code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from __future__ import annotations SCREAMING_SNAKE_CASE_ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase ,_lowercase ,): """simple docstring""" UpperCamelCase = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowercase ) ) ] # the reference grid UpperCamelCase = 1 UpperCamelCase = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowercase ) ) ] # the action grid UpperCamelCase = init[0] UpperCamelCase = init[1] UpperCamelCase = 0 UpperCamelCase = g + heuristic[x][y] # cost from starting cell to destination cell UpperCamelCase = [[f, g, x, y]] UpperCamelCase = False # flag that is set when search is complete UpperCamelCase = False # flag set if we can't find expand while not found and not resign: if len(_lowercase ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() UpperCamelCase = cell.pop() UpperCamelCase = next_cell[2] UpperCamelCase = next_cell[3] UpperCamelCase = next_cell[1] if x == goal[0] and y == goal[1]: UpperCamelCase = True else: for i in range(len(_lowercase ) ): # to try out different valid actions UpperCamelCase = x + DIRECTIONS[i][0] UpperCamelCase = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_lowercase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: UpperCamelCase = g + cost UpperCamelCase = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) UpperCamelCase = 1 UpperCamelCase = i UpperCamelCase = [] UpperCamelCase = goal[0] UpperCamelCase = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: UpperCamelCase = x - DIRECTIONS[action[x][y]][0] UpperCamelCase = y - DIRECTIONS[action[x][y]][1] UpperCamelCase = xa UpperCamelCase = ya invpath.append([x, y] ) UpperCamelCase = [] for i in range(len(_lowercase ) ): path.append(invpath[len(_lowercase ) - 1 - i] ) return path, action if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] SCREAMING_SNAKE_CASE_ = [0, 0] # all coordinates are given in format [y,x] SCREAMING_SNAKE_CASE_ = [len(grid) - 1, len(grid[0]) - 1] SCREAMING_SNAKE_CASE_ = 1 # the cost map which pushes the path closer to the goal SCREAMING_SNAKE_CASE_ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): SCREAMING_SNAKE_CASE_ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map SCREAMING_SNAKE_CASE_ = 99 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
34
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for tf_name, hf_name in patterns: UpperCamelCase = k.replace(_lowercase ,_lowercase ) return k def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = BigBirdPegasusConfig(**_lowercase ) UpperCamelCase = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCamelCase = torch_model.state_dict() UpperCamelCase = {} # separating decoder weights UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = DECODER_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = REMAINING_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCamelCase = mapping['''model.embed_positions.weight'''] UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(_lowercase ,strict=_lowercase ) UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tf.train.list_variables(_lowercase ) UpperCamelCase = {} UpperCamelCase = ['''global_step'''] for name, shape in tqdm(_lowercase ,desc='''converting tf checkpoint to dict''' ): UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase = tf.train.load_variable(_lowercase ,_lowercase ) UpperCamelCase = array return tf_weights def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = get_tf_weights_as_numpy(_lowercase ) UpperCamelCase = convert_bigbird_pegasus(_lowercase ,_lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
34
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''note_seq'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(self , ['''note_seq''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''note_seq''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(cls , ['''note_seq'''])
34
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
1
"""simple docstring""" import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = WavaVecaPhonemeCTCTokenizer A_ = False def UpperCAmelCase__ ( self) -> List[str]: super().setUp() UpperCamelCase = ( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(''' ''') UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_)))) UpperCamelCase = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(lowerCamelCase_) + '''\n''') def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=2_0 , lowerCamelCase_=5) -> Tuple[str, list]: UpperCamelCase = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCamelCase_)) for i in range(len(lowerCamelCase_))] UpperCamelCase = list(filter(lambda lowerCamelCase_: [t[0]] == tokenizer.encode(t[1] , do_phonemize=lowerCamelCase_) , lowerCamelCase_)) if max_length is not None and len(lowerCamelCase_) > max_length: UpperCamelCase = toks[:max_length] if min_length is not None and len(lowerCamelCase_) < min_length and len(lowerCamelCase_) > 0: while len(lowerCamelCase_) < min_length: UpperCamelCase = toks + toks # toks_str = [t[1] for t in toks] UpperCamelCase = [t[0] for t in toks] # Ensure consistency UpperCamelCase = tokenizer.decode(lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_) if " " not in output_txt and len(lowerCamelCase_) > 1: UpperCamelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCamelCase_) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCamelCase_) ) if with_prefix_space: UpperCamelCase = ''' ''' + output_txt UpperCamelCase = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_) return output_txt, output_ids def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Optional[int]: kwargs.update(self.special_tokens_map) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_) def UpperCAmelCase__ ( self) -> Dict: UpperCamelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''') # check adding a single token tokenizer.add_tokens('''xxx''') UpperCamelCase = tokenizer('''m xxx ɪ''' , do_phonemize=lowerCamelCase_).input_ids self.assertEqual(lowerCamelCase_ , [1_3, 3_9_2, 1_7]) # xxx should be last token tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc''']) UpperCamelCase = tokenizer('''m aaa ɪ ccc''' , do_phonemize=lowerCamelCase_).input_ids self.assertEqual(lowerCamelCase_ , [1_3, 3_9_3, 1_7, 3_9_5]) # aaa and ccc should be after xxx and 2 after aaa UpperCamelCase = tokenizer('''maɪ c''' , do_phonemize=lowerCamelCase_).input_ids self.assertEqual(lowerCamelCase_ , [3, 2_0_0]) # mai should be <unk> (=3) def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''') UpperCamelCase = '''Hello how are you''' UpperCamelCase = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='''en-us''') self.assertEqual(lowerCamelCase_ , '''h ə l oʊ h aʊ ɑːɹ j uː''') def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''') UpperCamelCase = '''Hello how are you''' UpperCamelCase = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='''en-us''') self.assertEqual(tokenizer(lowerCamelCase_).input_ids , tokenizer(lowerCamelCase_ , do_phonemize=lowerCamelCase_).input_ids) def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''') UpperCamelCase = '''Hello how are you''' UpperCamelCase = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='''en-us''') UpperCamelCase = tokenizer.decode(tokenizer(lowerCamelCase_).input_ids) self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''') UpperCamelCase = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8], [2_4, 2_2, 5, 2_4, 2_2, 5, 7_7], ] UpperCamelCase = tokenizer.decode(sample_ids[0]) UpperCamelCase = tokenizer.batch_decode(lowerCamelCase_) self.assertEqual(lowerCamelCase_ , batch_tokens[0]) self.assertEqual(lowerCamelCase_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ''']) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''') tokenizer.add_tokens('''|''') UpperCamelCase = '''Hello how are you''' UpperCamelCase = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='''en-us''') self.assertEqual(lowerCamelCase_ , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''') def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''') tokenizer.add_tokens('''|''') UpperCamelCase = '''Hello how are you''' UpperCamelCase = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='''en-us''') self.assertEqual(tokenizer(lowerCamelCase_).input_ids , tokenizer(lowerCamelCase_ , do_phonemize=lowerCamelCase_).input_ids) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''') tokenizer.add_tokens('''|''') # fmt: off UpperCamelCase = [ [1_1, 5, 1_5, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 1_5, 8, tokenizer.word_delimiter_token_id, 9_8], [tokenizer.word_delimiter_token_id, 2_4, 2_2, tokenizer.word_delimiter_token_id, 5, 2_4, 2_2, 5, 7_7], ] # fmt: on # decode with word_del_token filter UpperCamelCase = tokenizer.decode(sample_ids[0]) UpperCamelCase = tokenizer.batch_decode(lowerCamelCase_) self.assertEqual(lowerCamelCase_ , batch_tokens[0]) self.assertEqual(lowerCamelCase_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ''']) # decode with no word_del_token filter UpperCamelCase = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=lowerCamelCase_) UpperCamelCase = tokenizer.batch_decode(lowerCamelCase_ , filter_word_delimiter_token=lowerCamelCase_) self.assertEqual(lowerCamelCase_ , batch_tokens[0]) self.assertEqual(lowerCamelCase_ , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ''']) def UpperCAmelCase__ ( self) -> Dict: UpperCamelCase = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''') tokenizer.add_tokens('''|''') UpperCamelCase = '''Hello how are you''' UpperCamelCase = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='''en-us''') UpperCamelCase = tokenizer.decode(tokenizer(lowerCamelCase_).input_ids , filter_word_delimiter_token=lowerCamelCase_) self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''') tokenizer.add_tokens('''|''') UpperCamelCase = '''Hello how are you''' UpperCamelCase = tokenizer.phonemize(lowerCamelCase_ , phonemizer_lang='''en-us''') UpperCamelCase = tokenizer.decode(tokenizer(lowerCamelCase_).input_ids , filter_word_delimiter_token=lowerCamelCase_) self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''')]).strip() , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=lowerCamelCase_) UpperCamelCase = '''Hello how are you''' UpperCamelCase = tokenizer(lowerCamelCase_ , phonemizer_lang='''en-us''').input_ids UpperCamelCase = tokenizer(lowerCamelCase_ , phonemizer_lang='''fr-fr''').input_ids self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = tokenizer.decode(lowerCamelCase_) UpperCamelCase = tokenizer.decode(lowerCamelCase_) self.assertEqual(lowerCamelCase_ , '''h ə l oʊ h aʊ ɑːɹ j uː''') self.assertEqual(lowerCamelCase_ , '''ɛ l o h aʊ a ʁ j u''') def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''') UpperCamelCase = '''Hello how Are you''' UpperCamelCase = '''hello how are you''' UpperCamelCase = tokenizer(lowerCamelCase_).input_ids UpperCamelCase = tokenizer(lowerCamelCase_).input_ids self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''') tokenizer.add_tokens(['''!''', '''?''']) tokenizer.add_special_tokens({'''cls_token''': '''$$$'''}) # fmt: off UpperCamelCase = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8, 3_9_2, 3_9_2, 3_9_3, 3_9_2, 3_9_2, 3_9_3, 3_9_4, 3_9_4], [2_4, 2_2, 5, 2_4, 2_2, 5, 7_7, tokenizer.pad_token_id, 3_9_4, 3_9_4], ] # fmt: on UpperCamelCase = tokenizer.batch_decode(lowerCamelCase_) self.assertEqual(lowerCamelCase_ , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$''']) @staticmethod def UpperCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_) -> List[str]: UpperCamelCase = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = self.get_tokenizer(word_delimiter_token='''|''') tokenizer.add_tokens('''|''') # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" UpperCamelCase = [1_1, 5, 5, 5, 1_5, 1_5, tokenizer.pad_token_id, 1_5, 1_5, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 1_5, 8, 8, 8, tokenizer.word_delimiter_token_id, 9_8] # fmt: on UpperCamelCase = tokenizer.decode(lowerCamelCase_ , output_char_offsets=lowerCamelCase_ , filter_word_delimiter_token=lowerCamelCase_) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys()) , 2) self.assertTrue('''text''' in outputs) self.assertTrue('''char_offsets''' in outputs) self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_)) # check that order of chars is correct and identical for both outputs self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''')) , outputs.text) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''char''') , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ''']) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''') , [0, 1, 4, 7, 9, 1_1, 1_2, 1_5, 1_6]) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''') , [1, 4, 6, 9, 1_0, 1_2, 1_5, 1_6, 1_7]) def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = self.get_tokenizer(word_delimiter_token='''|''') def check_list_tuples_equal(lowerCamelCase_ , lowerCamelCase_): self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_)) self.assertTrue(isinstance(outputs_list[0] , lowerCamelCase_)) # transform list to ModelOutput UpperCamelCase = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]}) self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text''']) def recursive_check(lowerCamelCase_ , lowerCamelCase_): if isinstance(lowerCamelCase_ , lowerCamelCase_): [recursive_check(lowerCamelCase_ , lowerCamelCase_) for la, la in zip(lowerCamelCase_ , lowerCamelCase_)] self.assertEqual(lowerCamelCase_ , lowerCamelCase_) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets''']) # fmt: off UpperCamelCase = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 4, 8, 9_8, 3_2, 3_2, 3_2, 3_2, 4, 3_3, tokenizer.word_delimiter_token_id, 3_2, 3_2, 3_3, 3_4, 3_4], [2_4, 2_2, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 2_4, 2_2, 2_2, 2_2, 4, 5, 7_7, tokenizer.pad_token_id, 2_2, 2_2, 4, 3_4, 3_4, 3_4, 3_4], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char UpperCamelCase = tokenizer.batch_decode(lowerCamelCase_ , output_char_offsets=lowerCamelCase_) UpperCamelCase = [tokenizer.decode(lowerCamelCase_ , output_char_offsets=lowerCamelCase_) for ids in sample_ids] check_list_tuples_equal(lowerCamelCase_ , lowerCamelCase_) @unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''') def UpperCAmelCase__ ( self) -> Tuple: pass @unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''') def UpperCAmelCase__ ( self) -> Dict: pass @unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''') def UpperCAmelCase__ ( self) -> int: pass @unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''') def UpperCAmelCase__ ( self) -> Tuple: pass def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = self.get_tokenizers(do_lower_case=lowerCamelCase_) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): UpperCamelCase = tokenizer.vocab_size UpperCamelCase = len(lowerCamelCase_) self.assertNotEqual(lowerCamelCase_ , 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) UpperCamelCase = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] UpperCamelCase = tokenizer.add_tokens(lowerCamelCase_) UpperCamelCase = tokenizer.vocab_size UpperCamelCase = len(lowerCamelCase_) self.assertNotEqual(lowerCamelCase_ , 0) self.assertEqual(lowerCamelCase_ , lowerCamelCase_) self.assertEqual(lowerCamelCase_ , len(lowerCamelCase_)) self.assertEqual(lowerCamelCase_ , all_size + len(lowerCamelCase_)) UpperCamelCase = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=lowerCamelCase_) self.assertGreaterEqual(len(lowerCamelCase_) , 4) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) UpperCamelCase = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} UpperCamelCase = tokenizer.add_special_tokens(lowerCamelCase_) UpperCamelCase = tokenizer.vocab_size UpperCamelCase = len(lowerCamelCase_) self.assertNotEqual(lowerCamelCase_ , 0) self.assertEqual(lowerCamelCase_ , lowerCamelCase_) self.assertEqual(lowerCamelCase_ , len(lowerCamelCase_)) self.assertEqual(lowerCamelCase_ , all_size_a + len(lowerCamelCase_)) UpperCamelCase = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=lowerCamelCase_) self.assertGreaterEqual(len(lowerCamelCase_) , 6) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[0] , tokens[1]) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokens[-4]) self.assertEqual(tokens[0] , tokenizer.eos_token_id) self.assertEqual(tokens[-3] , tokenizer.pad_token_id) @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''') def UpperCAmelCase__ ( self) -> Tuple: pass @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''') def UpperCAmelCase__ ( self) -> Optional[int]: pass def UpperCAmelCase__ ( self) -> Optional[Any]: # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. UpperCamelCase = self.get_tokenizers(fast=lowerCamelCase_ , do_lower_case=lowerCamelCase_) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): UpperCamelCase = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] UpperCamelCase = tokenizer.convert_tokens_to_string(lowerCamelCase_) self.assertIsInstance(output['''text'''] , lowerCamelCase_)
34
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> Any: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase_ , ) return config, input_ids, attention_mask def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = FlaxDistilBertModelTester(self) @slow def UpperCAmelCase__ ( self) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowerCamelCase_) @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)[0] UpperCamelCase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , lowerCamelCase_) UpperCamelCase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4))
34
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''deformable_detr''' A_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowerCamelCase_=True , lowerCamelCase_=None , lowerCamelCase_=3 , lowerCamelCase_=3_0_0 , lowerCamelCase_=1_0_2_4 , lowerCamelCase_=6 , lowerCamelCase_=1_0_2_4 , lowerCamelCase_=8 , lowerCamelCase_=6 , lowerCamelCase_=1_0_2_4 , lowerCamelCase_=8 , lowerCamelCase_=0.0 , lowerCamelCase_=True , lowerCamelCase_="relu" , lowerCamelCase_=2_5_6 , lowerCamelCase_=0.1 , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=0.02 , lowerCamelCase_=1.0 , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="sine" , lowerCamelCase_="resnet50" , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=4 , lowerCamelCase_=4 , lowerCamelCase_=4 , lowerCamelCase_=False , lowerCamelCase_=3_0_0 , lowerCamelCase_=False , lowerCamelCase_=1 , lowerCamelCase_=5 , lowerCamelCase_=2 , lowerCamelCase_=1 , lowerCamelCase_=1 , lowerCamelCase_=5 , lowerCamelCase_=2 , lowerCamelCase_=0.1 , lowerCamelCase_=0.25 , lowerCamelCase_=False , **lowerCamelCase_ , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = backbone_config.get('''model_type''') UpperCamelCase = CONFIG_MAPPING[backbone_model_type] UpperCamelCase = config_class.from_dict(lowerCamelCase_) UpperCamelCase = use_timm_backbone UpperCamelCase = backbone_config UpperCamelCase = num_channels UpperCamelCase = num_queries UpperCamelCase = max_position_embeddings UpperCamelCase = d_model UpperCamelCase = encoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = init_xavier_std UpperCamelCase = encoder_layerdrop UpperCamelCase = auxiliary_loss UpperCamelCase = position_embedding_type UpperCamelCase = backbone UpperCamelCase = use_pretrained_backbone UpperCamelCase = dilation # deformable attributes UpperCamelCase = num_feature_levels UpperCamelCase = encoder_n_points UpperCamelCase = decoder_n_points UpperCamelCase = two_stage UpperCamelCase = two_stage_num_proposals UpperCamelCase = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''') # Hungarian matcher UpperCamelCase = class_cost UpperCamelCase = bbox_cost UpperCamelCase = giou_cost # Loss coefficients UpperCamelCase = mask_loss_coefficient UpperCamelCase = dice_loss_coefficient UpperCamelCase = bbox_loss_coefficient UpperCamelCase = giou_loss_coefficient UpperCamelCase = eos_coefficient UpperCamelCase = focal_alpha UpperCamelCase = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCamelCase_ , **lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> int: return self.encoder_attention_heads @property def UpperCAmelCase__ ( self) -> int: return self.d_model def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = copy.deepcopy(self.__dict__) if self.backbone_config is not None: UpperCamelCase = self.backbone_config.to_dict() UpperCamelCase = self.__class__.model_type return output
34
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE_ = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE_ = { 'gpt-neox-20b': 2048, } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_="<|endoftext|>" , lowerCamelCase_="<|endoftext|>" , lowerCamelCase_="<|endoftext|>" , lowerCamelCase_=False , **lowerCamelCase_ , ) -> List[str]: super().__init__( lowerCamelCase_ , lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , unk_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' , lowerCamelCase_) != add_prefix_space: UpperCamelCase = getattr(lowerCamelCase_ , pre_tok_state.pop('''type''')) UpperCamelCase = add_prefix_space UpperCamelCase = pre_tok_class(**lowerCamelCase_) UpperCamelCase = add_prefix_space def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: UpperCamelCase = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_) return tuple(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[int]: UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_) + [self.eos_token_id]) if len(lowerCamelCase_) > self.model_max_length: UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
34
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
1
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''gptj''' A_ = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowerCamelCase_=5_0_4_0_0 , lowerCamelCase_=2_0_4_8 , lowerCamelCase_=4_0_9_6 , lowerCamelCase_=2_8 , lowerCamelCase_=1_6 , lowerCamelCase_=6_4 , lowerCamelCase_=None , lowerCamelCase_="gelu_new" , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=1e-5 , lowerCamelCase_=0.02 , lowerCamelCase_=True , lowerCamelCase_=5_0_2_5_6 , lowerCamelCase_=5_0_2_5_6 , lowerCamelCase_=False , **lowerCamelCase_ , ) -> Union[str, Any]: UpperCamelCase = vocab_size UpperCamelCase = n_positions UpperCamelCase = n_embd UpperCamelCase = n_layer UpperCamelCase = n_head UpperCamelCase = n_inner UpperCamelCase = rotary_dim UpperCamelCase = activation_function UpperCamelCase = resid_pdrop UpperCamelCase = embd_pdrop UpperCamelCase = attn_pdrop UpperCamelCase = layer_norm_epsilon UpperCamelCase = initializer_range UpperCamelCase = use_cache UpperCamelCase = bos_token_id UpperCamelCase = eos_token_id super().__init__( bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , tie_word_embeddings=lowerCamelCase_ , **lowerCamelCase_) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ = "default" , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> int: super().__init__(lowerCamelCase_ , task=lowerCamelCase_ , patching_specs=lowerCamelCase_ , use_past=lowerCamelCase_) if not getattr(self._config , '''pad_token_id''' , lowerCamelCase_): # TODO: how to do that better? UpperCamelCase = 0 @property def UpperCAmelCase__ ( self) -> Mapping[str, Mapping[int, str]]: UpperCamelCase = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}}) if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ , direction='''inputs''') UpperCamelCase = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def UpperCAmelCase__ ( self) -> int: return self._config.n_layer @property def UpperCAmelCase__ ( self) -> int: return self._config.n_head def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = -1 , lowerCamelCase_ = -1 , lowerCamelCase_ = False , lowerCamelCase_ = None , ) -> Mapping[str, Any]: UpperCamelCase = super(lowerCamelCase_ , self).generate_dummy_inputs( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_) # We need to order the input in the way they appears in the forward() UpperCamelCase = OrderedDict({'''input_ids''': common_inputs['''input_ids''']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''') else: import torch UpperCamelCase , UpperCamelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCamelCase = seqlen + 2 UpperCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCamelCase = [ (torch.zeros(lowerCamelCase_), torch.zeros(lowerCamelCase_)) for _ in range(self.num_layers) ] UpperCamelCase = common_inputs['''attention_mask'''] if self.use_past: UpperCamelCase = ordered_inputs['''attention_mask'''].dtype UpperCamelCase = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(lowerCamelCase_ , lowerCamelCase_ , dtype=lowerCamelCase_)] , dim=1) return ordered_inputs @property def UpperCAmelCase__ ( self) -> int: return 1_3
34
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __snake_case ( _lowercase ,_lowercase=False ): """simple docstring""" try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_REMOTE', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_LOCAL', default=True) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __snake_case ( _lowercase ): """simple docstring""" try: import faiss # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires faiss''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import regex # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires regex''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TORCH_AVAILABLE: UpperCamelCase = unittest.skip('''test requires PyTorch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TF_AVAILABLE: UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.JAX_AVAILABLE: UpperCamelCase = unittest.skip('''test requires JAX''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.PIL_AVAILABLE: UpperCamelCase = unittest.skip('''test requires Pillow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" def _require_spacy_model(_lowercase ): try: import spacy # noqa F401 spacy.load(_lowercase ) except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_lowercase ) )(_lowercase ) else: return test_case return _require_spacy_model def __snake_case ( _lowercase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase = unittest.skip('''test is slow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: UpperCamelCase = unittest.skip('''test is local''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase = unittest.skip('''test is packaged''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase = unittest.skip('''test requires remote''' )(_lowercase ) return test_case def __snake_case ( *_lowercase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_lowercase ) and name.startswith('''test''' ): for decorator in decorators: UpperCamelCase = decorator(_lowercase ) setattr(cls ,_lowercase ,_lowercase ) return cls return decorate class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 0 A_ = 1 A_ = 2 @contextmanager def __snake_case ( _lowercase=OfflineSimulationMode.CONNECTION_FAILS ,_lowercase=1e-16 ): """simple docstring""" UpperCamelCase = requests.Session().request def timeout_request(_lowercase ,_lowercase ,_lowercase ,**_lowercase ): # Change the url to an invalid url so that the connection hangs UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) UpperCamelCase = timeout try: return online_request(_lowercase ,_lowercase ,**_lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase = url UpperCamelCase = e.args[0] UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' ,f'OfflineMock[{url}]' ),) UpperCamelCase = (max_retry_error,) raise def raise_connection_error(_lowercase ,_lowercase ,**_lowercase ): raise requests.ConnectionError('''Offline mode is enabled.''' ,request=_lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' ,_lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' ,_lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' ,_lowercase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowercase ,**_lowercase ) as tmp_dir: try: os.chdir(_lowercase ) yield finally: os.chdir(_lowercase ) @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() def __snake_case ( _lowercase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_lowercase ,*_lowercase ,**_lowercase ): try: return func(*_lowercase ,**_lowercase ) except HTTPError as err: if str(_lowercase ).startswith('''500''' ) or str(_lowercase ).startswith('''502''' ): pytest.xfail(str(_lowercase ) ) raise err return decorator.decorator(_wrapper ,_lowercase ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" while True: UpperCamelCase = await stream.readline() if line: callback(_lowercase ) else: break async def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ,_lowercase=False ): """simple docstring""" if echo: print('''\nRunning: ''' ,''' '''.join(_lowercase ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=_lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=_lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(_lowercase ,_lowercase ,_lowercase ,_lowercase="" ): UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase ,_lowercase ,file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stdout ,label='''stdout:''' ) ), _read_stream(p.stderr ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stderr ,label='''stderr:''' ) ), ] ,timeout=_lowercase ,) return _RunOutput(await p.wait() ,_lowercase ,_lowercase ) def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=180 ,_lowercase=False ,_lowercase=True ): """simple docstring""" UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(_lowercase ,env=_lowercase ,stdin=_lowercase ,timeout=_lowercase ,quiet=_lowercase ,echo=_lowercase ) ) UpperCamelCase = ''' '''.join(_lowercase ) if result.returncode > 0: UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def __snake_case ( ): """simple docstring""" UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' ,'''gw0''' ) UpperCamelCase = re.sub(r'''^gw''' ,'''''' ,_lowercase ,0 ,re.M ) return int(_lowercase ) def __snake_case ( ): """simple docstring""" UpperCamelCase = 2_9500 UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
34
1
"""simple docstring""" from __future__ import annotations from typing import Any class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_) -> None: UpperCamelCase = data UpperCamelCase = None def __iter__( self) -> Optional[Any]: UpperCamelCase = self UpperCamelCase = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCamelCase_) yield node.data UpperCamelCase = node.next_node @property def UpperCAmelCase__ ( self) -> bool: try: list(self) return False except ContainsLoopError: return True if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = Node(1) SCREAMING_SNAKE_CASE_ = Node(2) SCREAMING_SNAKE_CASE_ = Node(3) SCREAMING_SNAKE_CASE_ = Node(4) print(root_node.has_loop) # False SCREAMING_SNAKE_CASE_ = root_node.next_node print(root_node.has_loop) # True SCREAMING_SNAKE_CASE_ = Node(5) SCREAMING_SNAKE_CASE_ = Node(6) SCREAMING_SNAKE_CASE_ = Node(5) SCREAMING_SNAKE_CASE_ = Node(6) print(root_node.has_loop) # False SCREAMING_SNAKE_CASE_ = Node(1) print(root_node.has_loop) # False
34
"""simple docstring""" import operator def __snake_case ( _lowercase ,_lowercase = False ,_lowercase = None ): """simple docstring""" UpperCamelCase = operator.lt if reverse else operator.gt UpperCamelCase = solution or [] if not arr: return solution UpperCamelCase = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase ,sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: UpperCamelCase = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase ,_lowercase ): solution.insert(_lowercase ,_lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase ,_lowercase ,_lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
34
1
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCamelCase = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=lowerCamelCase_ , cache_dir=lowerCamelCase_) UpperCamelCase = [t[-1] for t in os.walk(os.path.join(lowerCamelCase_ , os.listdir(lowerCamelCase_)[0] , '''snapshots'''))] UpperCamelCase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''') for f in files) @slow @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> Any: UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=lowerCamelCase_) UpperCamelCase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCamelCase = jax.random.PRNGKey(0) UpperCamelCase = 4 UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_) # shard inputs and rng UpperCamelCase = replicate(lowerCamelCase_) UpperCamelCase = jax.random.split(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = shard(lowerCamelCase_) UpperCamelCase = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.151_4745) < 1e-3 assert np.abs(np.abs(lowerCamelCase_ , dtype=np.floataa).sum() - 4_9947.875) < 5e-1 UpperCamelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) assert len(lowerCamelCase_) == num_samples def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=lowerCamelCase_) UpperCamelCase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCamelCase = jax.random.PRNGKey(0) UpperCamelCase = 5_0 UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_) # shard inputs and rng UpperCamelCase = replicate(lowerCamelCase_) UpperCamelCase = jax.random.split(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = shard(lowerCamelCase_) UpperCamelCase = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0565_2401)) < 1e-3 assert np.abs((np.abs(lowerCamelCase_ , dtype=np.floataa).sum() - 238_3808.2)) < 5e-1 def UpperCAmelCase__ ( self) -> Any: UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=lowerCamelCase_) UpperCamelCase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCamelCase = jax.random.PRNGKey(0) UpperCamelCase = 5_0 UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_) # shard inputs and rng UpperCamelCase = replicate(lowerCamelCase_) UpperCamelCase = jax.random.split(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = shard(lowerCamelCase_) UpperCamelCase = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0400_3906)) < 1e-3 assert np.abs((np.abs(lowerCamelCase_ , dtype=np.floataa).sum() - 237_3516.75)) < 5e-1 def UpperCAmelCase__ ( self) -> str: UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa) UpperCamelCase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCamelCase = jax.random.PRNGKey(0) UpperCamelCase = 5_0 UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_) # shard inputs and rng UpperCamelCase = replicate(lowerCamelCase_) UpperCamelCase = jax.random.split(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = shard(lowerCamelCase_) UpperCamelCase = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0400_3906)) < 1e-3 assert np.abs((np.abs(lowerCamelCase_ , dtype=np.floataa).sum() - 237_3516.75)) < 5e-1 def UpperCAmelCase__ ( self) -> str: UpperCamelCase = FlaxDDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , set_alpha_to_one=lowerCamelCase_ , steps_offset=1 , ) UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , ) UpperCamelCase = scheduler.create_state() UpperCamelCase = scheduler_state UpperCamelCase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCamelCase = jax.random.PRNGKey(0) UpperCamelCase = 5_0 UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_) # shard inputs and rng UpperCamelCase = replicate(lowerCamelCase_) UpperCamelCase = jax.random.split(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = shard(lowerCamelCase_) UpperCamelCase = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0_4504_3945)) < 1e-3 assert np.abs((np.abs(lowerCamelCase_ , dtype=np.floataa).sum() - 234_7693.5)) < 5e-1 def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = jax.random.split(jax.random.PRNGKey(0) , lowerCamelCase_) UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=lowerCamelCase_ , ) UpperCamelCase = replicate(lowerCamelCase_) UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_) UpperCamelCase = shard(lowerCamelCase_) UpperCamelCase = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) UpperCamelCase = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=lowerCamelCase_ , use_memory_efficient_attention=lowerCamelCase_ , ) UpperCamelCase = replicate(lowerCamelCase_) UpperCamelCase = pipeline.prepare_inputs(lowerCamelCase_) UpperCamelCase = shard(lowerCamelCase_) UpperCamelCase = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) UpperCamelCase = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice).max() < 1e-2
