipleChoice"),
("roberta", "FlaxRobertaForMultipleChoice"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"),
("roformer", "FlaxRoFormerForMultipleChoice"),
("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("bert", "FlaxBertForNextSentencePrediction"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"),
("whisper", "FlaxWhisperForConditionalGeneration"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("whisper", "FlaxWhisperForAudioClassification"),
]
)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[str] = FLAX_MODEL_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModel)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc="sequence classification"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc="token classification"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForImageClassification, head_doc="image classification"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling"
) | 32 |
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool:
"""simple docstring"""
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
_UpperCAmelCase = F'''Input value of [number={number}] must be an integer'''
raise TypeError(SCREAMING_SNAKE_CASE_ )
if number < 0:
return False
_UpperCAmelCase = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod() | 32 | 1 |
import numpy as np
def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray:
"""simple docstring"""
return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 32 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=A__ )
class __UpperCamelCase ( A__ ):
__A : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} )
__A : ClassVar[Features] = Features({"""text""": Value("""string""" )} )
__A : ClassVar[Features] = Features({} )
__A : str = "text"
@property
def UpperCamelCase( self ):
return {self.text_column: "text"} | 32 | 1 |
import argparse
from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta
from transformers.utils import logging
logging.set_verbosity_info()
def A__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = TaConfig.from_json_file(SCREAMING_SNAKE_CASE_ )
print(F'''Building PyTorch model from configuration: {config}''' )
_UpperCAmelCase = TaForConditionalGeneration(SCREAMING_SNAKE_CASE_ )
# Load weights from tf checkpoint
load_tf_weights_in_ta(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
UpperCAmelCase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path) | 32 |
import os
import re
import warnings
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
if TYPE_CHECKING:
from ...tokenization_utils_base import TextInput
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {"vocab_file": "spiece.model"}
UpperCAmelCase_ = {
"vocab_file": {
"t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model",
"t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model",
"t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model",
}
}
# TODO(PVP) - this should be removed in Transformers v5
UpperCAmelCase_ = {
"t5-small": 5_12,
"t5-base": 5_12,
"t5-large": 5_12,
"t5-3b": 5_12,
"t5-11b": 5_12,
}
UpperCAmelCase_ = "▁"
class __UpperCamelCase ( A__ ):
__A : Any = VOCAB_FILES_NAMES
__A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
__A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__A : Tuple = ["""input_ids""", """attention_mask"""]
def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase=100 , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=True , **_UpperCamelCase , ):
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
_UpperCAmelCase = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
_UpperCAmelCase = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'''
''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids'''
''' tokens''' )
if legacy:
logger.warning_once(
f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to'''
''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' )
_UpperCAmelCase = legacy
_UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , )
_UpperCAmelCase = vocab_file
_UpperCAmelCase = extra_ids
_UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCamelCase )
@staticmethod
def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes:
_UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
'''This tokenizer was incorrectly instantiated with a model max length of'''
f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this'''
''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with'''
''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on'''
f''' {pretrained_model_name_or_path} automatically truncating your input to'''
f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences'''
f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with'''
''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please'''
''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , )
return max_model_length
@property
def UpperCamelCase( self ):
return self.sp_model.get_piece_size() + self._extra_ids
def UpperCamelCase( self ):
_UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(_UpperCamelCase )) + [1]
return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1]
def UpperCamelCase( self ):
return list(
set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) )
def UpperCamelCase( self ):
return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()]
def UpperCamelCase( self , _UpperCamelCase ):
if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'''
''' eos tokens being added.''' )
return token_ids
else:
return token_ids + [self.eos_token_id]
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ):
_UpperCAmelCase = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ):
_UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase )
if token_ids_a is None:
return token_ids_a
else:
_UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase )
return token_ids_a + token_ids_a
def __getstate__( self ):
_UpperCAmelCase = self.__dict__.copy()
_UpperCAmelCase = None
return state
def __setstate__( self , _UpperCamelCase ):
_UpperCAmelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_UpperCAmelCase = {}
_UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ):
# Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at
# the beginning of the text
if not self.legacy:
_UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' )
return super().tokenize(_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ):
if not self.legacy:
_UpperCAmelCase = text.startswith(_UpperCamelCase )
if is_first:
_UpperCAmelCase = text[1:]
_UpperCAmelCase = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase )
if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ):
_UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:]
return tokens
def UpperCamelCase( self , _UpperCamelCase ):
if token.startswith('''<extra_id_''' ):
_UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase )
_UpperCAmelCase = int(match.group(1 ) )
return self.vocab_size - num - 1
return self.sp_model.piece_to_id(_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase ):
if index < self.sp_model.get_piece_size():
_UpperCAmelCase = self.sp_model.IdToPiece(_UpperCamelCase )
else:
_UpperCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>'''
return token
def UpperCamelCase( self , _UpperCamelCase ):
_UpperCAmelCase = []
_UpperCAmelCase = ''''''
_UpperCAmelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_UpperCamelCase ) + token
_UpperCAmelCase = True
_UpperCAmelCase = []
else:
current_sub_tokens.append(_UpperCamelCase )
_UpperCAmelCase = False
out_string += self.sp_model.decode(_UpperCamelCase )
return out_string.strip()
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ):
if not os.path.isdir(_UpperCamelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_UpperCAmelCase = os.path.join(
_UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCamelCase , '''wb''' ) as fi:
_UpperCAmelCase = self.sp_model.serialized_model_proto()
fi.write(_UpperCamelCase )
return (out_vocab_file,) | 32 | 1 |
import argparse
import shlex
import runhouse as rh
if __name__ == "__main__":
# Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access
# setup instructions, if using on-demand hardware
# If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster
# If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster
# Throw an error if user passes both BYO and on-demand cluster args
# Otherwise, use default values
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument("--user", type=str, default="ubuntu")
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--key_path", type=str, default=None)
parser.add_argument("--instance", type=str, default="V100:1")
parser.add_argument("--provider", type=str, default="cheapest")
parser.add_argument("--use_spot", type=bool, default=False)
parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py")
UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_known_args()
if args.host != "localhost":
if args.instance != "V100:1" or args.provider != "cheapest":
raise ValueError("Cannot specify both BYO and on-demand cluster args")
UpperCAmelCase_ = rh.cluster(
name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path}
)
else:
UpperCAmelCase_ = rh.cluster(
name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot
)
UpperCAmelCase_ = args.example.rsplit("/", 1)[0]
# Set up remote environment
cluster.install_packages(["pip:./"]) # Installs transformers from local source
# Note transformers is copied into the home directory on the remote machine, so we can install from there
cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt'''])
cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"])
# Run example. You can bypass the CLI wrapper and paste your own code here.
cluster.run([f'''python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}'''])
# Alternatively, we can just import and run a training function (especially if there's no wrapper CLI):
# from my_script... import train
# reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard']
# launch_train_gpu = rh.function(fn=train,
# system=gpu,
# reqs=reqs,
# name='train_bert_glue')
#
# We can pass in arguments just like we would to a function:
# launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16
# stream_logs=True) | 32 |
from __future__ import annotations
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool:
"""simple docstring"""
_UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ )
return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' )
def A__ ( ) -> int | None:
"""simple docstring"""
for base_num in range(99_99 , 49_99 , -1 ):
_UpperCAmelCase = 10_00_02 * base_num
if is_9_pandigital(SCREAMING_SNAKE_CASE_ ):
return candidate
for base_num in range(3_33 , 99 , -1 ):
_UpperCAmelCase = 1_00_20_03 * base_num
if is_9_pandigital(SCREAMING_SNAKE_CASE_ ):
return candidate
return None
if __name__ == "__main__":
print(f'''{solution() = }''') | 32 | 1 |
class __UpperCamelCase :
def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = graph
self._normalize_graph(_UpperCamelCase , _UpperCamelCase )
_UpperCAmelCase = len(_UpperCamelCase )
_UpperCAmelCase = None
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ):
if sources is int:
_UpperCAmelCase = [sources]
if sinks is int:
_UpperCAmelCase = [sinks]
if len(_UpperCamelCase ) == 0 or len(_UpperCamelCase ) == 0:
return
_UpperCAmelCase = sources[0]
_UpperCAmelCase = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(_UpperCamelCase ) > 1 or len(_UpperCamelCase ) > 1:
_UpperCAmelCase = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
_UpperCAmelCase = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
_UpperCAmelCase = max_input_flow
_UpperCAmelCase = 0
_UpperCAmelCase = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
_UpperCAmelCase = max_input_flow
_UpperCAmelCase = size - 1
def UpperCamelCase( self ):
if self.maximum_flow_algorithm is None:
raise Exception('''You need to set maximum flow algorithm before.''' )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def UpperCamelCase( self , _UpperCamelCase ):
_UpperCAmelCase = algorithm(self )
class __UpperCamelCase :
def __init__( self , _UpperCamelCase ):
_UpperCAmelCase = flow_network
_UpperCAmelCase = flow_network.verticesCount
_UpperCAmelCase = flow_network.sourceIndex
_UpperCAmelCase = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
_UpperCAmelCase = flow_network.graph
_UpperCAmelCase = False
def UpperCamelCase( self ):
if not self.executed:
self._algorithm()
_UpperCAmelCase = True
def UpperCamelCase( self ):
pass
class __UpperCamelCase ( A__ ):
def __init__( self , _UpperCamelCase ):
super().__init__(_UpperCamelCase )
# use this to save your result
_UpperCAmelCase = -1
def UpperCamelCase( self ):
if not self.executed:
raise Exception('''You should execute algorithm before using its result!''' )
return self.maximum_flow
class __UpperCamelCase ( A__ ):
def __init__( self , _UpperCamelCase ):
super().__init__(_UpperCamelCase )
_UpperCAmelCase = [[0] * self.verticies_count for i in range(self.verticies_count )]
_UpperCAmelCase = [0] * self.verticies_count
_UpperCAmelCase = [0] * self.verticies_count
def UpperCamelCase( self ):
_UpperCAmelCase = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
_UpperCAmelCase = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
_UpperCAmelCase = 0
while i < len(_UpperCamelCase ):
_UpperCAmelCase = vertices_list[i]
_UpperCAmelCase = self.heights[vertex_index]
self.process_vertex(_UpperCamelCase )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(_UpperCamelCase ) )
_UpperCAmelCase = 0
else:
i += 1
_UpperCAmelCase = sum(self.preflow[self.source_index] )
def UpperCamelCase( self , _UpperCamelCase ):
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(_UpperCamelCase , _UpperCamelCase )
self.relabel(_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def UpperCamelCase( self , _UpperCamelCase ):
_UpperCAmelCase = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
_UpperCAmelCase = self.heights[to_index]
if min_height is not None:
_UpperCAmelCase = min_height + 1
if __name__ == "__main__":
UpperCAmelCase_ = [0]
UpperCAmelCase_ = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
UpperCAmelCase_ = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
UpperCAmelCase_ = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
UpperCAmelCase_ = flow_network.find_maximum_flow()
print(f'''maximum flow is {maximum_flow}''') | 32 |
import numpy as np
def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray:
"""simple docstring"""
return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 32 | 1 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class __UpperCamelCase :
def __init__( self ):
_UpperCAmelCase = ''''''
_UpperCAmelCase = ''''''
_UpperCAmelCase = []
_UpperCAmelCase = 0
_UpperCAmelCase = 256
_UpperCAmelCase = 0
_UpperCAmelCase = 0
_UpperCAmelCase = 0
_UpperCAmelCase = 0
def UpperCamelCase( self , _UpperCamelCase ):
_UpperCAmelCase = cva.imread(_UpperCamelCase , 0 )
_UpperCAmelCase = copy.deepcopy(self.img )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='''x''' )
_UpperCAmelCase = np.sum(_UpperCamelCase )
for i in range(len(_UpperCamelCase ) ):
_UpperCAmelCase = x[i] / self.k
self.sk += prk
_UpperCAmelCase = (self.L - 1) * self.sk
if self.rem != 0:
_UpperCAmelCase = int(last % last )
_UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(_UpperCamelCase )
_UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size )
_UpperCAmelCase = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
_UpperCAmelCase = self.img[j][i]
if num != self.last_list[num]:
_UpperCAmelCase = self.last_list[num]
cva.imwrite('''output_data/output.jpg''' , self.img )
def UpperCamelCase( self ):
plt.hist(self.img.ravel() , 256 , [0, 256] )
def UpperCamelCase( self ):
cva.imshow('''Output-Image''' , self.img )
cva.imshow('''Input-Image''' , self.original_image )
cva.waitKey(5000 )
cva.destroyAllWindows()
if __name__ == "__main__":
UpperCAmelCase_ = os.path.join(os.path.basename(__file__), "image_data/input.jpg")
UpperCAmelCase_ = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image() | 32 |
UpperCAmelCase_ = {
"A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.",
"H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.",
"O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-",
"V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----",
"2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...",
"8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.",
":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.",
"?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-",
"(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/"
} # Exclamation mark is not in ITU-R recommendation
# fmt: on
UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()}
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
return " ".join(MORSE_CODE_DICT[char] for char in message.upper() )
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
return "".join(REVERSE_DICT[char] for char in message.split() )
def A__ ( ) -> None:
"""simple docstring"""
_UpperCAmelCase = '''Morse code here!'''
print(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ )
print(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ )
print(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
main() | 32 | 1 |
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
UpperCAmelCase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : tuple , SCREAMING_SNAKE_CASE_ : Path , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int=False , ) -> Union[str, Any]:
"""simple docstring"""
output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE_ , output_names=SCREAMING_SNAKE_CASE_ , dynamic_axes=SCREAMING_SNAKE_CASE_ , do_constant_folding=SCREAMING_SNAKE_CASE_ , use_external_data_format=SCREAMING_SNAKE_CASE_ , enable_onnx_checker=SCREAMING_SNAKE_CASE_ , opset_version=SCREAMING_SNAKE_CASE_ , )
else:
export(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE_ , output_names=SCREAMING_SNAKE_CASE_ , dynamic_axes=SCREAMING_SNAKE_CASE_ , do_constant_folding=SCREAMING_SNAKE_CASE_ , opset_version=SCREAMING_SNAKE_CASE_ , )
@torch.no_grad()
def A__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : bool = False ) -> Any:
"""simple docstring"""
_UpperCAmelCase = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
_UpperCAmelCase = '''cuda'''
elif fpaa and not torch.cuda.is_available():
raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' )
else:
_UpperCAmelCase = '''cpu'''
_UpperCAmelCase = Path(SCREAMING_SNAKE_CASE_ )
# VAE DECODER
_UpperCAmelCase = AutoencoderKL.from_pretrained(model_path + '''/vae''' )
_UpperCAmelCase = vae_decoder.config.latent_channels
# forward only through the decoder part
_UpperCAmelCase = vae_decoder.decode
onnx_export(
SCREAMING_SNAKE_CASE_ , model_args=(
torch.randn(1 , SCREAMING_SNAKE_CASE_ , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ),
False,
) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={
'''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''},
} , opset=SCREAMING_SNAKE_CASE_ , )
del vae_decoder
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
UpperCAmelCase_ = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX") | 32 |
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __UpperCamelCase ( A__ , unittest.TestCase ):
__A : Any = DanceDiffusionPipeline
__A : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
__A : Tuple = PipelineTesterMixin.required_optional_params - {
"""callback""",
"""latents""",
"""callback_steps""",
"""output_type""",
"""num_images_per_prompt""",
}
__A : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
__A : List[str] = False
__A : str = False
def UpperCamelCase( self ):
torch.manual_seed(0 )
_UpperCAmelCase = UNetaDModel(
block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , )
_UpperCAmelCase = IPNDMScheduler()
_UpperCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
}
return components
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ):
if str(_UpperCamelCase ).startswith('''mps''' ):
_UpperCAmelCase = torch.manual_seed(_UpperCamelCase )
else:
_UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase )
_UpperCAmelCase = {
'''batch_size''': 1,
'''generator''': generator,
'''num_inference_steps''': 4,
}
return inputs
def UpperCamelCase( self ):
_UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
_UpperCAmelCase = self.get_dummy_components()
_UpperCAmelCase = DanceDiffusionPipeline(**_UpperCamelCase )
_UpperCAmelCase = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase )
_UpperCAmelCase = pipe(**_UpperCamelCase )
_UpperCAmelCase = output.audios
_UpperCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
_UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def UpperCamelCase( self ):
return super().test_save_load_local()
@skip_mps
def UpperCamelCase( self ):
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
@skip_mps
def UpperCamelCase( self ):
return super().test_save_load_optional_components()
@skip_mps
def UpperCamelCase( self ):
return super().test_attention_slicing_forward_pass()
def UpperCamelCase( self ):
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def UpperCamelCase( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase( self ):
_UpperCAmelCase = torch_device
_UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' )
_UpperCAmelCase = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 )
_UpperCAmelCase = output.audios
_UpperCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCamelCase( self ):
_UpperCAmelCase = torch_device
_UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa )
_UpperCAmelCase = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 )
_UpperCAmelCase = output.audios
_UpperCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 | 32 | 1 |
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
UpperCAmelCase_ = logging.getLogger(__name__)
class __UpperCamelCase ( A__ ):
def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ):
super().__init__(
_UpperCamelCase , question_encoder_tokenizer=_UpperCamelCase , generator_tokenizer=_UpperCamelCase , index=_UpperCamelCase , init_retrieval=_UpperCamelCase , )
_UpperCAmelCase = None
def UpperCamelCase( self , _UpperCamelCase ):
logger.info('''initializing retrieval''' )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info('''dist initialized''' )
# needs to be set manually
_UpperCAmelCase = self._infer_socket_ifname()
# avoid clash with the NCCL port
_UpperCAmelCase = str(distributed_port + 1 )
_UpperCAmelCase = dist.new_group(ranks=_UpperCamelCase , backend='''gloo''' )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info('''dist not initialized / main''' )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def UpperCamelCase( self ):
return dist.get_rank(group=self.process_group ) == 0
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=torch.floataa ):
_UpperCAmelCase = torch.empty(_UpperCamelCase , dtype=_UpperCamelCase )
dist.scatter(_UpperCamelCase , src=0 , scatter_list=_UpperCamelCase , group=self.process_group )
return target_tensor
def UpperCamelCase( self ):
_UpperCAmelCase = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
_UpperCAmelCase = next((addr for addr in addrs if addr.startswith('''e''' )) , _UpperCamelCase )
return ifname
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ):
# single GPU training
if not dist.is_initialized():
_UpperCAmelCase , _UpperCAmelCase = self._main_retrieve(_UpperCamelCase , _UpperCamelCase )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_UpperCamelCase )
# distributed training
_UpperCAmelCase = dist.get_world_size(group=self.process_group )
# gather logic
_UpperCAmelCase = None
if self._is_main():
_UpperCAmelCase = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(_UpperCamelCase )]
dist.gather(torch.tensor(_UpperCamelCase ) , dst=0 , gather_list=_UpperCamelCase , group=self.process_group )
# scatter logic
_UpperCAmelCase = question_hidden_states.shape[0]
_UpperCAmelCase = []
_UpperCAmelCase = []
if self._is_main():
assert len(_UpperCamelCase ) == world_size
_UpperCAmelCase , _UpperCAmelCase = self._main_retrieve(torch.cat(_UpperCamelCase ).numpy() , _UpperCamelCase )
_UpperCAmelCase , _UpperCAmelCase = torch.tensor(_UpperCamelCase ), torch.tensor(_UpperCamelCase )
_UpperCAmelCase = self._chunk_tensor(_UpperCamelCase , _UpperCamelCase )
_UpperCAmelCase = self._chunk_tensor(_UpperCamelCase , _UpperCamelCase )
_UpperCAmelCase = self._scattered(_UpperCamelCase , [n_queries, n_docs] , target_type=torch.intaa )
_UpperCAmelCase = self._scattered(_UpperCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(_UpperCamelCase ) | 32 |
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = OrderedDict(
[
# Base model mapping
("albert", "FlaxAlbertModel"),
("bart", "FlaxBartModel"),
("beit", "FlaxBeitModel"),
("bert", "FlaxBertModel"),
("big_bird", "FlaxBigBirdModel"),
("blenderbot", "FlaxBlenderbotModel"),
("blenderbot-small", "FlaxBlenderbotSmallModel"),
("clip", "FlaxCLIPModel"),
("distilbert", "FlaxDistilBertModel"),
("electra", "FlaxElectraModel"),
("gpt-sw3", "FlaxGPT2Model"),
("gpt2", "FlaxGPT2Model"),
("gpt_neo", "FlaxGPTNeoModel"),
("gptj", "FlaxGPTJModel"),
("longt5", "FlaxLongT5Model"),
("marian", "FlaxMarianModel"),
("mbart", "FlaxMBartModel"),
("mt5", "FlaxMT5Model"),
("opt", "FlaxOPTModel"),
("pegasus", "FlaxPegasusModel"),
("regnet", "FlaxRegNetModel"),
("resnet", "FlaxResNetModel"),
("roberta", "FlaxRobertaModel"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"),
("roformer", "FlaxRoFormerModel"),
("t5", "FlaxT5Model"),
("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"),
("vit", "FlaxViTModel"),
("wav2vec2", "FlaxWav2Vec2Model"),
("whisper", "FlaxWhisperModel"),
("xglm", "FlaxXGLMModel"),
("xlm-roberta", "FlaxXLMRobertaModel"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for pre-training mapping
("albert", "FlaxAlbertForPreTraining"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForPreTraining"),
("big_bird", "FlaxBigBirdForPreTraining"),
("electra", "FlaxElectraForPreTraining"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("t5", "FlaxT5ForConditionalGeneration"),
("wav2vec2", "FlaxWav2Vec2ForPreTraining"),
("whisper", "FlaxWhisperForConditionalGeneration"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Masked LM mapping
("albert", "FlaxAlbertForMaskedLM"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForMaskedLM"),
("big_bird", "FlaxBigBirdForMaskedLM"),
("distilbert", "FlaxDistilBertForMaskedLM"),
("electra", "FlaxElectraForMaskedLM"),
("mbart", "FlaxMBartForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
("bart", "FlaxBartForConditionalGeneration"),
("blenderbot", "FlaxBlenderbotForConditionalGeneration"),
("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"),
("encoder-decoder", "FlaxEncoderDecoderModel"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("marian", "FlaxMarianMTModel"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("pegasus", "FlaxPegasusForConditionalGeneration"),
("t5", "FlaxT5ForConditionalGeneration"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Image-classsification
("beit", "FlaxBeitForImageClassification"),
("regnet", "FlaxRegNetForImageClassification"),
("resnet", "FlaxResNetForImageClassification"),
("vit", "FlaxViTForImageClassification"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Causal LM mapping
("bart", "FlaxBartForCausalLM"),
("bert", "FlaxBertForCausalLM"),
("big_bird", "FlaxBigBirdForCausalLM"),
("electra", "FlaxElectraForCausalLM"),
("gpt-sw3", "FlaxGPT2LMHeadModel"),
("gpt2", "FlaxGPT2LMHeadModel"),
("gpt_neo", "FlaxGPTNeoForCausalLM"),
("gptj", "FlaxGPTJForCausalLM"),
("opt", "FlaxOPTForCausalLM"),
("roberta", "FlaxRobertaForCausalLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"),
("xglm", "FlaxXGLMForCausalLM"),
("xlm-roberta", "FlaxXLMRobertaForCausalLM"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Sequence Classification mapping
("albert", "FlaxAlbertForSequenceClassification"),
("bart", "FlaxBartForSequenceClassification"),
("bert", "FlaxBertForSequenceClassification"),
("big_bird", "FlaxBigBirdForSequenceClassification"),
("distilbert", "FlaxDistilBertForSequenceClassification"),
("electra", "FlaxElectraForSequenceClassification"),
("mbart", "FlaxMBartForSequenceClassification"),
("roberta", "FlaxRobertaForSequenceClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"),
("roformer", "FlaxRoFormerForSequenceClassification"),
("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Question Answering mapping
("albert", "FlaxAlbertForQuestionAnswering"),
("bart", "FlaxBartForQuestionAnswering"),
("bert", "FlaxBertForQuestionAnswering"),
("big_bird", "FlaxBigBirdForQuestionAnswering"),
("distilbert", "FlaxDistilBertForQuestionAnswering"),
("electra", "FlaxElectraForQuestionAnswering"),
("mbart", "FlaxMBartForQuestionAnswering"),
("roberta", "FlaxRobertaForQuestionAnswering"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"),
("roformer", "FlaxRoFormerForQuestionAnswering"),
("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Token Classification mapping
("albert", "FlaxAlbertForTokenClassification"),
("bert", "FlaxBertForTokenClassification"),
("big_bird", "FlaxBigBirdForTokenClassification"),
("distilbert", "FlaxDistilBertForTokenClassification"),
("electra", "FlaxElectraForTokenClassification"),
("roberta", "FlaxRobertaForTokenClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"),
("roformer", "FlaxRoFormerForTokenClassification"),
("xlm-roberta", "FlaxXLMRobertaForTokenClassification"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Multiple Choice mapping
("albert", "FlaxAlbertForMultipleChoice"),
("bert", "FlaxBertForMultipleChoice"),
("big_bird", "FlaxBigBirdForMultipleChoice"),
("distilbert", "FlaxDistilBertForMultipleChoice"),
("electra", "FlaxElectraForMultipleChoice"),
("roberta", "FlaxRobertaForMultipleChoice"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"),
("roformer", "FlaxRoFormerForMultipleChoice"),
("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("bert", "FlaxBertForNextSentencePrediction"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"),
("whisper", "FlaxWhisperForConditionalGeneration"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("whisper", "FlaxWhisperForAudioClassification"),
]
)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[str] = FLAX_MODEL_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModel)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc="sequence classification"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc="token classification"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForImageClassification, head_doc="image classification"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling"
) | 32 | 1 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
UpperCAmelCase_ = logging.get_logger(__name__)
class __UpperCamelCase ( A__ ):
def __init__( self , *_UpperCamelCase , **_UpperCamelCase ):
warnings.warn(
'''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use GLPNImageProcessor instead.''' , _UpperCamelCase , )
super().__init__(*_UpperCamelCase , **_UpperCamelCase ) | 32 |
import baseaa
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes:
"""simple docstring"""
return baseaa.baaencode(string.encode('''utf-8''' ) )
def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str:
"""simple docstring"""
return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' )
if __name__ == "__main__":
UpperCAmelCase_ = "Hello World!"