34
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' SCREAMING_SNAKE_CASE_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any: if return_pvalue: UpperCamelCase = pearsonr(lowerCamelCase_ , lowerCamelCase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_ , lowerCamelCase_)[0])}
34
1
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: UpperCamelCase = '''ylacombe/bark-small''' UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = '''en_speaker_1''' UpperCamelCase = '''This is a test string''' UpperCamelCase = '''speaker_embeddings_path.json''' UpperCamelCase = '''speaker_embeddings''' def UpperCAmelCase__ ( self , **lowerCamelCase_) -> str: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCamelCase_) def UpperCAmelCase__ ( self) -> Any: shutil.rmtree(self.tmpdirname) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = self.get_tokenizer() UpperCamelCase = BarkProcessor(tokenizer=lowerCamelCase_) processor.save_pretrained(self.tmpdirname) UpperCamelCase = BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) @slow def UpperCAmelCase__ ( self) -> Dict: UpperCamelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') UpperCamelCase = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCamelCase = 3_5 UpperCamelCase = 2 UpperCamelCase = 8 UpperCamelCase = { '''semantic_prompt''': np.ones(lowerCamelCase_), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len)), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset UpperCamelCase = processor(text=self.input_string , voice_preset=lowerCamelCase_) UpperCamelCase = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([])).tolist()) # test loading voice preset from npz file UpperCamelCase = os.path.join(self.tmpdirname , '''file.npz''') np.savez(lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = processor(text=self.input_string , voice_preset=lowerCamelCase_) UpperCamelCase = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([])).tolist()) # test loading voice preset from the hub UpperCamelCase = processor(text=self.input_string , voice_preset=self.voice_preset) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = self.get_tokenizer() UpperCamelCase = BarkProcessor(tokenizer=lowerCamelCase_) UpperCamelCase = processor(text=self.input_string) UpperCamelCase = tokenizer( self.input_string , padding='''max_length''' , max_length=2_5_6 , add_special_tokens=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist())
34
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ComputeEnvironment.AMAZON_SAGEMAKER A_ = True A_ = '''ml.p3.2xlarge''' A_ = '''accelerate_sagemaker_execution_role''' A_ = '''hf-sm''' A_ = '''us-east-1''' A_ = 1 A_ = '''accelerate-sagemaker-1''' A_ = '''1.6''' A_ = '''4.4''' A_ = '''train.py''' A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args['''model_name_or_path'''] , lowerCamelCase_) assert isinstance(converted_args['''do_train'''] , lowerCamelCase_) assert isinstance(converted_args['''epochs'''] , lowerCamelCase_) assert isinstance(converted_args['''learning_rate'''] , lowerCamelCase_) assert isinstance(converted_args['''max_steps'''] , lowerCamelCase_) with pytest.raises(lowerCamelCase_): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
34
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class snake_case_ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCamelCase_ = " ") -> List[str]: UpperCamelCase = sentence_delimiter def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return list(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase_): chars.extend(self.process_string(lowerCamelCase_)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_) - 1: chars.append(self.sentence_delimiter) return chars SCREAMING_SNAKE_CASE_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
1
"""simple docstring""" def __snake_case ( ): """simple docstring""" UpperCamelCase = 0 for i in range(1 ,1001 ): total += i**i return str(_lowercase )[-10:] if __name__ == "__main__": print(solution())
34
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = '''left''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<eop>", "<eod>"] , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = 3 UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> List[str]: return len(self.sp_model) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> str: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: if self.remove_space: UpperCamelCase = ''' '''.join(inputs.strip().split()) else: UpperCamelCase = inputs UpperCamelCase = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCamelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase_) UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_)]) if self.do_lower_case: UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) UpperCamelCase = [] for piece in pieces: if len(lowerCamelCase_) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCamelCase = cur_pieces[1:] else: UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCamelCase_) else: new_pieces.append(lowerCamelCase_) return new_pieces def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.sp_model.IdToPiece(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: UpperCamelCase = ''''''.join(lowerCamelCase_).replace(lowerCamelCase_ , ''' ''').strip() return out_string def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> str: UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCamelCase_) UpperCamelCase = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) UpperCamelCase = [] sub_texts.append(lowerCamelCase_) else: current_sub_text.append(lowerCamelCase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(lowerCamelCase_) return clean_text else: return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) + [1, 1] return ([0] * len(lowerCamelCase_)) + [1, 1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,)
34
1
"""simple docstring""" # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union SCREAMING_SNAKE_CASE_ = re.compile(R'^(?P<major>\d+)' R'\.(?P<minor>\d+)' R'\.(?P<patch>\d+)$') @total_ordering @dataclass class snake_case_ : """simple docstring""" A_ = 42 A_ = None A_ = None A_ = None A_ = None def UpperCAmelCase__ ( self) -> int: UpperCamelCase , UpperCamelCase , UpperCamelCase = _str_to_version_tuple(self.version_str) def __repr__( self) -> List[Any]: return F'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def UpperCAmelCase__ ( self) -> List[str]: return self.major, self.minor, self.patch def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: if isinstance(lowerCamelCase_ , lowerCamelCase_): return Version(lowerCamelCase_) elif isinstance(lowerCamelCase_ , lowerCamelCase_): return other raise TypeError(F'{other} (type {type(lowerCamelCase_)}) cannot be compared to version.') def __eq__( self , lowerCamelCase_) -> Optional[int]: try: UpperCamelCase = self._validate_operand(lowerCamelCase_) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , lowerCamelCase_) -> Tuple: UpperCamelCase = self._validate_operand(lowerCamelCase_) return self.tuple < other.tuple def __hash__( self) -> str: return hash(_version_tuple_to_str(self.tuple)) @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_) -> Optional[int]: UpperCamelCase = {f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in dic.items() if k in field_names}) def UpperCAmelCase__ ( self) -> str: return self.version_str def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = _VERSION_REG.match(_lowercase ) if not res: raise ValueError(f'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(_lowercase ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] ) def __snake_case ( _lowercase ): """simple docstring""" return ".".join(str(_lowercase ) for v in version_tuple )
34
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } SCREAMING_SNAKE_CASE_ = { 'openbmb/cpm-ant-10b': 1024, } def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = collections.OrderedDict() with open(_lowercase ,'''r''' ,encoding='''utf-8''' ) as reader: UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): UpperCamelCase = token.rstrip('''\n''' ) UpperCamelCase = index return vocab class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_=2_0_0) -> Any: UpperCamelCase = vocab UpperCamelCase = unk_token UpperCamelCase = max_input_chars_per_word def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = list(lowerCamelCase_) if len(lowerCamelCase_) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase = 0 UpperCamelCase = [] while start < len(lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = None while start < end: UpperCamelCase = ''''''.join(chars[start:end]) if substr in self.vocab: UpperCamelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(lowerCamelCase_) UpperCamelCase = end return sub_tokens class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] A_ = False def __init__( self , lowerCamelCase_ , lowerCamelCase_="<d>" , lowerCamelCase_="</d>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<unk>" , lowerCamelCase_="</n>" , lowerCamelCase_="</_>" , lowerCamelCase_="left" , **lowerCamelCase_ , ) -> List[str]: requires_backends(self , ['''jieba''']) super().__init__( bod_token=lowerCamelCase_ , eod_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , line_token=lowerCamelCase_ , space_token=lowerCamelCase_ , padding_side=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = bod_token UpperCamelCase = eod_token UpperCamelCase = load_vocab(lowerCamelCase_) UpperCamelCase = self.encoder[space_token] UpperCamelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def UpperCAmelCase__ ( self) -> Dict: return self.encoder[self.bod_token] @property def UpperCAmelCase__ ( self) -> str: return self.encoder[self.eod_token] @property def UpperCAmelCase__ ( self) -> List[Any]: return self.encoder["\n"] @property def UpperCAmelCase__ ( self) -> int: return len(self.encoder) def UpperCAmelCase__ ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = [] for x in jieba.cut(lowerCamelCase_ , cut_all=lowerCamelCase_): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase_)) return output_tokens def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> Tuple: UpperCamelCase = [i for i in token_ids if i >= 0] UpperCamelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return token in self.encoder def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return "".join(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token)) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return self.decoder.get(lowerCamelCase_ , self.unk_token) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if os.path.isdir(lowerCamelCase_): UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: UpperCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCamelCase = 0 if " " in self.encoder: UpperCamelCase = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase = self.encoder['''\n'''] del self.encoder["\n"] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''') UpperCamelCase = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) return [1] + ([0] * len(lowerCamelCase_))
34
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> None: warnings.warn( '''The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ImageGPTImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
34
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=0) -> int: UpperCamelCase = 1.0 if scale is None else scale UpperCamelCase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_)]) @property def UpperCAmelCase__ ( self) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase__ ( self) -> List[str]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase__ ( self) -> Any: return self.variance.sqrt() class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = args_dim UpperCamelCase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_) for dim in args_dim.values()]) UpperCamelCase = domain_map def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple[torch.Tensor]: UpperCamelCase = [proj(lowerCamelCase_) for proj in self.proj] return self.domain_map(*lowerCamelCase_) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__() UpperCamelCase = function def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_) -> Tuple: return self.function(lowerCamelCase_ , *lowerCamelCase_) class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , lowerCamelCase_ = 1) -> None: UpperCamelCase = dim UpperCamelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if self.dim == 1: return self.distribution_class(*lowerCamelCase_) else: return Independent(self.distribution_class(*lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Distribution: UpperCamelCase = self._base_distribution(lowerCamelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim) @property def UpperCAmelCase__ ( self) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase__ ( self) -> int: return len(self.event_shape) @property def UpperCAmelCase__ ( self) -> float: return 0.0 def UpperCAmelCase__ ( self , lowerCamelCase_) -> nn.Module: return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def UpperCAmelCase__ ( self , *lowerCamelCase_) -> List[str]: raise NotImplementedError() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCamelCase_) + 4.0)) / 2.0 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"df": 1, "loc": 1, "scale": 1} A_ = StudentT @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) UpperCamelCase = 2.0 + cls.squareplus(lowerCamelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"loc": 1, "scale": 1} A_ = Normal @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"total_count": 1, "logits": 1} A_ = NegativeBinomial @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = cls.squareplus(lowerCamelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
34
1
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = IFInpaintingSuperResolutionPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) A_ = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCAmelCase__ ( self) -> Optional[Any]: return self._get_superresolution_dummy_components() def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> List[Any]: if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase__ ( self) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) def UpperCAmelCase__ ( self) -> Tuple: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''') def UpperCAmelCase__ ( self) -> Union[str, Any]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1) def UpperCAmelCase__ ( self) -> List[str]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def UpperCAmelCase__ ( self) -> int: self._test_save_load_local() def UpperCAmelCase__ ( self) -> int: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
34
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowercase ,id=_lowercase )
34
1
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: super().__init__(*lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = {} def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = super().add_tokens(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_) if num_added_tokens == 0: raise ValueError( F'The tokenizer already contains the token {placeholder_token}. Please pass a different' ''' `placeholder_token` that is not already in the tokenizer.''') def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_ , lowerCamelCase_=1 , **lowerCamelCase_) -> int: UpperCamelCase = [] if num_vec_per_token == 1: self.try_adding_tokens(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_) output.append(lowerCamelCase_) else: UpperCamelCase = [] for i in range(lowerCamelCase_): UpperCamelCase = placeholder_token + F'_{i}' self.try_adding_tokens(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_) output.append(lowerCamelCase_) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'The tokenizer already has placeholder token {token} that can get confused with' F' {placeholder_token}keep placeholder tokens independent') UpperCamelCase = output def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=1.0) -> Any: if isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [] for i in range(len(lowerCamelCase_)): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=lowerCamelCase_)) return output for placeholder_token in self.token_map: if placeholder_token in text: UpperCamelCase = self.token_map[placeholder_token] UpperCamelCase = tokens[: 1 + int(len(lowerCamelCase_) * prop_tokens_to_load)] if vector_shuffle: UpperCamelCase = copy.copy(lowerCamelCase_) random.shuffle(lowerCamelCase_) UpperCamelCase = text.replace(lowerCamelCase_ , ''' '''.join(lowerCamelCase_)) return text def __call__( self , lowerCamelCase_ , *lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=1.0 , **lowerCamelCase_) -> Tuple: return super().__call__( self.replace_placeholder_tokens_in_text( lowerCamelCase_ , vector_shuffle=lowerCamelCase_ , prop_tokens_to_load=lowerCamelCase_) , *lowerCamelCase_ , **lowerCamelCase_ , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=1.0 , **lowerCamelCase_) -> List[Any]: return super().encode( self.replace_placeholder_tokens_in_text( lowerCamelCase_ , vector_shuffle=lowerCamelCase_ , prop_tokens_to_load=lowerCamelCase_) , *lowerCamelCase_ , **lowerCamelCase_ , )
34
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
34
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE_ = { 'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'], 'tokenization_ctrl': ['CTRLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'CTRLForSequenceClassification', 'CTRLLMHeadModel', 'CTRLModel', 'CTRLPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCTRLForSequenceClassification', 'TFCTRLLMHeadModel', 'TFCTRLModel', 'TFCTRLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
1
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device SCREAMING_SNAKE_CASE_ = False class snake_case_ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> int: UpperCamelCase = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''') UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe.dual_guided( prompt='''first prompt''' , image=lowerCamelCase_ , text_to_image_strength=0.75 , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_) UpperCamelCase = VersatileDiffusionPipeline.from_pretrained(lowerCamelCase_ , torch_dtype=torch.floataa) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = generator.manual_seed(0) UpperCamelCase = pipe.dual_guided( prompt='''first prompt''' , image=lowerCamelCase_ , text_to_image_strength=0.75 , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass" def UpperCAmelCase__ ( self) -> int: UpperCamelCase = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = '''cyberpunk 2077''' UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''') UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe.dual_guided( prompt=lowerCamelCase_ , image=lowerCamelCase_ , text_to_image_strength=0.75 , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='''numpy''' , ).images UpperCamelCase = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 UpperCamelCase = '''A painting of a squirrel eating a burger ''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe.text_to_image( prompt=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='''numpy''').images UpperCamelCase = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 UpperCamelCase = pipe.image_variation(lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''numpy''').images UpperCamelCase = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
34
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase = getattr(_lowercase ,_lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase ,_lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) UpperCamelCase = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCamelCase = torch.tensor(_lowercase ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_lowercase ) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to(_lowercase ) else: UpperCamelCase = torch.tensor(_lowercase ,device=_lowercase ) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase ,requires_grad=old_value.requires_grad ) UpperCamelCase = new_value def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase ,nn.Linear ) or isinstance(_lowercase ,_lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase ,_lowercase ): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase ,_lowercase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase ,_lowercase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ,has_been_replaced=_lowercase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,_lowercase ,) return replace_with_bnb_linear(*_lowercase ,**_lowercase ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,_lowercase ,) return set_module_quantized_tensor_to_device(*_lowercase ,**_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase ,_lowercase ): UpperCamelCase = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(_lowercase ,[] ) UpperCamelCase = len(_lowercase ) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase ) - set(_lowercase ) UpperCamelCase = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase ,'''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names
34
1
"""simple docstring""" from math import factorial class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = real if isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [1] * rank else: UpperCamelCase = rank def __repr__( self) -> Any: return ( F'{self.real}+' F'{"+".join(str(lowerCamelCase_)+"E"+str(n+1)for n,dual in enumerate(self.duals))}' ) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = self.duals.copy() while cur[-1] == 0: cur.pop(-1) return Dual(self.real , lowerCamelCase_) def __add__( self , lowerCamelCase_) -> List[str]: if not isinstance(lowerCamelCase_ , lowerCamelCase_): return Dual(self.real + other , self.duals) UpperCamelCase = self.duals.copy() UpperCamelCase = other.duals.copy() if len(lowerCamelCase_) > len(lowerCamelCase_): o_dual.extend([1] * (len(lowerCamelCase_) - len(lowerCamelCase_))) elif len(lowerCamelCase_) < len(lowerCamelCase_): s_dual.extend([1] * (len(lowerCamelCase_) - len(lowerCamelCase_))) UpperCamelCase = [] for i in range(len(lowerCamelCase_)): new_duals.append(s_dual[i] + o_dual[i]) return Dual(self.real + other.real , lowerCamelCase_) A_ = __add__ def __sub__( self , lowerCamelCase_) -> str: return self + other * -1 def __mul__( self , lowerCamelCase_) -> Union[str, Any]: if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [] for i in self.duals: new_duals.append(i * other) return Dual(self.real * other , lowerCamelCase_) UpperCamelCase = [0] * (len(self.duals) + len(other.duals) + 1) for i, item in enumerate(self.duals): for j, jtem in enumerate(other.duals): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals)): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals)): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowerCamelCase_) A_ = __mul__ def __truediv__( self , lowerCamelCase_) -> List[str]: if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [] for i in self.duals: new_duals.append(i / other) return Dual(self.real / other , lowerCamelCase_) raise ValueError def __floordiv__( self , lowerCamelCase_) -> Optional[Any]: if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [] for i in self.duals: new_duals.append(i // other) return Dual(self.real // other , lowerCamelCase_) raise ValueError def __pow__( self , lowerCamelCase_) -> str: if n < 0 or isinstance(lowerCamelCase_ , lowerCamelCase_): raise ValueError('''power must be a positive integer''') if n == 0: return 1 if n == 1: return self UpperCamelCase = self for _ in range(n - 1): x *= self return x def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" if not callable(_lowercase ): raise ValueError('''differentiate() requires a function as input for func''' ) if not isinstance(_lowercase ,(float, int) ): raise ValueError('''differentiate() requires a float as input for position''' ) if not isinstance(_lowercase ,_lowercase ): raise ValueError('''differentiate() requires an int as input for order''' ) UpperCamelCase = Dual(_lowercase ,1 ) UpperCamelCase = func(_lowercase ) if order == 0: return result.real return result.duals[order - 1] * factorial(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() def __snake_case ( _lowercase ): """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
34
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase ) count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 ) count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase ) return count def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_lowercase ,_lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_ = TemporaryFile() SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_ = np.load(outfile) SCREAMING_SNAKE_CASE_ = len(M) - 1 SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
34
1
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> int: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> str: UpperCamelCase = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCamelCase_ , model.state_dict()) UpperCamelCase = os.path.join(lowerCamelCase_ , '''index.json''') self.assertTrue(os.path.isfile(lowerCamelCase_)) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: UpperCamelCase = os.path.join(lowerCamelCase_ , F'{key}.dat') self.assertTrue(os.path.isfile(lowerCamelCase_)) # TODO: add tests on the fact weights are properly loaded def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: UpperCamelCase = torch.randn(2 , 3 , dtype=lowerCamelCase_) with TemporaryDirectory() as tmp_dir: UpperCamelCase = offload_weight(lowerCamelCase_ , '''weight''' , lowerCamelCase_ , {}) UpperCamelCase = os.path.join(lowerCamelCase_ , '''weight.dat''') self.assertTrue(os.path.isfile(lowerCamelCase_)) self.assertDictEqual(lowerCamelCase_ , {'''weight''': {'''shape''': [2, 3], '''dtype''': str(lowerCamelCase_).split('''.''')[1]}}) UpperCamelCase = load_offloaded_weight(lowerCamelCase_ , index['''weight''']) self.assertTrue(torch.equal(lowerCamelCase_ , lowerCamelCase_)) def UpperCAmelCase__ ( self) -> str: UpperCamelCase = ModelForTest() UpperCamelCase = model.state_dict() UpperCamelCase = {k: v for k, v in state_dict.items() if '''linear2''' not in k} UpperCamelCase = {k: v for k, v in state_dict.items() if '''linear2''' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = OffloadedWeightsLoader(state_dict=lowerCamelCase_ , save_folder=lowerCamelCase_) # Every key is there with the right value self.assertEqual(sorted(lowerCamelCase_) , sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowerCamelCase_ , weight_map[key])) UpperCamelCase = {k: v for k, v in state_dict.items() if '''weight''' in k} UpperCamelCase = {k: v for k, v in state_dict.items() if '''weight''' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = OffloadedWeightsLoader(state_dict=lowerCamelCase_ , save_folder=lowerCamelCase_) # Every key is there with the right value self.assertEqual(sorted(lowerCamelCase_) , sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowerCamelCase_ , weight_map[key])) with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCamelCase_ , lowerCamelCase_) # Duplicates are removed UpperCamelCase = OffloadedWeightsLoader(state_dict=lowerCamelCase_ , save_folder=lowerCamelCase_) # Every key is there with the right value self.assertEqual(sorted(lowerCamelCase_) , sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowerCamelCase_ , weight_map[key])) def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = {'''a.1''': 0, '''a.10''': 1, '''a.2''': 2} UpperCamelCase = extract_submodules_state_dict(lowerCamelCase_ , ['''a.1''', '''a.2''']) self.assertDictEqual(lowerCamelCase_ , {'''a.1''': 0, '''a.2''': 2}) UpperCamelCase = {'''a.1.a''': 0, '''a.10.a''': 1, '''a.2.a''': 2} UpperCamelCase = extract_submodules_state_dict(lowerCamelCase_ , ['''a.1''', '''a.2''']) self.assertDictEqual(lowerCamelCase_ , {'''a.1.a''': 0, '''a.2.a''': 2})
34
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE_ = os.path.join(git_repo_path, 'src', 'transformers') SCREAMING_SNAKE_CASE_ = '\n{0} = None\n' SCREAMING_SNAKE_CASE_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' SCREAMING_SNAKE_CASE_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowerCamelCase_) UpperCamelCase = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowerCamelCase_ , '''tokenizers''') UpperCamelCase = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowerCamelCase_ , '''tensorflow_text''') UpperCamelCase = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tensorflow_text''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers_and_vision''') def UpperCAmelCase__ ( self) -> int: UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCamelCase_) self.assertIn('''tensorflow_text''' , lowerCamelCase_) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCamelCase_) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , '''\nCONSTANT = None\n''') UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowerCamelCase_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowerCamelCase_)
34
1
"""simple docstring""" import sys SCREAMING_SNAKE_CASE_ = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = 1 for digit in s: product *= int(_lowercase ) return product def __snake_case ( _lowercase = N ): """simple docstring""" UpperCamelCase = -sys.maxsize - 1 UpperCamelCase = n[:13] UpperCamelCase = 13 while cur_index < len(_lowercase ) - 13: if int(n[cur_index] ) >= int(substr[0] ): UpperCamelCase = substr[1:] + n[cur_index] cur_index += 1 else: UpperCamelCase = max(_lowercase ,str_eval(_lowercase ) ) UpperCamelCase = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'{solution() = }')
34
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __snake_case ( _lowercase ): """simple docstring""" if "cls_token" in name: UpperCamelCase = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: UpperCamelCase = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: UpperCamelCase = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: UpperCamelCase = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: UpperCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: UpperCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: UpperCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: UpperCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: UpperCamelCase = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: UpperCamelCase = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: UpperCamelCase = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCamelCase = key.split('''.''' ) UpperCamelCase = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase = config.decoder_hidden_size UpperCamelCase = '''decoder.decoder_layers.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = config.hidden_size UpperCamelCase = '''vit.encoder.layer.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = val return orig_state_dict def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 elif "huge" in checkpoint_url: UpperCamelCase = 14 UpperCamelCase = 1280 UpperCamelCase = 5120 UpperCamelCase = 32 UpperCamelCase = 16 UpperCamelCase = ViTMAEForPreTraining(_lowercase ) UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' )['''model'''] UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = convert_state_dict(_lowercase ,_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCamelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = image_processor(images=_lowercase ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits if "large" in checkpoint_url: UpperCamelCase = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
34
1
"""simple docstring""" from __future__ import annotations SCREAMING_SNAKE_CASE_ = tuple[int, int, int] SCREAMING_SNAKE_CASE_ = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase SCREAMING_SNAKE_CASE_ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- SCREAMING_SNAKE_CASE_ = 'EGZWVONAHDCLFQMSIPJBYUKXTR' SCREAMING_SNAKE_CASE_ = 'FOBHMDKEXQNRAULPGSJVTYICZW' SCREAMING_SNAKE_CASE_ = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- SCREAMING_SNAKE_CASE_ = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- SCREAMING_SNAKE_CASE_ = 'RMDJXFUWGISLHVTCQNKYPBEZOA' SCREAMING_SNAKE_CASE_ = 'SGLCPQWZHKXAREONTFBVIYJUDM' SCREAMING_SNAKE_CASE_ = 'HVSICLTYKQUBXDWAJZOMFGPREN' SCREAMING_SNAKE_CASE_ = 'RZWQHFMVDBKICJLNTUXAGYPSOE' SCREAMING_SNAKE_CASE_ = 'LFKIJODBEGAMQPXVUHYSTCZRWN' SCREAMING_SNAKE_CASE_ = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" if (unique_rotsel := len(set(_lowercase ) )) < 3: UpperCamelCase = f'Please use 3 unique rotors (not {unique_rotsel})' raise Exception(_lowercase ) # Checks if rotor positions are valid UpperCamelCase , UpperCamelCase , UpperCamelCase = rotpos if not 0 < rotorposa <= len(_lowercase ): UpperCamelCase = f'First rotor position is not within range of 1..26 ({rotorposa}' raise ValueError(_lowercase ) if not 0 < rotorposa <= len(_lowercase ): UpperCamelCase = f'Second rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(_lowercase ) if not 0 < rotorposa <= len(_lowercase ): UpperCamelCase = f'Third rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(_lowercase ) # Validates string and returns dict UpperCamelCase = _plugboard(_lowercase ) return rotpos, rotsel, pbdict def __snake_case ( _lowercase ): """simple docstring""" if not isinstance(_lowercase ,_lowercase ): UpperCamelCase = f'Plugboard setting isn\'t type string ({type(_lowercase )})' raise TypeError(_lowercase ) elif len(_lowercase ) % 2 != 0: UpperCamelCase = f'Odd number of symbols ({len(_lowercase )})' raise Exception(_lowercase ) elif pbstring == "": return {} pbstring.replace(''' ''' ,'''''' ) # Checks if all characters are unique UpperCamelCase = set() for i in pbstring: if i not in abc: UpperCamelCase = f'\'{i}\' not in list of symbols' raise Exception(_lowercase ) elif i in tmppbl: UpperCamelCase = f'Duplicate symbol ({i})' raise Exception(_lowercase ) else: tmppbl.add(_lowercase ) del tmppbl # Created the dictionary UpperCamelCase = {} for j in range(0 ,len(_lowercase ) - 1 ,2 ): UpperCamelCase = pbstring[j + 1] UpperCamelCase = pbstring[j] return pb def __snake_case ( _lowercase ,_lowercase ,_lowercase = (rotora, rotora, rotora) ,_lowercase = "" ,): """simple docstring""" UpperCamelCase = text.upper() UpperCamelCase , UpperCamelCase , UpperCamelCase = _validator( _lowercase ,_lowercase ,plugb.upper() ) UpperCamelCase , UpperCamelCase , UpperCamelCase = rotor_position UpperCamelCase , UpperCamelCase , UpperCamelCase = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 UpperCamelCase = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: UpperCamelCase = plugboard[symbol] # rotor ra -------------------------- UpperCamelCase = abc.index(_lowercase ) + rotorposa UpperCamelCase = rotora[index % len(_lowercase )] # rotor rb -------------------------- UpperCamelCase = abc.index(_lowercase ) + rotorposa UpperCamelCase = rotora[index % len(_lowercase )] # rotor rc -------------------------- UpperCamelCase = abc.index(_lowercase ) + rotorposa UpperCamelCase = rotora[index % len(_lowercase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher UpperCamelCase = reflector[symbol] # 2nd rotors UpperCamelCase = abc[rotora.index(_lowercase ) - rotorposa] UpperCamelCase = abc[rotora.index(_lowercase ) - rotorposa] UpperCamelCase = abc[rotora.index(_lowercase ) - rotorposa] # 2nd plugboard if symbol in plugboard: UpperCamelCase = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_lowercase ): UpperCamelCase = 0 rotorposa += 1 if rotorposa >= len(_lowercase ): UpperCamelCase = 0 rotorposa += 1 if rotorposa >= len(_lowercase ): UpperCamelCase = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 'This is my Python script that emulates the Enigma machine from WWII.' SCREAMING_SNAKE_CASE_ = (1, 1, 1) SCREAMING_SNAKE_CASE_ = 'pictures' SCREAMING_SNAKE_CASE_ = (rotora, rotora, rotora) SCREAMING_SNAKE_CASE_ = enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
34