UpperCAmelCase_ = baseaa_encode(test)
print(encoded)
UpperCAmelCase_ = baseaa_decode(encoded)
print(decoded) | 32 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCAmelCase_ = {
"configuration_altclip": [
"ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"AltCLIPConfig",
"AltCLIPTextConfig",
"AltCLIPVisionConfig",
],
"processing_altclip": ["AltCLIPProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"AltCLIPPreTrainedModel",
"AltCLIPModel",
"AltCLIPTextModel",
"AltCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) | 32 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
UpperCAmelCase_ = logging.get_logger(__name__)
class __UpperCamelCase ( A__ ):
__A : int = ["""pixel_values"""]
def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ):
super().__init__(**_UpperCamelCase )
_UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224}
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
_UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' )
_UpperCAmelCase = do_resize
_UpperCAmelCase = do_rescale
_UpperCAmelCase = do_normalize
_UpperCAmelCase = do_center_crop
_UpperCAmelCase = crop_size
_UpperCAmelCase = size
_UpperCAmelCase = resample
_UpperCAmelCase = rescale_factor
_UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
_UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ):
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
if "shortest_edge" in size:
_UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
_UpperCAmelCase = (size['''height'''], size['''width'''])
else:
raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' )
return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ):
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ):
return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ):
return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ):
_UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
_UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
_UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase )
_UpperCAmelCase = resample if resample is not None else self.resample
_UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
_UpperCAmelCase = image_std if image_std is not None else self.image_std
_UpperCAmelCase = size if size is not None else self.size
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
if not is_batched(_UpperCamelCase ):
_UpperCAmelCase = [images]
if not valid_images(_UpperCamelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
_UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images]
if do_resize:
_UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images]
if do_center_crop:
_UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images]
if do_rescale:
_UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images]
if do_normalize:
_UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images]
_UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images]
_UpperCAmelCase = {'''pixel_values''': images}
return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase ) | 32 | 1 |
UpperCAmelCase_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> bytes:
"""simple docstring"""
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
_UpperCAmelCase = F'''a bytes-like object is required, not \'{data.__class__.__name__}\''''
raise TypeError(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = ''''''.join(bin(SCREAMING_SNAKE_CASE_ )[2:].zfill(8 ) for byte in data )
_UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) % 6 != 0
if padding_needed:
# The padding that will be added later
_UpperCAmelCase = B'''=''' * ((6 - len(SCREAMING_SNAKE_CASE_ ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(SCREAMING_SNAKE_CASE_ ) % 6)
else:
_UpperCAmelCase = B''''''
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6] , 2 )]
for index in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 6 ) ).encode()
+ padding
)
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes:
"""simple docstring"""
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
_UpperCAmelCase = (
'''argument should be a bytes-like object or ASCII string, '''
F'''not \'{encoded_data.__class__.__name__}\''''
)
raise TypeError(SCREAMING_SNAKE_CASE_ )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
try:
_UpperCAmelCase = encoded_data.decode('''utf-8''' )
except UnicodeDecodeError:
raise ValueError('''base64 encoded data should only contain ASCII characters''' )
_UpperCAmelCase = encoded_data.count('''=''' )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(SCREAMING_SNAKE_CASE_ ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
_UpperCAmelCase = encoded_data[:-padding]
_UpperCAmelCase = ''''''.join(
bin(B64_CHARSET.index(SCREAMING_SNAKE_CASE_ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
_UpperCAmelCase = ''''''.join(
bin(B64_CHARSET.index(SCREAMING_SNAKE_CASE_ ) )[2:].zfill(6 ) for char in encoded_data )
_UpperCAmelCase = [
int(binary_stream[index : index + 8] , 2 )
for index in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 8 )
]
return bytes(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 32 |
from ..utils import DummyObject, requires_backends
class __UpperCamelCase ( metaclass=A__ ):
__A : str = ["""torch""", """scipy"""]
def __init__( self , *_UpperCamelCase , **_UpperCamelCase ):
requires_backends(self , ['''torch''', '''scipy'''] )
@classmethod
def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ):
requires_backends(cls , ['''torch''', '''scipy'''] )
@classmethod
def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ):
requires_backends(cls , ['''torch''', '''scipy'''] ) | 32 | 1 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class __UpperCamelCase ( unittest.TestCase ):
def UpperCamelCase( self ):
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
_UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]]
_UpperCAmelCase = DisjunctiveConstraint(_UpperCamelCase )
self.assertTrue(isinstance(dc.token_ids , _UpperCamelCase ) )
with self.assertRaises(_UpperCamelCase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(_UpperCamelCase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def UpperCamelCase( self ):
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
_UpperCAmelCase = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(_UpperCamelCase ):
DisjunctiveConstraint(_UpperCamelCase ) # fails here
def UpperCamelCase( self ):
_UpperCAmelCase = [[1, 2, 3], [1, 2, 4]]
_UpperCAmelCase = DisjunctiveConstraint(_UpperCamelCase )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = dc.update(1 )
_UpperCAmelCase = stepped is True and completed is False and reset is False
self.assertTrue(_UpperCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = dc.update(2 )
_UpperCAmelCase = stepped is True and completed is False and reset is False
self.assertTrue(_UpperCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = dc.update(3 )
_UpperCAmelCase = stepped is True and completed is True and reset is False
self.assertTrue(_UpperCamelCase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def UpperCamelCase( self ):
_UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
_UpperCAmelCase = DisjunctiveConstraint(_UpperCamelCase )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] ) | 32 |
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int:
"""simple docstring"""
_UpperCAmelCase = [0 for i in range(n + 1 )]
_UpperCAmelCase = 1
_UpperCAmelCase = 1
for i in range(2 , int(n**0.5 ) + 1 ):
if primality_list[i] == 0:
for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ):
_UpperCAmelCase = 1
_UpperCAmelCase = 0
for i in range(SCREAMING_SNAKE_CASE_ ):
if primality_list[i] == 0:
sum_of_primes += i
return sum_of_primes
if __name__ == "__main__":
print(f'''{solution() = }''') | 32 | 1 |
from typing import TYPE_CHECKING
from ....utils import _LazyModule
UpperCAmelCase_ = {"tokenization_tapex": ["TapexTokenizer"]}
if TYPE_CHECKING:
from .tokenization_tapex import TapexTokenizer
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure) | 32 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
UpperCAmelCase_ = logging.get_logger(__name__)
class __UpperCamelCase ( A__ ):
def __init__( self , *_UpperCamelCase , **_UpperCamelCase ):
warnings.warn(
'''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use GLPNImageProcessor instead.''' , _UpperCamelCase , )
super().__init__(*_UpperCamelCase , **_UpperCamelCase ) | 32 | 1 |
from __future__ import annotations
import math
import random
from collections.abc import Collection
from typing import overload
class __UpperCamelCase :
def __init__( self , _UpperCamelCase = None ):
if components is None:
_UpperCAmelCase = []
_UpperCAmelCase = list(_UpperCamelCase )
def __len__( self ):
return len(self.__components )
def __str__( self ):
return "(" + ",".join(map(_UpperCamelCase , self.__components ) ) + ")"
def __add__( self , _UpperCamelCase ):
_UpperCAmelCase = len(self )
if size == len(_UpperCamelCase ):
_UpperCAmelCase = [self.__components[i] + other.component(_UpperCamelCase ) for i in range(_UpperCamelCase )]
return Vector(_UpperCamelCase )
else:
raise Exception('''must have the same size''' )
def __sub__( self , _UpperCamelCase ):
_UpperCAmelCase = len(self )
if size == len(_UpperCamelCase ):
_UpperCAmelCase = [self.__components[i] - other.component(_UpperCamelCase ) for i in range(_UpperCamelCase )]
return Vector(_UpperCamelCase )
else: # error case
raise Exception('''must have the same size''' )
@overload
def __mul__( self , _UpperCamelCase ):
...
@overload
def __mul__( self , _UpperCamelCase ):
...
def __mul__( self , _UpperCamelCase ):
if isinstance(_UpperCamelCase , (float, int) ):
_UpperCAmelCase = [c * other for c in self.__components]
return Vector(_UpperCamelCase )
elif isinstance(_UpperCamelCase , _UpperCamelCase ) and len(self ) == len(_UpperCamelCase ):
_UpperCAmelCase = len(self )
_UpperCAmelCase = [self.__components[i] * other.component(_UpperCamelCase ) for i in range(_UpperCamelCase )]
return sum(_UpperCamelCase )
else: # error case
raise Exception('''invalid operand!''' )
def UpperCamelCase( self ):
return Vector(self.__components )
def UpperCamelCase( self , _UpperCamelCase ):
if isinstance(_UpperCamelCase , _UpperCamelCase ) and -len(self.__components ) <= i < len(self.__components ):
return self.__components[i]
else:
raise Exception('''index out of range''' )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ):
assert -len(self.__components ) <= pos < len(self.__components )
_UpperCAmelCase = value
def UpperCamelCase( self ):
if len(self.__components ) == 0:
raise Exception('''Vector is empty''' )
_UpperCAmelCase = [c**2 for c in self.__components]
return math.sqrt(sum(_UpperCamelCase ) )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = False ):
_UpperCAmelCase = self * other
_UpperCAmelCase = self.euclidean_length() * other.euclidean_length()
if deg:
return math.degrees(math.acos(num / den ) )
else:
return math.acos(num / den )
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> Vector:
"""simple docstring"""
assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return Vector([0] * dimension )
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> Vector:
"""simple docstring"""
assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and (isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ))
_UpperCAmelCase = [0] * dimension
_UpperCAmelCase = 1
return Vector(SCREAMING_SNAKE_CASE_ )
def A__ ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Vector , SCREAMING_SNAKE_CASE_ : Vector ) -> Vector:
"""simple docstring"""
assert (
isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
and (isinstance(SCREAMING_SNAKE_CASE_ , (int, float) ))
)
return x * scalar + y
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> Vector:
"""simple docstring"""
random.seed(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = [random.randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ )]
return Vector(SCREAMING_SNAKE_CASE_ )
class __UpperCamelCase :
def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = matrix
_UpperCAmelCase = w
_UpperCAmelCase = h
def __str__( self ):
_UpperCAmelCase = ''''''
for i in range(self.__height ):
ans += "|"
for j in range(self.__width ):
if j < self.__width - 1:
ans += str(self.__matrix[i][j] ) + ","
else:
ans += str(self.__matrix[i][j] ) + "|\n"
return ans
def __add__( self , _UpperCamelCase ):
if self.__width == other.width() and self.__height == other.height():
_UpperCAmelCase = []
for i in range(self.__height ):
_UpperCAmelCase = [
self.__matrix[i][j] + other.component(_UpperCamelCase , _UpperCamelCase )
for j in range(self.__width )
]
matrix.append(_UpperCamelCase )
return Matrix(_UpperCamelCase , self.__width , self.__height )
else:
raise Exception('''matrix must have the same dimension!''' )
def __sub__( self , _UpperCamelCase ):
if self.__width == other.width() and self.__height == other.height():
_UpperCAmelCase = []
for i in range(self.__height ):
_UpperCAmelCase = [
self.__matrix[i][j] - other.component(_UpperCamelCase , _UpperCamelCase )
for j in range(self.__width )
]
matrix.append(_UpperCamelCase )
return Matrix(_UpperCamelCase , self.__width , self.__height )
else:
raise Exception('''matrices must have the same dimension!''' )
@overload
def __mul__( self , _UpperCamelCase ):
...
@overload
def __mul__( self , _UpperCamelCase ):
...
def __mul__( self , _UpperCamelCase ):
if isinstance(_UpperCamelCase , _UpperCamelCase ): # matrix-vector
if len(_UpperCamelCase ) == self.__width:
_UpperCAmelCase = zero_vector(self.__height )
for i in range(self.__height ):
_UpperCAmelCase = [
self.__matrix[i][j] * other.component(_UpperCamelCase )
for j in range(self.__width )
]
ans.change_component(_UpperCamelCase , sum(_UpperCamelCase ) )
return ans
else:
raise Exception(
'''vector must have the same size as the '''
'''number of columns of the matrix!''' )
elif isinstance(_UpperCamelCase , (int, float) ): # matrix-scalar
_UpperCAmelCase = [
[self.__matrix[i][j] * other for j in range(self.__width )]
for i in range(self.__height )
]
return Matrix(_UpperCamelCase , self.__width , self.__height )
return None
def UpperCamelCase( self ):
return self.__height
def UpperCamelCase( self ):
return self.__width
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ):
if 0 <= x < self.__height and 0 <= y < self.__width:
return self.__matrix[x][y]
else:
raise Exception('''change_component: indices out of bounds''' )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
if 0 <= x < self.__height and 0 <= y < self.__width:
_UpperCAmelCase = value
else:
raise Exception('''change_component: indices out of bounds''' )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ):
if self.__height != self.__width:
raise Exception('''Matrix is not square''' )
_UpperCAmelCase = self.__matrix[:x] + self.__matrix[x + 1 :]
for i in range(len(_UpperCamelCase ) ):
_UpperCAmelCase = minor[i][:y] + minor[i][y + 1 :]
return Matrix(_UpperCamelCase , self.__width - 1 , self.__height - 1 ).determinant()
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ):
if self.__height != self.__width:
raise Exception('''Matrix is not square''' )
if 0 <= x < self.__height and 0 <= y < self.__width:
return (-1) ** (x + y) * self.minor(_UpperCamelCase , _UpperCamelCase )
else:
raise Exception('''Indices out of bounds''' )
def UpperCamelCase( self ):
if self.__height != self.__width:
raise Exception('''Matrix is not square''' )
if self.__height < 1:
raise Exception('''Matrix has no element''' )
elif self.__height == 1:
return self.__matrix[0][0]
elif self.__height == 2:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
else:
_UpperCAmelCase = [
self.__matrix[0][y] * self.cofactor(0 , _UpperCamelCase ) for y in range(self.__width )
]
return sum(_UpperCamelCase )
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> Matrix:
"""simple docstring"""
_UpperCAmelCase = [[0] * n for _ in range(SCREAMING_SNAKE_CASE_ )]
return Matrix(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> Matrix:
"""simple docstring"""
random.seed(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = [
[random.randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ )] for _ in range(SCREAMING_SNAKE_CASE_ )
]
return Matrix(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) | 32 |
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __UpperCamelCase ( A__ ):
__A : Dict = ["""image_processor""", """tokenizer"""]
__A : List[str] = """BridgeTowerImageProcessor"""
__A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""")
def __init__( self , _UpperCamelCase , _UpperCamelCase ):
super().__init__(_UpperCamelCase , _UpperCamelCase )
def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ):
_UpperCAmelCase = self.tokenizer(
text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , )
# add pixel_values + pixel_mask
_UpperCAmelCase = self.image_processor(
_UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase )
encoding.update(_UpperCamelCase )
return encoding
def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ):
return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ):
return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase )
@property
def UpperCamelCase( self ):
_UpperCAmelCase = self.tokenizer.model_input_names
_UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) | 32 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class __UpperCamelCase ( unittest.TestCase ):
def UpperCamelCase( self ):
_UpperCAmelCase = tempfile.mkdtemp()
_UpperCAmelCase = BlipImageProcessor()
_UpperCAmelCase = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-BertModel''' )
_UpperCAmelCase = BlipProcessor(_UpperCamelCase , _UpperCamelCase )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase( self , **_UpperCamelCase ):
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase ).tokenizer
def UpperCamelCase( self , **_UpperCamelCase ):
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase ).image_processor
def UpperCamelCase( self ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase( self ):
_UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
_UpperCAmelCase = [Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase( self ):
_UpperCAmelCase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_UpperCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
_UpperCAmelCase = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0 )
_UpperCAmelCase = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_UpperCamelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , _UpperCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BlipProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase )
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = image_processor(_UpperCamelCase , return_tensors='''np''' )
_UpperCAmelCase = processor(images=_UpperCamelCase , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def UpperCamelCase( self ):
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BlipProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase )
_UpperCAmelCase = '''lower newer'''
_UpperCAmelCase = processor(text=_UpperCamelCase )
_UpperCAmelCase = tokenizer(_UpperCamelCase , return_token_type_ids=_UpperCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCamelCase( self ):
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BlipProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase )
_UpperCAmelCase = '''lower newer'''
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = processor(text=_UpperCamelCase , images=_UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
# test if it raises when no input is passed
with pytest.raises(_UpperCamelCase ):
processor()
def UpperCamelCase( self ):
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BlipProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase )
_UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_UpperCAmelCase = processor.batch_decode(_UpperCamelCase )
_UpperCAmelCase = tokenizer.batch_decode(_UpperCamelCase )
self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BlipProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase )
_UpperCAmelCase = '''lower newer'''
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = processor(text=_UpperCamelCase , images=_UpperCamelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) | 32 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase_ = {
"configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"],
"tokenization_xlm": ["XLMTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMForMultipleChoice",
"XLMForQuestionAnswering",
"XLMForQuestionAnsweringSimple",
"XLMForSequenceClassification",
"XLMForTokenClassification",
"XLMModel",
"XLMPreTrainedModel",
"XLMWithLMHeadModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLMForMultipleChoice",
"TFXLMForQuestionAnsweringSimple",
"TFXLMForSequenceClassification",
"TFXLMForTokenClassification",
"TFXLMMainLayer",
"TFXLMModel",
"TFXLMPreTrainedModel",
"TFXLMWithLMHeadModel",
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) | 32 | 1 |
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
UpperCAmelCase_ = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
UpperCAmelCase_ = 25_00_04
UpperCAmelCase_ = 25_00_20
@require_sentencepiece
@require_tokenizers
class __UpperCamelCase ( A__ , unittest.TestCase ):
__A : Union[str, Any] = MBartaaTokenizer
__A : Any = MBartaaTokenizerFast
__A : Dict = True
__A : Any = True
def UpperCamelCase( self ):
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCAmelCase = MBartaaTokenizer(_UpperCamelCase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_UpperCamelCase )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase( self ):
_UpperCAmelCase = '''<s>'''
_UpperCAmelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(_UpperCamelCase ) , 1054 )
def UpperCamelCase( self ):
self.assertEqual(self.get_tokenizer().vocab_size , 1054 )
def UpperCamelCase( self ):
_UpperCAmelCase = MBartaaTokenizer(_UpperCamelCase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_UpperCamelCase )
_UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_UpperCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_UpperCamelCase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , )
_UpperCAmelCase = tokenizer.convert_tokens_to_ids(_UpperCamelCase )
self.assertListEqual(
_UpperCamelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
_UpperCAmelCase = tokenizer.convert_ids_to_tokens(_UpperCamelCase )
self.assertListEqual(
_UpperCamelCase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , )
@slow
def UpperCamelCase( self ):
# fmt: off
_UpperCAmelCase = {'''input_ids''': [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCamelCase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , )
def UpperCamelCase( self ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
_UpperCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
_UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase )
_UpperCAmelCase = self.tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase )
_UpperCAmelCase = tempfile.mkdtemp()
_UpperCAmelCase = tokenizer_r.save_pretrained(_UpperCamelCase )
_UpperCAmelCase = tokenizer_p.save_pretrained(_UpperCamelCase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
_UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(_UpperCamelCase , _UpperCamelCase )
# Checks everything loads correctly in the same way
_UpperCAmelCase = tokenizer_r.from_pretrained(_UpperCamelCase )
_UpperCAmelCase = tokenizer_p.from_pretrained(_UpperCamelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_UpperCamelCase , _UpperCamelCase ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(_UpperCamelCase )
# Save tokenizer rust, legacy_format=True
_UpperCAmelCase = tempfile.mkdtemp()
_UpperCAmelCase = tokenizer_r.save_pretrained(_UpperCamelCase , legacy_format=_UpperCamelCase )
_UpperCAmelCase = tokenizer_p.save_pretrained(_UpperCamelCase )
# Checks it save with the same files
self.assertSequenceEqual(_UpperCamelCase , _UpperCamelCase )
# Checks everything loads correctly in the same way
_UpperCAmelCase = tokenizer_r.from_pretrained(_UpperCamelCase )
_UpperCAmelCase = tokenizer_p.from_pretrained(_UpperCamelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_UpperCamelCase , _UpperCamelCase ) )
shutil.rmtree(_UpperCamelCase )
# Save tokenizer rust, legacy_format=False
_UpperCAmelCase = tempfile.mkdtemp()
_UpperCAmelCase = tokenizer_r.save_pretrained(_UpperCamelCase , legacy_format=_UpperCamelCase )
_UpperCAmelCase = tokenizer_p.save_pretrained(_UpperCamelCase )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
_UpperCAmelCase = tokenizer_r.from_pretrained(_UpperCamelCase )
_UpperCAmelCase = tokenizer_p.from_pretrained(_UpperCamelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(_UpperCamelCase , _UpperCamelCase ) )
shutil.rmtree(_UpperCamelCase )
@require_torch
@require_sentencepiece
@require_tokenizers
class __UpperCamelCase ( unittest.TestCase ):
__A : Dict = """facebook/mbart-large-50-one-to-many-mmt"""
__A : Optional[int] = [
""" UN Chief Says There Is No Military Solution in Syria""",
""" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""",
]
__A : Optional[int] = [
"""Şeful ONU declară că nu există o soluţie militară în Siria""",
"""Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"""
""" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"""
""" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""",
]
__A : Any = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2]
@classmethod
def UpperCamelCase( cls ):
_UpperCAmelCase = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
_UpperCAmelCase = 1
return cls
def UpperCamelCase( self ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 250038 )
def UpperCamelCase( self ):
_UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _UpperCamelCase )
def UpperCamelCase( self ):
self.assertIn(_UpperCamelCase , self.tokenizer.all_special_ids )
_UpperCAmelCase = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
_UpperCAmelCase = self.tokenizer.decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase )
_UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCamelCase )
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
self.assertNotIn(self.tokenizer.eos_token , _UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , _UpperCamelCase )
_UpperCAmelCase = 10
_UpperCAmelCase = self.tokenizer(_UpperCamelCase , max_length=_UpperCamelCase , truncation=_UpperCamelCase ).input_ids[0]
self.assertEqual(ids[0] , _UpperCamelCase )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase )
def UpperCamelCase( self ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250053, 250001] )
def UpperCamelCase( self ):
_UpperCAmelCase = tempfile.mkdtemp()
_UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_UpperCamelCase )
_UpperCAmelCase = MBartaaTokenizer.from_pretrained(_UpperCamelCase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCamelCase )
@require_torch
def UpperCamelCase( self ):
_UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCamelCase , return_tensors='''pt''' )
_UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def UpperCamelCase( self ):
_UpperCAmelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
_UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(_UpperCamelCase , _UpperCamelCase )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
_UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _UpperCamelCase )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def UpperCamelCase( self ):
_UpperCAmelCase = self.tokenizer(self.src_text , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=3 , return_tensors='''pt''' )
_UpperCAmelCase = self.tokenizer(
text_target=self.tgt_text , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=10 , return_tensors='''pt''' )
_UpperCAmelCase = targets['''input_ids''']
_UpperCAmelCase = shift_tokens_right(_UpperCamelCase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def UpperCamelCase( self ):
_UpperCAmelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(_UpperCamelCase ) , {
# en_XX, A, test, EOS
'''input_ids''': [[250004, 62, 3034, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 250001,
} , ) | 32 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json",
# See all BioGPT models at https://huggingface.co/models?filter=biogpt
}
class __UpperCamelCase ( A__ ):
__A : Any = """biogpt"""
def __init__( self , _UpperCamelCase=42384 , _UpperCamelCase=1024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1024 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ):
_UpperCAmelCase = vocab_size
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = initializer_range
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = scale_embedding
_UpperCAmelCase = use_cache
_UpperCAmelCase = layerdrop
_UpperCAmelCase = activation_dropout
super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) | 32 | 1 |
import sys
from collections import defaultdict
class __UpperCamelCase :
def __init__( self ):
_UpperCAmelCase = []
def UpperCamelCase( self , _UpperCamelCase ):
return self.node_position[vertex]
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = pos
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
_UpperCAmelCase = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
_UpperCAmelCase = 2 * start + 1
else:
_UpperCAmelCase = 2 * start + 2
if heap[smallest_child] < heap[start]:
_UpperCAmelCase , _UpperCAmelCase = heap[smallest_child], positions[smallest_child]
_UpperCAmelCase , _UpperCAmelCase = (
heap[start],
positions[start],
)
_UpperCAmelCase , _UpperCAmelCase = temp, tempa
_UpperCAmelCase = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , _UpperCamelCase )
self.top_to_bottom(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = position[index]
while index != 0:
_UpperCAmelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
_UpperCAmelCase = heap[parent]
_UpperCAmelCase = position[parent]
self.set_position(position[parent] , _UpperCamelCase )
else:
_UpperCAmelCase = val
_UpperCAmelCase = temp
self.set_position(_UpperCamelCase , _UpperCamelCase )
break
_UpperCAmelCase = parent
else:
_UpperCAmelCase = val
_UpperCAmelCase = temp
self.set_position(_UpperCamelCase , 0 )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = len(_UpperCamelCase ) // 2 - 1
for i in range(_UpperCamelCase , -1 , -1 ):
self.top_to_bottom(_UpperCamelCase , _UpperCamelCase , len(_UpperCamelCase ) , _UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = positions[0]
_UpperCAmelCase = sys.maxsize
self.top_to_bottom(_UpperCamelCase , 0 , len(_UpperCamelCase ) , _UpperCamelCase )
return temp
def A__ ( SCREAMING_SNAKE_CASE_ : Dict ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = Heap()
_UpperCAmelCase = [0] * len(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = [-1] * len(SCREAMING_SNAKE_CASE_ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
_UpperCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex
_UpperCAmelCase = []
for vertex in range(len(SCREAMING_SNAKE_CASE_ ) ):
distance_tv.append(sys.maxsize )
positions.append(SCREAMING_SNAKE_CASE_ )
heap.node_position.append(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = []
_UpperCAmelCase = 1
_UpperCAmelCase = sys.maxsize
for neighbor, distance in adjacency_list[0]:
_UpperCAmelCase = 0
_UpperCAmelCase = distance