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Any: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase = mock_training_loop_function('''hello''') self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def UpperCAmelCase__ ( self) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(lowerCamelCase_): pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Dict: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): raise ValueError('''Oops, we had an error!''') with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase_) UpperCamelCase = release_memory(lowerCamelCase_) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase_)
34
1
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [] embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', f'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', f'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', f'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', f'stage{idx}.patch_embed.norm.bias', ) ) return embed def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = [] attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', f'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', f'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', f'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', f'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', f'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', f'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', f'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', f'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [] token.append((f'cvt.encoder.stages.{idx}.cls_token', '''stage2.cls_token''') ) return token def __snake_case ( ): """simple docstring""" UpperCamelCase = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = '''imagenet-1k-id2label.json''' UpperCamelCase = 1000 UpperCamelCase = '''huggingface/label-files''' UpperCamelCase = num_labels UpperCamelCase = json.load(open(cached_download(hf_hub_url(_lowercase ,_lowercase ,repo_type='''dataset''' ) ) ,'''r''' ) ) UpperCamelCase = {int(_lowercase ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} UpperCamelCase = UpperCamelCase = CvtConfig(num_labels=_lowercase ,idalabel=_lowercase ,labelaid=_lowercase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' ,1 )[-1][4:6] == "13": UpperCamelCase = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' ,1 )[-1][4:6] == "21": UpperCamelCase = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: UpperCamelCase = [2, 2, 20] UpperCamelCase = [3, 12, 16] UpperCamelCase = [192, 768, 1024] UpperCamelCase = CvtForImageClassification(_lowercase ) UpperCamelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) UpperCamelCase = image_size UpperCamelCase = torch.load(_lowercase ,map_location=torch.device('''cpu''' ) ) UpperCamelCase = OrderedDict() UpperCamelCase = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: UpperCamelCase = list_of_state_dict + cls_token(_lowercase ) UpperCamelCase = list_of_state_dict + embeddings(_lowercase ) for cnt in range(config.depth[idx] ): UpperCamelCase = list_of_state_dict + attention(_lowercase ,_lowercase ) UpperCamelCase = list_of_state_dict + final() for gg in list_of_state_dict: print(_lowercase ) for i in range(len(_lowercase ) ): UpperCamelCase = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
34
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ = 1_0_1) -> Tuple: UpperCamelCase = length def __len__( self) -> List[str]: return self.length def __getitem__( self , lowerCamelCase_) -> int: return i class snake_case_ : """simple docstring""" def __call__( self , lowerCamelCase_) -> str: return {"input_ids": torch.tensor(lowerCamelCase_), "labels": torch.tensor(lowerCamelCase_)} class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> List[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase = nn.Linear(1_2_0 , 8_0) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_neuroncore def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_multi_gpu def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE_ = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()[0] logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' f'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE_ = DummyDataset(dataset_length) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = list(range(len(_lowercase ) ) ) UpperCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} SCREAMING_SNAKE_CASE_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = None
34
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''camembert''' def __init__( self , lowerCamelCase_=3_0_5_2_2 , lowerCamelCase_=7_6_8 , lowerCamelCase_=1_2 , lowerCamelCase_=1_2 , lowerCamelCase_=3_0_7_2 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-12 , lowerCamelCase_=1 , lowerCamelCase_=0 , lowerCamelCase_=2 , lowerCamelCase_="absolute" , lowerCamelCase_=True , lowerCamelCase_=None , **lowerCamelCase_ , ) -> str: super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = use_cache UpperCamelCase = classifier_dropout class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @property def UpperCAmelCase__ ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
34
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for tf_name, hf_name in patterns: UpperCamelCase = k.replace(_lowercase ,_lowercase ) return k def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = BigBirdPegasusConfig(**_lowercase ) UpperCamelCase = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCamelCase = torch_model.state_dict() UpperCamelCase = {} # separating decoder weights UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = DECODER_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = REMAINING_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCamelCase = mapping['''model.embed_positions.weight'''] UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(_lowercase ,strict=_lowercase ) UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tf.train.list_variables(_lowercase ) UpperCamelCase = {} UpperCamelCase = ['''global_step'''] for name, shape in tqdm(_lowercase ,desc='''converting tf checkpoint to dict''' ): UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase = tf.train.load_variable(_lowercase ,_lowercase ) UpperCamelCase = array return tf_weights def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = get_tf_weights_as_numpy(_lowercase ) UpperCamelCase = convert_bigbird_pegasus(_lowercase ,_lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
34
1
"""simple docstring""" def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" assert x is not None assert y is not None UpperCamelCase = len(_lowercase ) UpperCamelCase = len(_lowercase ) # declaring the array for storing the dp values UpperCamelCase = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 ,m + 1 ): for j in range(1 ,n + 1 ): UpperCamelCase = 1 if x[i - 1] == y[j - 1] else 0 UpperCamelCase = max(l[i - 1][j] ,l[i][j - 1] ,l[i - 1][j - 1] + match ) UpperCamelCase = '''''' UpperCamelCase , UpperCamelCase = m, n while i > 0 and j > 0: UpperCamelCase = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: UpperCamelCase = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 'AGGTAB' SCREAMING_SNAKE_CASE_ = 'GXTXAYB' SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 'GTAB' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = longest_common_subsequence(a, b) print('len =', ln, ', sub-sequence =', subseq) import doctest doctest.testmod()
34
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
1
"""simple docstring""" import comet # From: unbabel-comet import torch import datasets SCREAMING_SNAKE_CASE_ = datasets.logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = "{COMET}: A Neural Framework for {MT} Evaluation",\n author = "Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon",\n booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",\n month = nov,\n year = "2020",\n address = "Online",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/2020.emnlp-main.213",\n pages = "2685--2702",\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n' SCREAMING_SNAKE_CASE_ = '\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric(\'comet\')\n >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use\n >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."]\n >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"]\n >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results["scores"]])\n [0.19, 0.92]\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence'''), '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: if self.config_name == "default": UpperCamelCase = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''')) else: UpperCamelCase = comet.load_from_checkpoint(comet.download_model(self.config_name)) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=False) -> Optional[int]: if gpus is None: UpperCamelCase = 1 if torch.cuda.is_available() else 0 UpperCamelCase = {'''src''': sources, '''mt''': predictions, '''ref''': references} UpperCamelCase = [dict(zip(lowerCamelCase_ , lowerCamelCase_)) for t in zip(*data.values())] UpperCamelCase , UpperCamelCase = self.scorer.predict(lowerCamelCase_ , gpus=lowerCamelCase_ , progress_bar=lowerCamelCase_) return {"mean_score": mean_score, "scores": scores}
34
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> Any: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase_ , ) return config, input_ids, attention_mask def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = FlaxDistilBertModelTester(self) @slow def UpperCAmelCase__ ( self) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowerCamelCase_) @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)[0] UpperCamelCase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , lowerCamelCase_) UpperCamelCase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4))
34
1
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) SCREAMING_SNAKE_CASE_ = {'facebook/bart-base': BartForConditionalGeneration} SCREAMING_SNAKE_CASE_ = {'facebook/bart-base': BartTokenizer} def __snake_case ( ): """simple docstring""" UpperCamelCase = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' ,type=_lowercase ,default=_lowercase ,help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' ,type=_lowercase ,default=5 ,help='''The maximum total input sequence length after tokenization.''' ,) parser.add_argument( '''--num_beams''' ,type=_lowercase ,default=_lowercase ,help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) ,) parser.add_argument( '''--model_name_or_path''' ,type=_lowercase ,help='''Path to pretrained model or model identifier from huggingface.co/models.''' ,required=_lowercase ,) parser.add_argument( '''--config_name''' ,type=_lowercase ,default=_lowercase ,help='''Pretrained config name or path if not the same as model_name''' ,) parser.add_argument( '''--device''' ,type=_lowercase ,default='''cpu''' ,help='''Device where the model will be run''' ,) parser.add_argument('''--output_file_path''' ,type=_lowercase ,default=_lowercase ,help='''Where to store the final ONNX file.''' ) UpperCamelCase = parser.parse_args() return args def __snake_case ( _lowercase ,_lowercase="cpu" ): """simple docstring""" UpperCamelCase = model_dict[model_name].from_pretrained(_lowercase ).to(_lowercase ) UpperCamelCase = tokenizer_dict[model_name].from_pretrained(_lowercase ) if model_name in ["facebook/bart-base"]: UpperCamelCase = 0 UpperCamelCase = None UpperCamelCase = 0 return huggingface_model, tokenizer def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase ,_lowercase ): """simple docstring""" model.eval() UpperCamelCase = None UpperCamelCase = torch.jit.script(BARTBeamSearchGenerator(_lowercase ) ) with torch.no_grad(): UpperCamelCase = '''My friends are cool but they eat too many carbs.''' UpperCamelCase = tokenizer([ARTICLE_TO_SUMMARIZE] ,max_length=1024 ,return_tensors='''pt''' ).to(model.device ) UpperCamelCase = model.generate( inputs['''input_ids'''] ,attention_mask=inputs['''attention_mask'''] ,num_beams=_lowercase ,max_length=_lowercase ,early_stopping=_lowercase ,decoder_start_token_id=model.config.decoder_start_token_id ,) torch.onnx.export( _lowercase ,( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) ,_lowercase ,opset_version=14 ,input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] ,output_names=['''output_ids'''] ,dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } ,example_outputs=_lowercase ,) logger.info('''Model exported to {}'''.format(_lowercase ) ) UpperCamelCase = remove_dup_initializers(os.path.abspath(_lowercase ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(_lowercase ) ) UpperCamelCase = onnxruntime.InferenceSession(_lowercase ) UpperCamelCase = ort_sess.run( _lowercase ,{ '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(_lowercase ), '''max_length''': np.array(_lowercase ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } ,) np.testing.assert_allclose(summary_ids.cpu().numpy() ,ort_out[0] ,rtol=1e-3 ,atol=1e-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def __snake_case ( ): """simple docstring""" UpperCamelCase = parse_args() UpperCamelCase = 5 UpperCamelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,level=logging.INFO ,) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() UpperCamelCase = torch.device(args.device ) UpperCamelCase , UpperCamelCase = load_model_tokenizer(args.model_name_or_path ,_lowercase ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(_lowercase ) if args.max_length: UpperCamelCase = args.max_length if args.num_beams: UpperCamelCase = args.num_beams if args.output_file_path: UpperCamelCase = args.output_file_path else: UpperCamelCase = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(_lowercase ,_lowercase ,_lowercase ,_lowercase ,_lowercase ) if __name__ == "__main__": main()
34
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
1
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 SCREAMING_SNAKE_CASE_ = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] A_ = TaTokenizer A_ = [] def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<pad>" , lowerCamelCase_=1_0_0 , lowerCamelCase_=None , **lowerCamelCase_ , ) -> List[Any]: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCamelCase = [F'<extra_id_{i}>' for i in range(lowerCamelCase_)] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCamelCase = len(set(filter(lambda lowerCamelCase_: bool('''extra_id_''' in str(lowerCamelCase_)) , lowerCamelCase_))) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''') super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , extra_ids=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = vocab_file UpperCamelCase = False if not self.vocab_file else True UpperCamelCase = extra_ids @staticmethod def UpperCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[str]: if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCamelCase = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , lowerCamelCase_ , ) return max_model_length def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''') if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_): copyfile(self.vocab_file , lowerCamelCase_) logger.info(F'Copy vocab file to {out_vocab_file}') return (out_vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCamelCase = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos) * [0] return len(token_ids_a + eos + token_ids_a + eos) * [0] def UpperCAmelCase__ ( self) -> Optional[Any]: return list( set(filter(lambda lowerCamelCase_: bool(re.search(R'''<extra_id_\d+>''' , lowerCamelCase_)) is not None , self.additional_special_tokens))) def UpperCAmelCase__ ( self) -> List[str]: return [self.convert_tokens_to_ids(lowerCamelCase_) for token in self.get_sentinel_tokens()]
34
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
1
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder SCREAMING_SNAKE_CASE_ = 'base_with_context' def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) ) UpperCamelCase = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) ,requires_grad=_lowercase ) for lyr_num, lyr in enumerate(model.encoders ): UpperCamelCase = weights[f'layers_{lyr_num}'] UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) UpperCamelCase = ly_weight['''attention'''] UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) ,requires_grad=_lowercase ) for lyr_num, lyr in enumerate(model.encoders ): UpperCamelCase = weights[f'layers_{lyr_num}'] UpperCamelCase = ly_weight['''attention'''] UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) ,requires_grad=_lowercase ) UpperCamelCase = nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) ) for lyr_num, lyr in enumerate(model.decoders ): UpperCamelCase = weights[f'layers_{lyr_num}'] UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) ) UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) ) UpperCamelCase = ly_weight['''self_attention'''] UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) UpperCamelCase = ly_weight['''MultiHeadDotProductAttention_0'''] UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) ) UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) ) return model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = checkpoints.load_tax_checkpoint(args.checkpoint_path ) UpperCamelCase = jnp.tree_util.tree_map(onp.array ,_lowercase ) UpperCamelCase = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] UpperCamelCase = os.path.join(args.checkpoint_path ,'''..''' ,'''config.gin''' ) UpperCamelCase = inference.parse_training_gin_file(_lowercase ,_lowercase ) UpperCamelCase = inference.InferenceModel(args.checkpoint_path ,_lowercase ) UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ,variance_type='''fixed_large''' ) UpperCamelCase = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''] ,vocab_size=synth_model.model.module.config.vocab_size ,d_model=synth_model.model.module.config.emb_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,num_layers=synth_model.model.module.config.num_encoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,feed_forward_proj='''gated-gelu''' ,) UpperCamelCase = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims ,targets_context_length=synth_model.sequence_length['''targets_context'''] ,d_model=synth_model.model.module.config.emb_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,num_layers=synth_model.model.module.config.num_encoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,feed_forward_proj='''gated-gelu''' ,) UpperCamelCase = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims ,targets_length=synth_model.sequence_length['''targets_context'''] ,max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time ,d_model=synth_model.model.module.config.emb_dim ,num_layers=synth_model.model.module.config.num_decoder_layers ,num_heads=synth_model.model.module.config.num_heads ,d_kv=synth_model.model.module.config.head_dim ,d_ff=synth_model.model.module.config.mlp_dim ,dropout_rate=synth_model.model.module.config.dropout_rate ,) UpperCamelCase = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''] ,_lowercase ) UpperCamelCase = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''] ,_lowercase ) UpperCamelCase = load_decoder(ta_checkpoint['''target''']['''decoder'''] ,_lowercase ) UpperCamelCase = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' ) UpperCamelCase = SpectrogramDiffusionPipeline( notes_encoder=_lowercase ,continuous_encoder=_lowercase ,decoder=_lowercase ,scheduler=_lowercase ,melgan=_lowercase ,) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=f'{MODEL}/checkpoint_500000', type=str, required=False, help='Path to the original jax model checkpoint.', ) SCREAMING_SNAKE_CASE_ = parser.parse_args() main(args)
34
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __snake_case ( _lowercase ,_lowercase=False ): """simple docstring""" try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_REMOTE', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_LOCAL', default=True) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __snake_case ( _lowercase ): """simple docstring""" try: import faiss # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires faiss''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import regex # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires regex''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TORCH_AVAILABLE: UpperCamelCase = unittest.skip('''test requires PyTorch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TF_AVAILABLE: UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.JAX_AVAILABLE: UpperCamelCase = unittest.skip('''test requires JAX''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.PIL_AVAILABLE: UpperCamelCase = unittest.skip('''test requires Pillow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" def _require_spacy_model(_lowercase ): try: import spacy # noqa F401 spacy.load(_lowercase ) except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_lowercase ) )(_lowercase ) else: return test_case return _require_spacy_model def __snake_case ( _lowercase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase = unittest.skip('''test is slow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: UpperCamelCase = unittest.skip('''test is local''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase = unittest.skip('''test is packaged''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase = unittest.skip('''test requires remote''' )(_lowercase ) return test_case def __snake_case ( *_lowercase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_lowercase ) and name.startswith('''test''' ): for decorator in decorators: UpperCamelCase = decorator(_lowercase ) setattr(cls ,_lowercase ,_lowercase ) return cls return decorate class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 0 A_ = 1 A_ = 2 @contextmanager def __snake_case ( _lowercase=OfflineSimulationMode.CONNECTION_FAILS ,_lowercase=1e-16 ): """simple docstring""" UpperCamelCase = requests.Session().request def timeout_request(_lowercase ,_lowercase ,_lowercase ,**_lowercase ): # Change the url to an invalid url so that the connection hangs UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) UpperCamelCase = timeout try: return online_request(_lowercase ,_lowercase ,**_lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase = url UpperCamelCase = e.args[0] UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' ,f'OfflineMock[{url}]' ),) UpperCamelCase = (max_retry_error,) raise def raise_connection_error(_lowercase ,_lowercase ,**_lowercase ): raise requests.ConnectionError('''Offline mode is enabled.''' ,request=_lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' ,_lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' ,_lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' ,_lowercase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowercase ,**_lowercase ) as tmp_dir: try: os.chdir(_lowercase ) yield finally: os.chdir(_lowercase ) @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() def __snake_case ( _lowercase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_lowercase ,*_lowercase ,**_lowercase ): try: return func(*_lowercase ,**_lowercase ) except HTTPError as err: if str(_lowercase ).startswith('''500''' ) or str(_lowercase ).startswith('''502''' ): pytest.xfail(str(_lowercase ) ) raise err return decorator.decorator(_wrapper ,_lowercase ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" while True: UpperCamelCase = await stream.readline() if line: callback(_lowercase ) else: break async def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ,_lowercase=False ): """simple docstring""" if echo: print('''\nRunning: ''' ,''' '''.join(_lowercase ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=_lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=_lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(_lowercase ,_lowercase ,_lowercase ,_lowercase="" ): UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase ,_lowercase ,file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stdout ,label='''stdout:''' ) ), _read_stream(p.stderr ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stderr ,label='''stderr:''' ) ), ] ,timeout=_lowercase ,) return _RunOutput(await p.wait() ,_lowercase ,_lowercase ) def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=180 ,_lowercase=False ,_lowercase=True ): """simple docstring""" UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(_lowercase ,env=_lowercase ,stdin=_lowercase ,timeout=_lowercase ,quiet=_lowercase ,echo=_lowercase ) ) UpperCamelCase = ''' '''.join(_lowercase ) if result.returncode > 0: UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def __snake_case ( ): """simple docstring""" UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' ,'''gw0''' ) UpperCamelCase = re.sub(r'''^gw''' ,'''''' ,_lowercase ,0 ,re.M ) return int(_lowercase ) def __snake_case ( ): """simple docstring""" UpperCamelCase = 2_9500 UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
34
1
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = GPTaTokenizer A_ = GPTaTokenizerFast A_ = True A_ = {'''add_prefix_space''': True} A_ = False def UpperCAmelCase__ ( self) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_)))) UpperCamelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCamelCase = {'''unk_token''': '''<unk>'''} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(lowerCamelCase_) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(lowerCamelCase_)) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Tuple: kwargs.update(self.special_tokens_map) return GPTaTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Tuple: kwargs.update(self.special_tokens_map) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = '''lower newer''' UpperCamelCase = '''lower newer''' return input_text, output_text def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) UpperCamelCase = '''lower newer''' UpperCamelCase = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCamelCase = tokenizer.tokenize(lowerCamelCase_ , add_prefix_space=lowerCamelCase_) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_) , lowerCamelCase_) def UpperCAmelCase__ ( self) -> List[Any]: if not self.test_rust_tokenizer: return UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_rust_tokenizer(add_prefix_space=lowerCamelCase_) UpperCamelCase = '''lower newer''' # Testing tokenization UpperCamelCase = tokenizer.tokenize(lowerCamelCase_ , add_prefix_space=lowerCamelCase_) UpperCamelCase = rust_tokenizer.tokenize(lowerCamelCase_) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_) # Testing conversion to ids without special tokens UpperCamelCase = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_) UpperCamelCase = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_) # Testing conversion to ids with special tokens UpperCamelCase = self.get_rust_tokenizer(add_prefix_space=lowerCamelCase_) UpperCamelCase = tokenizer.encode(lowerCamelCase_ , add_prefix_space=lowerCamelCase_) UpperCamelCase = rust_tokenizer.encode(lowerCamelCase_) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_) # Testing the unknown token UpperCamelCase = tokens + [rust_tokenizer.unk_token] UpperCamelCase = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCamelCase_) , lowerCamelCase_) def UpperCAmelCase__ ( self , *lowerCamelCase_ , **lowerCamelCase_) -> int: # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def UpperCAmelCase__ ( self , lowerCamelCase_=1_5) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_) # Simple input UpperCamelCase = '''This is a simple input''' UpperCamelCase = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCamelCase = ('''This is a simple input''', '''This is a pair''') UpperCamelCase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(lowerCamelCase_ , tokenizer_r.encode , lowerCamelCase_ , max_length=lowerCamelCase_ , padding='''max_length''') # Simple input self.assertRaises(lowerCamelCase_ , tokenizer_r.encode_plus , lowerCamelCase_ , max_length=lowerCamelCase_ , padding='''max_length''') # Simple input self.assertRaises( lowerCamelCase_ , tokenizer_r.batch_encode_plus , lowerCamelCase_ , max_length=lowerCamelCase_ , padding='''max_length''' , ) # Pair input self.assertRaises(lowerCamelCase_ , tokenizer_r.encode , lowerCamelCase_ , max_length=lowerCamelCase_ , padding='''max_length''') # Pair input self.assertRaises(lowerCamelCase_ , tokenizer_r.encode_plus , lowerCamelCase_ , max_length=lowerCamelCase_ , padding='''max_length''') # Pair input self.assertRaises( lowerCamelCase_ , tokenizer_r.batch_encode_plus , lowerCamelCase_ , max_length=lowerCamelCase_ , padding='''max_length''' , ) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''') # Simple input UpperCamelCase = '''This is a simple input''' UpperCamelCase = ['''This is a simple input looooooooong''', '''This is a simple input'''] UpperCamelCase = ('''This is a simple input''', '''This is a pair''') UpperCamelCase = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] UpperCamelCase = tokenizer.pad_token_id UpperCamelCase = tokenizer(lowerCamelCase_ , padding='''max_length''' , max_length=3_0 , return_tensors='''np''') UpperCamelCase = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , truncate=lowerCamelCase_ , return_tensors='''np''') UpperCamelCase = tokenizer(*lowerCamelCase_ , padding='''max_length''' , max_length=6_0 , return_tensors='''np''') UpperCamelCase = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , truncate=lowerCamelCase_ , return_tensors='''np''') # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 3_0) self.assertTrue(pad_token_id in out_s['''input_ids''']) self.assertTrue(0 in out_s['''attention_mask''']) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 3_3) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0]) self.assertFalse(0 in out_sa['''attention_mask'''][0]) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1]) self.assertTrue(0 in out_sa['''attention_mask'''][1]) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 6_0) self.assertTrue(pad_token_id in out_p['''input_ids''']) self.assertTrue(0 in out_p['''attention_mask''']) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 5_2) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0]) self.assertFalse(0 in out_pa['''attention_mask'''][0]) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1]) self.assertTrue(0 in out_pa['''attention_mask'''][1]) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''$$$''' UpperCamelCase = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=lowerCamelCase_ , add_bos_token=lowerCamelCase_) UpperCamelCase = '''This is a simple input''' UpperCamelCase = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCamelCase = tokenizer.bos_token_id UpperCamelCase = tokenizer(lowerCamelCase_) UpperCamelCase = tokenizer(lowerCamelCase_) self.assertEqual(out_s.input_ids[0] , lowerCamelCase_) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids)) UpperCamelCase = tokenizer.decode(out_s.input_ids) UpperCamelCase = tokenizer.batch_decode(out_sa.input_ids) self.assertEqual(decode_s.split()[0] , lowerCamelCase_) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa)) def UpperCAmelCase__ ( self) -> Dict: pass def UpperCAmelCase__ ( self) -> int: # TODO: change to self.get_tokenizers() when the fast version is implemented UpperCamelCase = [self.get_tokenizer(do_lower_case=lowerCamelCase_ , add_bos_token=lowerCamelCase_)] for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): UpperCamelCase = '''Encode this.''' UpperCamelCase = '''This one too please.''' UpperCamelCase = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_) encoded_sequence += tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_) UpperCamelCase = tokenizer.encode_plus( lowerCamelCase_ , lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , ) UpperCamelCase = encoded_sequence_dict['''input_ids'''] UpperCamelCase = encoded_sequence_dict['''special_tokens_mask'''] self.assertEqual(len(lowerCamelCase_) , len(lowerCamelCase_)) UpperCamelCase = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(lowerCamelCase_) ] UpperCamelCase = [x for x in filtered_sequence if x is not None] self.assertEqual(lowerCamelCase_ , lowerCamelCase_) @require_tokenizers class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> Optional[int]: # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 UpperCamelCase = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=lowerCamelCase_) UpperCamelCase = '''A photo of a cat''' UpperCamelCase = tokenizer.encode( lowerCamelCase_ , ) self.assertEqual(lowerCamelCase_ , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8]) tokenizer.save_pretrained('''test_opt''') UpperCamelCase = AutoTokenizer.from_pretrained('''./test_opt''') UpperCamelCase = tokenizer.encode( lowerCamelCase_ , ) self.assertEqual(lowerCamelCase_ , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , use_slow=lowerCamelCase_) UpperCamelCase = '''A photo of a cat''' UpperCamelCase = tokenizer.encode( lowerCamelCase_ , ) # Same as above self.assertEqual(lowerCamelCase_ , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8]) @unittest.skip('''This test is failing because of a bug in the fast tokenizer''') def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=lowerCamelCase_) UpperCamelCase = '''bos''' UpperCamelCase = tokenizer.get_vocab()['''bos'''] UpperCamelCase = '''A photo of a cat''' UpperCamelCase = tokenizer.encode( lowerCamelCase_ , ) # We changed the bos token self.assertEqual(lowerCamelCase_ , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8]) tokenizer.save_pretrained('''./tok''') UpperCamelCase = AutoTokenizer.from_pretrained('''./tok''') self.assertTrue(tokenizer.is_fast) UpperCamelCase = tokenizer.encode( lowerCamelCase_ , ) self.assertEqual(lowerCamelCase_ , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8])
34
"""simple docstring""" import operator def __snake_case ( _lowercase ,_lowercase = False ,_lowercase = None ): """simple docstring""" UpperCamelCase = operator.lt if reverse else operator.gt UpperCamelCase = solution or [] if not arr: return solution UpperCamelCase = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase ,sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: UpperCamelCase = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase ,_lowercase ): solution.insert(_lowercase ,_lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase ,_lowercase ,_lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
34
1
"""simple docstring""" def __snake_case ( _lowercase = 100_0000 ): """simple docstring""" UpperCamelCase = set(range(3 ,_lowercase ,2 ) ) primes.add(2 ) for p in range(3 ,_lowercase ,2 ): if p not in primes: continue primes.difference_update(set(range(p * p ,_lowercase ,_lowercase ) ) ) UpperCamelCase = [float(_lowercase ) for n in range(limit + 1 )] for p in primes: for n in range(_lowercase ,limit + 1 ,_lowercase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'{solution() = }')
34
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' SCREAMING_SNAKE_CASE_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any: if return_pvalue: UpperCamelCase = pearsonr(lowerCamelCase_ , lowerCamelCase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_ , lowerCamelCase_)[0])}
34
1
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" if not isinstance(_lowercase ,_lowercase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 ,input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
34
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ComputeEnvironment.AMAZON_SAGEMAKER A_ = True A_ = '''ml.p3.2xlarge''' A_ = '''accelerate_sagemaker_execution_role''' A_ = '''hf-sm''' A_ = '''us-east-1''' A_ = 1 A_ = '''accelerate-sagemaker-1''' A_ = '''1.6''' A_ = '''4.4''' A_ = '''train.py''' A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args['''model_name_or_path'''] , lowerCamelCase_) assert isinstance(converted_args['''do_train'''] , lowerCamelCase_) assert isinstance(converted_args['''epochs'''] , lowerCamelCase_) assert isinstance(converted_args['''learning_rate'''] , lowerCamelCase_) assert isinstance(converted_args['''max_steps'''] , lowerCamelCase_) with pytest.raises(lowerCamelCase_): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
34