heap.heapify(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
for _ in range(1 , len(SCREAMING_SNAKE_CASE_ ) ):
_UpperCAmelCase = heap.delete_minimum(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
_UpperCAmelCase = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE_ )]
):
_UpperCAmelCase = distance
heap.bottom_to_top(
SCREAMING_SNAKE_CASE_ , heap.get_position(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
UpperCAmelCase_ = int(input("Enter number of edges: ").strip())
UpperCAmelCase_ = defaultdict(list)
for _ in range(edges_number):
UpperCAmelCase_ = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list)) | 32 |
from typing import List
from .keymap import KEYMAP, get_character
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]:
"""simple docstring"""
def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ):
_UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] )
handle += [key]
setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ )
return func
return decorator
def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict:
"""simple docstring"""
def decorator(SCREAMING_SNAKE_CASE_ : Any ):
_UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] )
handle += keys
setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ )
return func
return decorator
class __UpperCamelCase ( A__ ):
def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
if not hasattr(_UpperCamelCase , '''key_handler''' ):
setattr(_UpperCamelCase , '''key_handler''' , {} )
setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input )
for value in attrs.values():
_UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] )
for key in handled_keys:
_UpperCAmelCase = value
return new_cls
@staticmethod
def UpperCamelCase( cls ):
_UpperCAmelCase = get_character()
if char != KEYMAP["undefined"]:
_UpperCAmelCase = ord(_UpperCamelCase )
_UpperCAmelCase = cls.key_handler.get(_UpperCamelCase )
if handler:
_UpperCAmelCase = char
return handler(cls )
else:
return None
def A__ ( cls : Union[str, Any] ) -> Any:
"""simple docstring"""
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() ) | 32 | 1 |
from __future__ import annotations
def A__ ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ) -> float:
"""simple docstring"""
if days_between_payments <= 0:
raise ValueError('''days_between_payments must be > 0''' )
if daily_interest_rate < 0:
raise ValueError('''daily_interest_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * daily_interest_rate * days_between_payments
def A__ ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ) -> float:
"""simple docstring"""
if number_of_compounding_periods <= 0:
raise ValueError('''number_of_compounding_periods must be > 0''' )
if nominal_annual_interest_rate_percentage < 0:
raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * (
(1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods
- 1
)
def A__ ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ) -> float:
"""simple docstring"""
if number_of_years <= 0:
raise ValueError('''number_of_years must be > 0''' )
if nominal_annual_percentage_rate < 0:
raise ValueError('''nominal_annual_percentage_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return compound_interest(
SCREAMING_SNAKE_CASE_ , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 32 |
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __UpperCamelCase :
def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=24 , _UpperCamelCase=2 , _UpperCamelCase=6 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=None , _UpperCamelCase=1000 , ):
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_input_mask
_UpperCAmelCase = use_token_type_ids
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = type_sequence_label_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = num_labels
_UpperCAmelCase = scope
_UpperCAmelCase = range_bbox
def UpperCamelCase( self ):
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
_UpperCAmelCase = bbox[i, j, 3]
_UpperCAmelCase = bbox[i, j, 1]
_UpperCAmelCase = t
if bbox[i, j, 2] < bbox[i, j, 0]:
_UpperCAmelCase = bbox[i, j, 2]
_UpperCAmelCase = bbox[i, j, 0]
_UpperCAmelCase = t
_UpperCAmelCase = None
if self.use_input_mask:
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
_UpperCAmelCase = None
if self.use_token_type_ids:
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCAmelCase = None
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCAmelCase = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCamelCase( self ):
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ):
_UpperCAmelCase = LiltModel(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase )
_UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase )
_UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ):
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = LiltForTokenClassification(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(
_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ):
_UpperCAmelCase = LiltForQuestionAnswering(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(
_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase( self ):
_UpperCAmelCase = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) = config_and_inputs
_UpperCAmelCase = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ):
__A : Dict = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__A : Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__A : List[Any] = False
__A : Optional[int] = False
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
return True
def UpperCamelCase( self ):
_UpperCAmelCase = LiltModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 )
def UpperCamelCase( self ):
self.config_tester.run_common_tests()
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_UpperCAmelCase = type
self.model_tester.create_and_check_model(*_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase )
@slow
def UpperCamelCase( self ):
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase = LiltModel.from_pretrained(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase )
@require_torch
@slow
class __UpperCamelCase ( unittest.TestCase ):
def UpperCamelCase( self ):
_UpperCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_UpperCamelCase )
_UpperCAmelCase = torch.tensor([[1, 2]] , device=_UpperCamelCase )
_UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase )
# forward pass
with torch.no_grad():
_UpperCAmelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase )
_UpperCAmelCase = torch.Size([1, 2, 768] )
_UpperCAmelCase = torch.tensor(
[[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_UpperCamelCase , )
self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) ) | 32 | 1 |
UpperCAmelCase_ = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []}
UpperCAmelCase_ = ["a", "b", "c", "d", "e"]
def A__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> Any:
"""simple docstring"""
_UpperCAmelCase = start
# add current to visited
visited.append(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = edges[current]
for neighbor in neighbors:
# if neighbor not in visited, visit
if neighbor not in visited:
_UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# if all neighbors visited add current to sort
sort.append(SCREAMING_SNAKE_CASE_ )
# if all vertices haven't been visited select a new one to visit
if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ):
for vertice in vertices:
if vertice not in visited:
_UpperCAmelCase = topological_sort(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# return sort
return sort
if __name__ == "__main__":
UpperCAmelCase_ = topological_sort("a", [], [])
print(sort) | 32 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json",
"RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json",
"RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json",
"RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json",
"RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json",
"RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json",
"RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json",
"RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json",
"RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json",
"RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json",
}
class __UpperCamelCase ( A__ ):
__A : Tuple = """rwkv"""
__A : Any = {"""max_position_embeddings""": """context_length"""}
def __init__( self , _UpperCamelCase=50277 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ):
_UpperCAmelCase = vocab_size
_UpperCAmelCase = context_length
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size
_UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size
_UpperCAmelCase = layer_norm_epsilon
_UpperCAmelCase = rescale_every
_UpperCAmelCase = use_cache
_UpperCAmelCase = bos_token_id
_UpperCAmelCase = eos_token_id
super().__init__(
tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) | 32 | 1 |
def A__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = [0 for i in range(r + 1 )]
# nc0 = 1
_UpperCAmelCase = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
_UpperCAmelCase = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5)) | 32 |
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str:
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
_UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) )
return "0b" + "".join(
str(int(char_a == '''1''' and char_b == '''1''' ) )
for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 32 | 1 |
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> int:
"""simple docstring"""
_UpperCAmelCase = R'''\w+[.]\d+'''
_UpperCAmelCase = re.findall(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
for pat in pats:
_UpperCAmelCase = key.replace(SCREAMING_SNAKE_CASE_ , '''_'''.join(pat.split('''.''' ) ) )
return key
def A__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = pt_tuple_key[:-1] + ('''scale''',)
if (
any('''norm''' in str_ for str_ in pt_tuple_key )
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
_UpperCAmelCase = pt_tuple_key[:-1] + ('''scale''',)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
_UpperCAmelCase = pt_tuple_key[:-1] + ('''scale''',)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
_UpperCAmelCase = pt_tuple_key[:-1] + ('''embedding''',)
return renamed_pt_tuple_key, pt_tensor
# conv layer
_UpperCAmelCase = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
_UpperCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
_UpperCAmelCase = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight":
_UpperCAmelCase = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
_UpperCAmelCase = pt_tuple_key[:-1] + ('''weight''',)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
_UpperCAmelCase = pt_tuple_key[:-1] + ('''bias''',)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def A__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict=42 ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
_UpperCAmelCase = flax_model.init_weights(PRNGKey(SCREAMING_SNAKE_CASE_ ) )
_UpperCAmelCase = flatten_dict(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
_UpperCAmelCase = rename_key(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = tuple(renamed_pt_key.split('''.''' ) )
# Correctly rename weight parameters
_UpperCAmelCase , _UpperCAmelCase = rename_key_and_reshape_tensor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '''
F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
# also add unexpected weight so that warning is thrown
_UpperCAmelCase = jnp.asarray(SCREAMING_SNAKE_CASE_ )
return unflatten_dict(SCREAMING_SNAKE_CASE_ ) | 32 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
}
class __UpperCamelCase ( A__ ):
__A : Dict = """falcon"""
__A : Any = ["""past_key_values"""]
def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ):
_UpperCAmelCase = vocab_size
# Backward compatibility with n_embed kwarg
_UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase )
_UpperCAmelCase = hidden_size if n_embed is None else n_embed
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = layer_norm_epsilon
_UpperCAmelCase = initializer_range
_UpperCAmelCase = use_cache
_UpperCAmelCase = hidden_dropout
_UpperCAmelCase = attention_dropout
_UpperCAmelCase = bos_token_id
_UpperCAmelCase = eos_token_id
_UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads
_UpperCAmelCase = alibi
_UpperCAmelCase = new_decoder_architecture
_UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True
_UpperCAmelCase = parallel_attn
_UpperCAmelCase = bias
super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
@property
def UpperCamelCase( self ):
return self.hidden_size // self.num_attention_heads
@property
def UpperCamelCase( self ):
return not self.alibi | 32 | 1 |
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def A__ ( SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> int:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = emb.weight.shape
_UpperCAmelCase = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = emb.weight.data
return lin_layer
def A__ ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Any:
"""simple docstring"""
_UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )
_UpperCAmelCase = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model''']
_UpperCAmelCase = mam_aaa['''model''']
remove_ignore_keys_(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = state_dict['''encoder.embed_tokens.weight'''].shape[0]
_UpperCAmelCase = MaMaaaConfig(
vocab_size=SCREAMING_SNAKE_CASE_ , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , )
_UpperCAmelCase = state_dict['''decoder.embed_tokens.weight''']
_UpperCAmelCase = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE_ )
model.model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.")
parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
UpperCAmelCase_ = parser.parse_args()
UpperCAmelCase_ = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path) | 32 |
from math import sqrt
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_00_01 ) -> int:
"""simple docstring"""
_UpperCAmelCase = 0
_UpperCAmelCase = 1
while count != nth and number < 3:
number += 1
if is_prime(SCREAMING_SNAKE_CASE_ ):
count += 1
while count != nth:
number += 2
if is_prime(SCREAMING_SNAKE_CASE_ ):
count += 1
return number
if __name__ == "__main__":
print(f'''{solution() = }''') | 32 | 1 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json",
# See all WavLM models at https://huggingface.co/models?filter=wavlm
}
class __UpperCamelCase ( A__ ):
__A : Union[str, Any] = """wavlm"""
def __init__( self , _UpperCamelCase=32 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.0 , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-5 , _UpperCamelCase="group" , _UpperCamelCase="gelu" , _UpperCamelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCamelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCamelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCamelCase=False , _UpperCamelCase=128 , _UpperCamelCase=16 , _UpperCamelCase=320 , _UpperCamelCase=800 , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=0.05 , _UpperCamelCase=10 , _UpperCamelCase=2 , _UpperCamelCase=0.0 , _UpperCamelCase=10 , _UpperCamelCase=320 , _UpperCamelCase=2 , _UpperCamelCase=0.1 , _UpperCamelCase=100 , _UpperCamelCase=256 , _UpperCamelCase=256 , _UpperCamelCase=0.1 , _UpperCamelCase="mean" , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=256 , _UpperCamelCase=(512, 512, 512, 512, 1500) , _UpperCamelCase=(5, 3, 3, 1, 1) , _UpperCamelCase=(1, 2, 3, 1, 1) , _UpperCamelCase=512 , _UpperCamelCase=80 , _UpperCamelCase=0 , _UpperCamelCase=1 , _UpperCamelCase=2 , _UpperCamelCase=False , _UpperCamelCase=3 , _UpperCamelCase=2 , _UpperCamelCase=3 , _UpperCamelCase=None , **_UpperCamelCase , ):
super().__init__(**_UpperCamelCase , pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase )
_UpperCAmelCase = hidden_size
_UpperCAmelCase = feat_extract_norm
_UpperCAmelCase = feat_extract_activation
_UpperCAmelCase = list(_UpperCamelCase )
_UpperCAmelCase = list(_UpperCamelCase )
_UpperCAmelCase = list(_UpperCamelCase )
_UpperCAmelCase = conv_bias
_UpperCAmelCase = num_buckets
_UpperCAmelCase = max_bucket_distance
_UpperCAmelCase = num_conv_pos_embeddings
_UpperCAmelCase = num_conv_pos_embedding_groups
_UpperCAmelCase = len(self.conv_dim )
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = hidden_dropout
_UpperCAmelCase = attention_dropout
_UpperCAmelCase = activation_dropout
_UpperCAmelCase = feat_proj_dropout
_UpperCAmelCase = final_dropout
_UpperCAmelCase = layerdrop
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = initializer_range
_UpperCAmelCase = num_ctc_classes
_UpperCAmelCase = vocab_size
_UpperCAmelCase = do_stable_layer_norm
_UpperCAmelCase = use_weighted_layer_sum
_UpperCAmelCase = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_UpperCAmelCase = apply_spec_augment
_UpperCAmelCase = mask_time_prob
_UpperCAmelCase = mask_time_length
_UpperCAmelCase = mask_time_min_masks
_UpperCAmelCase = mask_feature_prob
_UpperCAmelCase = mask_feature_length
# parameters for pretraining with codevector quantized representations
_UpperCAmelCase = num_codevectors_per_group
_UpperCAmelCase = num_codevector_groups
_UpperCAmelCase = contrastive_logits_temperature
_UpperCAmelCase = num_negatives
_UpperCAmelCase = codevector_dim
_UpperCAmelCase = proj_codevector_dim
_UpperCAmelCase = diversity_loss_weight
# ctc loss
_UpperCAmelCase = ctc_loss_reduction
_UpperCAmelCase = ctc_zero_infinity
# adapter
_UpperCAmelCase = add_adapter
_UpperCAmelCase = adapter_kernel_size
_UpperCAmelCase = adapter_stride
_UpperCAmelCase = num_adapter_layers
_UpperCAmelCase = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_UpperCAmelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_UpperCAmelCase = list(_UpperCamelCase )
_UpperCAmelCase = list(_UpperCamelCase )
_UpperCAmelCase = list(_UpperCamelCase )
_UpperCAmelCase = xvector_output_dim
@property
def UpperCamelCase( self ):
return functools.reduce(operator.mul , self.conv_stride , 1 ) | 32 |
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool:
"""simple docstring"""
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
_UpperCAmelCase = F'''Input value of [number={number}] must be an integer'''
raise TypeError(SCREAMING_SNAKE_CASE_ )
if number < 0:
return False
_UpperCAmelCase = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod() | 32 | 1 |
import re
import string
import numpy as np
import datasets
UpperCAmelCase_ = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n"
UpperCAmelCase_ = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n"
UpperCAmelCase_ = "\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __UpperCamelCase ( datasets.Metric ):
def UpperCamelCase( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , reference_urls=[] , )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=False , ):
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
_UpperCAmelCase = np.array([re.sub(_UpperCamelCase , '''''' , _UpperCamelCase ) for x in predictions] )
_UpperCAmelCase = np.array([re.sub(_UpperCamelCase , '''''' , _UpperCamelCase ) for x in references] )
else:
_UpperCAmelCase = np.asarray(_UpperCamelCase )
_UpperCAmelCase = np.asarray(_UpperCamelCase )
if ignore_case:
_UpperCAmelCase = np.char.lower(_UpperCamelCase )
_UpperCAmelCase = np.char.lower(_UpperCamelCase )
if ignore_punctuation:
_UpperCAmelCase = string.punctuation.maketrans('''''' , '''''' , string.punctuation )
_UpperCAmelCase = np.char.translate(_UpperCamelCase , table=_UpperCamelCase )
_UpperCAmelCase = np.char.translate(_UpperCamelCase , table=_UpperCamelCase )
if ignore_numbers:
_UpperCAmelCase = string.digits.maketrans('''''' , '''''' , string.digits )
_UpperCAmelCase = np.char.translate(_UpperCamelCase , table=_UpperCamelCase )
_UpperCAmelCase = np.char.translate(_UpperCamelCase , table=_UpperCamelCase )
_UpperCAmelCase = predictions == references
return {"exact_match": np.mean(_UpperCamelCase ) * 100} | 32 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=A__ )
class __UpperCamelCase ( A__ ):
__A : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} )
__A : ClassVar[Features] = Features({"""text""": Value("""string""" )} )
__A : ClassVar[Features] = Features({} )
__A : str = "text"
@property
def UpperCamelCase( self ):
return {self.text_column: "text"} | 32 | 1 |
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
UpperCAmelCase_ = "\\n Text data.\n Second line of data."
UpperCAmelCase_ = "file"
@pytest.fixture(scope='''session''' )
def A__ ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''')
_UpperCAmelCase = bytes(SCREAMING_SNAKE_CASE_ , '''utf-8''' )
with zstd.open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as f:
f.write(SCREAMING_SNAKE_CASE_ )
return path
@pytest.fixture
def A__ ( SCREAMING_SNAKE_CASE_ : Tuple ) -> Optional[Any]:
"""simple docstring"""
with open(os.path.join(tmpfs.local_root_dir , SCREAMING_SNAKE_CASE_ ) , '''w''' ) as f:
f.write(SCREAMING_SNAKE_CASE_ )
return FILE_PATH
@pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] )
def A__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any ) -> str:
"""simple docstring"""
_UpperCAmelCase = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path}
_UpperCAmelCase = input_paths[compression_format]
_UpperCAmelCase = tmp_path / '''cache'''
_UpperCAmelCase = DownloadConfig(cache_dir=SCREAMING_SNAKE_CASE_ , extract_compressed_file=SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ )
with open(SCREAMING_SNAKE_CASE_ ) as f:
_UpperCAmelCase = f.read()
with open(SCREAMING_SNAKE_CASE_ ) as f:
_UpperCAmelCase = f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize('''default_extracted''' , [True, False] )
@pytest.mark.parametrize('''default_cache_dir''' , [True, False] )
def A__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = '''custom_cache'''
_UpperCAmelCase = '''custom_extracted_dir'''
_UpperCAmelCase = tmp_path / '''custom_extracted_path'''
if default_extracted:
_UpperCAmelCase = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''')
else:
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , SCREAMING_SNAKE_CASE_ )
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(SCREAMING_SNAKE_CASE_ ) )
_UpperCAmelCase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
_UpperCAmelCase = xz_file
_UpperCAmelCase = (
DownloadConfig(extract_compressed_file=SCREAMING_SNAKE_CASE_ )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=SCREAMING_SNAKE_CASE_ )
)
_UpperCAmelCase = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ )
assert Path(SCREAMING_SNAKE_CASE_ ).parent.parts[-2:] == expected
def A__ ( SCREAMING_SNAKE_CASE_ : Any ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = str(Path(SCREAMING_SNAKE_CASE_ ).resolve() )
assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file
# relative path
_UpperCAmelCase = str(Path(SCREAMING_SNAKE_CASE_ ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file
def A__ ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = str(tmp_path.resolve() / '''__missing_file__.txt''' )
with pytest.raises(SCREAMING_SNAKE_CASE_ ):
cached_path(SCREAMING_SNAKE_CASE_ )
# relative path
_UpperCAmelCase = '''./__missing_file__.txt'''
with pytest.raises(SCREAMING_SNAKE_CASE_ ):
cached_path(SCREAMING_SNAKE_CASE_ )
def A__ ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Any:
"""simple docstring"""
_UpperCAmelCase = get_from_cache(F'''tmp://{tmpfs_file}''' )
with open(SCREAMING_SNAKE_CASE_ ) as f:
_UpperCAmelCase = f.read()
assert output_file_content == FILE_CONTENT
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , SCREAMING_SNAKE_CASE_ )
def A__ ( ) -> Any:
"""simple docstring"""
with pytest.raises(SCREAMING_SNAKE_CASE_ ):
cached_path('''https://huggingface.co''' )
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , SCREAMING_SNAKE_CASE_ )
def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html'''
with pytest.raises(SCREAMING_SNAKE_CASE_ ):
http_get('''https://huggingface.co''' , temp_file=SCREAMING_SNAKE_CASE_ )
with pytest.raises(SCREAMING_SNAKE_CASE_ ):
http_head('''https://huggingface.co''' )
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , SCREAMING_SNAKE_CASE_ )
def A__ ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html'''
with pytest.raises(SCREAMING_SNAKE_CASE_ ):
ftp_get('''ftp://huggingface.co''' , temp_file=SCREAMING_SNAKE_CASE_ )
with pytest.raises(SCREAMING_SNAKE_CASE_ ):
ftp_head('''ftp://huggingface.co''' )
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , SCREAMING_SNAKE_CASE_ )
def A__ ( SCREAMING_SNAKE_CASE_ : Tuple ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.html'''
with pytest.raises(SCREAMING_SNAKE_CASE_ ):
fsspec_get('''s3://huggingface.co''' , temp_file=SCREAMING_SNAKE_CASE_ )
with pytest.raises(SCREAMING_SNAKE_CASE_ ):
fsspec_head('''s3://huggingface.co''' ) | 32 |
import os
import re
import warnings
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
if TYPE_CHECKING:
from ...tokenization_utils_base import TextInput
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {"vocab_file": "spiece.model"}
UpperCAmelCase_ = {
"vocab_file": {
"t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model",
"t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model",
"t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model",
}
}
# TODO(PVP) - this should be removed in Transformers v5
UpperCAmelCase_ = {
"t5-small": 5_12,
"t5-base": 5_12,
"t5-large": 5_12,
"t5-3b": 5_12,
"t5-11b": 5_12,
}
UpperCAmelCase_ = "▁"
class __UpperCamelCase ( A__ ):
__A : Any = VOCAB_FILES_NAMES
__A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
__A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__A : Tuple = ["""input_ids""", """attention_mask"""]
def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase=100 , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=True , **_UpperCamelCase , ):
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
_UpperCAmelCase = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
_UpperCAmelCase = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'''
''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids'''
''' tokens''' )
if legacy:
logger.warning_once(
f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to'''
''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' )
_UpperCAmelCase = legacy
_UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , )
_UpperCAmelCase = vocab_file
_UpperCAmelCase = extra_ids
_UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCamelCase )
@staticmethod
def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes:
_UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
'''This tokenizer was incorrectly instantiated with a model max length of'''
f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this'''
''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with'''
''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on'''
f''' {pretrained_model_name_or_path} automatically truncating your input to'''
f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences'''
f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with'''
''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please'''
''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , )
return max_model_length
@property
def UpperCamelCase( self ):
return self.sp_model.get_piece_size() + self._extra_ids
def UpperCamelCase( self ):
_UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(_UpperCamelCase )) + [1]
return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1]
def UpperCamelCase( self ):
return list(
set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) )
def UpperCamelCase( self ):
return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()]
def UpperCamelCase( self , _UpperCamelCase ):
if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'''
''' eos tokens being added.''' )
return token_ids
else:
return token_ids + [self.eos_token_id]
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ):
_UpperCAmelCase = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ):
_UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase )
if token_ids_a is None:
return token_ids_a
else:
_UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase )
return token_ids_a + token_ids_a
def __getstate__( self ):
_UpperCAmelCase = self.__dict__.copy()
_UpperCAmelCase = None
return state
def __setstate__( self , _UpperCamelCase ):
_UpperCAmelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_UpperCAmelCase = {}
_UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ):
# Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at
# the beginning of the text
if not self.legacy:
_UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' )
return super().tokenize(_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ):
if not self.legacy:
_UpperCAmelCase = text.startswith(_UpperCamelCase )
if is_first:
_UpperCAmelCase = text[1:]
_UpperCAmelCase = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase )
if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ):
_UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:]
return tokens
def UpperCamelCase( self , _UpperCamelCase ):
if token.startswith('''<extra_id_''' ):
_UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase )
_UpperCAmelCase = int(match.group(1 ) )
return self.vocab_size - num - 1
return self.sp_model.piece_to_id(_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase ):
if index < self.sp_model.get_piece_size():
_UpperCAmelCase = self.sp_model.IdToPiece(_UpperCamelCase )
else:
_UpperCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>'''
return token
def UpperCamelCase( self , _UpperCamelCase ):
_UpperCAmelCase = []
_UpperCAmelCase = ''''''
_UpperCAmelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_UpperCamelCase ) + token
_UpperCAmelCase = True
_UpperCAmelCase = []
else:
current_sub_tokens.append(_UpperCamelCase )
_UpperCAmelCase = False
out_string += self.sp_model.decode(_UpperCamelCase )
return out_string.strip()
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ):
if not os.path.isdir(_UpperCamelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_UpperCAmelCase = os.path.join(
_UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCamelCase , '''wb''' ) as fi:
_UpperCAmelCase = self.sp_model.serialized_model_proto()
fi.write(_UpperCamelCase )
return (out_vocab_file,) | 32 | 1 |
from collections import defaultdict
from pathlib import Path
import pandas as pd
from rouge_cli import calculate_rouge_path
from utils import calculate_rouge
UpperCAmelCase_ = [
"Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the"
" final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe"
" depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.",
"The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal"
" accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's"
" founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the"
" body.",
"Amnesty International releases its annual report on the death penalty. The report catalogs the use of"
" state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the"
" world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital"
" punishment.",
]
UpperCAmelCase_ = [
"Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ."
" Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz"
" had informed his Lufthansa training school of an episode of severe depression, airline says .",
"Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ."
" Israel and the United States opposed the move, which could open the door to war crimes investigations against"
" Israelis .",
"Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to"
" death . Organization claims that governments around the world are using the threat of terrorism to advance"
" executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death"
" sentences up by 28% .",
]
def A__ ( ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bootstrap_aggregation=SCREAMING_SNAKE_CASE_ , rouge_keys=['''rouge2''', '''rougeL'''] )
assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bootstrap_aggregation=SCREAMING_SNAKE_CASE_ , rouge_keys=['''rouge2'''] )
assert (
pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean()
== pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean()
)
def A__ ( ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = '''rougeLsum'''
_UpperCAmelCase = calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , newline_sep=SCREAMING_SNAKE_CASE_ , rouge_keys=[k] )[k]
_UpperCAmelCase = calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , newline_sep=SCREAMING_SNAKE_CASE_ , rouge_keys=[k] )[k]
assert score > score_no_sep
def A__ ( ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = ['''rouge1''', '''rouge2''', '''rougeL''']
_UpperCAmelCase = calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , newline_sep=SCREAMING_SNAKE_CASE_ , rouge_keys=SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , newline_sep=SCREAMING_SNAKE_CASE_ , rouge_keys=SCREAMING_SNAKE_CASE_ )
assert score_sep == score_no_sep
def A__ ( ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = [
'''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''',
]
_UpperCAmelCase = [
'''Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of'''
''' the final seconds on board Flight 9525.''',
]
assert calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , newline_sep=SCREAMING_SNAKE_CASE_ ) == calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , newline_sep=SCREAMING_SNAKE_CASE_ )
def A__ ( ) -> int:
"""simple docstring"""
_UpperCAmelCase = [
'''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" '''
]
_UpperCAmelCase = [
''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .'''
]
_UpperCAmelCase = calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rouge_keys=['''rougeLsum'''] , newline_sep=SCREAMING_SNAKE_CASE_ )['''rougeLsum''']
_UpperCAmelCase = calculate_rouge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rouge_keys=['''rougeLsum'''] )['''rougeLsum''']
assert new_score > prev_score
def A__ ( ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = Path('''examples/seq2seq/test_data/wmt_en_ro''' )
_UpperCAmelCase = calculate_rouge_path(data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) )
assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = calculate_rouge_path(
data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) , bootstrap_aggregation=SCREAMING_SNAKE_CASE_ )
assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) | 32 |
from __future__ import annotations
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool:
"""simple docstring"""
_UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ )
return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' )
def A__ ( ) -> int | None:
"""simple docstring"""
for base_num in range(99_99 , 49_99 , -1 ):
_UpperCAmelCase = 10_00_02 * base_num
if is_9_pandigital(SCREAMING_SNAKE_CASE_ ):
return candidate
for base_num in range(3_33 , 99 , -1 ):
_UpperCAmelCase = 1_00_20_03 * base_num
if is_9_pandigital(SCREAMING_SNAKE_CASE_ ):
return candidate
return None
if __name__ == "__main__":
print(f'''{solution() = }''') | 32 | 1 |
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def A__ ( SCREAMING_SNAKE_CASE_ : Dict ) -> Any:
"""simple docstring"""
if (
(cp >= 0x4_e00 and cp <= 0x9_fff)
or (cp >= 0x3_400 and cp <= 0x4_dbf) #
or (cp >= 0x20_000 and cp <= 0x2a_6df) #
or (cp >= 0x2a_700 and cp <= 0x2b_73f) #
or (cp >= 0x2b_740 and cp <= 0x2b_81f) #
or (cp >= 0x2b_820 and cp <= 0x2c_eaf) #
or (cp >= 0xf_900 and cp <= 0xf_aff)
or (cp >= 0x2f_800 and cp <= 0x2f_a1f) #
): #
return True
return False
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
for char in word:
_UpperCAmelCase = ord(SCREAMING_SNAKE_CASE_ )
if not _is_chinese_char(SCREAMING_SNAKE_CASE_ ):
return 0
return 1
def A__ ( SCREAMING_SNAKE_CASE_ : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase = set()
for token in tokens:
_UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) > 1 and is_chinese(SCREAMING_SNAKE_CASE_ )
if chinese_word:
word_set.add(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = list(SCREAMING_SNAKE_CASE_ )
return word_list
def A__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : set() ) -> Tuple:
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
_UpperCAmelCase = max([len(SCREAMING_SNAKE_CASE_ ) for w in chinese_word_set] )
_UpperCAmelCase = bert_tokens
_UpperCAmelCase , _UpperCAmelCase = 0, len(SCREAMING_SNAKE_CASE_ )
while start < end:
_UpperCAmelCase = True
if is_chinese(bert_word[start] ):
_UpperCAmelCase = min(end - start , SCREAMING_SNAKE_CASE_ )
for i in range(SCREAMING_SNAKE_CASE_ , 1 , -1 ):
_UpperCAmelCase = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
_UpperCAmelCase = '''##''' + bert_word[j]
_UpperCAmelCase = start + i
_UpperCAmelCase = False
break
if single_word:
start += 1
return bert_word
def A__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : LTP , SCREAMING_SNAKE_CASE_ : BertTokenizer ) -> str:
"""simple docstring"""
_UpperCAmelCase = []
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 1_00 ):
_UpperCAmelCase = ltp_tokenizer.pipeline(lines[i : i + 1_00] , tasks=['''cws'''] ).cws
_UpperCAmelCase = [get_chinese_word(SCREAMING_SNAKE_CASE_ ) for r in res]
ltp_res.extend(SCREAMING_SNAKE_CASE_ )
assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = []
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 1_00 ):
_UpperCAmelCase = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=5_12 )
bert_res.extend(res['''input_ids'''] )
assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = []
for input_ids, chinese_word in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
_UpperCAmelCase = []
for id in input_ids:
_UpperCAmelCase = bert_tokenizer._convert_id_to_token(SCREAMING_SNAKE_CASE_ )
input_tokens.append(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = add_sub_symbol(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(SCREAMING_SNAKE_CASE_ ):
if token[:2] == "##":
_UpperCAmelCase = token[2:]
# save chinese tokens' pos
if len(SCREAMING_SNAKE_CASE_ ) == 1 and _is_chinese_char(ord(SCREAMING_SNAKE_CASE_ ) ):
ref_id.append(SCREAMING_SNAKE_CASE_ )
ref_ids.append(SCREAMING_SNAKE_CASE_ )
assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ )
return ref_ids
def A__ ( SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict:
"""simple docstring"""
with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f:
_UpperCAmelCase = f.readlines()
_UpperCAmelCase = [line.strip() for line in data if len(SCREAMING_SNAKE_CASE_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
_UpperCAmelCase = LTP(args.ltp ) # faster in GPU device
_UpperCAmelCase = BertTokenizer.from_pretrained(args.bert )
_UpperCAmelCase = prepare_ref(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f:
_UpperCAmelCase = [json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' for ref in ref_ids]
f.writelines(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser(description="prepare_chinese_ref")
parser.add_argument(
"--file_name",
required=False,
type=str,
default="./resources/chinese-demo.txt",
help="file need process, same as training data in lm",
)
parser.add_argument(
"--ltp",
required=False,
type=str,
default="./resources/ltp",
help="resources for LTP tokenizer, usually a path",
)
parser.add_argument(
"--bert",
required=False,
type=str,
default="./resources/robert",
help="resources for Bert tokenizer",
)
parser.add_argument(
"--save_path",
required=False,
type=str,
default="./resources/ref.txt",
help="path to save res",
)
UpperCAmelCase_ = parser.parse_args()
main(args) | 32 |
import numpy as np
def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray:
"""simple docstring"""
return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 32 | 1 |
from manim import *
class __UpperCamelCase ( A__ ):
def UpperCamelCase( self ):
_UpperCAmelCase = Rectangle(height=0.5 , width=0.5 )
_UpperCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_UpperCAmelCase = Rectangle(height=0.25 , width=0.25 )
_UpperCAmelCase = [mem.copy() for i in range(6 )]
_UpperCAmelCase = [mem.copy() for i in range(6 )]
_UpperCAmelCase = VGroup(*_UpperCamelCase ).arrange(_UpperCamelCase , buff=0 )
_UpperCAmelCase = VGroup(*_UpperCamelCase ).arrange(_UpperCamelCase , buff=0 )
_UpperCAmelCase = VGroup(_UpperCamelCase , _UpperCamelCase ).arrange(_UpperCamelCase , buff=0 )
_UpperCAmelCase = Text('''CPU''' , font_size=24 )
_UpperCAmelCase = Group(_UpperCamelCase , _UpperCamelCase ).arrange(_UpperCamelCase , buff=0.5 , aligned_edge=_UpperCamelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_UpperCamelCase )
_UpperCAmelCase = [mem.copy() for i in range(4 )]
_UpperCAmelCase = VGroup(*_UpperCamelCase ).arrange(_UpperCamelCase , buff=0 )
_UpperCAmelCase = Text('''GPU''' , font_size=24 )
_UpperCAmelCase = Group(_UpperCamelCase , _UpperCamelCase ).arrange(_UpperCamelCase , buff=0.5 , aligned_edge=_UpperCamelCase )
gpu.move_to([-1, -1, 0] )
self.add(_UpperCamelCase )
_UpperCAmelCase = [mem.copy() for i in range(6 )]
_UpperCAmelCase = VGroup(*_UpperCamelCase ).arrange(_UpperCamelCase , buff=0 )
_UpperCAmelCase = Text('''Model''' , font_size=24 )
_UpperCAmelCase = Group(_UpperCamelCase , _UpperCamelCase ).arrange(_UpperCamelCase , buff=0.5 , aligned_edge=_UpperCamelCase )
model.move_to([3, -1.0, 0] )
self.add(_UpperCamelCase )
_UpperCAmelCase = []
_UpperCAmelCase = []
for i, rect in enumerate(_UpperCamelCase ):
_UpperCAmelCase = fill.copy().set_fill(_UpperCamelCase , opacity=0.8 )
target.move_to(_UpperCamelCase )
model_arr.append(_UpperCamelCase )
_UpperCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCamelCase , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(_UpperCamelCase )
self.add(*_UpperCamelCase , *_UpperCamelCase )
_UpperCAmelCase = [meta_mem.copy() for i in range(6 )]
_UpperCAmelCase = [meta_mem.copy() for i in range(6 )]
_UpperCAmelCase = VGroup(*_UpperCamelCase ).arrange(_UpperCamelCase , buff=0 )
_UpperCAmelCase = VGroup(*_UpperCamelCase ).arrange(_UpperCamelCase , buff=0 )
_UpperCAmelCase = VGroup(_UpperCamelCase , _UpperCamelCase ).arrange(_UpperCamelCase , buff=0 )
_UpperCAmelCase = Text('''Disk''' , font_size=24 )
_UpperCAmelCase = Group(_UpperCamelCase , _UpperCamelCase ).arrange(_UpperCamelCase , buff=0.5 , aligned_edge=_UpperCamelCase )
disk.move_to([-4, -1.25, 0] )
self.add(_UpperCamelCase , _UpperCamelCase )
_UpperCAmelCase = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_UpperCAmelCase = MarkupText(
f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(_UpperCamelCase , _UpperCamelCase )
_UpperCAmelCase = MarkupText(
f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(_UpperCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(_UpperCamelCase )
_UpperCAmelCase = MarkupText(
f'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCamelCase ) )
_UpperCAmelCase = Square(0.3 )
input.set_fill(_UpperCamelCase , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , _UpperCamelCase , buff=0.5 )
self.play(Write(_UpperCamelCase ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=_UpperCamelCase , buff=0.02 )
self.play(MoveToTarget(_UpperCamelCase ) )
self.play(FadeOut(_UpperCamelCase ) )
_UpperCAmelCase = Arrow(start=_UpperCamelCase , end=_UpperCamelCase , color=_UpperCamelCase , buff=0.5 )
a.next_to(model_arr[0].get_left() , _UpperCamelCase , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
_UpperCAmelCase = MarkupText(
f'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCamelCase , run_time=3 ) )
_UpperCAmelCase = {'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.02}
self.play(
Write(_UpperCamelCase ) , Circumscribe(model_arr[0] , color=_UpperCamelCase , **_UpperCamelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCamelCase , **_UpperCamelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCamelCase , **_UpperCamelCase ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
_UpperCAmelCase = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCamelCase , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
_UpperCAmelCase = AnimationGroup(
FadeOut(_UpperCamelCase , run_time=0.5 ) , MoveToTarget(_UpperCamelCase , run_time=0.5 ) , FadeIn(_UpperCamelCase , run_time=0.5 ) , lag_ratio=0.2 )
self.play(_UpperCamelCase )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
_UpperCAmelCase = 0.7
self.play(
Circumscribe(model_arr[i] , **_UpperCamelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCamelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCamelCase , **_UpperCamelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCamelCase , **_UpperCamelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCamelCase , **_UpperCamelCase ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=_UpperCamelCase , **_UpperCamelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCamelCase , **_UpperCamelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCamelCase , **_UpperCamelCase ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
_UpperCAmelCase = a_c
_UpperCAmelCase = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(_UpperCamelCase ) , FadeOut(_UpperCamelCase , run_time=0.5 ) , )
_UpperCAmelCase = MarkupText(f'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCamelCase , run_time=3 ) , MoveToTarget(_UpperCamelCase ) )
self.wait() | 32 |
UpperCAmelCase_ = {
"A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.",
"H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.",
"O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-",
"V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----",
"2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...",
"8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.",
":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.",
"?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-",
"(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/"
} # Exclamation mark is not in ITU-R recommendation
# fmt: on
UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()}
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
return " ".join(MORSE_CODE_DICT[char] for char in message.upper() )
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
return "".join(REVERSE_DICT[char] for char in message.split() )
def A__ ( ) -> None:
"""simple docstring"""
_UpperCAmelCase = '''Morse code here!'''
print(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ )
print(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ )
print(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
main() | 32 | 1 |
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
UpperCAmelCase_ = (3, 9, -11, 0, 7, 5, 1, -1)
UpperCAmelCase_ = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class __UpperCamelCase :
__A : int
__A : Node | None
class __UpperCamelCase :
def __init__( self , _UpperCamelCase ):
_UpperCAmelCase = None
for i in sorted(_UpperCamelCase , reverse=_UpperCamelCase ):
_UpperCAmelCase = Node(_UpperCamelCase , self.head )
def __iter__( self ):
_UpperCAmelCase = self.head
while node:
yield node.data
_UpperCAmelCase = node.next_node
def __len__( self ):
return sum(1 for _ in self )
def __str__( self ):
return " -> ".join([str(_UpperCamelCase ) for node in self] )
def A__ ( SCREAMING_SNAKE_CASE_ : SortedLinkedList , SCREAMING_SNAKE_CASE_ : SortedLinkedList ) -> SortedLinkedList:
"""simple docstring"""
return SortedLinkedList(list(SCREAMING_SNAKE_CASE_ ) + list(SCREAMING_SNAKE_CASE_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even))) | 32 |
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __UpperCamelCase ( A__ , unittest.TestCase ):
__A : Any = DanceDiffusionPipeline
__A : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
__A : Tuple = PipelineTesterMixin.required_optional_params - {
"""callback""",
"""latents""",
"""callback_steps""",
"""output_type""",
"""num_images_per_prompt""",
}
__A : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
__A : List[str] = False
__A : str = False
def UpperCamelCase( self ):
torch.manual_seed(0 )
_UpperCAmelCase = UNetaDModel(
block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , )
_UpperCAmelCase = IPNDMScheduler()
_UpperCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
}
return components
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ):
if str(_UpperCamelCase ).startswith('''mps''' ):
_UpperCAmelCase = torch.manual_seed(_UpperCamelCase )
else:
_UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase )
_UpperCAmelCase = {
'''batch_size''': 1,
'''generator''': generator,
'''num_inference_steps''': 4,
}
return inputs
def UpperCamelCase( self ):
_UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
_UpperCAmelCase = self.get_dummy_components()
_UpperCAmelCase = DanceDiffusionPipeline(**_UpperCamelCase )
_UpperCAmelCase = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase )
_UpperCAmelCase = pipe(**_UpperCamelCase )
_UpperCAmelCase = output.audios
_UpperCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
_UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def UpperCamelCase( self ):
return super().test_save_load_local()
@skip_mps
def UpperCamelCase( self ):
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
@skip_mps
def UpperCamelCase( self ):
return super().test_save_load_optional_components()
@skip_mps
def UpperCamelCase( self ):
return super().test_attention_slicing_forward_pass()
def UpperCamelCase( self ):
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def UpperCamelCase( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase( self ):
_UpperCAmelCase = torch_device
_UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' )
_UpperCAmelCase = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 )
_UpperCAmelCase = output.audios
_UpperCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCamelCase( self ):
_UpperCAmelCase = torch_device
_UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa )
_UpperCAmelCase = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 )
_UpperCAmelCase = output.audios
_UpperCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 | 32 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
UpperCAmelCase_ = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __UpperCamelCase ( A__ ):
__A : Optional[int] = ["""pixel_values"""]
def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = True , **_UpperCamelCase , ):
super().__init__(**_UpperCamelCase )
_UpperCAmelCase = size if size is not None else {'''shortest_edge''': 224}
_UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase )
_UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' )
_UpperCAmelCase = do_resize
_UpperCAmelCase = size
_UpperCAmelCase = resample
_UpperCAmelCase = do_center_crop
_UpperCAmelCase = crop_size
_UpperCAmelCase = do_rescale
_UpperCAmelCase = rescale_factor
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD
_UpperCAmelCase = do_convert_rgb
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = None , **_UpperCamelCase , ):
_UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase )
if "shortest_edge" not in size:
raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
_UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase )
return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ):
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ):
return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ):
return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ):
_UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
_UpperCAmelCase = size if size is not None else self.size
_UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''size''' , default_to_square=_UpperCamelCase )
_UpperCAmelCase = resample if resample is not None else self.resample
_UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
_UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase )
_UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
_UpperCAmelCase = image_std if image_std is not None else self.image_std
_UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_UpperCAmelCase = make_list_of_images(_UpperCamelCase )
if not valid_images(_UpperCamelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_UpperCAmelCase = [convert_to_rgb(_UpperCamelCase ) for image in images]
# All transformations expect numpy arrays.
_UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images]
if do_resize:
_UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images]
if do_center_crop:
_UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images]
if do_rescale:
_UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images]
if do_normalize:
_UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images]
_UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images]
_UpperCAmelCase = {'''pixel_values''': images}
return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase ) | 32 |
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = OrderedDict(
[
# Base model mapping
("albert", "FlaxAlbertModel"),
("bart", "FlaxBartModel"),
("beit", "FlaxBeitModel"),
("bert", "FlaxBertModel"),
("big_bird", "FlaxBigBirdModel"),
("blenderbot", "FlaxBlenderbotModel"),
("blenderbot-small", "FlaxBlenderbotSmallModel"),
("clip", "FlaxCLIPModel"),
("distilbert", "FlaxDistilBertModel"),
("electra", "FlaxElectraModel"),
("gpt-sw3", "FlaxGPT2Model"),
("gpt2", "FlaxGPT2Model"),
("gpt_neo", "FlaxGPTNeoModel"),
("gptj", "FlaxGPTJModel"),
("longt5", "FlaxLongT5Model"),
("marian", "FlaxMarianModel"),
("mbart", "FlaxMBartModel"),
("mt5", "FlaxMT5Model"),
("opt", "FlaxOPTModel"),
("pegasus", "FlaxPegasusModel"),
("regnet", "FlaxRegNetModel"),
("resnet", "FlaxResNetModel"),
("roberta", "FlaxRobertaModel"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"),
("roformer", "FlaxRoFormerModel"),
("t5", "FlaxT5Model"),
("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"),
("vit", "FlaxViTModel"),
("wav2vec2", "FlaxWav2Vec2Model"),
("whisper", "FlaxWhisperModel"),
("xglm", "FlaxXGLMModel"),
("xlm-roberta", "FlaxXLMRobertaModel"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for pre-training mapping
("albert", "FlaxAlbertForPreTraining"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForPreTraining"),
("big_bird", "FlaxBigBirdForPreTraining"),
("electra", "FlaxElectraForPreTraining"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("t5", "FlaxT5ForConditionalGeneration"),
("wav2vec2", "FlaxWav2Vec2ForPreTraining"),
("whisper", "FlaxWhisperForConditionalGeneration"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Masked LM mapping
("albert", "FlaxAlbertForMaskedLM"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForMaskedLM"),
("big_bird", "FlaxBigBirdForMaskedLM"),
("distilbert", "FlaxDistilBertForMaskedLM"),
("electra", "FlaxElectraForMaskedLM"),
("mbart", "FlaxMBartForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
("bart", "FlaxBartForConditionalGeneration"),
("blenderbot", "FlaxBlenderbotForConditionalGeneration"),
("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"),
("encoder-decoder", "FlaxEncoderDecoderModel"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("marian", "FlaxMarianMTModel"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("pegasus", "FlaxPegasusForConditionalGeneration"),
("t5", "FlaxT5ForConditionalGeneration"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Image-classsification
("beit", "FlaxBeitForImageClassification"),
("regnet", "FlaxRegNetForImageClassification"),
("resnet", "FlaxResNetForImageClassification"),
("vit", "FlaxViTForImageClassification"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Causal LM mapping
("bart", "FlaxBartForCausalLM"),
("bert", "FlaxBertForCausalLM"),
("big_bird", "FlaxBigBirdForCausalLM"),
("electra", "FlaxElectraForCausalLM"),
("gpt-sw3", "FlaxGPT2LMHeadModel"),
("gpt2", "FlaxGPT2LMHeadModel"),
("gpt_neo", "FlaxGPTNeoForCausalLM"),
("gptj", "FlaxGPTJForCausalLM"),
("opt", "FlaxOPTForCausalLM"),
("roberta", "FlaxRobertaForCausalLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"),
("xglm", "FlaxXGLMForCausalLM"),
("xlm-roberta", "FlaxXLMRobertaForCausalLM"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Sequence Classification mapping
("albert", "FlaxAlbertForSequenceClassification"),
("bart", "FlaxBartForSequenceClassification"),
("bert", "FlaxBertForSequenceClassification"),
("big_bird", "FlaxBigBirdForSequenceClassification"),
("distilbert", "FlaxDistilBertForSequenceClassification"),
("electra", "FlaxElectraForSequenceClassification"),
("mbart", "FlaxMBartForSequenceClassification"),
("roberta", "FlaxRobertaForSequenceClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"),
("roformer", "FlaxRoFormerForSequenceClassification"),
("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Question Answering mapping
("albert", "FlaxAlbertForQuestionAnswering"),
("bart", "FlaxBartForQuestionAnswering"),
("bert", "FlaxBertForQuestionAnswering"),
("big_bird", "FlaxBigBirdForQuestionAnswering"),
("distilbert", "FlaxDistilBertForQuestionAnswering"),
("electra", "FlaxElectraForQuestionAnswering"),
("mbart", "FlaxMBartForQuestionAnswering"),
("roberta", "FlaxRobertaForQuestionAnswering"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"),
("roformer", "FlaxRoFormerForQuestionAnswering"),
("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Token Classification mapping
("albert", "FlaxAlbertForTokenClassification"),
("bert", "FlaxBertForTokenClassification"),
("big_bird", "FlaxBigBirdForTokenClassification"),
("distilbert", "FlaxDistilBertForTokenClassification"),
("electra", "FlaxElectraForTokenClassification"),
("roberta", "FlaxRobertaForTokenClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"),
("roformer", "FlaxRoFormerForTokenClassification"),
("xlm-roberta", "FlaxXLMRobertaForTokenClassification"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Multiple Choice mapping
("albert", "FlaxAlbertForMultipleChoice"),
("bert", "FlaxBertForMultipleChoice"),
("big_bird", "FlaxBigBirdForMultipleChoice"),
("distilbert", "FlaxDistilBertForMultipleChoice"),
("electra", "FlaxElectraForMultipleChoice"),
("roberta", "FlaxRobertaForMultipleChoice"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"),
("roformer", "FlaxRoFormerForMultipleChoice"),
("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("bert", "FlaxBertForNextSentencePrediction"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"),
("whisper", "FlaxWhisperForConditionalGeneration"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("whisper", "FlaxWhisperForAudioClassification"),
]
)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[str] = FLAX_MODEL_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModel)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc="sequence classification"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc="token classification"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForImageClassification, head_doc="image classification"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling"
) | 32 | 1 |
import re
import tempfile
from pathlib import Path
import pytest
import yaml
from datasets.utils.readme import ReadMe
# @pytest.fixture
# def example_yaml_structure():
UpperCAmelCase_ = yaml.safe_load(
"\\nname: \"\"\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: \"Dataset Card for X\" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: \"Table of Contents\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Dataset Description\"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: \"Dataset Summary\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Supported Tasks and Leaderboards\"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n"
)
UpperCAmelCase_ = {
"name": "root",
"text": "",
"is_empty_text": True,
"subsections": [
{
"name": "Dataset Card for My Dataset",
"text": "",
"is_empty_text": True,
"subsections": [
{"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []},
{
"name": "Dataset Description",
"text": "Some text here.",
"is_empty_text": False,
"subsections": [
{
"name": "Dataset Summary",
"text": "Some text here.",
"is_empty_text": False,
"subsections": [],
},
{
"name": "Supported Tasks and Leaderboards",
"text": "",
"is_empty_text": True,
"subsections": [],
},
{"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []},
],
},
],
}
],
}
UpperCAmelCase_ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
UpperCAmelCase_ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
UpperCAmelCase_ = {
"name": "root",
"text": "",
"is_empty_text": True,
"subsections": [
{
"name": "Dataset Card for My Dataset",
"text": "",
"is_empty_text": True,
"subsections": [
{"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []},
{
"name": "Dataset Description",
"text": "Some text here.",
"is_empty_text": False,
"subsections": [
{
"name": "Dataset Summary",
"text": "Some text here.",
"is_empty_text": False,
"subsections": [
{
"name": "Extra Ignored Subsection",
"text": "",
"is_empty_text": True,
"subsections": [],
}
],
},
{
"name": "Supported Tasks and Leaderboards",
"text": "",
"is_empty_text": True,
"subsections": [],
},
{"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []},
],
},
],
}
],
}
UpperCAmelCase_ = "\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
UpperCAmelCase_ = (
"The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README."