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''biogpt''' def __init__( self , lowerCamelCase_=4_2_3_8_4 , lowerCamelCase_=1_0_2_4 , lowerCamelCase_=2_4 , lowerCamelCase_=1_6 , lowerCamelCase_=4_0_9_6 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=1_0_2_4 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-12 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=1 , lowerCamelCase_=0 , lowerCamelCase_=2 , **lowerCamelCase_ , ) -> Union[str, Any]: UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = scale_embedding UpperCamelCase = use_cache UpperCamelCase = layerdrop UpperCamelCase = activation_dropout super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_)
34
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class snake_case_ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCamelCase_ = " ") -> List[str]: UpperCamelCase = sentence_delimiter def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return list(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase_): chars.extend(self.process_string(lowerCamelCase_)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_) - 1: chars.append(self.sentence_delimiter) return chars SCREAMING_SNAKE_CASE_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=7 , lowerCamelCase_=3 , lowerCamelCase_=1_8 , lowerCamelCase_=3_0 , lowerCamelCase_=4_0_0 , lowerCamelCase_=True , lowerCamelCase_=3_2 , lowerCamelCase_=True , ) -> Union[str, Any]: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size_divisor UpperCamelCase = do_rescale def UpperCAmelCase__ ( self) -> Any: return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = GLPNImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = GLPNImageProcessingTester(self) @property def UpperCAmelCase__ ( self) -> str: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCamelCase_ , '''do_resize''')) self.assertTrue(hasattr(lowerCamelCase_ , '''size_divisor''')) self.assertTrue(hasattr(lowerCamelCase_ , '''resample''')) self.assertTrue(hasattr(lowerCamelCase_ , '''do_rescale''')) def UpperCAmelCase__ ( self) -> str: pass def UpperCAmelCase__ ( self) -> Optional[Any]: # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0) def UpperCAmelCase__ ( self) -> Optional[Any]: # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0) def UpperCAmelCase__ ( self) -> Optional[int]: # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0)
34
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = '''left''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<eop>", "<eod>"] , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = 3 UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> List[str]: return len(self.sp_model) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> str: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: if self.remove_space: UpperCamelCase = ''' '''.join(inputs.strip().split()) else: UpperCamelCase = inputs UpperCamelCase = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCamelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase_) UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_)]) if self.do_lower_case: UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) UpperCamelCase = [] for piece in pieces: if len(lowerCamelCase_) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCamelCase = cur_pieces[1:] else: UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCamelCase_) else: new_pieces.append(lowerCamelCase_) return new_pieces def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.sp_model.IdToPiece(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: UpperCamelCase = ''''''.join(lowerCamelCase_).replace(lowerCamelCase_ , ''' ''').strip() return out_string def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> str: UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCamelCase_) UpperCamelCase = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) UpperCamelCase = [] sub_texts.append(lowerCamelCase_) else: current_sub_text.append(lowerCamelCase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(lowerCamelCase_) return clean_text else: return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) + [1, 1] return ([0] * len(lowerCamelCase_)) + [1, 1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,)
34
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = '▁' SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } SCREAMING_SNAKE_CASE_ = { 'google/pegasus-xsum': 512, } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = PegasusTokenizer A_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_="<pad>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<mask_2>" , lowerCamelCase_="<mask_1>" , lowerCamelCase_=None , lowerCamelCase_=1_0_3 , **lowerCamelCase_ , ) -> Optional[int]: UpperCamelCase = offset if additional_special_tokens is not None: if not isinstance(lowerCamelCase_ , lowerCamelCase_): raise TypeError( F'additional_special_tokens should be of type {type(lowerCamelCase_)}, but is' F' {type(lowerCamelCase_)}') UpperCamelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'<unk_{i}>' for i in range(len(lowerCamelCase_) , self.offset - 1) ] if len(set(lowerCamelCase_)) != len(lowerCamelCase_): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.') UpperCamelCase = additional_special_tokens_extended else: UpperCamelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'<unk_{i}>' for i in range(2 , self.offset)] super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , pad_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , mask_token_sent=lowerCamelCase_ , offset=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = vocab_file UpperCamelCase = False if not self.vocab_file else True def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[Any]: UpperCamelCase = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens) + 3)): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' F' {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}') return [1 if x in all_special_ids else 0 for x in seq] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowerCamelCase_) elif token_ids_a is None: return self._special_token_mask(lowerCamelCase_) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a) + [1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''') if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_): copyfile(self.vocab_file , lowerCamelCase_) return (out_vocab_file,)
34
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } SCREAMING_SNAKE_CASE_ = { 'openbmb/cpm-ant-10b': 1024, } def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = collections.OrderedDict() with open(_lowercase ,'''r''' ,encoding='''utf-8''' ) as reader: UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): UpperCamelCase = token.rstrip('''\n''' ) UpperCamelCase = index return vocab class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_=2_0_0) -> Any: UpperCamelCase = vocab UpperCamelCase = unk_token UpperCamelCase = max_input_chars_per_word def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = list(lowerCamelCase_) if len(lowerCamelCase_) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase = 0 UpperCamelCase = [] while start < len(lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = None while start < end: UpperCamelCase = ''''''.join(chars[start:end]) if substr in self.vocab: UpperCamelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(lowerCamelCase_) UpperCamelCase = end return sub_tokens class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] A_ = False def __init__( self , lowerCamelCase_ , lowerCamelCase_="<d>" , lowerCamelCase_="</d>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<unk>" , lowerCamelCase_="</n>" , lowerCamelCase_="</_>" , lowerCamelCase_="left" , **lowerCamelCase_ , ) -> List[str]: requires_backends(self , ['''jieba''']) super().__init__( bod_token=lowerCamelCase_ , eod_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , line_token=lowerCamelCase_ , space_token=lowerCamelCase_ , padding_side=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = bod_token UpperCamelCase = eod_token UpperCamelCase = load_vocab(lowerCamelCase_) UpperCamelCase = self.encoder[space_token] UpperCamelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def UpperCAmelCase__ ( self) -> Dict: return self.encoder[self.bod_token] @property def UpperCAmelCase__ ( self) -> str: return self.encoder[self.eod_token] @property def UpperCAmelCase__ ( self) -> List[Any]: return self.encoder["\n"] @property def UpperCAmelCase__ ( self) -> int: return len(self.encoder) def UpperCAmelCase__ ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = [] for x in jieba.cut(lowerCamelCase_ , cut_all=lowerCamelCase_): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase_)) return output_tokens def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> Tuple: UpperCamelCase = [i for i in token_ids if i >= 0] UpperCamelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return token in self.encoder def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return "".join(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token)) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return self.decoder.get(lowerCamelCase_ , self.unk_token) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if os.path.isdir(lowerCamelCase_): UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: UpperCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCamelCase = 0 if " " in self.encoder: UpperCamelCase = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase = self.encoder['''\n'''] del self.encoder["\n"] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''') UpperCamelCase = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) return [1] + ([0] * len(lowerCamelCase_))
34
1
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=0) -> int: UpperCamelCase = 1.0 if scale is None else scale UpperCamelCase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_)]) @property def UpperCAmelCase__ ( self) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase__ ( self) -> List[str]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase__ ( self) -> Any: return self.variance.sqrt() class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = args_dim UpperCamelCase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_) for dim in args_dim.values()]) UpperCamelCase = domain_map def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple[torch.Tensor]: UpperCamelCase = [proj(lowerCamelCase_) for proj in self.proj] return self.domain_map(*lowerCamelCase_) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__() UpperCamelCase = function def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_) -> Tuple: return self.function(lowerCamelCase_ , *lowerCamelCase_) class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , lowerCamelCase_ = 1) -> None: UpperCamelCase = dim UpperCamelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if self.dim == 1: return self.distribution_class(*lowerCamelCase_) else: return Independent(self.distribution_class(*lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Distribution: UpperCamelCase = self._base_distribution(lowerCamelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim) @property def UpperCAmelCase__ ( self) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase__ ( self) -> int: return len(self.event_shape) @property def UpperCAmelCase__ ( self) -> float: return 0.0 def UpperCAmelCase__ ( self , lowerCamelCase_) -> nn.Module: return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def UpperCAmelCase__ ( self , *lowerCamelCase_) -> List[str]: raise NotImplementedError() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCamelCase_) + 4.0)) / 2.0 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"df": 1, "loc": 1, "scale": 1} A_ = StudentT @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) UpperCamelCase = 2.0 + cls.squareplus(lowerCamelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"loc": 1, "scale": 1} A_ = Normal @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"total_count": 1, "logits": 1} A_ = NegativeBinomial @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = cls.squareplus(lowerCamelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
34
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=0) -> int: UpperCamelCase = 1.0 if scale is None else scale UpperCamelCase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_)]) @property def UpperCAmelCase__ ( self) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase__ ( self) -> List[str]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase__ ( self) -> Any: return self.variance.sqrt() class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = args_dim UpperCamelCase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_) for dim in args_dim.values()]) UpperCamelCase = domain_map def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple[torch.Tensor]: UpperCamelCase = [proj(lowerCamelCase_) for proj in self.proj] return self.domain_map(*lowerCamelCase_) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__() UpperCamelCase = function def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_) -> Tuple: return self.function(lowerCamelCase_ , *lowerCamelCase_) class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , lowerCamelCase_ = 1) -> None: UpperCamelCase = dim UpperCamelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if self.dim == 1: return self.distribution_class(*lowerCamelCase_) else: return Independent(self.distribution_class(*lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Distribution: UpperCamelCase = self._base_distribution(lowerCamelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim) @property def UpperCAmelCase__ ( self) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase__ ( self) -> int: return len(self.event_shape) @property def UpperCAmelCase__ ( self) -> float: return 0.0 def UpperCAmelCase__ ( self , lowerCamelCase_) -> nn.Module: return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def UpperCAmelCase__ ( self , *lowerCamelCase_) -> List[str]: raise NotImplementedError() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCamelCase_) + 4.0)) / 2.0 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"df": 1, "loc": 1, "scale": 1} A_ = StudentT @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) UpperCamelCase = 2.0 + cls.squareplus(lowerCamelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"loc": 1, "scale": 1} A_ = Normal @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"total_count": 1, "logits": 1} A_ = NegativeBinomial @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = cls.squareplus(lowerCamelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
34
1
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset SCREAMING_SNAKE_CASE_ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> Optional[int]: super().__init__() UpperCamelCase = torchvision.models.resnetaaa(pretrained=lowerCamelCase_) UpperCamelCase = list(model.children())[:-2] UpperCamelCase = nn.Sequential(*lowerCamelCase_) UpperCamelCase = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds]) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 UpperCamelCase = self.pool(self.model(lowerCamelCase_)) UpperCamelCase = torch.flatten(lowerCamelCase_ , start_dim=2) UpperCamelCase = out.transpose(1 , 2).contiguous() return out # BxNx2048 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int: UpperCamelCase = [json.loads(lowerCamelCase_) for l in open(lowerCamelCase_)] UpperCamelCase = os.path.dirname(lowerCamelCase_) UpperCamelCase = tokenizer UpperCamelCase = labels UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = max_seq_length UpperCamelCase = transforms def __len__( self) -> int: return len(self.data) def __getitem__( self , lowerCamelCase_) -> int: UpperCamelCase = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=lowerCamelCase_)) UpperCamelCase , UpperCamelCase , UpperCamelCase = sentence[0], sentence[1:-1], sentence[-1] UpperCamelCase = sentence[: self.max_seq_length] UpperCamelCase = torch.zeros(self.n_classes) UpperCamelCase = 1 UpperCamelCase = Image.open(os.path.join(self.data_dir , self.data[index]['''img'''])).convert('''RGB''') UpperCamelCase = self.transforms(lowerCamelCase_) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = Counter() for row in self.data: label_freqs.update(row['''label''']) return label_freqs def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [len(row['''sentence'''] ) for row in batch] UpperCamelCase , UpperCamelCase = len(_lowercase ), max(_lowercase ) UpperCamelCase = torch.zeros(_lowercase ,_lowercase ,dtype=torch.long ) UpperCamelCase = torch.zeros(_lowercase ,_lowercase ,dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_lowercase ,_lowercase ) ): UpperCamelCase = input_row['''sentence'''] UpperCamelCase = 1 UpperCamelCase = torch.stack([row['''image'''] for row in batch] ) UpperCamelCase = torch.stack([row['''label'''] for row in batch] ) UpperCamelCase = torch.stack([row['''image_start_token'''] for row in batch] ) UpperCamelCase = torch.stack([row['''image_end_token'''] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def __snake_case ( ): """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def __snake_case ( ): """simple docstring""" return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46777044, 0.44531429, 0.40661017] ,std=[0.12221994, 0.12145835, 0.14380469] ,), ] )
34
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowercase ,id=_lowercase )
34
1
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') SCREAMING_SNAKE_CASE_ = int(input('Enter number: ').strip()) print(f'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
34
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
34
1
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = PhobertTokenizer A_ = False def UpperCAmelCase__ ( self) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_)))) UpperCamelCase = ['''#version: 0.2''', '''l à</w>'''] UpperCamelCase = {'''unk_token''': '''<unk>'''} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: for token in vocab_tokens: fp.write(F'{token} {vocab_tokens[token]}\n') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(lowerCamelCase_)) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: kwargs.update(self.special_tokens_map) return PhobertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = '''Tôi là VinAI Research''' UpperCamelCase = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def UpperCAmelCase__ ( self) -> Dict: UpperCamelCase = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) UpperCamelCase = '''Tôi là VinAI Research''' UpperCamelCase = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() UpperCamelCase = tokenizer.tokenize(lowerCamelCase_) print(lowerCamelCase_) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_) , lowerCamelCase_)
34
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
1
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ComputeEnvironment.AMAZON_SAGEMAKER A_ = True A_ = '''ml.p3.2xlarge''' A_ = '''accelerate_sagemaker_execution_role''' A_ = '''hf-sm''' A_ = '''us-east-1''' A_ = 1 A_ = '''accelerate-sagemaker-1''' A_ = '''1.6''' A_ = '''4.4''' A_ = '''train.py''' A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args['''model_name_or_path'''] , lowerCamelCase_) assert isinstance(converted_args['''do_train'''] , lowerCamelCase_) assert isinstance(converted_args['''epochs'''] , lowerCamelCase_) assert isinstance(converted_args['''learning_rate'''] , lowerCamelCase_) assert isinstance(converted_args['''max_steps'''] , lowerCamelCase_) with pytest.raises(lowerCamelCase_): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
34
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase = getattr(_lowercase ,_lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase ,_lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) UpperCamelCase = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCamelCase = torch.tensor(_lowercase ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_lowercase ) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to(_lowercase ) else: UpperCamelCase = torch.tensor(_lowercase ,device=_lowercase ) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase ,requires_grad=old_value.requires_grad ) UpperCamelCase = new_value def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase ,nn.Linear ) or isinstance(_lowercase ,_lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase ,_lowercase ): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase ,_lowercase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase ,_lowercase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ,has_been_replaced=_lowercase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,_lowercase ,) return replace_with_bnb_linear(*_lowercase ,**_lowercase ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,_lowercase ,) return set_module_quantized_tensor_to_device(*_lowercase ,**_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase ,_lowercase ): UpperCamelCase = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(_lowercase ,[] ) UpperCamelCase = len(_lowercase ) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase ) - set(_lowercase ) UpperCamelCase = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase ,'''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names
34
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''cvt''' def __init__( self , lowerCamelCase_=3 , lowerCamelCase_=[7, 3, 3] , lowerCamelCase_=[4, 2, 2] , lowerCamelCase_=[2, 1, 1] , lowerCamelCase_=[6_4, 1_9_2, 3_8_4] , lowerCamelCase_=[1, 3, 6] , lowerCamelCase_=[1, 2, 1_0] , lowerCamelCase_=[4.0, 4.0, 4.0] , lowerCamelCase_=[0.0, 0.0, 0.0] , lowerCamelCase_=[0.0, 0.0, 0.0] , lowerCamelCase_=[0.0, 0.0, 0.1] , lowerCamelCase_=[True, True, True] , lowerCamelCase_=[False, False, True] , lowerCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , lowerCamelCase_=[3, 3, 3] , lowerCamelCase_=[1, 1, 1] , lowerCamelCase_=[2, 2, 2] , lowerCamelCase_=[1, 1, 1] , lowerCamelCase_=[1, 1, 1] , lowerCamelCase_=0.02 , lowerCamelCase_=1e-12 , **lowerCamelCase_ , ) -> List[Any]: super().__init__(**lowerCamelCase_) UpperCamelCase = num_channels UpperCamelCase = patch_sizes UpperCamelCase = patch_stride UpperCamelCase = patch_padding UpperCamelCase = embed_dim UpperCamelCase = num_heads UpperCamelCase = depth UpperCamelCase = mlp_ratio UpperCamelCase = attention_drop_rate UpperCamelCase = drop_rate UpperCamelCase = drop_path_rate UpperCamelCase = qkv_bias UpperCamelCase = cls_token UpperCamelCase = qkv_projection_method UpperCamelCase = kernel_qkv UpperCamelCase = padding_kv UpperCamelCase = stride_kv UpperCamelCase = padding_q UpperCamelCase = stride_q UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps
34
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase ) count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 ) count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase ) return count def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_lowercase ,_lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_ = TemporaryFile() SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_ = np.load(outfile) SCREAMING_SNAKE_CASE_ = len(M) - 1 SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
34
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''swinv2''' A_ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowerCamelCase_=2_2_4 , lowerCamelCase_=4 , lowerCamelCase_=3 , lowerCamelCase_=9_6 , lowerCamelCase_=[2, 2, 6, 2] , lowerCamelCase_=[3, 6, 1_2, 2_4] , lowerCamelCase_=7 , lowerCamelCase_=4.0 , lowerCamelCase_=True , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=0.1 , lowerCamelCase_="gelu" , lowerCamelCase_=False , lowerCamelCase_=0.02 , lowerCamelCase_=1e-5 , lowerCamelCase_=3_2 , **lowerCamelCase_ , ) -> Any: super().__init__(**lowerCamelCase_) UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase = int(embed_dim * 2 ** (len(lowerCamelCase_) - 1)) UpperCamelCase = (0, 0, 0, 0)
34
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE_ = os.path.join(git_repo_path, 'src', 'transformers') SCREAMING_SNAKE_CASE_ = '\n{0} = None\n' SCREAMING_SNAKE_CASE_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' SCREAMING_SNAKE_CASE_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowerCamelCase_) UpperCamelCase = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowerCamelCase_ , '''tokenizers''') UpperCamelCase = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowerCamelCase_ , '''tensorflow_text''') UpperCamelCase = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tensorflow_text''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers_and_vision''') def UpperCAmelCase__ ( self) -> int: UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCamelCase_) self.assertIn('''tensorflow_text''' , lowerCamelCase_) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCamelCase_) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , '''\nCONSTANT = None\n''') UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowerCamelCase_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowerCamelCase_)
34
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE_ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = state_dict.pop(_lowercase ) UpperCamelCase = val def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCamelCase = key.replace('''backbone.0.body''' ,'''backbone.conv_encoder.model''' ) UpperCamelCase = value else: UpperCamelCase = value return new_state_dict def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) UpperCamelCase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCamelCase = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) UpperCamelCase = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCamelCase = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) UpperCamelCase = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCamelCase = in_proj_weight_cross_attn[:256, :] UpperCamelCase = in_proj_bias_cross_attn[:256] UpperCamelCase = in_proj_weight_cross_attn[256:512, :] UpperCamelCase = in_proj_bias_cross_attn[256:512] UpperCamelCase = in_proj_weight_cross_attn[-256:, :] UpperCamelCase = in_proj_bias_cross_attn[-256:] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = image.size UpperCamelCase = max(_lowercase ,_lowercase ) UpperCamelCase = 800 if '''detection''' in checkpoint_url else 1000 UpperCamelCase = target_max_size / current_max_size UpperCamelCase = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = F.to_tensor(_lowercase ) UpperCamelCase = F.normalize(_lowercase ,mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" logger.info('''Converting model...''' ) # load original state dict UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(_lowercase ,_lowercase ,_lowercase ) UpperCamelCase = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): UpperCamelCase = state_dict.pop(_lowercase ) UpperCamelCase = val # create HuggingFace model and load state dict UpperCamelCase = TableTransformerConfig( backbone='''resnet18''' ,mask_loss_coefficient=1 ,dice_loss_coefficient=1 ,ce_loss_coefficient=1 ,bbox_loss_coefficient=5 ,giou_loss_coefficient=2 ,eos_coefficient=0.4 ,class_cost=1 ,bbox_cost=5 ,giou_cost=2 ,) if "detection" in checkpoint_url: UpperCamelCase = 15 UpperCamelCase = 2 UpperCamelCase = {0: '''table''', 1: '''table rotated'''} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} else: UpperCamelCase = 125 UpperCamelCase = 6 UpperCamelCase = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} UpperCamelCase = DetrImageProcessor( format='''coco_detection''' ,max_size=800 if '''detection''' in checkpoint_url else 1000 ) UpperCamelCase = TableTransformerForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() # verify our conversion UpperCamelCase = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' UpperCamelCase = hf_hub_download(repo_id='''nielsr/example-pdf''' ,repo_type='''dataset''' ,filename=_lowercase ) UpperCamelCase = Image.open(_lowercase ).convert('''RGB''' ) UpperCamelCase = normalize(resize(_lowercase ,_lowercase ) ).unsqueeze(0 ) UpperCamelCase = model(_lowercase ) if "detection" in checkpoint_url: UpperCamelCase = (1, 15, 3) UpperCamelCase = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) UpperCamelCase = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: UpperCamelCase = (1, 125, 7) UpperCamelCase = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) UpperCamelCase = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] ,_lowercase ,atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) UpperCamelCase = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(_lowercase ) image_processor.push_to_hub(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
34
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __snake_case ( _lowercase ): """simple docstring""" if "cls_token" in name: UpperCamelCase = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: UpperCamelCase = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: UpperCamelCase = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: UpperCamelCase = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: UpperCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: UpperCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: UpperCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: UpperCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: UpperCamelCase = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: UpperCamelCase = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: UpperCamelCase = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCamelCase = key.split('''.''' ) UpperCamelCase = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase = config.decoder_hidden_size UpperCamelCase = '''decoder.decoder_layers.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = config.hidden_size UpperCamelCase = '''vit.encoder.layer.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = val return orig_state_dict def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 elif "huge" in checkpoint_url: UpperCamelCase = 14 UpperCamelCase = 1280 UpperCamelCase = 5120 UpperCamelCase = 32 UpperCamelCase = 16 UpperCamelCase = ViTMAEForPreTraining(_lowercase ) UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' )['''model'''] UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = convert_state_dict(_lowercase ,_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCamelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = image_processor(images=_lowercase ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits if "large" in checkpoint_url: UpperCamelCase = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
34
1
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __snake_case ( ): """simple docstring""" UpperCamelCase = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' ,type=_lowercase ,default=1 ,help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' ,type=_lowercase ,help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) ,) # rest from the training program parser.add_argument('''training_script_args''' ,nargs=_lowercase ) return parser.parse_args() def __snake_case ( ): """simple docstring""" UpperCamelCase = parse_args() # Import training_script as a module. UpperCamelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCamelCase = script_fpath.stem UpperCamelCase = importlib.import_module(_lowercase ) # Patch sys.argv UpperCamelCase = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
34
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Any: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase = mock_training_loop_function('''hello''') self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def UpperCAmelCase__ ( self) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(lowerCamelCase_): pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Dict: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): raise ValueError('''Oops, we had an error!''') with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase_) UpperCamelCase = release_memory(lowerCamelCase_) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase_)
34
1
"""simple docstring""" import string def __snake_case ( _lowercase ): """simple docstring""" for key in range(len(string.ascii_uppercase ) ): UpperCamelCase = '''''' for symbol in message: if symbol in string.ascii_uppercase: UpperCamelCase = string.ascii_uppercase.find(_lowercase ) UpperCamelCase = num - key if num < 0: UpperCamelCase = num + len(string.ascii_uppercase ) UpperCamelCase = translated + string.ascii_uppercase[num] else: UpperCamelCase = translated + symbol print(f'Decryption using Key #{key}: {translated}' ) def __snake_case ( ): """simple docstring""" UpperCamelCase = input('''Encrypted message: ''' ) UpperCamelCase = message.upper() decrypt(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
34
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ = 1_0_1) -> Tuple: UpperCamelCase = length def __len__( self) -> List[str]: return self.length def __getitem__( self , lowerCamelCase_) -> int: return i class snake_case_ : """simple docstring""" def __call__( self , lowerCamelCase_) -> str: return {"input_ids": torch.tensor(lowerCamelCase_), "labels": torch.tensor(lowerCamelCase_)} class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> List[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase = nn.Linear(1_2_0 , 8_0) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_neuroncore def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_multi_gpu def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE_ = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()[0] logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' f'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE_ = DummyDataset(dataset_length) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = list(range(len(_lowercase ) ) ) UpperCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} SCREAMING_SNAKE_CASE_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = None
34
1