)
UpperCAmelCase_ = "\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
UpperCAmelCase_ = (
"The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README."
)
UpperCAmelCase_ = "\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
UpperCAmelCase_ = "The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README."
UpperCAmelCase_ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
UpperCAmelCase_ = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored)."
UpperCAmelCase_ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n"
UpperCAmelCase_ = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'."
UpperCAmelCase_ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n"
UpperCAmelCase_ = "The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`."
UpperCAmelCase_ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n"
UpperCAmelCase_ = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty."
UpperCAmelCase_ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
UpperCAmelCase_ = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README."
UpperCAmelCase_ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n"
UpperCAmelCase_ = "The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README."
UpperCAmelCase_ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
UpperCAmelCase_ = "The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README."
UpperCAmelCase_ = ""
UpperCAmelCase_ = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README."
UpperCAmelCase_ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
UpperCAmelCase_ = "The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections."
@pytest.mark.parametrize(
'''readme_md, expected_dict''' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def A__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str ) -> List[str]:
"""simple docstring"""
assert ReadMe.from_string(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).to_dict() == expected_dict
@pytest.mark.parametrize(
'''readme_md, expected_error''' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str ) -> Any:
"""simple docstring"""
with pytest.raises(SCREAMING_SNAKE_CASE_ , match=re.escape(expected_error.format(path='''root''' ) ) ):
_UpperCAmelCase = ReadMe.from_string(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
readme.validate()
@pytest.mark.parametrize(
'''readme_md, expected_error''' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def A__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple ) -> str:
"""simple docstring"""
with pytest.raises(SCREAMING_SNAKE_CASE_ , match=re.escape(expected_error.format(path='''root''' ) ) ):
ReadMe.from_string(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@pytest.mark.parametrize(
'''readme_md,''' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def A__ ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
ReadMe.from_string(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , suppress_parsing_errors=SCREAMING_SNAKE_CASE_ )
@pytest.mark.parametrize(
'''readme_md, expected_dict''' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def A__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
_UpperCAmelCase = Path(SCREAMING_SNAKE_CASE_ ) / '''README.md'''
with open(SCREAMING_SNAKE_CASE_ , '''w+''' ) as readme_file:
readme_file.write(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = ReadMe.from_readme(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).to_dict()
assert out["name"] == path
assert out["text"] == ""
assert out["is_empty_text"]
assert out["subsections"] == expected_dict["subsections"]
@pytest.mark.parametrize(
'''readme_md, expected_error''' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def A__ ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
_UpperCAmelCase = Path(SCREAMING_SNAKE_CASE_ ) / '''README.md'''
with open(SCREAMING_SNAKE_CASE_ , '''w+''' ) as readme_file:
readme_file.write(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = expected_error.format(path=SCREAMING_SNAKE_CASE_ )
with pytest.raises(SCREAMING_SNAKE_CASE_ , match=re.escape(SCREAMING_SNAKE_CASE_ ) ):
_UpperCAmelCase = ReadMe.from_readme(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
readme.validate()
@pytest.mark.parametrize(
'''readme_md, expected_error''' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
_UpperCAmelCase = Path(SCREAMING_SNAKE_CASE_ ) / '''README.md'''
with open(SCREAMING_SNAKE_CASE_ , '''w+''' ) as readme_file:
readme_file.write(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = expected_error.format(path=SCREAMING_SNAKE_CASE_ )
with pytest.raises(SCREAMING_SNAKE_CASE_ , match=re.escape(SCREAMING_SNAKE_CASE_ ) ):
ReadMe.from_readme(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@pytest.mark.parametrize(
'''readme_md,''' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
_UpperCAmelCase = Path(SCREAMING_SNAKE_CASE_ ) / '''README.md'''
with open(SCREAMING_SNAKE_CASE_ , '''w+''' ) as readme_file:
readme_file.write(SCREAMING_SNAKE_CASE_ )
ReadMe.from_readme(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , suppress_parsing_errors=SCREAMING_SNAKE_CASE_ ) | 32 |
import baseaa
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes:
"""simple docstring"""
return baseaa.baaencode(string.encode('''utf-8''' ) )
def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str:
"""simple docstring"""
return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' )
if __name__ == "__main__":
UpperCAmelCase_ = "Hello World!"
UpperCAmelCase_ = baseaa_encode(test)
print(encoded)
UpperCAmelCase_ = baseaa_decode(encoded)
print(decoded) | 32 | 1 |
def A__ ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : int ) -> float:
"""simple docstring"""
if digit_amount > 0:
return round(number - int(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
return number - int(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
print(decimal_isolate(1.53, 0))
print(decimal_isolate(35.345, 1))
print(decimal_isolate(35.345, 2))
print(decimal_isolate(35.345, 3))
print(decimal_isolate(-14.789, 3))
print(decimal_isolate(0, 2))
print(decimal_isolate(-14.123, 1))
print(decimal_isolate(-14.123, 2))
print(decimal_isolate(-14.123, 3)) | 32 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
UpperCAmelCase_ = logging.get_logger(__name__)
class __UpperCamelCase ( A__ ):
__A : int = ["""pixel_values"""]
def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ):
super().__init__(**_UpperCamelCase )
_UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224}
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
_UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' )
_UpperCAmelCase = do_resize
_UpperCAmelCase = do_rescale
_UpperCAmelCase = do_normalize
_UpperCAmelCase = do_center_crop
_UpperCAmelCase = crop_size
_UpperCAmelCase = size
_UpperCAmelCase = resample
_UpperCAmelCase = rescale_factor
_UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
_UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ):
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
if "shortest_edge" in size:
_UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
_UpperCAmelCase = (size['''height'''], size['''width'''])
else:
raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' )
return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ):
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ):
return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ):
return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ):
_UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
_UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
_UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase )
_UpperCAmelCase = resample if resample is not None else self.resample
_UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
_UpperCAmelCase = image_std if image_std is not None else self.image_std
_UpperCAmelCase = size if size is not None else self.size
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
if not is_batched(_UpperCamelCase ):
_UpperCAmelCase = [images]
if not valid_images(_UpperCamelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
_UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images]
if do_resize:
_UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images]
if do_center_crop:
_UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images]
if do_rescale:
_UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images]
if do_normalize:
_UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images]
_UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images]
_UpperCAmelCase = {'''pixel_values''': images}
return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase ) | 32 | 1 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def A__ ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
_UpperCAmelCase = load_file(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
_UpperCAmelCase = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' )
_UpperCAmelCase = pipeline.text_encoder
else:
_UpperCAmelCase = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' )
_UpperCAmelCase = pipeline.unet
# find the target layer
_UpperCAmelCase = layer_infos.pop(0 )
while len(SCREAMING_SNAKE_CASE_ ) > -1:
try:
_UpperCAmelCase = curr_layer.__getattr__(SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
_UpperCAmelCase = layer_infos.pop(0 )
elif len(SCREAMING_SNAKE_CASE_ ) == 0:
break
except Exception:
if len(SCREAMING_SNAKE_CASE_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
_UpperCAmelCase = layer_infos.pop(0 )
_UpperCAmelCase = []
if "lora_down" in key:
pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) )
pair_keys.append(SCREAMING_SNAKE_CASE_ )
else:
pair_keys.append(SCREAMING_SNAKE_CASE_ )
pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
_UpperCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
_UpperCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).unsqueeze(2 ).unsqueeze(3 )
else:
_UpperCAmelCase = state_dict[pair_keys[0]].to(torch.floataa )
_UpperCAmelCase = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# update visited list
for item in pair_keys:
visited.append(SCREAMING_SNAKE_CASE_ )
return pipeline
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
"--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format."
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors"
)
parser.add_argument(
"--lora_prefix_text_encoder",
default="lora_te",
type=str,
help="The prefix of text encoder weight in safetensors",
)
parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW")
parser.add_argument(
"--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not."
)
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
UpperCAmelCase_ = parser.parse_args()
UpperCAmelCase_ = args.base_model_path
UpperCAmelCase_ = args.checkpoint_path
UpperCAmelCase_ = args.dump_path
UpperCAmelCase_ = args.lora_prefix_unet
UpperCAmelCase_ = args.lora_prefix_text_encoder
UpperCAmelCase_ = args.alpha
UpperCAmelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
UpperCAmelCase_ = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | 32 |
from ..utils import DummyObject, requires_backends
class __UpperCamelCase ( metaclass=A__ ):
__A : str = ["""torch""", """scipy"""]
def __init__( self , *_UpperCamelCase , **_UpperCamelCase ):
requires_backends(self , ['''torch''', '''scipy'''] )
@classmethod
def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ):
requires_backends(cls , ['''torch''', '''scipy'''] )
@classmethod
def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ):
requires_backends(cls , ['''torch''', '''scipy'''] ) | 32 | 1 |
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def A__ ( SCREAMING_SNAKE_CASE_ : Any ) -> List[Any]:
"""simple docstring"""
for param in module.parameters():
_UpperCAmelCase = False
def A__ ( ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = '''cuda''' if torch.cuda.is_available() else '''cpu'''
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_UpperCAmelCase = '''mps'''
if device == "mps":
print(
'''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch'''
''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues'''
''' with generations.''' )
return device
def A__ ( SCREAMING_SNAKE_CASE_ : Any ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = plt.imshow(SCREAMING_SNAKE_CASE_ )
fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE_ )
fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE_ )
plt.show()
def A__ ( ) -> int:
"""simple docstring"""
_UpperCAmelCase = datetime.now()
_UpperCAmelCase = current_time.strftime('''%H:%M:%S''' )
return timestamp | 32 |
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int:
"""simple docstring"""
_UpperCAmelCase = [0 for i in range(n + 1 )]
_UpperCAmelCase = 1
_UpperCAmelCase = 1
for i in range(2 , int(n**0.5 ) + 1 ):
if primality_list[i] == 0:
for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ):
_UpperCAmelCase = 1
_UpperCAmelCase = 0
for i in range(SCREAMING_SNAKE_CASE_ ):
if primality_list[i] == 0:
sum_of_primes += i
return sum_of_primes
if __name__ == "__main__":
print(f'''{solution() = }''') | 32 | 1 |
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase_ = {
"vocab_file": {
"allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json"
},
"merges_file": {
"allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt"
},
}
UpperCAmelCase_ = {"allegro/herbert-base-cased": 5_14}
UpperCAmelCase_ = {}
class __UpperCamelCase ( A__ ):
__A : List[str] = VOCAB_FILES_NAMES
__A : List[str] = PRETRAINED_VOCAB_FILES_MAP
__A : Optional[int] = PRETRAINED_INIT_CONFIGURATION
__A : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__A : Optional[int] = HerbertTokenizer
def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , _UpperCamelCase="</s>" , **_UpperCamelCase , ):
super().__init__(
_UpperCamelCase , _UpperCamelCase , tokenizer_file=_UpperCamelCase , cls_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , sep_token=_UpperCamelCase , **_UpperCamelCase , )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ):
_UpperCAmelCase = [self.cls_token_id]
_UpperCAmelCase = [self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(_UpperCamelCase )) + [1]
return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1]
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ):
_UpperCAmelCase = [self.sep_token_id]
_UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ):
_UpperCAmelCase = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase )
return tuple(_UpperCamelCase ) | 32 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
UpperCAmelCase_ = logging.get_logger(__name__)
class __UpperCamelCase ( A__ ):
def __init__( self , *_UpperCamelCase , **_UpperCamelCase ):
warnings.warn(
'''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use GLPNImageProcessor instead.''' , _UpperCamelCase , )
super().__init__(*_UpperCamelCase , **_UpperCamelCase ) | 32 | 1 |
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class __UpperCamelCase :
def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=10 , _UpperCamelCase=3 , _UpperCamelCase=2 , _UpperCamelCase=2 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=32 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=10 , _UpperCamelCase=0.02 , _UpperCamelCase="divided_space_time" , _UpperCamelCase=None , ):
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = image_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = patch_size
_UpperCAmelCase = num_frames
_UpperCAmelCase = is_training
_UpperCAmelCase = use_labels
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = attention_type
_UpperCAmelCase = initializer_range
_UpperCAmelCase = scope
_UpperCAmelCase = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
_UpperCAmelCase = (image_size // patch_size) ** 2
_UpperCAmelCase = (num_frames) * self.num_patches_per_frame + 1
def UpperCamelCase( self ):
_UpperCAmelCase = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels )
_UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def UpperCamelCase( self ):
_UpperCAmelCase = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
_UpperCAmelCase = self.num_labels
return config
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = TimesformerModel(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(_UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = TimesformerForVideoClassification(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(_UpperCamelCase )
# verify the logits shape
_UpperCAmelCase = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , _UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.prepare_config_and_inputs()
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs
_UpperCAmelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __UpperCamelCase ( A__ , A__ , unittest.TestCase ):
__A : List[Any] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
__A : Union[str, Any] = (
{"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification}
if is_torch_available()
else {}
)
__A : int = False
__A : List[str] = False
__A : int = False
__A : str = False
def UpperCamelCase( self ):
_UpperCAmelCase = TimesformerModelTester(self )
_UpperCAmelCase = ConfigTester(
self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False ):
_UpperCAmelCase = copy.deepcopy(_UpperCamelCase )
if return_labels:
if model_class in get_values(_UpperCamelCase ):
_UpperCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase )
return inputs_dict
def UpperCamelCase( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''TimeSformer does not use inputs_embeds''' )
def UpperCamelCase( self ):
pass
def UpperCamelCase( self ):
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(_UpperCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) )
def UpperCamelCase( self ):
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(_UpperCamelCase )
_UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase = [*signature.parameters.keys()]
_UpperCAmelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*_UpperCamelCase )
@slow
def UpperCamelCase( self ):
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase = TimesformerModel.from_pretrained(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase )
def UpperCamelCase( self ):
if not self.has_attentions:
pass
else:
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = True
for model_class in self.all_model_classes:
_UpperCAmelCase = self.model_tester.seq_length
_UpperCAmelCase = self.model_tester.num_frames
_UpperCAmelCase = True
_UpperCAmelCase = False
_UpperCAmelCase = True
_UpperCAmelCase = model_class(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) )
_UpperCAmelCase = outputs.attentions
self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
_UpperCAmelCase = True
_UpperCAmelCase = model_class(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) )
_UpperCAmelCase = outputs.attentions
self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
_UpperCAmelCase = len(_UpperCamelCase )
# Check attention is always last and order is fine
_UpperCAmelCase = True
_UpperCAmelCase = True
_UpperCAmelCase = model_class(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) )
self.assertEqual(out_len + 1 , len(_UpperCamelCase ) )
_UpperCAmelCase = outputs.attentions
self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def UpperCamelCase( self ):
def check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = model_class(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) )
_UpperCAmelCase = outputs.hidden_states
_UpperCAmelCase = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase )
_UpperCAmelCase = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = True
check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_UpperCAmelCase = True
check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
def A__ ( ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = hf_hub_download(
repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' )
_UpperCAmelCase = np.load(SCREAMING_SNAKE_CASE_ )
return list(SCREAMING_SNAKE_CASE_ )
@require_torch
@require_vision
class __UpperCamelCase ( unittest.TestCase ):
@cached_property
def UpperCamelCase( self ):
# logits were tested with a different mean and std, so we use the same here
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def UpperCamelCase( self ):
_UpperCAmelCase = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to(
_UpperCamelCase )
_UpperCAmelCase = self.default_image_processor
_UpperCAmelCase = prepare_video()
_UpperCAmelCase = image_processor(video[:8] , return_tensors='''pt''' ).to(_UpperCamelCase )
# forward pass
with torch.no_grad():
_UpperCAmelCase = model(**_UpperCamelCase )
# verify the logits
_UpperCAmelCase = torch.Size((1, 400) )
self.assertEqual(outputs.logits.shape , _UpperCamelCase )
_UpperCAmelCase = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(_UpperCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) | 32 |
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __UpperCamelCase ( A__ ):
__A : Dict = ["""image_processor""", """tokenizer"""]
__A : List[str] = """BridgeTowerImageProcessor"""
__A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""")
def __init__( self , _UpperCamelCase , _UpperCamelCase ):
super().__init__(_UpperCamelCase , _UpperCamelCase )
def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ):
_UpperCAmelCase = self.tokenizer(
text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , )
# add pixel_values + pixel_mask
_UpperCAmelCase = self.image_processor(
_UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase )
encoding.update(_UpperCamelCase )
return encoding
def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ):
return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ):
return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase )
@property
def UpperCamelCase( self ):
_UpperCAmelCase = self.tokenizer.model_input_names
_UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) | 32 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCAmelCase_ = {
"configuration_chinese_clip": [
"CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ChineseCLIPConfig",
"ChineseCLIPOnnxConfig",
"ChineseCLIPTextConfig",
"ChineseCLIPVisionConfig",
],
"processing_chinese_clip": ["ChineseCLIPProcessor"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ["ChineseCLIPFeatureExtractor"]
UpperCAmelCase_ = ["ChineseCLIPImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ChineseCLIPModel",
"ChineseCLIPPreTrainedModel",
"ChineseCLIPTextModel",
"ChineseCLIPVisionModel",
]
if TYPE_CHECKING:
from .configuration_chinese_clip import (
CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
ChineseCLIPConfig,
ChineseCLIPOnnxConfig,
ChineseCLIPTextConfig,
ChineseCLIPVisionConfig,
)
from .processing_chinese_clip import ChineseCLIPProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_chinese_clip import (
CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
ChineseCLIPModel,
ChineseCLIPPreTrainedModel,
ChineseCLIPTextModel,
ChineseCLIPVisionModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) | 32 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase_ = {
"configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"],
"tokenization_xlm": ["XLMTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMForMultipleChoice",
"XLMForQuestionAnswering",
"XLMForQuestionAnsweringSimple",
"XLMForSequenceClassification",
"XLMForTokenClassification",
"XLMModel",
"XLMPreTrainedModel",
"XLMWithLMHeadModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLMForMultipleChoice",
"TFXLMForQuestionAnsweringSimple",
"TFXLMForSequenceClassification",
"TFXLMForTokenClassification",
"TFXLMMainLayer",
"TFXLMModel",
"TFXLMPreTrainedModel",
"TFXLMWithLMHeadModel",
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) | 32 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
UpperCAmelCase_ = logging.get_logger(__name__)
class __UpperCamelCase ( A__ ):
__A : int = ["""pixel_values"""]
def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ):
super().__init__(**_UpperCamelCase )
_UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224}
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
_UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' )
_UpperCAmelCase = do_resize
_UpperCAmelCase = do_rescale
_UpperCAmelCase = do_normalize
_UpperCAmelCase = do_center_crop
_UpperCAmelCase = crop_size
_UpperCAmelCase = size
_UpperCAmelCase = resample
_UpperCAmelCase = rescale_factor
_UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
_UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ):
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
if "shortest_edge" in size:
_UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
_UpperCAmelCase = (size['''height'''], size['''width'''])
else:
raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' )
return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ):
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ):
return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ):
return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ):
_UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
_UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
_UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase )
_UpperCAmelCase = resample if resample is not None else self.resample
_UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
_UpperCAmelCase = image_std if image_std is not None else self.image_std
_UpperCAmelCase = size if size is not None else self.size
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
if not is_batched(_UpperCamelCase ):
_UpperCAmelCase = [images]
if not valid_images(_UpperCamelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
_UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images]
if do_resize:
_UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images]
if do_center_crop:
_UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images]
if do_rescale:
_UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images]
if do_normalize:
_UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images]
_UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images]
_UpperCAmelCase = {'''pixel_values''': images}
return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase ) | 32 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json",
# See all BioGPT models at https://huggingface.co/models?filter=biogpt
}
class __UpperCamelCase ( A__ ):
__A : Any = """biogpt"""
def __init__( self , _UpperCamelCase=42384 , _UpperCamelCase=1024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1024 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ):
_UpperCAmelCase = vocab_size
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = initializer_range
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = scale_embedding
_UpperCAmelCase = use_cache
_UpperCAmelCase = layerdrop
_UpperCAmelCase = activation_dropout
super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) | 32 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json",
}
class __UpperCamelCase ( A__ ):
__A : List[Any] = """roc_bert"""
def __init__( self , _UpperCamelCase=30522 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=0 , _UpperCamelCase="absolute" , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=768 , _UpperCamelCase=910 , _UpperCamelCase=512 , _UpperCamelCase=24858 , _UpperCamelCase=True , **_UpperCamelCase , ):
_UpperCAmelCase = vocab_size
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = initializer_range
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = use_cache
_UpperCAmelCase = enable_pronunciation
_UpperCAmelCase = enable_shape
_UpperCAmelCase = pronunciation_embed_dim
_UpperCAmelCase = pronunciation_vocab_size
_UpperCAmelCase = shape_embed_dim
_UpperCAmelCase = shape_vocab_size
_UpperCAmelCase = concat_input
_UpperCAmelCase = position_embedding_type
_UpperCAmelCase = classifier_dropout
super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase ) | 32 |
from typing import List
from .keymap import KEYMAP, get_character
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]:
"""simple docstring"""
def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ):
_UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] )
handle += [key]
setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ )
return func
return decorator
def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict:
"""simple docstring"""
def decorator(SCREAMING_SNAKE_CASE_ : Any ):
_UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] )
handle += keys
setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ )
return func
return decorator
class __UpperCamelCase ( A__ ):
def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
if not hasattr(_UpperCamelCase , '''key_handler''' ):
setattr(_UpperCamelCase , '''key_handler''' , {} )
setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input )
for value in attrs.values():
_UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] )
for key in handled_keys:
_UpperCAmelCase = value
return new_cls
@staticmethod
def UpperCamelCase( cls ):
_UpperCAmelCase = get_character()
if char != KEYMAP["undefined"]:
_UpperCAmelCase = ord(_UpperCamelCase )
_UpperCAmelCase = cls.key_handler.get(_UpperCamelCase )
if handler:
_UpperCAmelCase = char
return handler(cls )
else:
return None
def A__ ( cls : Union[str, Any] ) -> Any:
"""simple docstring"""
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() ) | 32 | 1 |
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int:
"""simple docstring"""
_UpperCAmelCase = [0 for i in range(n + 1 )]
_UpperCAmelCase = 1
_UpperCAmelCase = 1
for i in range(2 , int(n**0.5 ) + 1 ):
if primality_list[i] == 0:
for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ):
_UpperCAmelCase = 1
_UpperCAmelCase = 0
for i in range(SCREAMING_SNAKE_CASE_ ):
if primality_list[i] == 0:
sum_of_primes += i
return sum_of_primes
if __name__ == "__main__":
print(f'''{solution() = }''') | 32 |
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __UpperCamelCase :
def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=24 , _UpperCamelCase=2 , _UpperCamelCase=6 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=None , _UpperCamelCase=1000 , ):
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_input_mask
_UpperCAmelCase = use_token_type_ids
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = type_sequence_label_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = num_labels
_UpperCAmelCase = scope
_UpperCAmelCase = range_bbox
def UpperCamelCase( self ):
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
_UpperCAmelCase = bbox[i, j, 3]
_UpperCAmelCase = bbox[i, j, 1]
_UpperCAmelCase = t
if bbox[i, j, 2] < bbox[i, j, 0]:
_UpperCAmelCase = bbox[i, j, 2]
_UpperCAmelCase = bbox[i, j, 0]
_UpperCAmelCase = t
_UpperCAmelCase = None
if self.use_input_mask:
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
_UpperCAmelCase = None
if self.use_token_type_ids:
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCAmelCase = None
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCAmelCase = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCamelCase( self ):
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ):
_UpperCAmelCase = LiltModel(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase )
_UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase , token_type_ids=_UpperCamelCase )
_UpperCAmelCase = model(_UpperCamelCase , bbox=_UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ):
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = LiltForTokenClassification(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(
_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ):
_UpperCAmelCase = LiltForQuestionAnswering(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
_UpperCAmelCase = model(
_UpperCamelCase , bbox=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase( self ):
_UpperCAmelCase = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) = config_and_inputs
_UpperCAmelCase = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ):
__A : Dict = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__A : Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__A : List[Any] = False
__A : Optional[int] = False
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
return True
def UpperCamelCase( self ):
_UpperCAmelCase = LiltModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 )
def UpperCamelCase( self ):
self.config_tester.run_common_tests()
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_UpperCAmelCase = type
self.model_tester.create_and_check_model(*_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase )
@slow
def UpperCamelCase( self ):
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase = LiltModel.from_pretrained(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase )
@require_torch
@slow
class __UpperCamelCase ( unittest.TestCase ):
def UpperCamelCase( self ):
_UpperCAmelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_UpperCamelCase )
_UpperCAmelCase = torch.tensor([[1, 2]] , device=_UpperCamelCase )
_UpperCAmelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_UpperCamelCase )
# forward pass
with torch.no_grad():
_UpperCAmelCase = model(input_ids=_UpperCamelCase , bbox=_UpperCamelCase )
_UpperCAmelCase = torch.Size([1, 2, 768] )
_UpperCAmelCase = torch.tensor(
[[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_UpperCamelCase , )
self.assertTrue(outputs.last_hidden_state.shape , _UpperCamelCase )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _UpperCamelCase , atol=1e-3 ) ) | 32 | 1 |
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(A__ ) , """Tatoeba directory does not exist.""" )
class __UpperCamelCase ( unittest.TestCase ):
@cached_property
def UpperCamelCase( self ):
_UpperCAmelCase = tempfile.mkdtemp()
return TatoebaConverter(save_dir=_UpperCamelCase )
@slow
def UpperCamelCase( self ):
self.resolver.convert_models(['''heb-eng'''] )
@slow
def UpperCamelCase( self ):
_UpperCAmelCase , _UpperCAmelCase = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_UpperCamelCase )
assert mmeta["long_pair"] == "heb-eng" | 32 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json",
"RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json",
"RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json",
"RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json",
"RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json",
"RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json",
"RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json",
"RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json",
"RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json",
"RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json",
}
class __UpperCamelCase ( A__ ):
__A : Tuple = """rwkv"""
__A : Any = {"""max_position_embeddings""": """context_length"""}
def __init__( self , _UpperCamelCase=50277 , _UpperCamelCase=1024 , _UpperCamelCase=4096 , _UpperCamelCase=32 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=1e-5 , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=6 , _UpperCamelCase=False , _UpperCamelCase=True , **_UpperCamelCase , ):
_UpperCAmelCase = vocab_size
_UpperCAmelCase = context_length
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size
_UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size
_UpperCAmelCase = layer_norm_epsilon
_UpperCAmelCase = rescale_every
_UpperCAmelCase = use_cache
_UpperCAmelCase = bos_token_id
_UpperCAmelCase = eos_token_id
super().__init__(
tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) | 32 | 1 |
import bza
import gzip
import lzma
import os
import shutil
import struct
import tarfile
import warnings
import zipfile
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List, Optional, Type, Union
from .. import config
from .filelock import FileLock
from .logging import get_logger
UpperCAmelCase_ = get_logger(__name__)
class __UpperCamelCase :
def __init__( self , _UpperCamelCase = None ):
_UpperCAmelCase = (
os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH
)
_UpperCAmelCase = Extractor
def UpperCamelCase( self , _UpperCamelCase ):
from .file_utils import hash_url_to_filename
# Path where we extract compressed archives
# We extract in the cache dir, and get the extracted path name by hashing the original path"
_UpperCAmelCase = os.path.abspath(_UpperCamelCase )
return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase ):
return force_extract or (
not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase ))
)
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = False ):
_UpperCAmelCase = self.extractor.infer_extractor_format(_UpperCamelCase )
if not extractor_format:
return input_path
_UpperCAmelCase = self._get_output_path(_UpperCamelCase )
if self._do_extract(_UpperCamelCase , _UpperCamelCase ):
self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
return output_path
class __UpperCamelCase ( A__ ):
@classmethod
@abstractmethod
def UpperCamelCase( cls , _UpperCamelCase , **_UpperCamelCase ):
...