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration SCREAMING_SNAKE_CASE_ = pytest.mark.integration SCREAMING_SNAKE_CASE_ = {'comet'} SCREAMING_SNAKE_CASE_ = importlib.util.find_spec('fairseq') is not None SCREAMING_SNAKE_CASE_ = {'code_eval'} SCREAMING_SNAKE_CASE_ = os.name == 'nt' SCREAMING_SNAKE_CASE_ = {'bertscore', 'frugalscore', 'perplexity'} SCREAMING_SNAKE_CASE_ = importlib.util.find_spec('transformers') is not None def __snake_case ( _lowercase ): """simple docstring""" @wraps(_lowercase ) def wrapper(self ,_lowercase ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('''"test requires Fairseq"''' ) else: test_case(self ,_lowercase ) return wrapper def __snake_case ( _lowercase ): """simple docstring""" @wraps(_lowercase ) def wrapper(self ,_lowercase ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('''"test requires transformers"''' ) else: test_case(self ,_lowercase ) return wrapper def __snake_case ( _lowercase ): """simple docstring""" @wraps(_lowercase ) def wrapper(self ,_lowercase ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('''"test not supported on Windows"''' ) else: test_case(self ,_lowercase ) return wrapper def __snake_case ( ): """simple docstring""" UpperCamelCase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @local class snake_case_ ( parameterized.TestCase ): """simple docstring""" A_ = {} A_ = None @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''') @pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''') def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: UpperCamelCase = '''[...]''' UpperCamelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , lowerCamelCase_)).module_path) UpperCamelCase = datasets.load.import_main_class(metric_module.__name__ , dataset=lowerCamelCase_) # check parameters UpperCamelCase = inspect.signature(metric._compute).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values())) # no **kwargs # run doctest with self.patch_intensive_calls(lowerCamelCase_ , metric_module.__name__): with self.use_local_metrics(): try: UpperCamelCase = doctest.testmod(lowerCamelCase_ , verbose=lowerCamelCase_ , raise_on_error=lowerCamelCase_) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0) self.assertGreater(results.attempted , 1) @slow def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: UpperCamelCase = '''[...]''' UpperCamelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , lowerCamelCase_)).module_path) # run doctest with self.use_local_metrics(): UpperCamelCase = doctest.testmod(lowerCamelCase_ , verbose=lowerCamelCase_ , raise_on_error=lowerCamelCase_) self.assertEqual(results.failed , 0) self.assertGreater(results.attempted , 1) @contextmanager def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](lowerCamelCase_): yield else: yield @contextmanager def UpperCAmelCase__ ( self) -> Dict: def load_local_metric(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_): return load_metric(os.path.join('''metrics''' , lowerCamelCase_) , *lowerCamelCase_ , **lowerCamelCase_) with patch('''datasets.load_metric''') as mock_load_metric: UpperCamelCase = load_local_metric yield @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_) -> Tuple: def wrapper(lowerCamelCase_): UpperCamelCase = contextmanager(lowerCamelCase_) UpperCamelCase = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('''bleurt''' ) def __snake_case ( _lowercase ): """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('''sv''' ,'''''' ,'''''' ) # handle pytest cli flags class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: assert len(input_dict['''input_ids''']) == 2 return np.array([1.03, 1.04]) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor: UpperCamelCase = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('''bertscore''' ) def __snake_case ( _lowercase ): """simple docstring""" import torch def bert_cos_score_idf(_lowercase ,_lowercase ,*_lowercase ,**_lowercase ): return torch.tensor([[1.0, 1.0, 1.0]] * len(_lowercase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('''bert_score.scorer.get_model''' ), patch( '''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf: UpperCamelCase = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('''comet''' ) def __snake_case ( _lowercase ): """simple docstring""" def load_from_checkpoint(_lowercase ): class snake_case_ : """simple docstring""" def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: assert len(lowerCamelCase_) == 2 UpperCamelCase = [0.19, 0.92] return scores, sum(lowerCamelCase_) / len(lowerCamelCase_) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('''comet.download_model''' ) as mock_download_model: UpperCamelCase = None with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint: UpperCamelCase = load_from_checkpoint yield def __snake_case ( ): """simple docstring""" UpperCamelCase = load_metric(os.path.join('''metrics''' ,'''seqeval''' ) ) UpperCamelCase = '''ERROR''' UpperCamelCase = f'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}' with pytest.raises(_lowercase ,match=re.escape(_lowercase ) ): metric.compute(predictions=[] ,references=[] ,scheme=_lowercase )
34
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for tf_name, hf_name in patterns: UpperCamelCase = k.replace(_lowercase ,_lowercase ) return k def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = BigBirdPegasusConfig(**_lowercase ) UpperCamelCase = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCamelCase = torch_model.state_dict() UpperCamelCase = {} # separating decoder weights UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = DECODER_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = REMAINING_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCamelCase = mapping['''model.embed_positions.weight'''] UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(_lowercase ,strict=_lowercase ) UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tf.train.list_variables(_lowercase ) UpperCamelCase = {} UpperCamelCase = ['''global_step'''] for name, shape in tqdm(_lowercase ,desc='''converting tf checkpoint to dict''' ): UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase = tf.train.load_variable(_lowercase ,_lowercase ) UpperCamelCase = array return tf_weights def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = get_tf_weights_as_numpy(_lowercase ) UpperCamelCase = convert_bigbird_pegasus(_lowercase ,_lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
34
1
"""simple docstring""" import pprint import requests SCREAMING_SNAKE_CASE_ = 'https://zenquotes.io/api' def __snake_case ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def __snake_case ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = random_quotes() pprint.pprint(response)
34
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
1
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> Any: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase_ , ) return config, input_ids, attention_mask def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = FlaxDistilBertModelTester(self) @slow def UpperCAmelCase__ ( self) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowerCamelCase_) @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)[0] UpperCamelCase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , lowerCamelCase_) UpperCamelCase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4))
34
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
34
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
1
"""simple docstring""" from __future__ import annotations from statistics import mean def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = [0] * no_of_processes UpperCamelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowercase ): UpperCamelCase = burst_time[i] UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: UpperCamelCase = [] UpperCamelCase = -1 for i in range(_lowercase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowercase ) if len(_lowercase ) > 0: UpperCamelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: UpperCamelCase = i total_time += burst_time[target_process] completed += 1 UpperCamelCase = 0 UpperCamelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = [0] * no_of_processes for i in range(_lowercase ): UpperCamelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('[TEST CASE 01]') SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7] SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0] SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time') for i, process_id in enumerate(list(range(1, 5))): print( f'{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t' f'{waiting_time[i]}\t\t\t\t{turn_around_time[i]}' ) print(f'\nAverage waiting time = {mean(waiting_time):.5f}') print(f'Average turnaround time = {mean(turn_around_time):.5f}')
34
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''timm_backbone''' def __init__( self , lowerCamelCase_=None , lowerCamelCase_=3 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=None , **lowerCamelCase_ , ) -> Optional[Any]: super().__init__(**lowerCamelCase_) UpperCamelCase = backbone UpperCamelCase = num_channels UpperCamelCase = features_only UpperCamelCase = use_pretrained_backbone UpperCamelCase = True UpperCamelCase = out_indices if out_indices is not None else (-1,)
34
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __snake_case ( _lowercase ,_lowercase=False ): """simple docstring""" try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_REMOTE', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_LOCAL', default=True) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __snake_case ( _lowercase ): """simple docstring""" try: import faiss # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires faiss''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import regex # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires regex''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TORCH_AVAILABLE: UpperCamelCase = unittest.skip('''test requires PyTorch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TF_AVAILABLE: UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.JAX_AVAILABLE: UpperCamelCase = unittest.skip('''test requires JAX''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.PIL_AVAILABLE: UpperCamelCase = unittest.skip('''test requires Pillow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" def _require_spacy_model(_lowercase ): try: import spacy # noqa F401 spacy.load(_lowercase ) except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_lowercase ) )(_lowercase ) else: return test_case return _require_spacy_model def __snake_case ( _lowercase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase = unittest.skip('''test is slow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: UpperCamelCase = unittest.skip('''test is local''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase = unittest.skip('''test is packaged''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase = unittest.skip('''test requires remote''' )(_lowercase ) return test_case def __snake_case ( *_lowercase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_lowercase ) and name.startswith('''test''' ): for decorator in decorators: UpperCamelCase = decorator(_lowercase ) setattr(cls ,_lowercase ,_lowercase ) return cls return decorate class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 0 A_ = 1 A_ = 2 @contextmanager def __snake_case ( _lowercase=OfflineSimulationMode.CONNECTION_FAILS ,_lowercase=1e-16 ): """simple docstring""" UpperCamelCase = requests.Session().request def timeout_request(_lowercase ,_lowercase ,_lowercase ,**_lowercase ): # Change the url to an invalid url so that the connection hangs UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) UpperCamelCase = timeout try: return online_request(_lowercase ,_lowercase ,**_lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase = url UpperCamelCase = e.args[0] UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' ,f'OfflineMock[{url}]' ),) UpperCamelCase = (max_retry_error,) raise def raise_connection_error(_lowercase ,_lowercase ,**_lowercase ): raise requests.ConnectionError('''Offline mode is enabled.''' ,request=_lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' ,_lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' ,_lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' ,_lowercase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowercase ,**_lowercase ) as tmp_dir: try: os.chdir(_lowercase ) yield finally: os.chdir(_lowercase ) @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() def __snake_case ( _lowercase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_lowercase ,*_lowercase ,**_lowercase ): try: return func(*_lowercase ,**_lowercase ) except HTTPError as err: if str(_lowercase ).startswith('''500''' ) or str(_lowercase ).startswith('''502''' ): pytest.xfail(str(_lowercase ) ) raise err return decorator.decorator(_wrapper ,_lowercase ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" while True: UpperCamelCase = await stream.readline() if line: callback(_lowercase ) else: break async def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ,_lowercase=False ): """simple docstring""" if echo: print('''\nRunning: ''' ,''' '''.join(_lowercase ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=_lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=_lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(_lowercase ,_lowercase ,_lowercase ,_lowercase="" ): UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase ,_lowercase ,file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stdout ,label='''stdout:''' ) ), _read_stream(p.stderr ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stderr ,label='''stderr:''' ) ), ] ,timeout=_lowercase ,) return _RunOutput(await p.wait() ,_lowercase ,_lowercase ) def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=180 ,_lowercase=False ,_lowercase=True ): """simple docstring""" UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(_lowercase ,env=_lowercase ,stdin=_lowercase ,timeout=_lowercase ,quiet=_lowercase ,echo=_lowercase ) ) UpperCamelCase = ''' '''.join(_lowercase ) if result.returncode > 0: UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def __snake_case ( ): """simple docstring""" UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' ,'''gw0''' ) UpperCamelCase = re.sub(r'''^gw''' ,'''''' ,_lowercase ,0 ,re.M ) return int(_lowercase ) def __snake_case ( ): """simple docstring""" UpperCamelCase = 2_9500 UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
34
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __snake_case ( _lowercase ): """simple docstring""" if "cls_token" in name: UpperCamelCase = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: UpperCamelCase = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: UpperCamelCase = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: UpperCamelCase = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: UpperCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: UpperCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: UpperCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: UpperCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: UpperCamelCase = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: UpperCamelCase = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: UpperCamelCase = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCamelCase = key.split('''.''' ) UpperCamelCase = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase = config.decoder_hidden_size UpperCamelCase = '''decoder.decoder_layers.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = config.hidden_size UpperCamelCase = '''vit.encoder.layer.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = val return orig_state_dict def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 elif "huge" in checkpoint_url: UpperCamelCase = 14 UpperCamelCase = 1280 UpperCamelCase = 5120 UpperCamelCase = 32 UpperCamelCase = 16 UpperCamelCase = ViTMAEForPreTraining(_lowercase ) UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' )['''model'''] UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = convert_state_dict(_lowercase ,_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCamelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = image_processor(images=_lowercase ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits if "large" in checkpoint_url: UpperCamelCase = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
34
"""simple docstring""" import operator def __snake_case ( _lowercase ,_lowercase = False ,_lowercase = None ): """simple docstring""" UpperCamelCase = operator.lt if reverse else operator.gt UpperCamelCase = solution or [] if not arr: return solution UpperCamelCase = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase ,sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: UpperCamelCase = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase ,_lowercase ): solution.insert(_lowercase ,_lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase ,_lowercase ,_lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
34
1
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = LEDTokenizer A_ = LEDTokenizerFast A_ = True def UpperCAmelCase__ ( self) -> int: super().setUp() UpperCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_)))) UpperCamelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCamelCase = {'''unk_token''': '''<unk>'''} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(lowerCamelCase_) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(lowerCamelCase_)) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Union[str, Any]: kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Optional[int]: kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return "lower newer", "lower newer" @cached_property def UpperCAmelCase__ ( self) -> Any: return LEDTokenizer.from_pretrained('''allenai/led-base-16384''') @cached_property def UpperCAmelCase__ ( self) -> Any: return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''') @require_torch def UpperCAmelCase__ ( self) -> str: UpperCamelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCamelCase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(lowerCamelCase_ , max_length=len(lowerCamelCase_) , padding=lowerCamelCase_ , return_tensors='''pt''') self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_) self.assertEqual((2, 9) , batch.input_ids.shape) self.assertEqual((2, 9) , batch.attention_mask.shape) UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_) @require_torch def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors='''pt''') self.assertIn('''input_ids''' , lowerCamelCase_) self.assertIn('''attention_mask''' , lowerCamelCase_) self.assertNotIn('''labels''' , lowerCamelCase_) self.assertNotIn('''decoder_attention_mask''' , lowerCamelCase_) @require_torch def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(text_target=lowerCamelCase_ , max_length=3_2 , padding='''max_length''' , return_tensors='''pt''') self.assertEqual(3_2 , targets['''input_ids'''].shape[1]) @require_torch def UpperCAmelCase__ ( self) -> Union[str, Any]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer( ['''I am a small frog''' * 1_0_2_4, '''I am a small frog'''] , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , return_tensors='''pt''') self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2)) @require_torch def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = ['''A long paragraph for summarization.'''] UpperCamelCase = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(lowerCamelCase_ , return_tensors='''pt''') UpperCamelCase = tokenizer(text_target=lowerCamelCase_ , return_tensors='''pt''') UpperCamelCase = inputs['''input_ids'''] UpperCamelCase = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item()) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item()) @require_torch def UpperCAmelCase__ ( self) -> Dict: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = ['''Summary of the text.''', '''Another summary.'''] UpperCamelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCamelCase = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_) UpperCamelCase = [[0] * len(lowerCamelCase_) for x in encoded_output['''input_ids''']] UpperCamelCase = tokenizer.pad(lowerCamelCase_) self.assertSequenceEqual(outputs['''global_attention_mask'''] , lowerCamelCase_) def UpperCAmelCase__ ( self) -> Tuple: pass def UpperCAmelCase__ ( self) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = '''A, <mask> AllenNLP sentence.''' UpperCamelCase = tokenizer_r.encode_plus(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_) UpperCamelCase = tokenizer_p.encode_plus(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_) self.assertEqual(sum(tokens_r['''token_type_ids''']) , sum(tokens_p['''token_type_ids'''])) self.assertEqual( sum(tokens_r['''attention_mask''']) / len(tokens_r['''attention_mask''']) , sum(tokens_p['''attention_mask''']) / len(tokens_p['''attention_mask''']) , ) UpperCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids''']) UpperCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids''']) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2]) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2]) self.assertSequenceEqual( lowerCamelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>''']) self.assertSequenceEqual( lowerCamelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''])
34
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' SCREAMING_SNAKE_CASE_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any: if return_pvalue: UpperCamelCase = pearsonr(lowerCamelCase_ , lowerCamelCase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_ , lowerCamelCase_)[0])}
34
1
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase = getattr(_lowercase ,_lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase ,_lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) UpperCamelCase = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCamelCase = torch.tensor(_lowercase ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_lowercase ) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to(_lowercase ) else: UpperCamelCase = torch.tensor(_lowercase ,device=_lowercase ) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase ,requires_grad=old_value.requires_grad ) UpperCamelCase = new_value def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase ,nn.Linear ) or isinstance(_lowercase ,_lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase ,_lowercase ): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase ,_lowercase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase ,_lowercase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ,has_been_replaced=_lowercase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,_lowercase ,) return replace_with_bnb_linear(*_lowercase ,**_lowercase ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,_lowercase ,) return set_module_quantized_tensor_to_device(*_lowercase ,**_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase ,_lowercase ): UpperCamelCase = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(_lowercase ,[] ) UpperCamelCase = len(_lowercase ) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase ) - set(_lowercase ) UpperCamelCase = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase ,'''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names
34
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ComputeEnvironment.AMAZON_SAGEMAKER A_ = True A_ = '''ml.p3.2xlarge''' A_ = '''accelerate_sagemaker_execution_role''' A_ = '''hf-sm''' A_ = '''us-east-1''' A_ = 1 A_ = '''accelerate-sagemaker-1''' A_ = '''1.6''' A_ = '''4.4''' A_ = '''train.py''' A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args['''model_name_or_path'''] , lowerCamelCase_) assert isinstance(converted_args['''do_train'''] , lowerCamelCase_) assert isinstance(converted_args['''epochs'''] , lowerCamelCase_) assert isinstance(converted_args['''learning_rate'''] , lowerCamelCase_) assert isinstance(converted_args['''max_steps'''] , lowerCamelCase_) with pytest.raises(lowerCamelCase_): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
34
1
"""simple docstring""" import random def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase = [], [], [] for element in data: if element < pivot: less.append(_lowercase ) elif element > pivot: greater.append(_lowercase ) else: equal.append(_lowercase ) return less, equal, greater def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" if index >= len(_lowercase ) or index < 0: return None UpperCamelCase = items[random.randint(0 ,len(_lowercase ) - 1 )] UpperCamelCase = 0 UpperCamelCase , UpperCamelCase , UpperCamelCase = _partition(_lowercase ,_lowercase ) UpperCamelCase = len(_lowercase ) UpperCamelCase = len(_lowercase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_lowercase ,_lowercase ) # must be in larger else: return quick_select(_lowercase ,index - (m + count) )
34
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class snake_case_ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCamelCase_ = " ") -> List[str]: UpperCamelCase = sentence_delimiter def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return list(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase_): chars.extend(self.process_string(lowerCamelCase_)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_) - 1: chars.append(self.sentence_delimiter) return chars SCREAMING_SNAKE_CASE_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
1
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ['''audio_values''', '''audio_mask'''] def __init__( self , lowerCamelCase_=2_0_4_8 , lowerCamelCase_=1 , lowerCamelCase_=[1_6, 1_6] , lowerCamelCase_=1_2_8 , lowerCamelCase_=4_4_1_0_0 , lowerCamelCase_=8_6 , lowerCamelCase_=2_0_4_8 , lowerCamelCase_=0.0 , **lowerCamelCase_ , ) -> Dict: super().__init__( feature_size=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , padding_value=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = spectrogram_length UpperCamelCase = num_channels UpperCamelCase = patch_size UpperCamelCase = feature_size // self.patch_size[1] UpperCamelCase = n_fft UpperCamelCase = sampling_rate // hop_length_to_sampling_rate UpperCamelCase = sampling_rate UpperCamelCase = padding_value UpperCamelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCamelCase_ , min_frequency=0.0 , max_frequency=2_2050.0 , sampling_rate=lowerCamelCase_ , norm='''slaney''' , mel_scale='''slaney''' , ).T def UpperCAmelCase__ ( self , lowerCamelCase_) -> np.ndarray: UpperCamelCase = spectrogram( lowerCamelCase_ , window_function(self.n_fft , '''hann''') , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , ) UpperCamelCase = log_spec[:, :-1] UpperCamelCase = log_spec - 20.0 UpperCamelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0) + 1.0 return log_spec def __call__( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = False , lowerCamelCase_ = False , **lowerCamelCase_ , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' F' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' F' with {self.sampling_rate} and not {sampling_rate}.') else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''') UpperCamelCase = isinstance(lowerCamelCase_ , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}') UpperCamelCase = is_batched_numpy or ( isinstance(lowerCamelCase_ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: UpperCamelCase = [np.asarray([speech] , dtype=np.floataa).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase_ , np.ndarray): UpperCamelCase = np.asarray(lowerCamelCase_ , dtype=np.floataa) elif isinstance(lowerCamelCase_ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): UpperCamelCase = raw_speech.astype(np.floataa) # always return batch if not is_batched: UpperCamelCase = [np.asarray([raw_speech]).T] # Convert audio signals to log mel spectrograms, truncate by time axis UpperCamelCase = [ self._np_extract_fbank_features(waveform.squeeze()).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCamelCase_): UpperCamelCase = [np.asarray(lowerCamelCase_ , dtype=np.floataa) for feature in audio_features] # Create audio attention mask UpperCamelCase = max( [ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len for feature in audio_features]) # The maximum number of audio patches in a batch if return_attention_mask: UpperCamelCase = [ (ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [0] for feature in audio_features ] UpperCamelCase = np.array(lowerCamelCase_).astype(np.floataa) # convert into correct format for padding UpperCamelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch UpperCamelCase = np.ones([len(lowerCamelCase_), 1, max_time_len, self.feature_size]).astype(np.floataa) UpperCamelCase = padded_audio_features * self.padding_value for i in range(len(lowerCamelCase_)): UpperCamelCase = audio_features[i] UpperCamelCase = feature # return as BatchFeature if return_attention_mask: UpperCamelCase = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: UpperCamelCase = {'''audio_values''': padded_audio_features} UpperCamelCase = BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_) return encoded_inputs
34
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = '''left''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<eop>", "<eod>"] , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = 3 UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> List[str]: return len(self.sp_model) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> str: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: if self.remove_space: UpperCamelCase = ''' '''.join(inputs.strip().split()) else: UpperCamelCase = inputs UpperCamelCase = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCamelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase_) UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_)]) if self.do_lower_case: UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) UpperCamelCase = [] for piece in pieces: if len(lowerCamelCase_) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCamelCase = cur_pieces[1:] else: UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCamelCase_) else: new_pieces.append(lowerCamelCase_) return new_pieces def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.sp_model.IdToPiece(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: UpperCamelCase = ''''''.join(lowerCamelCase_).replace(lowerCamelCase_ , ''' ''').strip() return out_string def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> str: UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCamelCase_) UpperCamelCase = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) UpperCamelCase = [] sub_texts.append(lowerCamelCase_) else: current_sub_text.append(lowerCamelCase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(lowerCamelCase_) return clean_text else: return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) + [1, 1] return ([0] * len(lowerCamelCase_)) + [1, 1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,)
34
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''unispeech-sat''' def __init__( self , lowerCamelCase_=3_2 , lowerCamelCase_=7_6_8 , lowerCamelCase_=1_2 , lowerCamelCase_=1_2 , lowerCamelCase_=3_0_7_2 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-5 , lowerCamelCase_="group" , lowerCamelCase_="gelu" , lowerCamelCase_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowerCamelCase_=(5, 2, 2, 2, 2, 2, 2) , lowerCamelCase_=(1_0, 3, 3, 3, 3, 2, 2) , lowerCamelCase_=False , lowerCamelCase_=1_2_8 , lowerCamelCase_=1_6 , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=0.05 , lowerCamelCase_=1_0 , lowerCamelCase_=2 , lowerCamelCase_=0.0 , lowerCamelCase_=1_0 , lowerCamelCase_=0 , lowerCamelCase_=3_2_0 , lowerCamelCase_=2 , lowerCamelCase_=0.1 , lowerCamelCase_=1_0_0 , lowerCamelCase_=2_5_6 , lowerCamelCase_=2_5_6 , lowerCamelCase_=0.1 , lowerCamelCase_="mean" , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=2_5_6 , lowerCamelCase_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , lowerCamelCase_=(5, 3, 3, 1, 1) , lowerCamelCase_=(1, 2, 3, 1, 1) , lowerCamelCase_=5_1_2 , lowerCamelCase_=0 , lowerCamelCase_=1 , lowerCamelCase_=2 , lowerCamelCase_=5_0_4 , **lowerCamelCase_ , ) -> List[Any]: super().__init__(**lowerCamelCase_ , pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_) UpperCamelCase = hidden_size UpperCamelCase = feat_extract_norm UpperCamelCase = feat_extract_activation UpperCamelCase = list(lowerCamelCase_) UpperCamelCase = list(lowerCamelCase_) UpperCamelCase = list(lowerCamelCase_) UpperCamelCase = conv_bias UpperCamelCase = num_conv_pos_embeddings UpperCamelCase = num_conv_pos_embedding_groups UpperCamelCase = len(self.conv_dim) UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = num_attention_heads UpperCamelCase = hidden_dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = feat_proj_dropout UpperCamelCase = final_dropout UpperCamelCase = layerdrop UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = vocab_size UpperCamelCase = num_clusters UpperCamelCase = do_stable_layer_norm UpperCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel)}`.') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase = apply_spec_augment UpperCamelCase = mask_time_prob UpperCamelCase = mask_time_length UpperCamelCase = mask_time_min_masks UpperCamelCase = mask_feature_prob UpperCamelCase = mask_feature_length UpperCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCamelCase = num_codevectors_per_group UpperCamelCase = num_codevector_groups UpperCamelCase = contrastive_logits_temperature UpperCamelCase = feat_quantizer_dropout UpperCamelCase = num_negatives UpperCamelCase = codevector_dim UpperCamelCase = proj_codevector_dim UpperCamelCase = diversity_loss_weight # ctc loss UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase = list(lowerCamelCase_) UpperCamelCase = list(lowerCamelCase_) UpperCamelCase = list(lowerCamelCase_) UpperCamelCase = xvector_output_dim @property def UpperCAmelCase__ ( self) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1)
34
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } SCREAMING_SNAKE_CASE_ = { 'openbmb/cpm-ant-10b': 1024, } def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = collections.OrderedDict() with open(_lowercase ,'''r''' ,encoding='''utf-8''' ) as reader: UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): UpperCamelCase = token.rstrip('''\n''' ) UpperCamelCase = index return vocab class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_=2_0_0) -> Any: UpperCamelCase = vocab UpperCamelCase = unk_token UpperCamelCase = max_input_chars_per_word def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = list(lowerCamelCase_) if len(lowerCamelCase_) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase = 0 UpperCamelCase = [] while start < len(lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = None while start < end: UpperCamelCase = ''''''.join(chars[start:end]) if substr in self.vocab: UpperCamelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(lowerCamelCase_) UpperCamelCase = end return sub_tokens class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] A_ = False def __init__( self , lowerCamelCase_ , lowerCamelCase_="<d>" , lowerCamelCase_="</d>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<unk>" , lowerCamelCase_="</n>" , lowerCamelCase_="</_>" , lowerCamelCase_="left" , **lowerCamelCase_ , ) -> List[str]: requires_backends(self , ['''jieba''']) super().__init__( bod_token=lowerCamelCase_ , eod_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , line_token=lowerCamelCase_ , space_token=lowerCamelCase_ , padding_side=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = bod_token UpperCamelCase = eod_token UpperCamelCase = load_vocab(lowerCamelCase_) UpperCamelCase = self.encoder[space_token] UpperCamelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def UpperCAmelCase__ ( self) -> Dict: return self.encoder[self.bod_token] @property def UpperCAmelCase__ ( self) -> str: return self.encoder[self.eod_token] @property def UpperCAmelCase__ ( self) -> List[Any]: return self.encoder["\n"] @property def UpperCAmelCase__ ( self) -> int: return len(self.encoder) def UpperCAmelCase__ ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = [] for x in jieba.cut(lowerCamelCase_ , cut_all=lowerCamelCase_): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase_)) return output_tokens def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> Tuple: UpperCamelCase = [i for i in token_ids if i >= 0] UpperCamelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return token in self.encoder def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return "".join(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token)) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return self.decoder.get(lowerCamelCase_ , self.unk_token) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if os.path.isdir(lowerCamelCase_): UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: UpperCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCamelCase = 0 if " " in self.encoder: UpperCamelCase = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase = self.encoder['''\n'''] del self.encoder["\n"] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''') UpperCamelCase = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) return [1] + ([0] * len(lowerCamelCase_))
34
1
"""simple docstring""" from __future__ import annotations def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = str(_lowercase ) return n == n[::-1] def __snake_case ( _lowercase = 100_0000 ): """simple docstring""" UpperCamelCase = 0 for i in range(1 ,_lowercase ): if is_palindrome(_lowercase ) and is_palindrome(bin(_lowercase ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
34