@staticmethod
@abstractmethod
def UpperCamelCase( _UpperCamelCase , _UpperCamelCase ):
...
class __UpperCamelCase ( A__ , A__ ):
__A : List[bytes] = []
@staticmethod
def UpperCamelCase( _UpperCamelCase , _UpperCamelCase ):
with open(_UpperCamelCase , '''rb''' ) as f:
return f.read(_UpperCamelCase )
@classmethod
def UpperCamelCase( cls , _UpperCamelCase , _UpperCamelCase = b"" ):
if not magic_number:
_UpperCAmelCase = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers )
try:
_UpperCAmelCase = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase )
except OSError:
return False
return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers )
class __UpperCamelCase ( A__ ):
@classmethod
def UpperCamelCase( cls , _UpperCamelCase , **_UpperCamelCase ):
return tarfile.is_tarfile(_UpperCamelCase )
@staticmethod
def UpperCamelCase( _UpperCamelCase , _UpperCamelCase ):
def resolved(_UpperCamelCase ) -> str:
return os.path.realpath(os.path.abspath(_UpperCamelCase ) )
def badpath(_UpperCamelCase , _UpperCamelCase ) -> bool:
# joinpath will ignore base if path is absolute
return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase )
def badlink(_UpperCamelCase , _UpperCamelCase ) -> bool:
# Links are interpreted relative to the directory containing the link
_UpperCAmelCase = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) )
return badpath(info.linkname , base=_UpperCamelCase )
_UpperCAmelCase = resolved(_UpperCamelCase )
for finfo in members:
if badpath(finfo.name , _UpperCamelCase ):
logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' )
elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ):
logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' )
elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ):
logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' )
else:
yield finfo
@staticmethod
def UpperCamelCase( _UpperCamelCase , _UpperCamelCase ):
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
_UpperCAmelCase = tarfile.open(_UpperCamelCase )
tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) )
tar_file.close()
class __UpperCamelCase ( A__ ):
__A : int = [b"""\x1F\x8B"""]
@staticmethod
def UpperCamelCase( _UpperCamelCase , _UpperCamelCase ):
with gzip.open(_UpperCamelCase , '''rb''' ) as gzip_file:
with open(_UpperCamelCase , '''wb''' ) as extracted_file:
shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase )
class __UpperCamelCase ( A__ ):
__A : Optional[Any] = [
b"""PK\x03\x04""",
b"""PK\x05\x06""", # empty archive
b"""PK\x07\x08""", # spanned archive
]
@classmethod
def UpperCamelCase( cls , _UpperCamelCase , _UpperCamelCase = b"" ):
if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ):
return True
try:
# Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives.
# From: https://github.com/python/cpython/pull/5053
from zipfile import (
_CD_SIGNATURE,
_ECD_DISK_NUMBER,
_ECD_DISK_START,
_ECD_ENTRIES_TOTAL,
_ECD_OFFSET,
_ECD_SIZE,
_EndRecData,
sizeCentralDir,
stringCentralDir,
structCentralDir,
)
with open(_UpperCamelCase , '''rb''' ) as fp:
_UpperCAmelCase = _EndRecData(_UpperCamelCase )
if endrec:
if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0:
return True # Empty zipfiles are still zipfiles
elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]:
fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk
if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir:
_UpperCAmelCase = fp.read(_UpperCamelCase ) # CD is where we expect it to be
if len(_UpperCamelCase ) == sizeCentralDir:
_UpperCAmelCase = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size
if centdir[_CD_SIGNATURE] == stringCentralDir:
return True # First central directory entry has correct magic number
return False
except Exception: # catch all errors in case future python versions change the zipfile internals
return False
@staticmethod
def UpperCamelCase( _UpperCamelCase , _UpperCamelCase ):
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
with zipfile.ZipFile(_UpperCamelCase , '''r''' ) as zip_file:
zip_file.extractall(_UpperCamelCase )
zip_file.close()
class __UpperCamelCase ( A__ ):
__A : str = [b"""\xFD\x37\x7A\x58\x5A\x00"""]
@staticmethod
def UpperCamelCase( _UpperCamelCase , _UpperCamelCase ):
with lzma.open(_UpperCamelCase ) as compressed_file:
with open(_UpperCamelCase , '''wb''' ) as extracted_file:
shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase )
class __UpperCamelCase ( A__ ):
__A : str = [b"""Rar!\x1a\x07\x00""", b"""Rar!\x1a\x07\x01\x00"""] # RAR_ID # RAR5_ID
@staticmethod
def UpperCamelCase( _UpperCamelCase , _UpperCamelCase ):
if not config.RARFILE_AVAILABLE:
raise ImportError('''Please pip install rarfile''' )
import rarfile
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
_UpperCAmelCase = rarfile.RarFile(_UpperCamelCase )
rf.extractall(_UpperCamelCase )
rf.close()
class __UpperCamelCase ( A__ ):
__A : Any = [b"""\x28\xb5\x2F\xFD"""]
@staticmethod
def UpperCamelCase( _UpperCamelCase , _UpperCamelCase ):
if not config.ZSTANDARD_AVAILABLE:
raise ImportError('''Please pip install zstandard''' )
import zstandard as zstd
_UpperCAmelCase = zstd.ZstdDecompressor()
with open(_UpperCamelCase , '''rb''' ) as ifh, open(_UpperCamelCase , '''wb''' ) as ofh:
dctx.copy_stream(_UpperCamelCase , _UpperCamelCase )
class __UpperCamelCase ( A__ ):
__A : Tuple = [b"""\x42\x5A\x68"""]
@staticmethod
def UpperCamelCase( _UpperCamelCase , _UpperCamelCase ):
with bza.open(_UpperCamelCase , '''rb''' ) as compressed_file:
with open(_UpperCamelCase , '''wb''' ) as extracted_file:
shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase )
class __UpperCamelCase ( A__ ):
__A : Union[str, Any] = [b"""\x37\x7A\xBC\xAF\x27\x1C"""]
@staticmethod
def UpperCamelCase( _UpperCamelCase , _UpperCamelCase ):
if not config.PY7ZR_AVAILABLE:
raise ImportError('''Please pip install py7zr''' )
import pyazr
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
with pyazr.SevenZipFile(_UpperCamelCase , '''r''' ) as archive:
archive.extractall(_UpperCamelCase )
class __UpperCamelCase ( A__ ):
__A : Optional[Any] = [b"""\x04\x22\x4D\x18"""]
@staticmethod
def UpperCamelCase( _UpperCamelCase , _UpperCamelCase ):
if not config.LZ4_AVAILABLE:
raise ImportError('''Please pip install lz4''' )
import lza.frame
with lza.frame.open(_UpperCamelCase , '''rb''' ) as compressed_file:
with open(_UpperCamelCase , '''wb''' ) as extracted_file:
shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase )
class __UpperCamelCase :
# Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip)
__A : Dict[str, Type[BaseExtractor]] = {
"tar": TarExtractor,
"gzip": GzipExtractor,
"zip": ZipExtractor,
"xz": XzExtractor,
"rar": RarExtractor,
"zstd": ZstdExtractor,
"bz2": BzipaExtractor,
"7z": SevenZipExtractor, # <Added version="2.4.0"/>
"lz4": LzaExtractor, # <Added version="2.4.0"/>
}
@classmethod
def UpperCamelCase( cls ):
return max(
len(_UpperCamelCase )
for extractor in cls.extractors.values()
if issubclass(_UpperCamelCase , _UpperCamelCase )
for extractor_magic_number in extractor.magic_numbers )
@staticmethod
def UpperCamelCase( _UpperCamelCase , _UpperCamelCase ):
try:
return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase )
except OSError:
return b""
@classmethod
def UpperCamelCase( cls , _UpperCamelCase , _UpperCamelCase = False ):
warnings.warn(
'''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. '''
'''Use \'infer_extractor_format\' instead.''' , category=_UpperCamelCase , )
_UpperCAmelCase = cls.infer_extractor_format(_UpperCamelCase )
if extractor_format:
return True if not return_extractor else (True, cls.extractors[extractor_format])
return False if not return_extractor else (False, None)
@classmethod
def UpperCamelCase( cls , _UpperCamelCase ): # <Added version="2.4.0"/>
_UpperCAmelCase = cls._get_magic_number_max_length()
_UpperCAmelCase = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase )
for extractor_format, extractor in cls.extractors.items():
if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ):
return extractor_format
@classmethod
def UpperCamelCase( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = "deprecated" , ):
os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase )
# Prevent parallel extractions
_UpperCAmelCase = str(Path(_UpperCamelCase ).with_suffix('''.lock''' ) )
with FileLock(_UpperCamelCase ):
shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase )
if extractor_format or extractor != "deprecated":
if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg
warnings.warn(
'''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. '''
'''Use \'extractor_format\' instead.''' , category=_UpperCamelCase , )
_UpperCAmelCase = extractor if extractor != '''deprecated''' else extractor_format
else:
_UpperCAmelCase = cls.extractors[extractor_format]
return extractor.extract(_UpperCamelCase , _UpperCamelCase )
else:
warnings.warn(
'''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an '''
'''exception in 3.0.0.''' , category=_UpperCamelCase , )
for extractor in cls.extractors.values():
if extractor.is_extractable(_UpperCamelCase ):
return extractor.extract(_UpperCamelCase , _UpperCamelCase ) | 32 |
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str:
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
_UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) )
return "0b" + "".join(
str(int(char_a == '''1''' and char_b == '''1''' ) )
for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 32 | 1 |
import sys
UpperCAmelCase_ = (
"73167176531330624919225119674426574742355349194934"
"96983520312774506326239578318016984801869478851843"
"85861560789112949495459501737958331952853208805511"
"12540698747158523863050715693290963295227443043557"
"66896648950445244523161731856403098711121722383113"
"62229893423380308135336276614282806444486645238749"
"30358907296290491560440772390713810515859307960866"
"70172427121883998797908792274921901699720888093776"
"65727333001053367881220235421809751254540594752243"
"52584907711670556013604839586446706324415722155397"
"53697817977846174064955149290862569321978468622482"
"83972241375657056057490261407972968652414535100474"
"82166370484403199890008895243450658541227588666881"
"16427171479924442928230863465674813919123162824586"
"17866458359124566529476545682848912883142607690042"
"24219022671055626321111109370544217506941658960408"
"07198403850962455444362981230987879927244284909188"
"84580156166097919133875499200524063689912560717606"
"05886116467109405077541002256983155200055935729725"
"71636269561882670428252483600823257530420752963450"
)
def A__ ( SCREAMING_SNAKE_CASE_ : str = N ) -> int:
"""simple docstring"""
_UpperCAmelCase = -sys.maxsize - 1
for i in range(len(SCREAMING_SNAKE_CASE_ ) - 12 ):
_UpperCAmelCase = 1
for j in range(13 ):
product *= int(n[i + j] )
if product > largest_product:
_UpperCAmelCase = product
return largest_product
if __name__ == "__main__":
print(f'''{solution() = }''') | 32 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
}
class __UpperCamelCase ( A__ ):
__A : Dict = """falcon"""
__A : Any = ["""past_key_values"""]
def __init__( self , _UpperCamelCase=65024 , _UpperCamelCase=4544 , _UpperCamelCase=32 , _UpperCamelCase=71 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=11 , _UpperCamelCase=11 , **_UpperCamelCase , ):
_UpperCAmelCase = vocab_size
# Backward compatibility with n_embed kwarg
_UpperCAmelCase = kwargs.pop('''n_embed''' , _UpperCamelCase )
_UpperCAmelCase = hidden_size if n_embed is None else n_embed
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = layer_norm_epsilon
_UpperCAmelCase = initializer_range
_UpperCAmelCase = use_cache
_UpperCAmelCase = hidden_dropout
_UpperCAmelCase = attention_dropout
_UpperCAmelCase = bos_token_id
_UpperCAmelCase = eos_token_id
_UpperCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads
_UpperCAmelCase = alibi
_UpperCAmelCase = new_decoder_architecture
_UpperCAmelCase = multi_query # Ignored when new_decoder_architecture is True
_UpperCAmelCase = parallel_attn
_UpperCAmelCase = bias
super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
@property
def UpperCamelCase( self ):
return self.hidden_size // self.num_attention_heads
@property
def UpperCamelCase( self ):
return not self.alibi | 32 | 1 |
def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
if not head:
return True
# split the list to two parts
_UpperCAmelCase , _UpperCAmelCase = head.next, head
while fast and fast.next:
_UpperCAmelCase = fast.next.next
_UpperCAmelCase = slow.next
_UpperCAmelCase = slow.next
_UpperCAmelCase = None # Don't forget here! But forget still works!
# reverse the second part
_UpperCAmelCase = None
while second:
_UpperCAmelCase = second.next
_UpperCAmelCase = node
_UpperCAmelCase = second
_UpperCAmelCase = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
_UpperCAmelCase = node.next
_UpperCAmelCase = head.next
return True
def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
_UpperCAmelCase = _UpperCAmelCase = _UpperCAmelCase = head
while fast and fast.next:
_UpperCAmelCase , _UpperCAmelCase = fast.next.next, slow.next
# 2. Push the second half into the stack
_UpperCAmelCase = [slow.val]
while slow.next:
_UpperCAmelCase = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
_UpperCAmelCase = cur.next
return True
def A__ ( SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict:
"""simple docstring"""
if not head or not head.next:
return True
_UpperCAmelCase = {}
_UpperCAmelCase = 0
while head:
if head.val in d:
d[head.val].append(SCREAMING_SNAKE_CASE_ )
else:
_UpperCAmelCase = [pos]
_UpperCAmelCase = head.next
pos += 1
_UpperCAmelCase = pos - 1
_UpperCAmelCase = 0
for v in d.values():
if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0:
middle += 1
else:
_UpperCAmelCase = 0
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ):
if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True | 32 |
from math import sqrt
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def A__ ( SCREAMING_SNAKE_CASE_ : int = 1_00_01 ) -> int:
"""simple docstring"""
_UpperCAmelCase = 0
_UpperCAmelCase = 1
while count != nth and number < 3:
number += 1
if is_prime(SCREAMING_SNAKE_CASE_ ):
count += 1
while count != nth:
number += 2
if is_prime(SCREAMING_SNAKE_CASE_ ):
count += 1
return number
if __name__ == "__main__":
print(f'''{solution() = }''') | 32 | 1 |
print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))")) | 32 |
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool:
"""simple docstring"""
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
_UpperCAmelCase = F'''Input value of [number={number}] must be an integer'''
raise TypeError(SCREAMING_SNAKE_CASE_ )
if number < 0:
return False
_UpperCAmelCase = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod() | 32 | 1 |
import numpy as np
import pandas as pd
from sklearn.preprocessing import Normalizer
from sklearn.svm import SVR
from statsmodels.tsa.statespace.sarimax import SARIMAX
def A__ ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list ) -> float:
"""simple docstring"""
_UpperCAmelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(SCREAMING_SNAKE_CASE_ )] )
_UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , SCREAMING_SNAKE_CASE_ ) ) , x.transpose() ) , SCREAMING_SNAKE_CASE_ )
return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] )
def A__ ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list ) -> float:
"""simple docstring"""
_UpperCAmelCase = (1, 2, 1)
_UpperCAmelCase = (1, 1, 0, 7)
_UpperCAmelCase = SARIMAX(
SCREAMING_SNAKE_CASE_ , exog=SCREAMING_SNAKE_CASE_ , order=SCREAMING_SNAKE_CASE_ , seasonal_order=SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = model.fit(disp=SCREAMING_SNAKE_CASE_ , maxiter=6_00 , method='''nm''' )
_UpperCAmelCase = model_fit.predict(1 , len(SCREAMING_SNAKE_CASE_ ) , exog=[test_match] )
return result[0]
def A__ ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list ) -> float:
"""simple docstring"""
_UpperCAmelCase = SVR(kernel='''rbf''' , C=1 , gamma=0.1 , epsilon=0.1 )
regressor.fit(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = regressor.predict(SCREAMING_SNAKE_CASE_ )
return y_pred[0]
def A__ ( SCREAMING_SNAKE_CASE_ : list ) -> float:
"""simple docstring"""
train_user.sort()
_UpperCAmelCase = np.percentile(SCREAMING_SNAKE_CASE_ , 25 )
_UpperCAmelCase = np.percentile(SCREAMING_SNAKE_CASE_ , 75 )
_UpperCAmelCase = qa - qa
_UpperCAmelCase = qa - (iqr * 0.1)
return low_lim
def A__ ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : float ) -> bool:
"""simple docstring"""
_UpperCAmelCase = 0
_UpperCAmelCase = 0
for i in list_vote:
if i > actual_result:
_UpperCAmelCase = not_safe + 1
else:
if abs(abs(SCREAMING_SNAKE_CASE_ ) - abs(SCREAMING_SNAKE_CASE_ ) ) <= 0.1:
safe += 1
else:
not_safe += 1
return safe > not_safe
if __name__ == "__main__":
# data_input_df = pd.read_csv("ex_data.csv", header=None)
UpperCAmelCase_ = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]]
UpperCAmelCase_ = pd.DataFrame(
data_input, columns=["total_user", "total_even", "days"]
)
UpperCAmelCase_ = Normalizer().fit_transform(data_input_df.values)
# split data
UpperCAmelCase_ = normalize_df[:, 2].tolist()
UpperCAmelCase_ = normalize_df[:, 0].tolist()
UpperCAmelCase_ = normalize_df[:, 1].tolist()
# for svr (input variable = total date and total match)
UpperCAmelCase_ = normalize_df[:, [1, 2]].tolist()
UpperCAmelCase_ = x[: len(x) - 1]
UpperCAmelCase_ = x[len(x) - 1 :]
# for linear regression & sarimax
UpperCAmelCase_ = total_date[: len(total_date) - 1]
UpperCAmelCase_ = total_user[: len(total_user) - 1]
UpperCAmelCase_ = total_match[: len(total_match) - 1]
UpperCAmelCase_ = total_date[len(total_date) - 1 :]
UpperCAmelCase_ = total_user[len(total_user) - 1 :]
UpperCAmelCase_ = total_match[len(total_match) - 1 :]
# voting system with forecasting
UpperCAmelCase_ = [
linear_regression_prediction(
trn_date, trn_user, trn_match, tst_date, tst_match
),
sarimax_predictor(trn_user, trn_match, tst_match),
support_vector_regressor(x_train, x_test, trn_user),
]
# check the safety of today's data
UpperCAmelCase_ = "" if data_safety_checker(res_vote, tst_user) else "not "
print("Today's data is {not_str}safe.") | 32 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=A__ )
class __UpperCamelCase ( A__ ):
__A : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} )
__A : ClassVar[Features] = Features({"""text""": Value("""string""" )} )
__A : ClassVar[Features] = Features({} )
__A : str = "text"
@property
def UpperCamelCase( self ):
return {self.text_column: "text"} | 32 | 1 |
import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def A__ ( ) -> None:
"""simple docstring"""
print('''Making key files...''' )
make_key_files('''rsa''' , 10_24 )
print('''Key files generation successful.''' )
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> tuple[tuple[int, int], tuple[int, int]]:
"""simple docstring"""
print('''Generating prime p...''' )
_UpperCAmelCase = rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE_ )
print('''Generating prime q...''' )
_UpperCAmelCase = rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = p * q
print('''Generating e that is relatively prime to (p - 1) * (q - 1)...''' )
while True:
_UpperCAmelCase = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) )
if cryptoMath.gcd(SCREAMING_SNAKE_CASE_ , (p - 1) * (q - 1) ) == 1:
break
print('''Calculating d that is mod inverse of e...''' )
_UpperCAmelCase = cryptoMath.find_mod_inverse(SCREAMING_SNAKE_CASE_ , (p - 1) * (q - 1) )
_UpperCAmelCase = (n, e)
_UpperCAmelCase = (n, d)
return (public_key, private_key)
def A__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int ) -> None:
"""simple docstring"""
if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ):
print('''\nWARNING:''' )
print(
F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'''
'''Use a different name or delete these files and re-run this program.''' )
sys.exit()
_UpperCAmelCase , _UpperCAmelCase = generate_key(SCREAMING_SNAKE_CASE_ )
print(F'''\nWriting public key to file {name}_pubkey.txt...''' )
with open(F'''{name}_pubkey.txt''' , '''w''' ) as out_file:
out_file.write(F'''{key_size},{public_key[0]},{public_key[1]}''' )
print(F'''Writing private key to file {name}_privkey.txt...''' )
with open(F'''{name}_privkey.txt''' , '''w''' ) as out_file:
out_file.write(F'''{key_size},{private_key[0]},{private_key[1]}''' )
if __name__ == "__main__":
main() | 32 |
import os
import re
import warnings
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
if TYPE_CHECKING:
from ...tokenization_utils_base import TextInput
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {"vocab_file": "spiece.model"}
UpperCAmelCase_ = {
"vocab_file": {
"t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model",
"t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model",
"t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model",
}
}
# TODO(PVP) - this should be removed in Transformers v5
UpperCAmelCase_ = {
"t5-small": 5_12,
"t5-base": 5_12,
"t5-large": 5_12,
"t5-3b": 5_12,
"t5-11b": 5_12,
}
UpperCAmelCase_ = "▁"
class __UpperCamelCase ( A__ ):
__A : Any = VOCAB_FILES_NAMES
__A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
__A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__A : Tuple = ["""input_ids""", """attention_mask"""]
def __init__( self , _UpperCamelCase , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase=100 , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=True , **_UpperCamelCase , ):
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
_UpperCAmelCase = [f'''<extra_id_{i}>''' for i in range(_UpperCamelCase )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
_UpperCAmelCase = len(set(filter(lambda _UpperCamelCase : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'''
''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids'''
''' tokens''' )
if legacy:
logger.warning_once(
f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to'''
''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' )
_UpperCAmelCase = legacy
_UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_UpperCamelCase , **_UpperCamelCase , )
_UpperCAmelCase = vocab_file
_UpperCAmelCase = extra_ids
_UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCamelCase )
@staticmethod
def UpperCamelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes:
_UpperCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
'''This tokenizer was incorrectly instantiated with a model max length of'''
f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this'''
''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with'''
''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on'''
f''' {pretrained_model_name_or_path} automatically truncating your input to'''
f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences'''
f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with'''
''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please'''
''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCamelCase , )
return max_model_length
@property
def UpperCamelCase( self ):
return self.sp_model.get_piece_size() + self._extra_ids
def UpperCamelCase( self ):
_UpperCAmelCase = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(_UpperCamelCase )) + [1]
return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1]
def UpperCamelCase( self ):
return list(
set(filter(lambda _UpperCamelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) )
def UpperCamelCase( self ):
return [self._convert_token_to_id(_UpperCamelCase ) for token in self.get_sentinel_tokens()]
def UpperCamelCase( self , _UpperCamelCase ):
if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'''
''' eos tokens being added.''' )
return token_ids
else:
return token_ids + [self.eos_token_id]
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ):
_UpperCAmelCase = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ):
_UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase )
if token_ids_a is None:
return token_ids_a
else:
_UpperCAmelCase = self._add_eos_if_not_present(_UpperCamelCase )
return token_ids_a + token_ids_a
def __getstate__( self ):
_UpperCAmelCase = self.__dict__.copy()
_UpperCAmelCase = None
return state
def __setstate__( self , _UpperCamelCase ):
_UpperCAmelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_UpperCAmelCase = {}
_UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ):
# Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at
# the beginning of the text
if not self.legacy:
_UpperCAmelCase = SPIECE_UNDERLINE + text.replace(_UpperCamelCase , ''' ''' )
return super().tokenize(_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ):
if not self.legacy:
_UpperCAmelCase = text.startswith(_UpperCamelCase )
if is_first:
_UpperCAmelCase = text[1:]
_UpperCAmelCase = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase )
if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_UpperCamelCase ):
_UpperCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:]
return tokens
def UpperCamelCase( self , _UpperCamelCase ):
if token.startswith('''<extra_id_''' ):
_UpperCAmelCase = re.match(R'''<extra_id_(\d+)>''' , _UpperCamelCase )
_UpperCAmelCase = int(match.group(1 ) )
return self.vocab_size - num - 1
return self.sp_model.piece_to_id(_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase ):
if index < self.sp_model.get_piece_size():
_UpperCAmelCase = self.sp_model.IdToPiece(_UpperCamelCase )
else:
_UpperCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>'''
return token
def UpperCamelCase( self , _UpperCamelCase ):
_UpperCAmelCase = []
_UpperCAmelCase = ''''''
_UpperCAmelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_UpperCamelCase ) + token
_UpperCAmelCase = True
_UpperCAmelCase = []
else:
current_sub_tokens.append(_UpperCamelCase )
_UpperCAmelCase = False
out_string += self.sp_model.decode(_UpperCamelCase )
return out_string.strip()
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ):
if not os.path.isdir(_UpperCamelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_UpperCAmelCase = os.path.join(
_UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCamelCase , '''wb''' ) as fi:
_UpperCAmelCase = self.sp_model.serialized_model_proto()
fi.write(_UpperCamelCase )
return (out_vocab_file,) | 32 | 1 |
import flax.linen as nn
import jax
import jax.numpy as jnp
class __UpperCamelCase ( nn.Module ):
__A : int
__A : jnp.dtype = jnp.floataa
def UpperCamelCase( self ):
_UpperCAmelCase = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , _UpperCamelCase ):
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_states.shape
_UpperCAmelCase = jax.image.resize(
_UpperCamelCase , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , )
_UpperCAmelCase = self.conv(_UpperCamelCase )
return hidden_states
class __UpperCamelCase ( nn.Module ):
__A : int
__A : jnp.dtype = jnp.floataa
def UpperCamelCase( self ):
_UpperCAmelCase = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , _UpperCamelCase ):
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
_UpperCAmelCase = self.conv(_UpperCamelCase )
return hidden_states
class __UpperCamelCase ( nn.Module ):
__A : int
__A : int = None
__A : float = 0.0
__A : bool = None
__A : jnp.dtype = jnp.floataa
def UpperCamelCase( self ):
_UpperCAmelCase = self.in_channels if self.out_channels is None else self.out_channels
_UpperCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
_UpperCAmelCase = nn.Conv(
_UpperCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
_UpperCAmelCase = nn.Dense(_UpperCamelCase , dtype=self.dtype )
_UpperCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
_UpperCAmelCase = nn.Dropout(self.dropout_prob )
_UpperCAmelCase = nn.Conv(
_UpperCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
_UpperCAmelCase = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
_UpperCAmelCase = None
if use_nin_shortcut:
_UpperCAmelCase = nn.Conv(
_UpperCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , )
def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True ):
_UpperCAmelCase = hidden_states
_UpperCAmelCase = self.norma(_UpperCamelCase )
_UpperCAmelCase = nn.swish(_UpperCamelCase )
_UpperCAmelCase = self.conva(_UpperCamelCase )
_UpperCAmelCase = self.time_emb_proj(nn.swish(_UpperCamelCase ) )
_UpperCAmelCase = jnp.expand_dims(jnp.expand_dims(_UpperCamelCase , 1 ) , 1 )