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=0) -> int: UpperCamelCase = 1.0 if scale is None else scale UpperCamelCase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_)]) @property def UpperCAmelCase__ ( self) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase__ ( self) -> List[str]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase__ ( self) -> Any: return self.variance.sqrt() class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = args_dim UpperCamelCase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_) for dim in args_dim.values()]) UpperCamelCase = domain_map def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple[torch.Tensor]: UpperCamelCase = [proj(lowerCamelCase_) for proj in self.proj] return self.domain_map(*lowerCamelCase_) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__() UpperCamelCase = function def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_) -> Tuple: return self.function(lowerCamelCase_ , *lowerCamelCase_) class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , lowerCamelCase_ = 1) -> None: UpperCamelCase = dim UpperCamelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if self.dim == 1: return self.distribution_class(*lowerCamelCase_) else: return Independent(self.distribution_class(*lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Distribution: UpperCamelCase = self._base_distribution(lowerCamelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim) @property def UpperCAmelCase__ ( self) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase__ ( self) -> int: return len(self.event_shape) @property def UpperCAmelCase__ ( self) -> float: return 0.0 def UpperCAmelCase__ ( self , lowerCamelCase_) -> nn.Module: return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def UpperCAmelCase__ ( self , *lowerCamelCase_) -> List[str]: raise NotImplementedError() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCamelCase_) + 4.0)) / 2.0 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"df": 1, "loc": 1, "scale": 1} A_ = StudentT @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) UpperCamelCase = 2.0 + cls.squareplus(lowerCamelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"loc": 1, "scale": 1} A_ = Normal @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"total_count": 1, "logits": 1} A_ = NegativeBinomial @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = cls.squareplus(lowerCamelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
34
1
"""simple docstring""" from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder SCREAMING_SNAKE_CASE_ = datasets.utils.logging.get_logger(__name__) class snake_case_ ( folder_based_builder.FolderBasedBuilderConfig ): """simple docstring""" A_ = None A_ = None class snake_case_ ( folder_based_builder.FolderBasedBuilder ): """simple docstring""" A_ = datasets.Audio() A_ = '''audio''' A_ = AudioFolderConfig A_ = 42 # definition at the bottom of the script A_ = AudioClassification(audio_column='''audio''' , label_column='''label''' ) SCREAMING_SNAKE_CASE_ = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] SCREAMING_SNAKE_CASE_ = AUDIO_EXTENSIONS
34
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowercase ,id=_lowercase )
34
1
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase=None ,_lowercase=None ): """simple docstring""" return field(default_factory=lambda: default ,metadata=_lowercase ) @dataclass class snake_case_ : """simple docstring""" A_ = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) A_ = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) A_ = list_field( default=[8, 32, 128, 512] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) A_ = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) A_ = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) A_ = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) A_ = field(default=lowerCamelCase_ , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) A_ = field(default=lowerCamelCase_ , metadata={'''help''': '''Benchmark training of model'''} ) A_ = field(default=lowerCamelCase_ , metadata={'''help''': '''Verbose memory tracing'''} ) A_ = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) A_ = field( default=lowerCamelCase_ , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) A_ = field(default=lowerCamelCase_ , metadata={'''help''': '''Trace memory line by line'''} ) A_ = field(default=lowerCamelCase_ , metadata={'''help''': '''Save result to a CSV file'''} ) A_ = field(default=lowerCamelCase_ , metadata={'''help''': '''Save all print statements in a log file'''} ) A_ = field(default=lowerCamelCase_ , metadata={'''help''': '''Whether to print environment information'''} ) A_ = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) A_ = field( default=f"""inference_time_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) A_ = field( default=f"""inference_memory_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) A_ = field( default=f"""train_time_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) A_ = field( default=f"""train_memory_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) A_ = field( default=f"""env_info_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) A_ = field( default=f"""log_{round(time() )}.csv""" , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) A_ = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) A_ = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def UpperCAmelCase__ ( self) -> Tuple: warnings.warn( F'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self) -> Union[str, Any]: return json.dumps(dataclasses.asdict(self) , indent=2) @property def UpperCAmelCase__ ( self) -> List[str]: if len(self.models) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''') return self.models @property def UpperCAmelCase__ ( self) -> Union[str, Any]: if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''') return False else: return True
34
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
34
1
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 SCREAMING_SNAKE_CASE_ = sys.version_info >= (3, 10) def __snake_case ( _lowercase=None ,_lowercase=None ): """simple docstring""" return field(default_factory=lambda: default ,metadata=_lowercase ) @dataclass class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 A_ = 42 @dataclass class snake_case_ : """simple docstring""" A_ = 42 A_ = field(default='''toto''' , metadata={'''help''': '''help message'''} ) @dataclass class snake_case_ : """simple docstring""" A_ = False A_ = True A_ = None class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''titi''' A_ = '''toto''' class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''titi''' A_ = '''toto''' A_ = 42 @dataclass class snake_case_ : """simple docstring""" A_ = "toto" def UpperCAmelCase__ ( self) -> Dict: UpperCamelCase = BasicEnum(self.foo) @dataclass class snake_case_ : """simple docstring""" A_ = "toto" def UpperCAmelCase__ ( self) -> str: UpperCamelCase = MixedTypeEnum(self.foo) @dataclass class snake_case_ : """simple docstring""" A_ = None A_ = field(default=lowerCamelCase_ , metadata={'''help''': '''help message'''} ) A_ = None A_ = list_field(default=[] ) A_ = list_field(default=[] ) @dataclass class snake_case_ : """simple docstring""" A_ = list_field(default=[] ) A_ = list_field(default=[1, 2, 3] ) A_ = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) A_ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case_ : """simple docstring""" A_ = field() A_ = field() A_ = field() def UpperCAmelCase__ ( self) -> int: UpperCamelCase = BasicEnum(self.required_enum) @dataclass class snake_case_ : """simple docstring""" A_ = 42 A_ = field() A_ = None A_ = field(default='''toto''' , metadata={'''help''': '''help message'''} ) A_ = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) if is_python_no_less_than_3_10: @dataclass class snake_case_ : """simple docstring""" A_ = False A_ = True A_ = None @dataclass class snake_case_ : """simple docstring""" A_ = None A_ = field(default=lowerCamelCase_ , metadata={'''help''': '''help message'''} ) A_ = None A_ = list_field(default=[] ) A_ = list_field(default=[] ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> Tuple: self.assertEqual(len(a._actions) , len(b._actions)) for x, y in zip(a._actions , b._actions): UpperCamelCase = {k: v for k, v in vars(lowerCamelCase_).items() if k != '''container'''} UpperCamelCase = {k: v for k, v in vars(lowerCamelCase_).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , lowerCamelCase_) and yy.get('''choices''' , lowerCamelCase_): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](lowerCamelCase_) , yy['''type'''](lowerCamelCase_)) del xx["type"], yy["type"] self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = HfArgumentParser(lowerCamelCase_) UpperCamelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowerCamelCase_ , required=lowerCamelCase_) expected.add_argument('''--bar''' , type=lowerCamelCase_ , required=lowerCamelCase_) expected.add_argument('''--baz''' , type=lowerCamelCase_ , required=lowerCamelCase_) expected.add_argument('''--flag''' , type=lowerCamelCase_ , default=lowerCamelCase_ , const=lowerCamelCase_ , nargs='''?''') self.argparsersEqual(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((UpperCamelCase) , ) = parser.parse_args_into_dataclasses(lowerCamelCase_ , look_for_args_file=lowerCamelCase_) self.assertFalse(example.flag) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = HfArgumentParser(lowerCamelCase_) UpperCamelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=lowerCamelCase_) expected.add_argument('''--baz''' , default='''toto''' , type=lowerCamelCase_ , help='''help message''') self.argparsersEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowerCamelCase_ , default=lowerCamelCase_ , const=lowerCamelCase_ , nargs='''?''') expected.add_argument('''--baz''' , type=lowerCamelCase_ , default=lowerCamelCase_ , const=lowerCamelCase_ , nargs='''?''') # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=lowerCamelCase_ , dest='''baz''') expected.add_argument('''--opt''' , type=lowerCamelCase_ , default=lowerCamelCase_) UpperCamelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowerCamelCase_) for dataclass_type in dataclass_types: UpperCamelCase = HfArgumentParser(lowerCamelCase_) self.argparsersEqual(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = parser.parse_args([]) self.assertEqual(lowerCamelCase_ , Namespace(foo=lowerCamelCase_ , baz=lowerCamelCase_ , opt=lowerCamelCase_)) UpperCamelCase = parser.parse_args(['''--foo''', '''--no_baz''']) self.assertEqual(lowerCamelCase_ , Namespace(foo=lowerCamelCase_ , baz=lowerCamelCase_ , opt=lowerCamelCase_)) UpperCamelCase = parser.parse_args(['''--foo''', '''--baz''']) self.assertEqual(lowerCamelCase_ , Namespace(foo=lowerCamelCase_ , baz=lowerCamelCase_ , opt=lowerCamelCase_)) UpperCamelCase = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True''']) self.assertEqual(lowerCamelCase_ , Namespace(foo=lowerCamelCase_ , baz=lowerCamelCase_ , opt=lowerCamelCase_)) UpperCamelCase = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False''']) self.assertEqual(lowerCamelCase_ , Namespace(foo=lowerCamelCase_ , baz=lowerCamelCase_ , opt=lowerCamelCase_)) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = HfArgumentParser(lowerCamelCase_) UpperCamelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2]) , ) self.argparsersEqual(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = parser.parse_args([]) self.assertEqual(args.foo , '''toto''') UpperCamelCase = parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto) UpperCamelCase = parser.parse_args(['''--foo''', '''titi''']) self.assertEqual(args.foo , '''titi''') UpperCamelCase = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi) UpperCamelCase = parser.parse_args(['''--foo''', '''42''']) self.assertEqual(args.foo , 4_2) UpperCamelCase = parser.parse_args_into_dataclasses(['''--foo''', '''42'''])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo) def UpperCAmelCase__ ( self) -> List[Any]: @dataclass class snake_case_ : """simple docstring""" A_ = "toto" UpperCamelCase = HfArgumentParser(lowerCamelCase_) UpperCamelCase = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2]) , ) self.argparsersEqual(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = parser.parse_args([]) self.assertEqual(args.foo , '''toto''') UpperCamelCase = parser.parse_args(['''--foo''', '''titi''']) self.assertEqual(args.foo , '''titi''') UpperCamelCase = parser.parse_args(['''--foo''', '''42''']) self.assertEqual(args.foo , 4_2) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = HfArgumentParser(lowerCamelCase_) UpperCamelCase = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=lowerCamelCase_) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=lowerCamelCase_) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowerCamelCase_) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=lowerCamelCase_) self.argparsersEqual(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = parser.parse_args([]) self.assertEqual( lowerCamelCase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3]) , ) UpperCamelCase = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split()) self.assertEqual(lowerCamelCase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7])) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=lowerCamelCase_ , type=lowerCamelCase_) expected.add_argument('''--bar''' , default=lowerCamelCase_ , type=lowerCamelCase_ , help='''help message''') expected.add_argument('''--baz''' , default=lowerCamelCase_ , type=lowerCamelCase_) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=lowerCamelCase_) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=lowerCamelCase_) UpperCamelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowerCamelCase_) for dataclass_type in dataclass_types: UpperCamelCase = HfArgumentParser(lowerCamelCase_) self.argparsersEqual(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = parser.parse_args([]) self.assertEqual(lowerCamelCase_ , Namespace(foo=lowerCamelCase_ , bar=lowerCamelCase_ , baz=lowerCamelCase_ , ces=[] , des=[])) UpperCamelCase = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split()) self.assertEqual(lowerCamelCase_ , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3])) def UpperCAmelCase__ ( self) -> Dict: UpperCamelCase = HfArgumentParser(lowerCamelCase_) UpperCamelCase = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=lowerCamelCase_ , required=lowerCamelCase_) expected.add_argument('''--required_str''' , type=lowerCamelCase_ , required=lowerCamelCase_) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto''']) , choices=['''titi''', '''toto'''] , required=lowerCamelCase_ , ) self.argparsersEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = HfArgumentParser(lowerCamelCase_) UpperCamelCase = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=lowerCamelCase_ , required=lowerCamelCase_) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto''']) , choices=['''titi''', '''toto'''] , required=lowerCamelCase_ , ) expected.add_argument('''--opt''' , type=lowerCamelCase_ , default=lowerCamelCase_) expected.add_argument('''--baz''' , default='''toto''' , type=lowerCamelCase_ , help='''help message''') expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=lowerCamelCase_) self.argparsersEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = HfArgumentParser(lowerCamelCase_) UpperCamelCase = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } UpperCamelCase = parser.parse_dict(lowerCamelCase_)[0] UpperCamelCase = BasicExample(**lowerCamelCase_) self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = HfArgumentParser(lowerCamelCase_) UpperCamelCase = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(lowerCamelCase_ , parser.parse_dict , lowerCamelCase_ , allow_extra_keys=lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = HfArgumentParser(lowerCamelCase_) UpperCamelCase = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(lowerCamelCase_ , '''temp_json''') os.mkdir(lowerCamelCase_) with open(temp_local_path + '''.json''' , '''w+''') as f: json.dump(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = parser.parse_yaml_file(Path(temp_local_path + '''.json'''))[0] UpperCamelCase = BasicExample(**lowerCamelCase_) self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = HfArgumentParser(lowerCamelCase_) UpperCamelCase = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(lowerCamelCase_ , '''temp_yaml''') os.mkdir(lowerCamelCase_) with open(temp_local_path + '''.yaml''' , '''w+''') as f: yaml.dump(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = parser.parse_yaml_file(Path(temp_local_path + '''.yaml'''))[0] UpperCamelCase = BasicExample(**lowerCamelCase_) self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> str: UpperCamelCase = HfArgumentParser(lowerCamelCase_) self.assertIsNotNone(lowerCamelCase_)
34
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
1
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = (UniPCMultistepScheduler,) A_ = (('''num_inference_steps''', 25),) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> int: UpperCamelCase = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**lowerCamelCase_) return config def UpperCAmelCase__ ( self , lowerCamelCase_=0 , **lowerCamelCase_) -> int: UpperCamelCase = dict(self.forward_default_kwargs) UpperCamelCase = kwargs.pop('''num_inference_steps''' , lowerCamelCase_) UpperCamelCase = self.dummy_sample UpperCamelCase = 0.1 * sample UpperCamelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase = self.get_scheduler_config(**lowerCamelCase_) UpperCamelCase = scheduler_class(**lowerCamelCase_) scheduler.set_timesteps(lowerCamelCase_) # copy over dummy past residuals UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_) UpperCamelCase = scheduler_class.from_pretrained(lowerCamelCase_) new_scheduler.set_timesteps(lowerCamelCase_) # copy over dummy past residuals UpperCamelCase = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase , UpperCamelCase = sample, sample for t in range(lowerCamelCase_ , time_step + scheduler.config.solver_order + 1): UpperCamelCase = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_).prev_sample UpperCamelCase = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self , lowerCamelCase_=0 , **lowerCamelCase_) -> Any: UpperCamelCase = dict(self.forward_default_kwargs) UpperCamelCase = kwargs.pop('''num_inference_steps''' , lowerCamelCase_) UpperCamelCase = self.dummy_sample UpperCamelCase = 0.1 * sample UpperCamelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**lowerCamelCase_) scheduler.set_timesteps(lowerCamelCase_) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_) UpperCamelCase = scheduler_class.from_pretrained(lowerCamelCase_) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase_) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_).prev_sample UpperCamelCase = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self , lowerCamelCase_=None , **lowerCamelCase_) -> List[Any]: if scheduler is None: UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(**lowerCamelCase_) UpperCamelCase = scheduler_class(**lowerCamelCase_) UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(**lowerCamelCase_) UpperCamelCase = scheduler_class(**lowerCamelCase_) UpperCamelCase = 1_0 UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase_) for i, t in enumerate(scheduler.timesteps): UpperCamelCase = model(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_).prev_sample return sample def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = dict(self.forward_default_kwargs) UpperCamelCase = kwargs.pop('''num_inference_steps''' , lowerCamelCase_) for scheduler_class in self.scheduler_classes: UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**lowerCamelCase_) UpperCamelCase = self.dummy_sample UpperCamelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase_ , '''set_timesteps'''): scheduler.set_timesteps(lowerCamelCase_) elif num_inference_steps is not None and not hasattr(lowerCamelCase_ , '''set_timesteps'''): UpperCamelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase = [residual + 0.2, residual + 0.15, residual + 0.10] UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order] UpperCamelCase = scheduler.timesteps[5] UpperCamelCase = scheduler.timesteps[6] UpperCamelCase = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_).prev_sample UpperCamelCase = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def UpperCAmelCase__ ( self) -> int: # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCamelCase = UniPCMultistepScheduler(**self.get_scheduler_config()) UpperCamelCase = self.full_loop(scheduler=lowerCamelCase_) UpperCamelCase = torch.mean(torch.abs(lowerCamelCase_)) assert abs(result_mean.item() - 0.2464) < 1e-3 UpperCamelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCamelCase = DEISMultistepScheduler.from_config(scheduler.config) UpperCamelCase = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCamelCase = UniPCMultistepScheduler.from_config(scheduler.config) UpperCamelCase = self.full_loop(scheduler=lowerCamelCase_) UpperCamelCase = torch.mean(torch.abs(lowerCamelCase_)) assert abs(result_mean.item() - 0.2464) < 1e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCamelCase_) def UpperCAmelCase__ ( self) -> Optional[Any]: self.check_over_configs(thresholding=lowerCamelCase_) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase_ , prediction_type=lowerCamelCase_ , sample_max_value=lowerCamelCase_ , solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , ) def UpperCAmelCase__ ( self) -> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_) def UpperCAmelCase__ ( self) -> Tuple: for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , ) UpperCamelCase = self.full_loop( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , ) assert not torch.isnan(lowerCamelCase_).any(), "Samples have nan numbers" def UpperCAmelCase__ ( self) -> Optional[Any]: self.check_over_configs(lower_order_final=lowerCamelCase_) self.check_over_configs(lower_order_final=lowerCamelCase_) def UpperCAmelCase__ ( self) -> List[Any]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=lowerCamelCase_ , time_step=0) def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = self.full_loop() UpperCamelCase = torch.mean(torch.abs(lowerCamelCase_)) assert abs(result_mean.item() - 0.2464) < 1e-3 def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = self.full_loop(prediction_type='''v_prediction''') UpperCamelCase = torch.mean(torch.abs(lowerCamelCase_)) assert abs(result_mean.item() - 0.1014) < 1e-3 def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(thresholding=lowerCamelCase_ , dynamic_thresholding_ratio=0) UpperCamelCase = scheduler_class(**lowerCamelCase_) UpperCamelCase = 1_0 UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase_) for i, t in enumerate(scheduler.timesteps): UpperCamelCase = model(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_).prev_sample assert sample.dtype == torch.floataa def UpperCAmelCase__ ( self , **lowerCamelCase_) -> str: for scheduler_class in self.scheduler_classes: UpperCamelCase = self.get_scheduler_config(**lowerCamelCase_) UpperCamelCase = scheduler_class(**lowerCamelCase_) scheduler.set_timesteps(scheduler.config.num_train_timesteps) assert len(scheduler.timesteps.unique()) == scheduler.num_inference_steps
34
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase = getattr(_lowercase ,_lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase ,_lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) UpperCamelCase = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCamelCase = torch.tensor(_lowercase ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_lowercase ) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to(_lowercase ) else: UpperCamelCase = torch.tensor(_lowercase ,device=_lowercase ) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase ,requires_grad=old_value.requires_grad ) UpperCamelCase = new_value def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase ,nn.Linear ) or isinstance(_lowercase ,_lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase ,_lowercase ): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase ,_lowercase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase ,_lowercase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ,has_been_replaced=_lowercase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,_lowercase ,) return replace_with_bnb_linear(*_lowercase ,**_lowercase ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,_lowercase ,) return set_module_quantized_tensor_to_device(*_lowercase ,**_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase ,_lowercase ): UpperCamelCase = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(_lowercase ,[] ) UpperCamelCase = len(_lowercase ) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase ) - set(_lowercase ) UpperCamelCase = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase ,'''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names
34
1
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE_ = os.path.join(git_repo_path, 'src', 'transformers') SCREAMING_SNAKE_CASE_ = '\n{0} = None\n' SCREAMING_SNAKE_CASE_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' SCREAMING_SNAKE_CASE_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowerCamelCase_) UpperCamelCase = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowerCamelCase_ , '''tokenizers''') UpperCamelCase = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowerCamelCase_ , '''tensorflow_text''') UpperCamelCase = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tensorflow_text''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers_and_vision''') def UpperCAmelCase__ ( self) -> int: UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCamelCase_) self.assertIn('''tensorflow_text''' , lowerCamelCase_) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCamelCase_) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , '''\nCONSTANT = None\n''') UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowerCamelCase_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowerCamelCase_)
34
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase ) count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 ) count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase ) return count def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_lowercase ,_lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_ = TemporaryFile() SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_ = np.load(outfile) SCREAMING_SNAKE_CASE_ = len(M) - 1 SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
34
1
"""simple docstring""" import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=3_0 , lowerCamelCase_=2 , lowerCamelCase_=3 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=1_0 , lowerCamelCase_=0.02 , lowerCamelCase_=None , ) -> Any: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = num_patches + 1 def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self) -> List[Any]: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = ViTMSNModel(config=lowerCamelCase_) model.to(lowerCamelCase_) model.eval() UpperCamelCase = model(lowerCamelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any: UpperCamelCase = self.type_sequence_label_size UpperCamelCase = ViTMSNForImageClassification(lowerCamelCase_) model.to(lowerCamelCase_) model.eval() UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_) print('''Pixel and labels shape: {pixel_values.shape}, {labels.shape}''') print('''Labels: {labels}''') self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images UpperCamelCase = 1 UpperCamelCase = ViTMSNForImageClassification(lowerCamelCase_) model.to(lowerCamelCase_) model.eval() UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCamelCase = model(lowerCamelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () A_ = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) A_ = False A_ = False A_ = False A_ = False def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = ViTMSNModelTester(self) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=3_7) def UpperCAmelCase__ ( self) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMSN does not use inputs_embeds''') def UpperCAmelCase__ ( self) -> Optional[Any]: pass def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , nn.Linear)) def UpperCAmelCase__ ( self) -> Dict: UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_) UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase_) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_) def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_) @slow def UpperCAmelCase__ ( self) -> List[Any]: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = ViTMSNModel.from_pretrained(lowerCamelCase_) self.assertIsNotNone(lowerCamelCase_) def __snake_case ( ): """simple docstring""" UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case_ ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__ ( self) -> List[str]: return ViTImageProcessor.from_pretrained('''facebook/vit-msn-small''') if is_vision_available() else None @slow def UpperCAmelCase__ ( self) -> str: torch.manual_seed(2) UpperCamelCase = ViTMSNForImageClassification.from_pretrained('''facebook/vit-msn-small''').to(lowerCamelCase_) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors='''pt''').to(lowerCamelCase_) # forward pass with torch.no_grad(): UpperCamelCase = model(**lowerCamelCase_) # verify the logits UpperCamelCase = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , lowerCamelCase_) UpperCamelCase = torch.tensor([-0.0803, -0.4454, -0.2375]).to(lowerCamelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1e-4))
34
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE_ = os.path.join(git_repo_path, 'src', 'transformers') SCREAMING_SNAKE_CASE_ = '\n{0} = None\n' SCREAMING_SNAKE_CASE_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' SCREAMING_SNAKE_CASE_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowerCamelCase_) UpperCamelCase = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowerCamelCase_ , '''tokenizers''') UpperCamelCase = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowerCamelCase_ , '''tensorflow_text''') UpperCamelCase = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tensorflow_text''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers_and_vision''') def UpperCAmelCase__ ( self) -> int: UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCamelCase_) self.assertIn('''tensorflow_text''' , lowerCamelCase_) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCamelCase_) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , '''\nCONSTANT = None\n''') UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowerCamelCase_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowerCamelCase_)
34
1
"""simple docstring""" import random class snake_case_ : """simple docstring""" @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> tuple[list[int], list[int]]: UpperCamelCase = [ord(lowerCamelCase_) for i in text] UpperCamelCase = [] UpperCamelCase = [] for i in plain: UpperCamelCase = random.randint(1 , 3_0_0) UpperCamelCase = (i + k) * k cipher.append(lowerCamelCase_) key.append(lowerCamelCase_) return cipher, key @staticmethod def UpperCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = [] for i in range(len(lowerCamelCase_)): UpperCamelCase = int((cipher[i] - (key[i]) ** 2) / key[i]) plain.append(chr(lowerCamelCase_)) return "".join(lowerCamelCase_) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
34
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __snake_case ( _lowercase ): """simple docstring""" if "cls_token" in name: UpperCamelCase = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: UpperCamelCase = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: UpperCamelCase = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: UpperCamelCase = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: UpperCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: UpperCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: UpperCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: UpperCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: UpperCamelCase = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: UpperCamelCase = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: UpperCamelCase = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCamelCase = key.split('''.''' ) UpperCamelCase = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase = config.decoder_hidden_size UpperCamelCase = '''decoder.decoder_layers.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = config.hidden_size UpperCamelCase = '''vit.encoder.layer.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = val return orig_state_dict def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 elif "huge" in checkpoint_url: UpperCamelCase = 14 UpperCamelCase = 1280 UpperCamelCase = 5120 UpperCamelCase = 32 UpperCamelCase = 16 UpperCamelCase = ViTMAEForPreTraining(_lowercase ) UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' )['''model'''] UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = convert_state_dict(_lowercase ,_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCamelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = image_processor(images=_lowercase ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits if "large" in checkpoint_url: UpperCamelCase = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
34
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu SCREAMING_SNAKE_CASE_ = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = True while ask_again: UpperCamelCase = input(_lowercase ) try: if default is not None and len(_lowercase ) == 0: return default return convert_value(_lowercase ) if convert_value is not None else result except Exception: if error_message is not None: print(_lowercase ) def __snake_case ( _lowercase ,_lowercase=[] ,_lowercase=None ,_lowercase=0 ): """simple docstring""" UpperCamelCase = BulletMenu(_lowercase ,_lowercase ) UpperCamelCase = menu.run(default_choice=_lowercase ) return convert_value(_lowercase ) if convert_value is not None else result def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = int(_lowercase ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = int(_lowercase ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = int(_lowercase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = int(_lowercase ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = int(_lowercase ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def __snake_case ( _lowercase ): """simple docstring""" return {"yes": True, "no": False}[value.lower()] class snake_case_ ( argparse.RawDescriptionHelpFormatter ): """simple docstring""" def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any: UpperCamelCase = super()._format_usage(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = usage.replace('''<command> [<args>] ''' , '''''') return usage
34
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Any: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase = mock_training_loop_function('''hello''') self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def UpperCAmelCase__ ( self) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(lowerCamelCase_): pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Dict: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): raise ValueError('''Oops, we had an error!''') with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase_) UpperCamelCase = release_memory(lowerCamelCase_) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase_)
34
1
"""simple docstring""" import numpy as np def __snake_case ( _lowercase ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
34
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ = 1_0_1) -> Tuple: UpperCamelCase = length def __len__( self) -> List[str]: return self.length def __getitem__( self , lowerCamelCase_) -> int: return i class snake_case_ : """simple docstring""" def __call__( self , lowerCamelCase_) -> str: return {"input_ids": torch.tensor(lowerCamelCase_), "labels": torch.tensor(lowerCamelCase_)} class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> List[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase = nn.Linear(1_2_0 , 8_0) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_neuroncore def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_multi_gpu def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE_ = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()[0] logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' f'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE_ = DummyDataset(dataset_length) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = list(range(len(_lowercase ) ) ) UpperCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} SCREAMING_SNAKE_CASE_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = None