_UpperCAmelCase = hidden_states + temb
_UpperCAmelCase = self.norma(_UpperCamelCase )
_UpperCAmelCase = nn.swish(_UpperCamelCase )
_UpperCAmelCase = self.dropout(_UpperCamelCase , _UpperCamelCase )
_UpperCAmelCase = self.conva(_UpperCamelCase )
if self.conv_shortcut is not None:
_UpperCAmelCase = self.conv_shortcut(_UpperCamelCase )
return hidden_states + residual | 32 |
from __future__ import annotations
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool:
"""simple docstring"""
_UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ )
return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' )
def A__ ( ) -> int | None:
"""simple docstring"""
for base_num in range(99_99 , 49_99 , -1 ):
_UpperCAmelCase = 10_00_02 * base_num
if is_9_pandigital(SCREAMING_SNAKE_CASE_ ):
return candidate
for base_num in range(3_33 , 99 , -1 ):
_UpperCAmelCase = 1_00_20_03 * base_num
if is_9_pandigital(SCREAMING_SNAKE_CASE_ ):
return candidate
return None
if __name__ == "__main__":
print(f'''{solution() = }''') | 32 | 1 |
def A__ ( SCREAMING_SNAKE_CASE_ : int = 10_00 ) -> int:
"""simple docstring"""
_UpperCAmelCase = 3
_UpperCAmelCase = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f'''{solution() = }''') | 32 |
import numpy as np
def A__ ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> np.ndarray:
"""simple docstring"""
return np.where(vector > 0 , SCREAMING_SNAKE_CASE_ , (alpha * (np.exp(SCREAMING_SNAKE_CASE_ ) - 1)) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 32 | 1 |
import collections.abc
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_poolformer import PoolFormerConfig
UpperCAmelCase_ = logging.get_logger(__name__)
# General docstring
UpperCAmelCase_ = "PoolFormerConfig"
# Base docstring
UpperCAmelCase_ = "sail/poolformer_s12"
UpperCAmelCase_ = [1, 5_12, 7, 7]
# Image classification docstring
UpperCAmelCase_ = "sail/poolformer_s12"
UpperCAmelCase_ = "tabby, tabby cat"
UpperCAmelCase_ = [
"sail/poolformer_s12",
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
]
def A__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : bool = False ) -> str:
"""simple docstring"""
if drop_prob == 0.0 or not training:
return input
_UpperCAmelCase = 1 - drop_prob
_UpperCAmelCase = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
_UpperCAmelCase = keep_prob + torch.rand(SCREAMING_SNAKE_CASE_ , dtype=input.dtype , device=input.device )
random_tensor.floor_() # binarize
_UpperCAmelCase = input.div(SCREAMING_SNAKE_CASE_ ) * random_tensor
return output
class __UpperCamelCase ( nn.Module ):
def __init__( self , _UpperCamelCase = None ):
super().__init__()
_UpperCAmelCase = drop_prob
def UpperCamelCase( self , _UpperCamelCase ):
return drop_path(_UpperCamelCase , self.drop_prob , self.training )
def UpperCamelCase( self ):
return "p={}".format(self.drop_prob )
class __UpperCamelCase ( nn.Module ):
def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ):
super().__init__()
_UpperCAmelCase = patch_size if isinstance(_UpperCamelCase , collections.abc.Iterable ) else (patch_size, patch_size)
_UpperCAmelCase = stride if isinstance(_UpperCamelCase , collections.abc.Iterable ) else (stride, stride)
_UpperCAmelCase = padding if isinstance(_UpperCamelCase , collections.abc.Iterable ) else (padding, padding)
_UpperCAmelCase = nn.Convad(_UpperCamelCase , _UpperCamelCase , kernel_size=_UpperCamelCase , stride=_UpperCamelCase , padding=_UpperCamelCase )
_UpperCAmelCase = norm_layer(_UpperCamelCase ) if norm_layer else nn.Identity()
def UpperCamelCase( self , _UpperCamelCase ):
_UpperCAmelCase = self.projection(_UpperCamelCase )
_UpperCAmelCase = self.norm(_UpperCamelCase )
return embeddings
class __UpperCamelCase ( nn.GroupNorm ):
def __init__( self , _UpperCamelCase , **_UpperCamelCase ):
super().__init__(1 , _UpperCamelCase , **_UpperCamelCase )
class __UpperCamelCase ( nn.Module ):
def __init__( self , _UpperCamelCase ):
super().__init__()
_UpperCAmelCase = nn.AvgPoolad(_UpperCamelCase , stride=1 , padding=pool_size // 2 , count_include_pad=_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase ):
return self.pool(_UpperCamelCase ) - hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
super().__init__()
_UpperCAmelCase = nn.Convad(_UpperCamelCase , _UpperCamelCase , 1 )
_UpperCAmelCase = nn.Convad(_UpperCamelCase , _UpperCamelCase , 1 )
_UpperCAmelCase = PoolFormerDropPath(_UpperCamelCase )
if isinstance(config.hidden_act , _UpperCamelCase ):
_UpperCAmelCase = ACTaFN[config.hidden_act]
else:
_UpperCAmelCase = config.hidden_act
def UpperCamelCase( self , _UpperCamelCase ):
_UpperCAmelCase = self.conva(_UpperCamelCase )
_UpperCAmelCase = self.act_fn(_UpperCamelCase )
_UpperCAmelCase = self.drop(_UpperCamelCase )
_UpperCAmelCase = self.conva(_UpperCamelCase )
_UpperCAmelCase = self.drop(_UpperCamelCase )
return hidden_states
class __UpperCamelCase ( nn.Module ):
def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
super().__init__()
_UpperCAmelCase = PoolFormerPooling(_UpperCamelCase )
_UpperCAmelCase = PoolFormerOutput(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
_UpperCAmelCase = PoolFormerGroupNorm(_UpperCamelCase )
_UpperCAmelCase = PoolFormerGroupNorm(_UpperCamelCase )
# Useful for training neural nets
_UpperCAmelCase = PoolFormerDropPath(_UpperCamelCase ) if drop_path > 0.0 else nn.Identity()
_UpperCAmelCase = config.use_layer_scale
if config.use_layer_scale:
_UpperCAmelCase = nn.Parameter(
config.layer_scale_init_value * torch.ones((_UpperCamelCase) ) , requires_grad=_UpperCamelCase )
_UpperCAmelCase = nn.Parameter(
config.layer_scale_init_value * torch.ones((_UpperCamelCase) ) , requires_grad=_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase ):
if self.use_layer_scale:
_UpperCAmelCase = self.pooling(self.before_norm(_UpperCamelCase ) )
_UpperCAmelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output
# First residual connection
_UpperCAmelCase = hidden_states + self.drop_path(_UpperCamelCase )
_UpperCAmelCase = ()
_UpperCAmelCase = self.output(self.after_norm(_UpperCamelCase ) )
_UpperCAmelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output
# Second residual connection
_UpperCAmelCase = hidden_states + self.drop_path(_UpperCamelCase )
_UpperCAmelCase = (output,) + outputs
return outputs
else:
_UpperCAmelCase = self.drop_path(self.pooling(self.before_norm(_UpperCamelCase ) ) )
# First residual connection
_UpperCAmelCase = pooling_output + hidden_states
_UpperCAmelCase = ()
# Second residual connection inside the PoolFormerOutput block
_UpperCAmelCase = self.drop_path(self.output(self.after_norm(_UpperCamelCase ) ) )
_UpperCAmelCase = hidden_states + layer_output
_UpperCAmelCase = (output,) + outputs
return outputs
class __UpperCamelCase ( nn.Module ):
def __init__( self , _UpperCamelCase ):
super().__init__()
_UpperCAmelCase = config
# stochastic depth decay rule
_UpperCAmelCase = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )]
# patch embeddings
_UpperCAmelCase = []
for i in range(config.num_encoder_blocks ):
embeddings.append(
PoolFormerEmbeddings(
patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) )
_UpperCAmelCase = nn.ModuleList(_UpperCamelCase )
# Transformer blocks
_UpperCAmelCase = []
_UpperCAmelCase = 0
for i in range(config.num_encoder_blocks ):
# each block consists of layers
_UpperCAmelCase = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i] ):
layers.append(
PoolFormerLayer(
_UpperCamelCase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) )
blocks.append(nn.ModuleList(_UpperCamelCase ) )
_UpperCAmelCase = nn.ModuleList(_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=False , _UpperCamelCase=True ):
_UpperCAmelCase = () if output_hidden_states else None
_UpperCAmelCase = pixel_values
for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ):
_UpperCAmelCase , _UpperCAmelCase = layers
# Get patch embeddings from hidden_states
_UpperCAmelCase = embedding_layer(_UpperCamelCase )
# Send the embeddings through the blocks
for _, blk in enumerate(_UpperCamelCase ):
_UpperCAmelCase = blk(_UpperCamelCase )
_UpperCAmelCase = layer_outputs[0]
if output_hidden_states:
_UpperCAmelCase = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCamelCase , hidden_states=_UpperCamelCase )
class __UpperCamelCase ( A__ ):
__A : Tuple = PoolFormerConfig
__A : int = """poolformer"""
__A : Tuple = """pixel_values"""
__A : Optional[Any] = True
def UpperCamelCase( self , _UpperCamelCase ):
if isinstance(_UpperCamelCase , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(_UpperCamelCase , nn.LayerNorm ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=False ):
if isinstance(_UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = value
UpperCAmelCase_ = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n"
UpperCAmelCase_ = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n"
@add_start_docstrings(
"""The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.""" , A__ , )
class __UpperCamelCase ( A__ ):
def __init__( self , _UpperCamelCase ):
super().__init__(_UpperCamelCase )
_UpperCAmelCase = config
_UpperCAmelCase = PoolFormerEncoder(_UpperCamelCase )
# Initialize weights and apply final processing
self.post_init()
def UpperCamelCase( self ):
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(_UpperCamelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def UpperCamelCase( self , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , ):
_UpperCAmelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError('''You have to specify pixel_values''' )
_UpperCAmelCase = self.encoder(
_UpperCamelCase , output_hidden_states=_UpperCamelCase , return_dict=_UpperCamelCase , )
_UpperCAmelCase = encoder_outputs[0]
if not return_dict:
return (sequence_output, None) + encoder_outputs[1:]
return BaseModelOutputWithNoAttention(
last_hidden_state=_UpperCamelCase , hidden_states=encoder_outputs.hidden_states , )
class __UpperCamelCase ( nn.Module ):
def __init__( self , _UpperCamelCase ):
super().__init__()
_UpperCAmelCase = nn.Linear(config.hidden_size , config.hidden_size )
def UpperCamelCase( self , _UpperCamelCase ):
_UpperCAmelCase = self.dense(_UpperCamelCase )
return output
@add_start_docstrings(
"""
PoolFormer Model transformer with an image classification head on top
""" , A__ , )
class __UpperCamelCase ( A__ ):
def __init__( self , _UpperCamelCase ):
super().__init__(_UpperCamelCase )
_UpperCAmelCase = config.num_labels
_UpperCAmelCase = PoolFormerModel(_UpperCamelCase )
# Final norm
_UpperCAmelCase = PoolFormerGroupNorm(config.hidden_sizes[-1] )
# Classifier head
_UpperCAmelCase = (
nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCamelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def UpperCamelCase( self , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , ):
_UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCAmelCase = self.poolformer(
_UpperCamelCase , output_hidden_states=_UpperCamelCase , return_dict=_UpperCamelCase , )
_UpperCAmelCase = outputs[0]
_UpperCAmelCase = self.classifier(self.norm(_UpperCamelCase ).mean([-2, -1] ) )
_UpperCAmelCase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_UpperCAmelCase = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_UpperCAmelCase = '''single_label_classification'''
else:
_UpperCAmelCase = '''multi_label_classification'''
if self.config.problem_type == "regression":
_UpperCAmelCase = MSELoss()
if self.num_labels == 1:
_UpperCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
_UpperCAmelCase = loss_fct(_UpperCamelCase , _UpperCamelCase )
elif self.config.problem_type == "single_label_classification":
_UpperCAmelCase = CrossEntropyLoss()
_UpperCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
_UpperCAmelCase = BCEWithLogitsLoss()
_UpperCAmelCase = loss_fct(_UpperCamelCase , _UpperCamelCase )
if not return_dict:
_UpperCAmelCase = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_UpperCamelCase , logits=_UpperCamelCase , hidden_states=outputs.hidden_states ) | 32 |
UpperCAmelCase_ = {
"A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.",
"H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.",
"O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-",
"V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----",
"2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...",
"8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.",
":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.",
"?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-",
"(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/"
} # Exclamation mark is not in ITU-R recommendation
# fmt: on
UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()}
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
return " ".join(MORSE_CODE_DICT[char] for char in message.upper() )
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
return "".join(REVERSE_DICT[char] for char in message.split() )
def A__ ( ) -> None:
"""simple docstring"""
_UpperCAmelCase = '''Morse code here!'''
print(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ )
print(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ )
print(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
main() | 32 | 1 |
from __future__ import annotations
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool:
"""simple docstring"""
_UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ )
return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' )
def A__ ( ) -> int | None:
"""simple docstring"""
for base_num in range(99_99 , 49_99 , -1 ):
_UpperCAmelCase = 10_00_02 * base_num
if is_9_pandigital(SCREAMING_SNAKE_CASE_ ):
return candidate
for base_num in range(3_33 , 99 , -1 ):
_UpperCAmelCase = 1_00_20_03 * base_num
if is_9_pandigital(SCREAMING_SNAKE_CASE_ ):
return candidate
return None
if __name__ == "__main__":
print(f'''{solution() = }''') | 32 |
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __UpperCamelCase ( A__ , unittest.TestCase ):
__A : Any = DanceDiffusionPipeline
__A : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
__A : Tuple = PipelineTesterMixin.required_optional_params - {
"""callback""",
"""latents""",
"""callback_steps""",
"""output_type""",
"""num_images_per_prompt""",
}
__A : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
__A : List[str] = False
__A : str = False
def UpperCamelCase( self ):
torch.manual_seed(0 )
_UpperCAmelCase = UNetaDModel(
block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , )
_UpperCAmelCase = IPNDMScheduler()
_UpperCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
}
return components
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ):
if str(_UpperCamelCase ).startswith('''mps''' ):
_UpperCAmelCase = torch.manual_seed(_UpperCamelCase )
else:
_UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase )
_UpperCAmelCase = {
'''batch_size''': 1,
'''generator''': generator,
'''num_inference_steps''': 4,
}
return inputs
def UpperCamelCase( self ):
_UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
_UpperCAmelCase = self.get_dummy_components()
_UpperCAmelCase = DanceDiffusionPipeline(**_UpperCamelCase )
_UpperCAmelCase = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase )
_UpperCAmelCase = pipe(**_UpperCamelCase )
_UpperCAmelCase = output.audios
_UpperCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
_UpperCAmelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def UpperCamelCase( self ):
return super().test_save_load_local()
@skip_mps
def UpperCamelCase( self ):
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
@skip_mps
def UpperCamelCase( self ):
return super().test_save_load_optional_components()
@skip_mps
def UpperCamelCase( self ):
return super().test_attention_slicing_forward_pass()
def UpperCamelCase( self ):
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class __UpperCamelCase ( unittest.TestCase ):
def UpperCamelCase( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase( self ):
_UpperCAmelCase = torch_device
_UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' )
_UpperCAmelCase = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 )
_UpperCAmelCase = output.audios
_UpperCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_UpperCAmelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCamelCase( self ):
_UpperCAmelCase = torch_device
_UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa )
_UpperCAmelCase = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 )
_UpperCAmelCase = output.audios
_UpperCAmelCase = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_UpperCAmelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 | 32 | 1 |
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class __UpperCamelCase ( A__ ):
def UpperCamelCase( self , _UpperCamelCase ):
with open(_UpperCamelCase , encoding='''utf-8''' ) as input_file:
_UpperCAmelCase = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' )
_UpperCAmelCase = input_file.read()
_UpperCAmelCase = regexp.search(_UpperCamelCase )
return match
def UpperCamelCase( self , _UpperCamelCase ):
with open(_UpperCamelCase , encoding='''utf-8''' ) as input_file:
_UpperCAmelCase = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL )
_UpperCAmelCase = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
_UpperCAmelCase = regexp.finditer(_UpperCamelCase )
_UpperCAmelCase = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def UpperCamelCase( self ):
_UpperCAmelCase = Path('''./datasets''' )
_UpperCAmelCase = list(dataset_paths.absolute().glob('''**/*.py''' ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(_UpperCamelCase ) ):
raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' )
def UpperCamelCase( self ):
_UpperCAmelCase = Path('''./datasets''' )
_UpperCAmelCase = list(dataset_paths.absolute().glob('''**/*.py''' ) )
for dataset in dataset_files:
if self._no_print_statements(str(_UpperCamelCase ) ):
raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' ) | 32 |
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = OrderedDict(
[
# Base model mapping
("albert", "FlaxAlbertModel"),
("bart", "FlaxBartModel"),
("beit", "FlaxBeitModel"),
("bert", "FlaxBertModel"),
("big_bird", "FlaxBigBirdModel"),
("blenderbot", "FlaxBlenderbotModel"),
("blenderbot-small", "FlaxBlenderbotSmallModel"),
("clip", "FlaxCLIPModel"),
("distilbert", "FlaxDistilBertModel"),
("electra", "FlaxElectraModel"),
("gpt-sw3", "FlaxGPT2Model"),
("gpt2", "FlaxGPT2Model"),
("gpt_neo", "FlaxGPTNeoModel"),
("gptj", "FlaxGPTJModel"),
("longt5", "FlaxLongT5Model"),
("marian", "FlaxMarianModel"),
("mbart", "FlaxMBartModel"),
("mt5", "FlaxMT5Model"),
("opt", "FlaxOPTModel"),
("pegasus", "FlaxPegasusModel"),
("regnet", "FlaxRegNetModel"),
("resnet", "FlaxResNetModel"),
("roberta", "FlaxRobertaModel"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"),
("roformer", "FlaxRoFormerModel"),
("t5", "FlaxT5Model"),
("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"),
("vit", "FlaxViTModel"),
("wav2vec2", "FlaxWav2Vec2Model"),
("whisper", "FlaxWhisperModel"),
("xglm", "FlaxXGLMModel"),
("xlm-roberta", "FlaxXLMRobertaModel"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for pre-training mapping
("albert", "FlaxAlbertForPreTraining"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForPreTraining"),
("big_bird", "FlaxBigBirdForPreTraining"),
("electra", "FlaxElectraForPreTraining"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("t5", "FlaxT5ForConditionalGeneration"),
("wav2vec2", "FlaxWav2Vec2ForPreTraining"),
("whisper", "FlaxWhisperForConditionalGeneration"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Masked LM mapping
("albert", "FlaxAlbertForMaskedLM"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForMaskedLM"),
("big_bird", "FlaxBigBirdForMaskedLM"),
("distilbert", "FlaxDistilBertForMaskedLM"),
("electra", "FlaxElectraForMaskedLM"),
("mbart", "FlaxMBartForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
("bart", "FlaxBartForConditionalGeneration"),
("blenderbot", "FlaxBlenderbotForConditionalGeneration"),
("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"),
("encoder-decoder", "FlaxEncoderDecoderModel"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("marian", "FlaxMarianMTModel"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("pegasus", "FlaxPegasusForConditionalGeneration"),
("t5", "FlaxT5ForConditionalGeneration"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Image-classsification
("beit", "FlaxBeitForImageClassification"),
("regnet", "FlaxRegNetForImageClassification"),
("resnet", "FlaxResNetForImageClassification"),
("vit", "FlaxViTForImageClassification"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Causal LM mapping
("bart", "FlaxBartForCausalLM"),
("bert", "FlaxBertForCausalLM"),
("big_bird", "FlaxBigBirdForCausalLM"),
("electra", "FlaxElectraForCausalLM"),
("gpt-sw3", "FlaxGPT2LMHeadModel"),
("gpt2", "FlaxGPT2LMHeadModel"),
("gpt_neo", "FlaxGPTNeoForCausalLM"),
("gptj", "FlaxGPTJForCausalLM"),
("opt", "FlaxOPTForCausalLM"),
("roberta", "FlaxRobertaForCausalLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"),
("xglm", "FlaxXGLMForCausalLM"),
("xlm-roberta", "FlaxXLMRobertaForCausalLM"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Sequence Classification mapping
("albert", "FlaxAlbertForSequenceClassification"),
("bart", "FlaxBartForSequenceClassification"),
("bert", "FlaxBertForSequenceClassification"),
("big_bird", "FlaxBigBirdForSequenceClassification"),
("distilbert", "FlaxDistilBertForSequenceClassification"),
("electra", "FlaxElectraForSequenceClassification"),
("mbart", "FlaxMBartForSequenceClassification"),
("roberta", "FlaxRobertaForSequenceClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"),
("roformer", "FlaxRoFormerForSequenceClassification"),
("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Question Answering mapping
("albert", "FlaxAlbertForQuestionAnswering"),
("bart", "FlaxBartForQuestionAnswering"),
("bert", "FlaxBertForQuestionAnswering"),
("big_bird", "FlaxBigBirdForQuestionAnswering"),
("distilbert", "FlaxDistilBertForQuestionAnswering"),
("electra", "FlaxElectraForQuestionAnswering"),
("mbart", "FlaxMBartForQuestionAnswering"),
("roberta", "FlaxRobertaForQuestionAnswering"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"),
("roformer", "FlaxRoFormerForQuestionAnswering"),
("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Token Classification mapping
("albert", "FlaxAlbertForTokenClassification"),
("bert", "FlaxBertForTokenClassification"),
("big_bird", "FlaxBigBirdForTokenClassification"),
("distilbert", "FlaxDistilBertForTokenClassification"),
("electra", "FlaxElectraForTokenClassification"),
("roberta", "FlaxRobertaForTokenClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"),
("roformer", "FlaxRoFormerForTokenClassification"),
("xlm-roberta", "FlaxXLMRobertaForTokenClassification"),
]
)
UpperCAmelCase_ = OrderedDict(
[
# Model for Multiple Choice mapping
("albert", "FlaxAlbertForMultipleChoice"),
("bert", "FlaxBertForMultipleChoice"),
("big_bird", "FlaxBigBirdForMultipleChoice"),
("distilbert", "FlaxDistilBertForMultipleChoice"),
("electra", "FlaxElectraForMultipleChoice"),
("roberta", "FlaxRobertaForMultipleChoice"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"),
("roformer", "FlaxRoFormerForMultipleChoice"),
("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("bert", "FlaxBertForNextSentencePrediction"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"),
("whisper", "FlaxWhisperForConditionalGeneration"),
]
)
UpperCAmelCase_ = OrderedDict(
[
("whisper", "FlaxWhisperForAudioClassification"),
]
)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
UpperCAmelCase_ = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[str] = FLAX_MODEL_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModel)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : List[str] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc="sequence classification"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Union[str, Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc="token classification"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Union[str, Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForImageClassification, head_doc="image classification"
)
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : Optional[int] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
UpperCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling")
class __UpperCamelCase ( _BaseAutoModelClass ):
__A : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
UpperCAmelCase_ = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling"
) | 32 | 1 |
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
UpperCAmelCase_ = logging.get_logger(__name__)
class __UpperCamelCase ( A__ ):
__A : str = ["""audio_values""", """audio_mask"""]
def __init__( self , _UpperCamelCase=2048 , _UpperCamelCase=1 , _UpperCamelCase=[16, 16] , _UpperCamelCase=128 , _UpperCamelCase=44100 , _UpperCamelCase=86 , _UpperCamelCase=2048 , _UpperCamelCase=0.0 , **_UpperCamelCase , ):
super().__init__(
feature_size=_UpperCamelCase , sampling_rate=_UpperCamelCase , padding_value=_UpperCamelCase , **_UpperCamelCase , )
_UpperCAmelCase = spectrogram_length
_UpperCAmelCase = num_channels
_UpperCAmelCase = patch_size
_UpperCAmelCase = feature_size // self.patch_size[1]
_UpperCAmelCase = n_fft
_UpperCAmelCase = sampling_rate // hop_length_to_sampling_rate
_UpperCAmelCase = sampling_rate
_UpperCAmelCase = padding_value
_UpperCAmelCase = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_UpperCamelCase , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=_UpperCamelCase , norm='''slaney''' , mel_scale='''slaney''' , ).T
def UpperCamelCase( self , _UpperCamelCase ):
_UpperCAmelCase = spectrogram(
_UpperCamelCase , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , )
_UpperCAmelCase = log_spec[:, :-1]
_UpperCAmelCase = log_spec - 20.0
_UpperCAmelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0
return log_spec
def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , **_UpperCamelCase , ):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'''This feature extractor is set to support sampling rate'''
f''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled'''
f''' with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
_UpperCAmelCase = isinstance(_UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' )
_UpperCAmelCase = is_batched_numpy or (
isinstance(_UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_UpperCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(_UpperCamelCase , np.ndarray ):
_UpperCAmelCase = np.asarray(_UpperCamelCase , dtype=np.floataa )
elif isinstance(_UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
_UpperCAmelCase = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
_UpperCAmelCase = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
_UpperCAmelCase = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0] , _UpperCamelCase ):
_UpperCAmelCase = [np.asarray(_UpperCamelCase , dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
_UpperCAmelCase = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
_UpperCAmelCase = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
_UpperCAmelCase = np.array(_UpperCamelCase ).astype(np.floataa )
# convert into correct format for padding
_UpperCAmelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
_UpperCAmelCase = np.ones([len(_UpperCamelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
_UpperCAmelCase = padded_audio_features * self.padding_value
for i in range(len(_UpperCamelCase ) ):
_UpperCAmelCase = audio_features[i]
_UpperCAmelCase = feature
# return as BatchFeature
if return_attention_mask:
_UpperCAmelCase = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask}
else:
_UpperCAmelCase = {'''audio_values''': padded_audio_features}
_UpperCAmelCase = BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
return encoded_inputs | 32 |
import baseaa
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes:
"""simple docstring"""
return baseaa.baaencode(string.encode('''utf-8''' ) )
def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str:
"""simple docstring"""
return baseaa.baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' )
if __name__ == "__main__":
UpperCAmelCase_ = "Hello World!"