34
1
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def __snake_case ( _lowercase ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(_lowercase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __snake_case ( ): """simple docstring""" UpperCamelCase = 2 while True: if is_prime(_lowercase ): yield num num += 1 def __snake_case ( _lowercase = 200_0000 ): """simple docstring""" return sum(takewhile(lambda _lowercase : x < n ,prime_generator() ) ) if __name__ == "__main__": print(f'{solution() = }')
34
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for tf_name, hf_name in patterns: UpperCamelCase = k.replace(_lowercase ,_lowercase ) return k def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = BigBirdPegasusConfig(**_lowercase ) UpperCamelCase = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCamelCase = torch_model.state_dict() UpperCamelCase = {} # separating decoder weights UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = DECODER_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = REMAINING_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCamelCase = mapping['''model.embed_positions.weight'''] UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(_lowercase ,strict=_lowercase ) UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tf.train.list_variables(_lowercase ) UpperCamelCase = {} UpperCamelCase = ['''global_step'''] for name, shape in tqdm(_lowercase ,desc='''converting tf checkpoint to dict''' ): UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase = tf.train.load_variable(_lowercase ,_lowercase ) UpperCamelCase = array return tf_weights def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = get_tf_weights_as_numpy(_lowercase ) UpperCamelCase = convert_bigbird_pegasus(_lowercase ,_lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
34
1
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow SCREAMING_SNAKE_CASE_ = False class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self , lowerCamelCase_=3_2) -> Dict: set_seed(0) UpperCamelCase = UNetaDModel(sample_size=lowerCamelCase_ , in_channels=3 , out_channels=3) UpperCamelCase = torch.optim.SGD(model.parameters() , lr=0.0001) return model, optimizer @slow def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable UpperCamelCase = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=lowerCamelCase_ , ) UpperCamelCase = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=lowerCamelCase_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) UpperCamelCase = [torch.randn((4, 3, 3_2, 3_2)).clip(-1 , 1).to(lowerCamelCase_) for _ in range(4)] UpperCamelCase = [torch.randn((4, 3, 3_2, 3_2)).to(lowerCamelCase_) for _ in range(4)] UpperCamelCase = [torch.randint(0 , 1_0_0_0 , (4,)).long().to(lowerCamelCase_) for _ in range(4)] # train with a DDPM scheduler UpperCamelCase , UpperCamelCase = self.get_model_optimizer(resolution=3_2) model.train().to(lowerCamelCase_) for i in range(4): optimizer.zero_grad() UpperCamelCase = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) UpperCamelCase = model(lowerCamelCase_ , timesteps[i]).sample UpperCamelCase = torch.nn.functional.mse_loss(lowerCamelCase_ , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM UpperCamelCase , UpperCamelCase = self.get_model_optimizer(resolution=3_2) model.train().to(lowerCamelCase_) for i in range(4): optimizer.zero_grad() UpperCamelCase = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) UpperCamelCase = model(lowerCamelCase_ , timesteps[i]).sample UpperCamelCase = torch.nn.functional.mse_loss(lowerCamelCase_ , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-5)) self.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-5))
34
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
1
"""simple docstring""" import doctest from collections import deque import numpy as np class snake_case_ : """simple docstring""" def __init__( self) -> None: UpperCamelCase = [2, 1, 2, -1] UpperCamelCase = [1, 2, 3, 4] def UpperCAmelCase__ ( self) -> list[float]: UpperCamelCase = len(self.first_signal) UpperCamelCase = len(self.second_signal) UpperCamelCase = max(lowerCamelCase_ , lowerCamelCase_) # create a zero matrix of max_length x max_length UpperCamelCase = [[0] * max_length for i in range(lowerCamelCase_)] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCamelCase_): UpperCamelCase = deque(self.second_signal) rotated_signal.rotate(lowerCamelCase_) for j, item in enumerate(lowerCamelCase_): matrix[i][j] += item # multiply the matrix with the first signal UpperCamelCase = np.matmul(np.transpose(lowerCamelCase_) , np.transpose(self.first_signal)) # rounding-off to two decimal places return [round(lowerCamelCase_ , 2) for i in final_signal] if __name__ == "__main__": doctest.testmod()
34
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> Any: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase_ , ) return config, input_ids, attention_mask def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = FlaxDistilBertModelTester(self) @slow def UpperCAmelCase__ ( self) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowerCamelCase_) @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)[0] UpperCamelCase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , lowerCamelCase_) UpperCamelCase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4))
34
1
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } SCREAMING_SNAKE_CASE_ = { 'openbmb/cpm-ant-10b': 1024, } def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = collections.OrderedDict() with open(_lowercase ,'''r''' ,encoding='''utf-8''' ) as reader: UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): UpperCamelCase = token.rstrip('''\n''' ) UpperCamelCase = index return vocab class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_=2_0_0) -> Any: UpperCamelCase = vocab UpperCamelCase = unk_token UpperCamelCase = max_input_chars_per_word def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = list(lowerCamelCase_) if len(lowerCamelCase_) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase = 0 UpperCamelCase = [] while start < len(lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = None while start < end: UpperCamelCase = ''''''.join(chars[start:end]) if substr in self.vocab: UpperCamelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(lowerCamelCase_) UpperCamelCase = end return sub_tokens class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] A_ = False def __init__( self , lowerCamelCase_ , lowerCamelCase_="<d>" , lowerCamelCase_="</d>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<unk>" , lowerCamelCase_="</n>" , lowerCamelCase_="</_>" , lowerCamelCase_="left" , **lowerCamelCase_ , ) -> List[str]: requires_backends(self , ['''jieba''']) super().__init__( bod_token=lowerCamelCase_ , eod_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , line_token=lowerCamelCase_ , space_token=lowerCamelCase_ , padding_side=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = bod_token UpperCamelCase = eod_token UpperCamelCase = load_vocab(lowerCamelCase_) UpperCamelCase = self.encoder[space_token] UpperCamelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def UpperCAmelCase__ ( self) -> Dict: return self.encoder[self.bod_token] @property def UpperCAmelCase__ ( self) -> str: return self.encoder[self.eod_token] @property def UpperCAmelCase__ ( self) -> List[Any]: return self.encoder["\n"] @property def UpperCAmelCase__ ( self) -> int: return len(self.encoder) def UpperCAmelCase__ ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = [] for x in jieba.cut(lowerCamelCase_ , cut_all=lowerCamelCase_): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase_)) return output_tokens def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> Tuple: UpperCamelCase = [i for i in token_ids if i >= 0] UpperCamelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return token in self.encoder def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return "".join(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token)) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return self.decoder.get(lowerCamelCase_ , self.unk_token) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if os.path.isdir(lowerCamelCase_): UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: UpperCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCamelCase = 0 if " " in self.encoder: UpperCamelCase = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase = self.encoder['''\n'''] del self.encoder["\n"] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''') UpperCamelCase = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) return [1] + ([0] * len(lowerCamelCase_))
34
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
1
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Any: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase = mock_training_loop_function('''hello''') self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def UpperCAmelCase__ ( self) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(lowerCamelCase_): pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Dict: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): raise ValueError('''Oops, we had an error!''') with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase_) UpperCamelCase = release_memory(lowerCamelCase_) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase_)
34
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
1
"""simple docstring""" import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline SCREAMING_SNAKE_CASE_ = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 'hopper-medium-v2' SCREAMING_SNAKE_CASE_ = gym.make(env_name) SCREAMING_SNAKE_CASE_ = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) SCREAMING_SNAKE_CASE_ = env.reset() SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1000 SCREAMING_SNAKE_CASE_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy SCREAMING_SNAKE_CASE_ = pipeline(obs, planning_horizon=32) # execute action in environment SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = env.step(denorm_actions) SCREAMING_SNAKE_CASE_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:' f' {total_score}' ) # save observations for rendering rollout.append(next_observation.copy()) SCREAMING_SNAKE_CASE_ = next_observation except KeyboardInterrupt: pass print(f'Total reward: {total_reward}')
34
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __snake_case ( _lowercase ,_lowercase=False ): """simple docstring""" try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_REMOTE', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_LOCAL', default=True) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __snake_case ( _lowercase ): """simple docstring""" try: import faiss # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires faiss''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import regex # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires regex''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TORCH_AVAILABLE: UpperCamelCase = unittest.skip('''test requires PyTorch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TF_AVAILABLE: UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.JAX_AVAILABLE: UpperCamelCase = unittest.skip('''test requires JAX''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.PIL_AVAILABLE: UpperCamelCase = unittest.skip('''test requires Pillow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" def _require_spacy_model(_lowercase ): try: import spacy # noqa F401 spacy.load(_lowercase ) except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_lowercase ) )(_lowercase ) else: return test_case return _require_spacy_model def __snake_case ( _lowercase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase = unittest.skip('''test is slow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: UpperCamelCase = unittest.skip('''test is local''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase = unittest.skip('''test is packaged''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase = unittest.skip('''test requires remote''' )(_lowercase ) return test_case def __snake_case ( *_lowercase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_lowercase ) and name.startswith('''test''' ): for decorator in decorators: UpperCamelCase = decorator(_lowercase ) setattr(cls ,_lowercase ,_lowercase ) return cls return decorate class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 0 A_ = 1 A_ = 2 @contextmanager def __snake_case ( _lowercase=OfflineSimulationMode.CONNECTION_FAILS ,_lowercase=1e-16 ): """simple docstring""" UpperCamelCase = requests.Session().request def timeout_request(_lowercase ,_lowercase ,_lowercase ,**_lowercase ): # Change the url to an invalid url so that the connection hangs UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) UpperCamelCase = timeout try: return online_request(_lowercase ,_lowercase ,**_lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase = url UpperCamelCase = e.args[0] UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' ,f'OfflineMock[{url}]' ),) UpperCamelCase = (max_retry_error,) raise def raise_connection_error(_lowercase ,_lowercase ,**_lowercase ): raise requests.ConnectionError('''Offline mode is enabled.''' ,request=_lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' ,_lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' ,_lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' ,_lowercase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowercase ,**_lowercase ) as tmp_dir: try: os.chdir(_lowercase ) yield finally: os.chdir(_lowercase ) @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() def __snake_case ( _lowercase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_lowercase ,*_lowercase ,**_lowercase ): try: return func(*_lowercase ,**_lowercase ) except HTTPError as err: if str(_lowercase ).startswith('''500''' ) or str(_lowercase ).startswith('''502''' ): pytest.xfail(str(_lowercase ) ) raise err return decorator.decorator(_wrapper ,_lowercase ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" while True: UpperCamelCase = await stream.readline() if line: callback(_lowercase ) else: break async def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ,_lowercase=False ): """simple docstring""" if echo: print('''\nRunning: ''' ,''' '''.join(_lowercase ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=_lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=_lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(_lowercase ,_lowercase ,_lowercase ,_lowercase="" ): UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase ,_lowercase ,file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stdout ,label='''stdout:''' ) ), _read_stream(p.stderr ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stderr ,label='''stderr:''' ) ), ] ,timeout=_lowercase ,) return _RunOutput(await p.wait() ,_lowercase ,_lowercase ) def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=180 ,_lowercase=False ,_lowercase=True ): """simple docstring""" UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(_lowercase ,env=_lowercase ,stdin=_lowercase ,timeout=_lowercase ,quiet=_lowercase ,echo=_lowercase ) ) UpperCamelCase = ''' '''.join(_lowercase ) if result.returncode > 0: UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def __snake_case ( ): """simple docstring""" UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' ,'''gw0''' ) UpperCamelCase = re.sub(r'''^gw''' ,'''''' ,_lowercase ,0 ,re.M ) return int(_lowercase ) def __snake_case ( ): """simple docstring""" UpperCamelCase = 2_9500 UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
34
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
"""simple docstring""" import operator def __snake_case ( _lowercase ,_lowercase = False ,_lowercase = None ): """simple docstring""" UpperCamelCase = operator.lt if reverse else operator.gt UpperCamelCase = solution or [] if not arr: return solution UpperCamelCase = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase ,sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: UpperCamelCase = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase ,_lowercase ): solution.insert(_lowercase ,_lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase ,_lowercase ,_lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
34
1
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } SCREAMING_SNAKE_CASE_ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } SCREAMING_SNAKE_CASE_ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __snake_case ( ): """simple docstring""" UpperCamelCase = ( list(range(ord('''!''' ) ,ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) ,ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) ,ord('''ÿ''' ) + 1 ) ) ) UpperCamelCase = bs[:] UpperCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowercase ) cs.append(2**8 + n ) n += 1 UpperCamelCase = [chr(_lowercase ) for n in cs] return dict(zip(_lowercase ,_lowercase ) ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = set() UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase = char return pairs class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="replace" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<mask>" , lowerCamelCase_=False , **lowerCamelCase_ , ) -> List[Any]: UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else bos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else eos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else sep_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else cls_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else unk_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token super().__init__( errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , ) with open(lowerCamelCase_ , encoding='''utf-8''') as vocab_handle: UpperCamelCase = json.load(lowerCamelCase_) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = errors # how to handle errors in decoding UpperCamelCase = bytes_to_unicode() UpperCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ , encoding='''utf-8''') as merges_handle: UpperCamelCase = merges_handle.read().split('''\n''')[1:-1] UpperCamelCase = [tuple(merge.split()) for merge in bpe_merges] UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_)))) UpperCamelCase = {} UpperCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''') @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase__ ( self) -> Tuple: return len(self.encoder) def UpperCAmelCase__ ( self) -> Tuple: return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: if token in self.cache: return self.cache[token] UpperCamelCase = tuple(lowerCamelCase_) UpperCamelCase = get_pairs(lowerCamelCase_) if not pairs: return token while True: UpperCamelCase = min(lowerCamelCase_ , key=lambda lowerCamelCase_: self.bpe_ranks.get(lowerCamelCase_ , float('''inf'''))) if bigram not in self.bpe_ranks: break UpperCamelCase , UpperCamelCase = bigram UpperCamelCase = [] UpperCamelCase = 0 while i < len(lowerCamelCase_): try: UpperCamelCase = word.index(lowerCamelCase_ , lowerCamelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCamelCase = j if word[i] == first and i < len(lowerCamelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCamelCase = tuple(lowerCamelCase_) UpperCamelCase = new_word if len(lowerCamelCase_) == 1: break else: UpperCamelCase = get_pairs(lowerCamelCase_) UpperCamelCase = ''' '''.join(lowerCamelCase_) UpperCamelCase = word return word def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: UpperCamelCase = [] for token in re.findall(self.pat , lowerCamelCase_): UpperCamelCase = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_).split(''' ''')) return bpe_tokens def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token)) def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.decoder.get(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = bytearray([self.byte_decoder[c] for c in text]).decode('''utf-8''' , errors=self.errors) return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file''']) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_) + '''\n''') UpperCamelCase = 0 with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer: writer.write('''#version: 0.2\n''') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''') UpperCamelCase = token_index writer.write(''' '''.join(lowerCamelCase_) + '''\n''') index += 1 return vocab_file, merge_file def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_)) + [1] return [1] + ([0] * len(lowerCamelCase_)) + [1, 1] + ([0] * len(lowerCamelCase_)) + [1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=False , **lowerCamelCase_) -> str: UpperCamelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_) > 0 and not text[0].isspace()): UpperCamelCase = ''' ''' + text return (text, kwargs) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> str: return token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[int]: UpperCamelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text) else: # Generated responses should contain them already. inputs.append(lowerCamelCase_) UpperCamelCase = ''' '''.join(lowerCamelCase_) UpperCamelCase = self.encode(lowerCamelCase_) if len(lowerCamelCase_) > self.model_max_length: UpperCamelCase = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.') return input_ids
34
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' SCREAMING_SNAKE_CASE_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any: if return_pvalue: UpperCamelCase = pearsonr(lowerCamelCase_ , lowerCamelCase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_ , lowerCamelCase_)[0])}
34
1
"""simple docstring""" from __future__ import annotations class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_) -> None: UpperCamelCase = data UpperCamelCase = None UpperCamelCase = None def __snake_case ( _lowercase ): # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def __snake_case ( _lowercase ): """simple docstring""" return 1 + max(depth_of_tree(tree.left ) ,depth_of_tree(tree.right ) ) if tree else 0 def __snake_case ( _lowercase ): """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def __snake_case ( ): # Main function for testing. """simple docstring""" UpperCamelCase = Node(1 ) UpperCamelCase = Node(2 ) UpperCamelCase = Node(3 ) UpperCamelCase = Node(4 ) UpperCamelCase = Node(5 ) UpperCamelCase = Node(6 ) UpperCamelCase = Node(7 ) UpperCamelCase = Node(8 ) UpperCamelCase = Node(9 ) print(is_full_binary_tree(_lowercase ) ) print(depth_of_tree(_lowercase ) ) print('''Tree is: ''' ) display(_lowercase ) if __name__ == "__main__": main()
34
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ComputeEnvironment.AMAZON_SAGEMAKER A_ = True A_ = '''ml.p3.2xlarge''' A_ = '''accelerate_sagemaker_execution_role''' A_ = '''hf-sm''' A_ = '''us-east-1''' A_ = 1 A_ = '''accelerate-sagemaker-1''' A_ = '''1.6''' A_ = '''4.4''' A_ = '''train.py''' A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args['''model_name_or_path'''] , lowerCamelCase_) assert isinstance(converted_args['''do_train'''] , lowerCamelCase_) assert isinstance(converted_args['''epochs'''] , lowerCamelCase_) assert isinstance(converted_args['''learning_rate'''] , lowerCamelCase_) assert isinstance(converted_args['''max_steps'''] , lowerCamelCase_) with pytest.raises(lowerCamelCase_): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
34
1
"""simple docstring""" def __snake_case ( _lowercase ): # noqa: E741 """simple docstring""" UpperCamelCase = len(_lowercase ) UpperCamelCase = 0 UpperCamelCase = [0] * n UpperCamelCase = [False] * n UpperCamelCase = [False] * n def dfs(_lowercase ,_lowercase ,_lowercase ,_lowercase ): if parent == root: out_edge_count += 1 UpperCamelCase = True UpperCamelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: UpperCamelCase = dfs(_lowercase ,_lowercase ,_lowercase ,_lowercase ) UpperCamelCase = min(low[at] ,low[to] ) # AP found via bridge if at < low[to]: UpperCamelCase = True # AP found via cycle if at == low[to]: UpperCamelCase = True else: UpperCamelCase = min(low[at] ,_lowercase ) return out_edge_count for i in range(_lowercase ): if not visited[i]: UpperCamelCase = 0 UpperCamelCase = dfs(_lowercase ,_lowercase ,-1 ,_lowercase ) UpperCamelCase = out_edge_count > 1 for x in range(len(_lowercase ) ): if is_art[x] is True: print(_lowercase ) # Adjacency list of graph SCREAMING_SNAKE_CASE_ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
34
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class snake_case_ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCamelCase_ = " ") -> List[str]: UpperCamelCase = sentence_delimiter def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return list(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase_): chars.extend(self.process_string(lowerCamelCase_)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_) - 1: chars.append(self.sentence_delimiter) return chars SCREAMING_SNAKE_CASE_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
1
"""simple docstring""" import warnings from .generation import TFGenerationMixin class snake_case_ ( lowerCamelCase_ ): """simple docstring""" warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , lowerCamelCase_ , )
34
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = '''left''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<eop>", "<eod>"] , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = 3 UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> List[str]: return len(self.sp_model) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> str: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: if self.remove_space: UpperCamelCase = ''' '''.join(inputs.strip().split()) else: UpperCamelCase = inputs UpperCamelCase = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCamelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase_) UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_)]) if self.do_lower_case: UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) UpperCamelCase = [] for piece in pieces: if len(lowerCamelCase_) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCamelCase = cur_pieces[1:] else: UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCamelCase_) else: new_pieces.append(lowerCamelCase_) return new_pieces def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.sp_model.IdToPiece(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: UpperCamelCase = ''''''.join(lowerCamelCase_).replace(lowerCamelCase_ , ''' ''').strip() return out_string def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> str: UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCamelCase_) UpperCamelCase = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) UpperCamelCase = [] sub_texts.append(lowerCamelCase_) else: current_sub_text.append(lowerCamelCase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(lowerCamelCase_) return clean_text else: return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) + [1, 1] return ([0] * len(lowerCamelCase_)) + [1, 1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,)
34
1
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = BertJapaneseTokenizer A_ = False A_ = True def UpperCAmelCase__ ( self) -> Optional[Any]: super().setUp() UpperCamelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[Any]: UpperCamelCase = '''こんにちは、世界。 \nこんばんは、世界。''' UpperCamelCase = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: UpperCamelCase , UpperCamelCase = self.get_input_output_texts(lowerCamelCase_) UpperCamelCase = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_) UpperCamelCase = tokenizer.decode(lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_) return text, ids def UpperCAmelCase__ ( self) -> str: pass # TODO add if relevant def UpperCAmelCase__ ( self) -> List[str]: pass # TODO add if relevant def UpperCAmelCase__ ( self) -> Optional[int]: pass # TODO add if relevant def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.tokenizer_class(self.vocab_file) UpperCamelCase = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''') self.assertListEqual(lowerCamelCase_ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''') self.assertIsNotNone(lowerCamelCase_) UpperCamelCase = '''こんにちは、世界。\nこんばんは、世界。''' UpperCamelCase = tokenizer.tokenize(lowerCamelCase_) self.assertListEqual(lowerCamelCase_ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) UpperCamelCase = os.path.join(self.tmpdirname , '''tokenizer.bin''') with open(lowerCamelCase_ , '''wb''') as handle: pickle.dump(lowerCamelCase_ , lowerCamelCase_) with open(lowerCamelCase_ , '''rb''') as handle: UpperCamelCase = pickle.load(lowerCamelCase_) UpperCamelCase = tokenizer_new.tokenize(lowerCamelCase_) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = MecabTokenizer(mecab_dic='''ipadic''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def UpperCAmelCase__ ( self) -> int: try: UpperCamelCase = MecabTokenizer(mecab_dic='''unidic_lite''') except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def UpperCAmelCase__ ( self) -> Optional[Any]: try: UpperCamelCase = MecabTokenizer(mecab_dic='''unidic''') except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def UpperCAmelCase__ ( self) -> Dict: UpperCamelCase = MecabTokenizer(do_lower_case=lowerCamelCase_ , mecab_dic='''ipadic''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def UpperCAmelCase__ ( self) -> int: try: UpperCamelCase = MecabTokenizer( do_lower_case=lowerCamelCase_ , normalize_text=lowerCamelCase_ , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''') except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = MecabTokenizer(normalize_text=lowerCamelCase_ , mecab_dic='''ipadic''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''') self.assertIsNotNone(lowerCamelCase_) UpperCamelCase = '''こんにちは、世界。\nこんばんは、世界。''' UpperCamelCase = tokenizer.tokenize(lowerCamelCase_) self.assertListEqual(lowerCamelCase_ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) UpperCamelCase = os.path.join(self.tmpdirname , '''tokenizer.bin''') with open(lowerCamelCase_ , '''wb''') as handle: pickle.dump(lowerCamelCase_ , lowerCamelCase_) with open(lowerCamelCase_ , '''rb''') as handle: UpperCamelCase = pickle.load(lowerCamelCase_) UpperCamelCase = tokenizer_new.tokenize(lowerCamelCase_) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_) @require_sudachi def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = SudachiTokenizer(sudachi_dict_type='''core''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def UpperCAmelCase__ ( self) -> int: UpperCamelCase = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''') self.assertListEqual(tokenizer.tokenize('''外国人参政権''') , ['''外国''', '''人''', '''参政''', '''権''']) @require_sudachi def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''') self.assertListEqual(tokenizer.tokenize('''外国人参政権''') , ['''外国人''', '''参政権''']) @require_sudachi def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''') self.assertListEqual(tokenizer.tokenize('''外国人参政権''') , ['''外国人参政権''']) @require_sudachi def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = SudachiTokenizer(do_lower_case=lowerCamelCase_ , sudachi_dict_type='''core''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = SudachiTokenizer(normalize_text=lowerCamelCase_ , sudachi_dict_type='''core''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def UpperCAmelCase__ ( self) -> str: UpperCamelCase = SudachiTokenizer(trim_whitespace=lowerCamelCase_ , sudachi_dict_type='''core''') self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''') self.assertIsNotNone(lowerCamelCase_) UpperCamelCase = '''こんにちは、世界。\nこんばんは、世界。''' UpperCamelCase = tokenizer.tokenize(lowerCamelCase_) self.assertListEqual(lowerCamelCase_ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) UpperCamelCase = os.path.join(self.tmpdirname , '''tokenizer.bin''') with open(lowerCamelCase_ , '''wb''') as handle: pickle.dump(lowerCamelCase_ , lowerCamelCase_) with open(lowerCamelCase_ , '''rb''') as handle: UpperCamelCase = pickle.load(lowerCamelCase_) UpperCamelCase = tokenizer_new.tokenize(lowerCamelCase_) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_) @require_jumanpp def UpperCAmelCase__ ( self) -> str: UpperCamelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = JumanppTokenizer(do_lower_case=lowerCamelCase_) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def UpperCAmelCase__ ( self) -> int: UpperCamelCase = JumanppTokenizer(normalize_text=lowerCamelCase_) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = JumanppTokenizer(trim_whitespace=lowerCamelCase_) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''') , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''') , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] UpperCamelCase = {} for i, token in enumerate(lowerCamelCase_): UpperCamelCase = i UpperCamelCase = WordpieceTokenizer(vocab=lowerCamelCase_ , unk_token='''[UNK]''') self.assertListEqual(tokenizer.tokenize('''''') , []) self.assertListEqual(tokenizer.tokenize('''こんにちは''') , ['''こんにちは''']) self.assertListEqual(tokenizer.tokenize('''こんばんは''') , ['''こん''', '''##ばんは''']) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''') , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは''']) def UpperCAmelCase__ ( self) -> str: UpperCamelCase = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''') UpperCamelCase = tokenizer.subword_tokenizer UpperCamelCase = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''') self.assertListEqual(lowerCamelCase_ , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。''']) UpperCamelCase = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''') self.assertListEqual(lowerCamelCase_ , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは''']) def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''') UpperCamelCase = tokenizer.encode('''ありがとう。''' , add_special_tokens=lowerCamelCase_) UpperCamelCase = tokenizer.encode('''どういたしまして。''' , add_special_tokens=lowerCamelCase_) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = BertJapaneseTokenizer A_ = False def UpperCAmelCase__ ( self) -> str: super().setUp() UpperCamelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> str: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = '''こんにちは、世界。 \nこんばんは、世界。''' UpperCamelCase = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def UpperCAmelCase__ ( self) -> Tuple: pass # TODO add if relevant def UpperCAmelCase__ ( self) -> Optional[Any]: pass # TODO add if relevant def UpperCAmelCase__ ( self) -> str: pass # TODO add if relevant def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''') UpperCamelCase = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''') self.assertListEqual( lowerCamelCase_ , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2]) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] UpperCamelCase = {} for i, token in enumerate(lowerCamelCase_): UpperCamelCase = i UpperCamelCase = CharacterTokenizer(vocab=lowerCamelCase_ , unk_token='''[UNK]''') self.assertListEqual(tokenizer.tokenize('''''') , []) self.assertListEqual(tokenizer.tokenize('''こんにちは''') , ['''こ''', '''ん''', '''に''', '''ち''', '''は''']) self.assertListEqual(tokenizer.tokenize('''こんにちほ''') , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]''']) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''') UpperCamelCase = tokenizer.encode('''ありがとう。''' , add_special_tokens=lowerCamelCase_) UpperCamelCase = tokenizer.encode('''どういたしまして。''' , add_special_tokens=lowerCamelCase_) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = '''cl-tohoku/bert-base-japanese''' UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''') as cm: BertTokenizer.from_pretrained(lowerCamelCase_) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''')) UpperCamelCase = '''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''') as cm: BertJapaneseTokenizer.from_pretrained(lowerCamelCase_) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.'''))