UpperCAmelCase_ = baseaa_encode(test)
print(encoded)
UpperCAmelCase_ = baseaa_decode(encoded)
print(decoded) | 32 | 1 |
import inspect
import os
import unittest
from pathlib import Path
import torch
import accelerate
from accelerate.test_utils import execute_subprocess_async
from accelerate.test_utils.testing import run_command
class __UpperCamelCase ( unittest.TestCase ):
__A : List[Any] = inspect.getfile(accelerate.test_utils )
__A : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_cli.py"""] )
__A : Optional[int] = ["""accelerate""", """launch"""]
__A : Any = Path.home() / """.cache/huggingface/accelerate"""
__A : Any = """default_config.yaml"""
__A : Union[str, Any] = config_folder / config_file
__A : List[Any] = config_folder / """_default_config.yaml"""
__A : Union[str, Any] = Path("""tests/test_configs""" )
@classmethod
def UpperCamelCase( cls ):
if cls.config_path.is_file():
cls.config_path.rename(cls.changed_path )
@classmethod
def UpperCamelCase( cls ):
if cls.changed_path.is_file():
cls.changed_path.rename(cls.config_path )
def UpperCamelCase( self ):
_UpperCAmelCase = self.base_cmd
if torch.cuda.is_available() and (torch.cuda.device_count() > 1):
cmd += ["--multi_gpu"]
execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() )
def UpperCamelCase( self ):
for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ):
with self.subTest(config_file=_UpperCamelCase ):
execute_subprocess_async(
self.base_cmd + ['''--config_file''', str(_UpperCamelCase ), self.test_file_path] , env=os.environ.copy() )
def UpperCamelCase( self ):
execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() )
class __UpperCamelCase ( unittest.TestCase ):
__A : Dict = """test-tpu"""
__A : Optional[Any] = """us-central1-a"""
__A : int = """ls"""
__A : Tuple = ["""accelerate""", """tpu-config"""]
__A : Union[str, Any] = """cd /usr/share"""
__A : Optional[Any] = """tests/test_samples/test_command_file.sh"""
__A : Any = """Running gcloud compute tpus tpu-vm ssh"""
def UpperCamelCase( self ):
_UpperCAmelCase = run_command(
self.cmd
+ ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=_UpperCamelCase , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCamelCase , )
def UpperCamelCase( self ):
_UpperCAmelCase = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/0_12_0.yaml''',
'''--command''',
self.command,
'''--tpu_zone''',
self.tpu_zone,
'''--tpu_name''',
self.tpu_name,
'''--debug''',
] , return_stdout=_UpperCamelCase , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCamelCase , )
def UpperCamelCase( self ):
_UpperCAmelCase = run_command(
self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=_UpperCamelCase )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCamelCase , )
def UpperCamelCase( self ):
_UpperCAmelCase = run_command(
self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=_UpperCamelCase , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCamelCase , )
def UpperCamelCase( self ):
_UpperCAmelCase = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/latest.yaml''',
'''--command''',
self.command,
'''--command''',
'''echo "Hello World"''',
'''--debug''',
] , return_stdout=_UpperCamelCase , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , _UpperCamelCase , )
def UpperCamelCase( self ):
_UpperCAmelCase = run_command(
self.cmd
+ ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=_UpperCamelCase , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCamelCase , )
def UpperCamelCase( self ):
_UpperCAmelCase = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/0_12_0.yaml''',
'''--command_file''',
self.command_file,
'''--tpu_zone''',
self.tpu_zone,
'''--tpu_name''',
self.tpu_name,
'''--debug''',
] , return_stdout=_UpperCamelCase , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCamelCase , )
def UpperCamelCase( self ):
_UpperCAmelCase = run_command(
self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=_UpperCamelCase , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCamelCase , )
def UpperCamelCase( self ):
_UpperCAmelCase = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/latest.yaml''',
'''--install_accelerate''',
'''--accelerate_version''',
'''12.0.0''',
'''--debug''',
] , return_stdout=_UpperCamelCase , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCamelCase , ) | 32 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
UpperCAmelCase_ = logging.get_logger(__name__)
class __UpperCamelCase ( A__ ):
__A : int = ["""pixel_values"""]
def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ):
super().__init__(**_UpperCamelCase )
_UpperCAmelCase = size if size is not None else {'''height''': 224, '''width''': 224}
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
_UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_UpperCAmelCase = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='''crop_size''' )
_UpperCAmelCase = do_resize
_UpperCAmelCase = do_rescale
_UpperCAmelCase = do_normalize
_UpperCAmelCase = do_center_crop
_UpperCAmelCase = crop_size
_UpperCAmelCase = size
_UpperCAmelCase = resample
_UpperCAmelCase = rescale_factor
_UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
_UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ):
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
if "shortest_edge" in size:
_UpperCAmelCase = get_resize_output_image_size(_UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCamelCase )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
_UpperCAmelCase = (size['''height'''], size['''width'''])
else:
raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' )
return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ):
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(_UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ):
return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ):
return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ):
_UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
_UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
_UpperCAmelCase = get_size_dict(_UpperCamelCase , param_name='''crop_size''' , default_to_square=_UpperCamelCase )
_UpperCAmelCase = resample if resample is not None else self.resample
_UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
_UpperCAmelCase = image_std if image_std is not None else self.image_std
_UpperCAmelCase = size if size is not None else self.size
_UpperCAmelCase = get_size_dict(_UpperCamelCase )
if not is_batched(_UpperCamelCase ):
_UpperCAmelCase = [images]
if not valid_images(_UpperCamelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
_UpperCAmelCase = [to_numpy_array(_UpperCamelCase ) for image in images]
if do_resize:
_UpperCAmelCase = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images]
if do_center_crop:
_UpperCAmelCase = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images]
if do_rescale:
_UpperCAmelCase = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images]
if do_normalize:
_UpperCAmelCase = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images]
_UpperCAmelCase = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images]
_UpperCAmelCase = {'''pixel_values''': images}
return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase ) | 32 | 1 |
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
if not all(char in '''01''' for char in bin_string ):
raise ValueError('''Non-binary value was passed to the function''' )
if not bin_string:
raise ValueError('''Empty string was passed to the function''' )
_UpperCAmelCase = ''''''
while len(SCREAMING_SNAKE_CASE_ ) % 3 != 0:
_UpperCAmelCase = '''0''' + bin_string
_UpperCAmelCase = [
bin_string[index : index + 3]
for index in range(len(SCREAMING_SNAKE_CASE_ ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
_UpperCAmelCase = 0
for index, val in enumerate(SCREAMING_SNAKE_CASE_ ):
oct_val += int(2 ** (2 - index) * int(SCREAMING_SNAKE_CASE_ ) )
oct_string += str(SCREAMING_SNAKE_CASE_ )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod() | 32 |
from ..utils import DummyObject, requires_backends
class __UpperCamelCase ( metaclass=A__ ):
__A : str = ["""torch""", """scipy"""]
def __init__( self , *_UpperCamelCase , **_UpperCamelCase ):
requires_backends(self , ['''torch''', '''scipy'''] )
@classmethod
def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ):
requires_backends(cls , ['''torch''', '''scipy'''] )
@classmethod
def UpperCamelCase( cls , *_UpperCamelCase , **_UpperCamelCase ):
requires_backends(cls , ['''torch''', '''scipy'''] ) | 32 | 1 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
WavaVecaConfig,
WavaVecaFeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
UpperCAmelCase_ = get_tests_dir("fixtures")
UpperCAmelCase_ = get_tests_dir("fixtures/dummy_feature_extractor_config.json")
UpperCAmelCase_ = get_tests_dir("fixtures/dummy-config.json")
class __UpperCamelCase ( unittest.TestCase ):
def UpperCamelCase( self ):
_UpperCAmelCase = 0
def UpperCamelCase( self ):
_UpperCAmelCase = AutoFeatureExtractor.from_pretrained('''facebook/wav2vec2-base-960h''' )
self.assertIsInstance(_UpperCamelCase , _UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = AutoFeatureExtractor.from_pretrained(_UpperCamelCase )
self.assertIsInstance(_UpperCamelCase , _UpperCamelCase )
def UpperCamelCase( self ):
with tempfile.TemporaryDirectory() as tmpdirname:
_UpperCAmelCase = WavaVecaConfig()
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally
_UpperCAmelCase = AutoFeatureExtractor.from_pretrained(_UpperCamelCase ).to_dict()
config_dict.pop('''feature_extractor_type''' )
_UpperCAmelCase = WavaVecaFeatureExtractor(**_UpperCamelCase )
# save in new folder
model_config.save_pretrained(_UpperCamelCase )
config.save_pretrained(_UpperCamelCase )
_UpperCAmelCase = AutoFeatureExtractor.from_pretrained(_UpperCamelCase )
# make sure private variable is not incorrectly saved
_UpperCAmelCase = json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(_UpperCamelCase , _UpperCamelCase )
def UpperCamelCase( self ):
_UpperCAmelCase = AutoFeatureExtractor.from_pretrained(_UpperCamelCase )
self.assertIsInstance(_UpperCamelCase , _UpperCamelCase )
def UpperCamelCase( self ):
with self.assertRaisesRegex(
_UpperCamelCase , '''bert-base is not a local folder and is not a valid model identifier''' ):
_UpperCAmelCase = AutoFeatureExtractor.from_pretrained('''bert-base''' )
def UpperCamelCase( self ):
with self.assertRaisesRegex(
_UpperCamelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
_UpperCAmelCase = AutoFeatureExtractor.from_pretrained(_UpperCamelCase , revision='''aaaaaa''' )
def UpperCamelCase( self ):
with self.assertRaisesRegex(
_UpperCamelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
_UpperCAmelCase = AutoFeatureExtractor.from_pretrained('''hf-internal-testing/config-no-model''' )
def UpperCamelCase( self ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(_UpperCamelCase ):
_UpperCAmelCase = AutoFeatureExtractor.from_pretrained(
'''hf-internal-testing/test_dynamic_feature_extractor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(_UpperCamelCase ):
_UpperCAmelCase = AutoFeatureExtractor.from_pretrained(
'''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=_UpperCamelCase )
_UpperCAmelCase = AutoFeatureExtractor.from_pretrained(
'''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=_UpperCamelCase )
self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' )
# Test feature extractor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(_UpperCamelCase )
_UpperCAmelCase = AutoFeatureExtractor.from_pretrained(_UpperCamelCase , trust_remote_code=_UpperCamelCase )
self.assertEqual(reloaded_feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' )
def UpperCamelCase( self ):
try:
AutoConfig.register('''custom''' , _UpperCamelCase )
AutoFeatureExtractor.register(_UpperCamelCase , _UpperCamelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_UpperCamelCase ):
AutoFeatureExtractor.register(_UpperCamelCase , _UpperCamelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
_UpperCAmelCase = CustomFeatureExtractor.from_pretrained(_UpperCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(_UpperCamelCase )
_UpperCAmelCase = AutoFeatureExtractor.from_pretrained(_UpperCamelCase )
self.assertIsInstance(_UpperCamelCase , _UpperCamelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
def UpperCamelCase( self ):
class __UpperCamelCase ( A__ ):
__A : Dict = True
try:
AutoConfig.register('''custom''' , _UpperCamelCase )
AutoFeatureExtractor.register(_UpperCamelCase , _UpperCamelCase )
# If remote code is not set, the default is to use local
_UpperCAmelCase = AutoFeatureExtractor.from_pretrained(
'''hf-internal-testing/test_dynamic_feature_extractor''' )
self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' )
self.assertTrue(feature_extractor.is_local )
# If remote code is disabled, we load the local one.
_UpperCAmelCase = AutoFeatureExtractor.from_pretrained(
'''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=_UpperCamelCase )
self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' )
self.assertTrue(feature_extractor.is_local )
# If remote is enabled, we load from the Hub
_UpperCAmelCase = AutoFeatureExtractor.from_pretrained(
'''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=_UpperCamelCase )
self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' )
self.assertTrue(not hasattr(_UpperCamelCase , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] | 32 |
def A__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int:
"""simple docstring"""
_UpperCAmelCase = [0 for i in range(n + 1 )]
_UpperCAmelCase = 1
_UpperCAmelCase = 1
for i in range(2 , int(n**0.5 ) + 1 ):
if primality_list[i] == 0:
for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ):
_UpperCAmelCase = 1
_UpperCAmelCase = 0
for i in range(SCREAMING_SNAKE_CASE_ ):
if primality_list[i] == 0:
sum_of_primes += i
return sum_of_primes
if __name__ == "__main__":
print(f'''{solution() = }''') | 32 | 1 |
UpperCAmelCase_ = {
"A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.",
"H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.",
"O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-",
"V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----",
"2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...",
"8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.",
":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.",
"?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-",
"(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/"
} # Exclamation mark is not in ITU-R recommendation
# fmt: on
UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()}
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
return " ".join(MORSE_CODE_DICT[char] for char in message.upper() )
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str:
"""simple docstring"""
return "".join(REVERSE_DICT[char] for char in message.split() )
def A__ ( ) -> None:
"""simple docstring"""
_UpperCAmelCase = '''Morse code here!'''
print(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ )
print(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ )
print(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
main() | 32 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
UpperCAmelCase_ = logging.get_logger(__name__)
class __UpperCamelCase ( A__ ):
def __init__( self , *_UpperCamelCase , **_UpperCamelCase ):
warnings.warn(
'''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use GLPNImageProcessor instead.''' , _UpperCamelCase , )
super().__init__(*_UpperCamelCase , **_UpperCamelCase ) | 32 | 1 |
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool:
"""simple docstring"""
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
_UpperCAmelCase = F'''Input value of [number={number}] must be an integer'''
raise TypeError(SCREAMING_SNAKE_CASE_ )
if number < 0:
return False
_UpperCAmelCase = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod() | 32 |
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __UpperCamelCase ( A__ ):
__A : Dict = ["""image_processor""", """tokenizer"""]
__A : List[str] = """BridgeTowerImageProcessor"""
__A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""")
def __init__( self , _UpperCamelCase , _UpperCamelCase ):
super().__init__(_UpperCamelCase , _UpperCamelCase )
def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ):
_UpperCAmelCase = self.tokenizer(
text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , )
# add pixel_values + pixel_mask
_UpperCAmelCase = self.image_processor(
_UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase )
encoding.update(_UpperCamelCase )
return encoding
def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ):
return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase )
def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ):
return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase )
@property
def UpperCamelCase( self ):
_UpperCAmelCase = self.tokenizer.model_input_names
_UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) | 32 | 1 |
import argparse
import torch
from transformers import (
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaForAudioFrameClassification,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
logging,
)
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
def A__ ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = WavaVecaForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = downstream_dict['''projector.weight''']
_UpperCAmelCase = downstream_dict['''projector.bias''']
_UpperCAmelCase = downstream_dict['''model.post_net.linear.weight''']
_UpperCAmelCase = downstream_dict['''model.post_net.linear.bias''']
return model
def A__ ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = WavaVecaForAudioFrameClassification.from_pretrained(SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = downstream_dict['''model.linear.weight''']
_UpperCAmelCase = downstream_dict['''model.linear.bias''']
return model
def A__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int:
"""simple docstring"""
_UpperCAmelCase = WavaVecaForXVector.from_pretrained(SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = downstream_dict['''connector.weight''']
_UpperCAmelCase = downstream_dict['''connector.bias''']
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
_UpperCAmelCase = downstream_dict[
F'''model.framelevel_feature_extractor.module.{i}.kernel.weight'''
]
_UpperCAmelCase = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias''']
_UpperCAmelCase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight''']
_UpperCAmelCase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias''']
_UpperCAmelCase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight''']
_UpperCAmelCase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias''']
_UpperCAmelCase = downstream_dict['''objective.W''']
return model
@torch.no_grad()
def A__ ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )
_UpperCAmelCase = checkpoint['''Downstream''']
_UpperCAmelCase = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(
SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , do_normalize=SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = hf_config.architectures[0]
if arch.endswith('''ForSequenceClassification''' ):
_UpperCAmelCase = convert_classification(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif arch.endswith('''ForAudioFrameClassification''' ):
_UpperCAmelCase = convert_diarization(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif arch.endswith('''ForXVector''' ):
_UpperCAmelCase = convert_xvector(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
else:
raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' )
if hf_config.use_weighted_layer_sum:
_UpperCAmelCase = checkpoint['''Featurizer''']['''weights''']
hf_feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ )
hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
"--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model."
)
parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.")
parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.")
UpperCAmelCase_ = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path) | 32 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase_ = {
"configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"],
"tokenization_xlm": ["XLMTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMForMultipleChoice",
"XLMForQuestionAnswering",
"XLMForQuestionAnsweringSimple",
"XLMForSequenceClassification",
"XLMForTokenClassification",
"XLMModel",
"XLMPreTrainedModel",
"XLMWithLMHeadModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLMForMultipleChoice",
"TFXLMForQuestionAnsweringSimple",
"TFXLMForSequenceClassification",
"TFXLMForTokenClassification",
"TFXLMMainLayer",
"TFXLMModel",
"TFXLMPreTrainedModel",
"TFXLMWithLMHeadModel",
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) | 32 | 1 |
from __future__ import annotations
def A__ ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int ) -> tuple[float, list[float]]:
"""simple docstring"""
_UpperCAmelCase = list(range(len(SCREAMING_SNAKE_CASE_ ) ) )
_UpperCAmelCase = [v / w for v, w in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )]
index.sort(key=lambda SCREAMING_SNAKE_CASE_ : ratio[i] , reverse=SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = 0
_UpperCAmelCase = [0] * len(SCREAMING_SNAKE_CASE_ )
for i in index:
if weight[i] <= capacity:
_UpperCAmelCase = 1
max_value += value[i]
capacity -= weight[i]
else:
_UpperCAmelCase = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod() | 32 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
"microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json",
# See all BioGPT models at https://huggingface.co/models?filter=biogpt
}
class __UpperCamelCase ( A__ ):
__A : Any = """biogpt"""
def __init__( self , _UpperCamelCase=42384 , _UpperCamelCase=1024 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=4096 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=1024 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-12 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ):
_UpperCAmelCase = vocab_size
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = initializer_range
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = scale_embedding
_UpperCAmelCase = use_cache
_UpperCAmelCase = layerdrop
_UpperCAmelCase = activation_dropout
super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) | 32 | 1 |
def A__ ( SCREAMING_SNAKE_CASE_ : bytes ) -> str:
"""simple docstring"""
return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] )
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> bytes:
"""simple docstring"""
if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0:
raise ValueError(
'''Base16 encoded data is invalid:
Data does not have an even number of hex digits.''' )
# Check the character set - the standard base16 alphabet
# is uppercase according to RFC3548 section 6
if not set(SCREAMING_SNAKE_CASE_ ) <= set('''0123456789ABCDEF''' ):
raise ValueError(
'''Base16 encoded data is invalid:
Data is not uppercase hex or it contains invalid characters.''' )
# For every two hexadecimal digits (= a byte), turn it into an integer.
# Then, string the result together into bytes, and return it.
return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 32 |
from typing import List
from .keymap import KEYMAP, get_character
def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> List[str]:
"""simple docstring"""
def decorator(SCREAMING_SNAKE_CASE_ : List[Any] ):
_UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] )
handle += [key]
setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ )
return func
return decorator
def A__ ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict:
"""simple docstring"""
def decorator(SCREAMING_SNAKE_CASE_ : Any ):
_UpperCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , [] )
handle += keys
setattr(SCREAMING_SNAKE_CASE_ , '''handle_key''' , SCREAMING_SNAKE_CASE_ )
return func
return decorator
class __UpperCamelCase ( A__ ):
def __new__( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
_UpperCAmelCase = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
if not hasattr(_UpperCamelCase , '''key_handler''' ):
setattr(_UpperCamelCase , '''key_handler''' , {} )
setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input )
for value in attrs.values():
_UpperCAmelCase = getattr(_UpperCamelCase , '''handle_key''' , [] )
for key in handled_keys:
_UpperCAmelCase = value
return new_cls
@staticmethod
def UpperCamelCase( cls ):
_UpperCAmelCase = get_character()
if char != KEYMAP["undefined"]:
_UpperCAmelCase = ord(_UpperCamelCase )
_UpperCAmelCase = cls.key_handler.get(_UpperCamelCase )
if handler:
_UpperCAmelCase = char
return handler(cls )
else:
return None
def A__ ( cls : Union[str, Any] ) -> Any:
"""simple docstring"""
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() ) | 32 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.