34
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } SCREAMING_SNAKE_CASE_ = { 'openbmb/cpm-ant-10b': 1024, } def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = collections.OrderedDict() with open(_lowercase ,'''r''' ,encoding='''utf-8''' ) as reader: UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): UpperCamelCase = token.rstrip('''\n''' ) UpperCamelCase = index return vocab class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_=2_0_0) -> Any: UpperCamelCase = vocab UpperCamelCase = unk_token UpperCamelCase = max_input_chars_per_word def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = list(lowerCamelCase_) if len(lowerCamelCase_) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase = 0 UpperCamelCase = [] while start < len(lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = None while start < end: UpperCamelCase = ''''''.join(chars[start:end]) if substr in self.vocab: UpperCamelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(lowerCamelCase_) UpperCamelCase = end return sub_tokens class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] A_ = False def __init__( self , lowerCamelCase_ , lowerCamelCase_="<d>" , lowerCamelCase_="</d>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<unk>" , lowerCamelCase_="</n>" , lowerCamelCase_="</_>" , lowerCamelCase_="left" , **lowerCamelCase_ , ) -> List[str]: requires_backends(self , ['''jieba''']) super().__init__( bod_token=lowerCamelCase_ , eod_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , line_token=lowerCamelCase_ , space_token=lowerCamelCase_ , padding_side=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = bod_token UpperCamelCase = eod_token UpperCamelCase = load_vocab(lowerCamelCase_) UpperCamelCase = self.encoder[space_token] UpperCamelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def UpperCAmelCase__ ( self) -> Dict: return self.encoder[self.bod_token] @property def UpperCAmelCase__ ( self) -> str: return self.encoder[self.eod_token] @property def UpperCAmelCase__ ( self) -> List[Any]: return self.encoder["\n"] @property def UpperCAmelCase__ ( self) -> int: return len(self.encoder) def UpperCAmelCase__ ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = [] for x in jieba.cut(lowerCamelCase_ , cut_all=lowerCamelCase_): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase_)) return output_tokens def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> Tuple: UpperCamelCase = [i for i in token_ids if i >= 0] UpperCamelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return token in self.encoder def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return "".join(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token)) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return self.decoder.get(lowerCamelCase_ , self.unk_token) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if os.path.isdir(lowerCamelCase_): UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: UpperCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCamelCase = 0 if " " in self.encoder: UpperCamelCase = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase = self.encoder['''\n'''] del self.encoder["\n"] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''') UpperCamelCase = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) return [1] + ([0] * len(lowerCamelCase_))
34
1
"""simple docstring""" import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow SCREAMING_SNAKE_CASE_ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE_ = logging.getLogger() def __snake_case ( ): """simple docstring""" UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCamelCase = parser.parse_args() return args.f def __snake_case ( _lowercase ,_lowercase="eval" ): """simple docstring""" UpperCamelCase = os.path.join(_lowercase ,f'{split}_results.json' ) if os.path.exists(_lowercase ): with open(_lowercase ,'''r''' ) as f: return json.load(_lowercase ) raise ValueError(f'can\'t find {path}' ) SCREAMING_SNAKE_CASE_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(lowerCamelCase_ , '''argv''' , lowerCamelCase_): run_flax_glue.main() UpperCamelCase = get_results(lowerCamelCase_) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75) @slow def UpperCAmelCase__ ( self) -> Dict: UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(lowerCamelCase_ , '''argv''' , lowerCamelCase_): run_clm_flax.main() UpperCamelCase = get_results(lowerCamelCase_) self.assertLess(result['''eval_perplexity'''] , 1_0_0) @slow def UpperCAmelCase__ ( self) -> int: UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n '.split() with patch.object(lowerCamelCase_ , '''argv''' , lowerCamelCase_): run_summarization_flax.main() UpperCamelCase = get_results(lowerCamelCase_ , split='''test''') self.assertGreaterEqual(result['''test_rouge1'''] , 1_0) self.assertGreaterEqual(result['''test_rouge2'''] , 2) self.assertGreaterEqual(result['''test_rougeL'''] , 7) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7) @slow def UpperCAmelCase__ ( self) -> int: UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n '.split() with patch.object(lowerCamelCase_ , '''argv''' , lowerCamelCase_): run_mlm_flax.main() UpperCamelCase = get_results(lowerCamelCase_) self.assertLess(result['''eval_perplexity'''] , 4_2) @slow def UpperCAmelCase__ ( self) -> int: UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(lowerCamelCase_ , '''argv''' , lowerCamelCase_): run_ta_mlm_flax.main() UpperCamelCase = get_results(lowerCamelCase_) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42) @slow def UpperCAmelCase__ ( self) -> Union[str, Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu UpperCamelCase = 7 if get_gpu_count() > 1 else 2 UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n '.split() with patch.object(lowerCamelCase_ , '''argv''' , lowerCamelCase_): run_flax_ner.main() UpperCamelCase = get_results(lowerCamelCase_) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75) self.assertGreaterEqual(result['''eval_f1'''] , 0.3) @slow def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n '.split() with patch.object(lowerCamelCase_ , '''argv''' , lowerCamelCase_): run_qa.main() UpperCamelCase = get_results(lowerCamelCase_) self.assertGreaterEqual(result['''eval_f1'''] , 3_0) self.assertGreaterEqual(result['''eval_exact'''] , 3_0)
34
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=0) -> int: UpperCamelCase = 1.0 if scale is None else scale UpperCamelCase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_)]) @property def UpperCAmelCase__ ( self) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase__ ( self) -> List[str]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase__ ( self) -> Any: return self.variance.sqrt() class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = args_dim UpperCamelCase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_) for dim in args_dim.values()]) UpperCamelCase = domain_map def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple[torch.Tensor]: UpperCamelCase = [proj(lowerCamelCase_) for proj in self.proj] return self.domain_map(*lowerCamelCase_) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__() UpperCamelCase = function def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_) -> Tuple: return self.function(lowerCamelCase_ , *lowerCamelCase_) class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , lowerCamelCase_ = 1) -> None: UpperCamelCase = dim UpperCamelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if self.dim == 1: return self.distribution_class(*lowerCamelCase_) else: return Independent(self.distribution_class(*lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Distribution: UpperCamelCase = self._base_distribution(lowerCamelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim) @property def UpperCAmelCase__ ( self) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase__ ( self) -> int: return len(self.event_shape) @property def UpperCAmelCase__ ( self) -> float: return 0.0 def UpperCAmelCase__ ( self , lowerCamelCase_) -> nn.Module: return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def UpperCAmelCase__ ( self , *lowerCamelCase_) -> List[str]: raise NotImplementedError() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCamelCase_) + 4.0)) / 2.0 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"df": 1, "loc": 1, "scale": 1} A_ = StudentT @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) UpperCamelCase = 2.0 + cls.squareplus(lowerCamelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"loc": 1, "scale": 1} A_ = Normal @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"total_count": 1, "logits": 1} A_ = NegativeBinomial @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = cls.squareplus(lowerCamelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
34
1
"""simple docstring""" # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) SCREAMING_SNAKE_CASE_ = 'pytorch_model.bin' SCREAMING_SNAKE_CASE_ = 'pytorch_model.bin.index.json' SCREAMING_SNAKE_CASE_ = 'adapter_config.json' SCREAMING_SNAKE_CASE_ = 'adapter_model.bin' SCREAMING_SNAKE_CASE_ = 'adapter_model.safetensors' SCREAMING_SNAKE_CASE_ = 'tf_model.h5' SCREAMING_SNAKE_CASE_ = 'tf_model.h5.index.json' SCREAMING_SNAKE_CASE_ = 'model.ckpt' SCREAMING_SNAKE_CASE_ = 'flax_model.msgpack' SCREAMING_SNAKE_CASE_ = 'flax_model.msgpack.index.json' SCREAMING_SNAKE_CASE_ = 'model.safetensors' SCREAMING_SNAKE_CASE_ = 'model.safetensors.index.json' SCREAMING_SNAKE_CASE_ = 'config.json' SCREAMING_SNAKE_CASE_ = 'preprocessor_config.json' SCREAMING_SNAKE_CASE_ = FEATURE_EXTRACTOR_NAME SCREAMING_SNAKE_CASE_ = 'generation_config.json' SCREAMING_SNAKE_CASE_ = 'modelcard.json' SCREAMING_SNAKE_CASE_ = '▁' SCREAMING_SNAKE_CASE_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility SCREAMING_SNAKE_CASE_ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. SCREAMING_SNAKE_CASE_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] SCREAMING_SNAKE_CASE_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def __snake_case ( _lowercase ): """simple docstring""" if version.parse(_lowercase ) < version.parse(_lowercase ): if "dev" in min_version: UpperCamelCase = ( '''This example requires a source install from HuggingFace Transformers (see ''' '''`https://huggingface.co/docs/transformers/installation#install-from-source`),''' ) else: UpperCamelCase = f'This example requires a minimum version of {min_version},' error_message += f' but the version found is {__version__}.\n' raise ImportError( error_message + '''Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ''' '''versions of HuggingFace Transformers.''' )
34
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowercase ,id=_lowercase )
34
1
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class snake_case_ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCamelCase_ = " ") -> List[str]: UpperCamelCase = sentence_delimiter def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return list(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase_): chars.extend(self.process_string(lowerCamelCase_)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_) - 1: chars.append(self.sentence_delimiter) return chars SCREAMING_SNAKE_CASE_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
34
1
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset SCREAMING_SNAKE_CASE_ = random.Random() def __snake_case ( _lowercase ,_lowercase=1.0 ,_lowercase=None ,_lowercase=None ): """simple docstring""" if rng is None: UpperCamelCase = global_rng UpperCamelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=7 , lowerCamelCase_=4_0_0 , lowerCamelCase_=2_0_0_0 , lowerCamelCase_=2_0_4_8 , lowerCamelCase_=1_2_8 , lowerCamelCase_=1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=3_0 , lowerCamelCase_=4_4_1_0_0 , ) -> List[str]: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = min_seq_length UpperCamelCase = max_seq_length UpperCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase = spectrogram_length UpperCamelCase = feature_size UpperCamelCase = num_audio_channels UpperCamelCase = hop_length UpperCamelCase = chunk_length UpperCamelCase = sampling_rate def UpperCAmelCase__ ( self) -> List[str]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCAmelCase__ ( self , lowerCamelCase_=False , lowerCamelCase_=False) -> Tuple: def _flatten(lowerCamelCase_): return list(itertools.chain(*lowerCamelCase_)) if equal_length: UpperCamelCase = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size UpperCamelCase = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: UpperCamelCase = [np.asarray(lowerCamelCase_) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = TvltFeatureExtractor def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = TvltFeatureExtractionTester(self) def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(lowerCamelCase_ , '''spectrogram_length''')) self.assertTrue(hasattr(lowerCamelCase_ , '''feature_size''')) self.assertTrue(hasattr(lowerCamelCase_ , '''num_audio_channels''')) self.assertTrue(hasattr(lowerCamelCase_ , '''hop_length''')) self.assertTrue(hasattr(lowerCamelCase_ , '''chunk_length''')) self.assertTrue(hasattr(lowerCamelCase_ , '''sampling_rate''')) def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = feat_extract_first.save_pretrained(lowerCamelCase_)[0] check_json_file_has_correct_format(lowerCamelCase_) UpperCamelCase = self.feature_extraction_class.from_pretrained(lowerCamelCase_) UpperCamelCase = feat_extract_first.to_dict() UpperCamelCase = feat_extract_second.to_dict() UpperCamelCase = dict_first.pop('''mel_filters''') UpperCamelCase = dict_second.pop('''mel_filters''') self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_)) self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = os.path.join(lowerCamelCase_ , '''feat_extract.json''') feat_extract_first.to_json_file(lowerCamelCase_) UpperCamelCase = self.feature_extraction_class.from_json_file(lowerCamelCase_) UpperCamelCase = feat_extract_first.to_dict() UpperCamelCase = feat_extract_second.to_dict() UpperCamelCase = dict_first.pop('''mel_filters''') UpperCamelCase = dict_second.pop('''mel_filters''') self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_)) self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> Optional[int]: # Initialize feature_extractor UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) # create three inputs of length 800, 1000, and 1200 UpperCamelCase = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] UpperCamelCase = [np.asarray(lowerCamelCase_) for speech_input in speech_inputs] # Test not batched input UpperCamelCase = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) # Test batched UpperCamelCase = feature_extractor(lowerCamelCase_ , return_tensors='''np''' , sampling_rate=4_4_1_0_0).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) # Test audio masking UpperCamelCase = feature_extractor( lowerCamelCase_ , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=lowerCamelCase_).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) # Test 2-D numpy arrays are batched. UpperCamelCase = [floats_list((1, x))[0] for x in (8_0_0, 8_0_0, 8_0_0)] UpperCamelCase = np.asarray(lowerCamelCase_) UpperCamelCase = feature_extractor(lowerCamelCase_ , return_tensors='''np''' , sampling_rate=4_4_1_0_0).audio_values self.assertTrue(encoded_audios.ndim == 4) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels) def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[Any]: UpperCamelCase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''') # automatic decoding with librispeech UpperCamelCase = ds.sort('''id''').select(range(lowerCamelCase_))[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = self._load_datasamples(1) UpperCamelCase = TvltFeatureExtractor() UpperCamelCase = feature_extractor(lowerCamelCase_ , return_tensors='''pt''').audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8)) UpperCamelCase = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]]) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , lowerCamelCase_ , atol=1e-4))
34
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
1
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=2_4 , lowerCamelCase_=2 , lowerCamelCase_=6 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=3 , lowerCamelCase_=None , lowerCamelCase_=1_0_0_0 , ) -> Optional[Any]: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = range_bbox def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase = bbox[i, j, 3] UpperCamelCase = bbox[i, j, 1] UpperCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase = bbox[i, j, 2] UpperCamelCase = bbox[i, j, 0] UpperCamelCase = t UpperCamelCase = None if self.use_input_mask: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCamelCase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self) -> Union[str, Any]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Any: UpperCamelCase = LiltModel(config=lowerCamelCase_) model.to(lowerCamelCase_) model.eval() UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_) UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_ , token_type_ids=lowerCamelCase_) UpperCamelCase = model(lowerCamelCase_ , bbox=lowerCamelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> List[str]: UpperCamelCase = self.num_labels UpperCamelCase = LiltForTokenClassification(config=lowerCamelCase_) model.to(lowerCamelCase_) model.eval() UpperCamelCase = model( lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Tuple: UpperCamelCase = LiltForQuestionAnswering(config=lowerCamelCase_) model.to(lowerCamelCase_) model.eval() UpperCamelCase = model( lowerCamelCase_ , bbox=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) A_ = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) A_ = False A_ = False def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any: return True def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = LiltModelTester(self) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=3_7) def UpperCAmelCase__ ( self) -> str: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*lowerCamelCase_) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_) @slow def UpperCAmelCase__ ( self) -> List[str]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = LiltModel.from_pretrained(lowerCamelCase_) self.assertIsNotNone(lowerCamelCase_) @require_torch @slow class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''').to(lowerCamelCase_) UpperCamelCase = torch.tensor([[1, 2]] , device=lowerCamelCase_) UpperCamelCase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=lowerCamelCase_) # forward pass with torch.no_grad(): UpperCamelCase = model(input_ids=lowerCamelCase_ , bbox=lowerCamelCase_) UpperCamelCase = torch.Size([1, 2, 7_6_8]) UpperCamelCase = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=lowerCamelCase_ , ) self.assertTrue(outputs.last_hidden_state.shape , lowerCamelCase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , lowerCamelCase_ , atol=1e-3))
34
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase = getattr(_lowercase ,_lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase ,_lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) UpperCamelCase = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCamelCase = torch.tensor(_lowercase ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_lowercase ) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to(_lowercase ) else: UpperCamelCase = torch.tensor(_lowercase ,device=_lowercase ) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase ,requires_grad=old_value.requires_grad ) UpperCamelCase = new_value def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase ,nn.Linear ) or isinstance(_lowercase ,_lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase ,_lowercase ): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase ,_lowercase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase ,_lowercase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ,has_been_replaced=_lowercase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,_lowercase ,) return replace_with_bnb_linear(*_lowercase ,**_lowercase ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,_lowercase ,) return set_module_quantized_tensor_to_device(*_lowercase ,**_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase ,_lowercase ): UpperCamelCase = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(_lowercase ,[] ) UpperCamelCase = len(_lowercase ) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase ) - set(_lowercase ) UpperCamelCase = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase ,'''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names
34
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''deberta-v2''' def __init__( self , lowerCamelCase_=1_2_8_1_0_0 , lowerCamelCase_=1_5_3_6 , lowerCamelCase_=2_4 , lowerCamelCase_=2_4 , lowerCamelCase_=6_1_4_4 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=0 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-7 , lowerCamelCase_=False , lowerCamelCase_=-1 , lowerCamelCase_=0 , lowerCamelCase_=True , lowerCamelCase_=None , lowerCamelCase_=0 , lowerCamelCase_="gelu" , **lowerCamelCase_ , ) -> Optional[int]: super().__init__(**lowerCamelCase_) UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = relative_attention UpperCamelCase = max_relative_positions UpperCamelCase = pad_token_id UpperCamelCase = position_biased_input # Backwards compatibility if type(lowerCamelCase_) == str: UpperCamelCase = [x.strip() for x in pos_att_type.lower().split('''|''')] UpperCamelCase = pos_att_type UpperCamelCase = vocab_size UpperCamelCase = layer_norm_eps UpperCamelCase = kwargs.get('''pooler_hidden_size''' , lowerCamelCase_) UpperCamelCase = pooler_dropout UpperCamelCase = pooler_hidden_act class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @property def UpperCAmelCase__ ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)]) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)]) @property def UpperCAmelCase__ ( self) -> int: return 1_2 def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = -1 , lowerCamelCase_ = -1 , lowerCamelCase_ = -1 , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = 3 , lowerCamelCase_ = 4_0 , lowerCamelCase_ = 4_0 , lowerCamelCase_ = None , ) -> Mapping[str, Any]: UpperCamelCase = super().generate_dummy_inputs(preprocessor=lowerCamelCase_ , framework=lowerCamelCase_) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
34
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase ) count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 ) count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase ) return count def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_lowercase ,_lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_ = TemporaryFile() SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_ = np.load(outfile) SCREAMING_SNAKE_CASE_ = len(M) - 1 SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
34
1
"""simple docstring""" import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE_ = 16 SCREAMING_SNAKE_CASE_ = 32 def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase ,_lowercase = 16 ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCamelCase = DatasetDict( { '''train''': dataset['''train'''].select(_lowercase ), '''validation''': dataset['''train'''].select(_lowercase ), '''test''': dataset['''validation'''], } ) def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples['''sentence1'''] ,examples['''sentence2'''] ,truncation=_lowercase ,max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase = datasets.map( _lowercase ,batched=_lowercase ,remove_columns=['''idx''', '''sentence1''', '''sentence2'''] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column('''label''' ,'''labels''' ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase = 16 elif accelerator.mixed_precision != "no": UpperCamelCase = 8 else: UpperCamelCase = None return tokenizer.pad( _lowercase ,padding='''longest''' ,max_length=_lowercase ,pad_to_multiple_of=_lowercase ,return_tensors='''pt''' ,) # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets['''train'''] ,shuffle=_lowercase ,collate_fn=_lowercase ,batch_size=_lowercase ) UpperCamelCase = DataLoader( tokenized_datasets['''validation'''] ,shuffle=_lowercase ,collate_fn=_lowercase ,batch_size=_lowercase ) UpperCamelCase = DataLoader( tokenized_datasets['''test'''] ,shuffle=_lowercase ,collate_fn=_lowercase ,batch_size=_lowercase ) return train_dataloader, eval_dataloader, test_dataloader def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = [] # Download the dataset UpperCamelCase = load_dataset('''glue''' ,'''mrpc''' ) # Create our splits UpperCamelCase = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator UpperCamelCase = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config['''lr'''] UpperCamelCase = int(config['''num_epochs'''] ) UpperCamelCase = int(config['''seed'''] ) UpperCamelCase = int(config['''batch_size'''] ) UpperCamelCase = evaluate.load('''glue''' ,'''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCamelCase = MAX_GPU_BATCH_SIZE set_seed(_lowercase ) # New Code # # Create our folds: UpperCamelCase = kfold.split(np.zeros(datasets['''train'''].num_rows ) ,datasets['''train''']['''label'''] ) UpperCamelCase = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_lowercase ): UpperCamelCase , UpperCamelCase , UpperCamelCase = get_fold_dataloaders( _lowercase ,_lowercase ,_lowercase ,_lowercase ,) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' ,return_dict=_lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase = AdamW(params=model.parameters() ,lr=_lowercase ) # Instantiate scheduler UpperCamelCase = get_linear_schedule_with_warmup( optimizer=_lowercase ,num_warmup_steps=100 ,num_training_steps=(len(_lowercase ) * num_epochs) // gradient_accumulation_steps ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( _lowercase ,_lowercase ,_lowercase ,_lowercase ,_lowercase ) # Now we train the model for epoch in range(_lowercase ): model.train() for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.loss UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(_lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits.argmax(dim=-1 ) UpperCamelCase , UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_lowercase ,references=_lowercase ,) UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' ,_lowercase ) # New Code # # We also run predictions on the test set at the very end UpperCamelCase = [] for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits UpperCamelCase , UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_lowercase ,dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: UpperCamelCase = torch.cat(_lowercase ,dim=0 ) UpperCamelCase = torch.stack(_lowercase ,dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) UpperCamelCase = metric.compute(predictions=_lowercase ,references=_lowercase ) accelerator.print('''Average test metrics from all folds:''' ,_lowercase ) def __snake_case ( ): """simple docstring""" UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' ,type=_lowercase ,default=_lowercase ,choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] ,help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' ,) parser.add_argument('''--cpu''' ,action='''store_true''' ,help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' ,type=_lowercase ,default=3 ,help='''The number of splits to perform across the dataset''' ) UpperCamelCase = parser.parse_args() UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_lowercase ,_lowercase ) if __name__ == "__main__": main()
34
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE_ = os.path.join(git_repo_path, 'src', 'transformers') SCREAMING_SNAKE_CASE_ = '\n{0} = None\n' SCREAMING_SNAKE_CASE_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' SCREAMING_SNAKE_CASE_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowerCamelCase_) UpperCamelCase = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowerCamelCase_ , '''tokenizers''') UpperCamelCase = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowerCamelCase_ , '''tensorflow_text''') UpperCamelCase = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tensorflow_text''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers_and_vision''') def UpperCAmelCase__ ( self) -> int: UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCamelCase_) self.assertIn('''tensorflow_text''' , lowerCamelCase_) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCamelCase_) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , '''\nCONSTANT = None\n''') UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowerCamelCase_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowerCamelCase_)
34
1
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # TODO Update this SCREAMING_SNAKE_CASE_ = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''esm''' def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=7_6_8 , lowerCamelCase_=1_2 , lowerCamelCase_=1_2 , lowerCamelCase_=3_0_7_2 , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=1_0_2_6 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-12 , lowerCamelCase_="absolute" , lowerCamelCase_=True , lowerCamelCase_=None , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ , ) -> Union[str, Any]: super().__init__(pad_token_id=lowerCamelCase_ , mask_token_id=lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = use_cache UpperCamelCase = emb_layer_norm_before UpperCamelCase = token_dropout UpperCamelCase = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''') UpperCamelCase = EsmFoldConfig() elif isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = EsmFoldConfig(**lowerCamelCase_) UpperCamelCase = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''') UpperCamelCase = get_default_vocab_list() else: UpperCamelCase = vocab_list else: UpperCamelCase = None UpperCamelCase = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , lowerCamelCase_): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''') def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = super().to_dict() if isinstance(self.esmfold_config , lowerCamelCase_): UpperCamelCase = self.esmfold_config.to_dict() return output @dataclass class snake_case_ : """simple docstring""" A_ = None A_ = True A_ = False A_ = False A_ = False A_ = 0 A_ = True A_ = False A_ = 128 A_ = None def UpperCAmelCase__ ( self) -> Tuple: if self.trunk is None: UpperCamelCase = TrunkConfig() elif isinstance(self.trunk , lowerCamelCase_): UpperCamelCase = TrunkConfig(**self.trunk) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = asdict(self) UpperCamelCase = self.trunk.to_dict() return output @dataclass class snake_case_ : """simple docstring""" A_ = 48 A_ = 1_024 A_ = 128 A_ = 32 A_ = 32 A_ = 32 A_ = 0 A_ = 0 A_ = False A_ = 4 A_ = 128 A_ = None def UpperCAmelCase__ ( self) -> Tuple: if self.structure_module is None: UpperCamelCase = StructureModuleConfig() elif isinstance(self.structure_module , lowerCamelCase_): UpperCamelCase = StructureModuleConfig(**self.structure_module) if self.max_recycles <= 0: raise ValueError(F'`max_recycles` should be positive, got {self.max_recycles}.') if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F' {self.sequence_state_dim} and {self.sequence_state_dim}.') if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F' {self.pairwise_state_dim} and {self.pairwise_state_dim}.') UpperCamelCase = self.sequence_state_dim // self.sequence_head_width UpperCamelCase = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.') if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.') if self.pairwise_state_dim % 2 != 0: raise ValueError(F'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.') if self.dropout >= 0.4: raise ValueError(F'`dropout` should not be greater than 0.4, got {self.dropout}.') def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = asdict(self) UpperCamelCase = self.structure_module.to_dict() return output @dataclass class snake_case_ : """simple docstring""" A_ = 384 A_ = 128 A_ = 16 A_ = 128 A_ = 12 A_ = 4 A_ = 8 A_ = 0.1 A_ = 8 A_ = 1 A_ = 2 A_ = 7 A_ = 10 A_ = 1E-8 A_ = 1E5 def UpperCAmelCase__ ( self) -> Union[str, Any]: return asdict(self) def __snake_case ( ): """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
34
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __snake_case ( _lowercase ): """simple docstring""" if "cls_token" in name: UpperCamelCase = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: UpperCamelCase = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: UpperCamelCase = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: UpperCamelCase = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: UpperCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: UpperCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: UpperCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: UpperCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: UpperCamelCase = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: UpperCamelCase = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: UpperCamelCase = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCamelCase = key.split('''.''' ) UpperCamelCase = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase = config.decoder_hidden_size UpperCamelCase = '''decoder.decoder_layers.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = config.hidden_size UpperCamelCase = '''vit.encoder.layer.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = val return orig_state_dict def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 elif "huge" in checkpoint_url: UpperCamelCase = 14 UpperCamelCase = 1280 UpperCamelCase = 5120 UpperCamelCase = 32 UpperCamelCase = 16 UpperCamelCase = ViTMAEForPreTraining(_lowercase ) UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' )['''model'''] UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = convert_state_dict(_lowercase ,_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCamelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = image_processor(images=_lowercase ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits if "large" in checkpoint_url: UpperCamelCase = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
34
1
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ['''input_features''', '''is_longer'''] def __init__( self , lowerCamelCase_=6_4 , lowerCamelCase_=4_8_0_0_0 , lowerCamelCase_=4_8_0 , lowerCamelCase_=1_0 , lowerCamelCase_=1_0_2_4 , lowerCamelCase_=0.0 , lowerCamelCase_=False , lowerCamelCase_ = 0 , lowerCamelCase_ = 1_4_0_0_0 , lowerCamelCase_ = None , lowerCamelCase_ = "fusion" , lowerCamelCase_ = "repeatpad" , **lowerCamelCase_ , ) -> Optional[Any]: super().__init__( feature_size=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , padding_value=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = top_db UpperCamelCase = truncation UpperCamelCase = padding UpperCamelCase = fft_window_size UpperCamelCase = (fft_window_size >> 1) + 1 UpperCamelCase = hop_length UpperCamelCase = max_length_s UpperCamelCase = max_length_s * sampling_rate UpperCamelCase = sampling_rate UpperCamelCase = frequency_min UpperCamelCase = frequency_max UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase_ , min_frequency=lowerCamelCase_ , max_frequency=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , norm=lowerCamelCase_ , mel_scale='''htk''' , ) UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase_ , min_frequency=lowerCamelCase_ , max_frequency=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , norm='''slaney''' , mel_scale='''slaney''' , ) def UpperCAmelCase__ ( self) -> Dict[str, Any]: UpperCamelCase = copy.deepcopy(self.__dict__) UpperCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> np.ndarray: UpperCamelCase = spectrogram( lowerCamelCase_ , window_function(self.fft_window_size , '''hann''') , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowerCamelCase_ , log_mel='''dB''' , ) return log_mel_spectrogram.T def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1)) , 3) if len(ranges[1]) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase = [0] if len(ranges[2]) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase = [0] # randomly choose index for each part UpperCamelCase = np.random.choice(ranges[0]) UpperCamelCase = np.random.choice(ranges[1]) UpperCamelCase = np.random.choice(ranges[2]) UpperCamelCase = mel[idx_front : idx_front + chunk_frames, :] UpperCamelCase = mel[idx_middle : idx_middle + chunk_frames, :] UpperCamelCase = mel[idx_back : idx_back + chunk_frames, :] UpperCamelCase = torch.tensor(mel[None, None, :]) UpperCamelCase = torch.nn.functional.interpolate( lowerCamelCase_ , size=[chunk_frames, 6_4] , mode='''bilinear''' , align_corners=lowerCamelCase_) UpperCamelCase = mel_shrink[0][0].numpy() UpperCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0) return mel_fusion def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": UpperCamelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad UpperCamelCase = len(lowerCamelCase_) - max_length UpperCamelCase = np.random.randint(0 , overflow + 1) UpperCamelCase = waveform[idx : idx + max_length] UpperCamelCase = self._np_extract_fbank_features(lowerCamelCase_ , self.mel_filters_slaney)[None, :] elif truncation == "fusion": UpperCamelCase = self._np_extract_fbank_features(lowerCamelCase_ , self.mel_filters) UpperCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed UpperCamelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. UpperCamelCase = np.stack([mel, mel, mel, mel] , axis=0) UpperCamelCase = False else: UpperCamelCase = self._random_mel_fusion(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = True else: raise NotImplementedError(F'data_truncating {truncation} not implemented') else: UpperCamelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": UpperCamelCase = int(max_length / len(lowerCamelCase_)) UpperCamelCase = np.stack(np.tile(lowerCamelCase_ , n_repeat + 1))[:max_length] if padding == "repeatpad": UpperCamelCase = int(max_length / len(lowerCamelCase_)) UpperCamelCase = np.stack(np.tile(lowerCamelCase_ , lowerCamelCase_)) UpperCamelCase = np.pad(lowerCamelCase_ , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0) if truncation == "fusion": UpperCamelCase = self._np_extract_fbank_features(lowerCamelCase_ , self.mel_filters) UpperCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0) else: UpperCamelCase = self._np_extract_fbank_features(lowerCamelCase_ , self.mel_filters_slaney)[None, :] return input_mel, longer def __call__( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> BatchFeature: UpperCamelCase = truncation if truncation is not None else self.truncation UpperCamelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.') else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''') UpperCamelCase = isinstance(lowerCamelCase_ , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}') UpperCamelCase = is_batched_numpy or ( isinstance(lowerCamelCase_ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: UpperCamelCase = [np.asarray(lowerCamelCase_ , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase_ , np.ndarray): UpperCamelCase = np.asarray(lowerCamelCase_ , dtype=np.floataa) elif isinstance(lowerCamelCase_ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): UpperCamelCase = raw_speech.astype(np.floataa) # always return batch if not is_batched: UpperCamelCase = [np.asarray(lowerCamelCase_)] # convert to mel spectrogram, truncate and pad if needed. UpperCamelCase = [ self._get_input_mel(lowerCamelCase_ , max_length if max_length else self.nb_max_samples , lowerCamelCase_ , lowerCamelCase_) for waveform in raw_speech ] UpperCamelCase = [] UpperCamelCase = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase_) is_longer.append(lowerCamelCase_) if truncation == "fusion" and sum(lowerCamelCase_) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer UpperCamelCase = np.random.randint(0 , len(lowerCamelCase_)) UpperCamelCase = True if isinstance(input_mel[0] , lowerCamelCase_): UpperCamelCase = [np.asarray(lowerCamelCase_ , dtype=np.floataa) for feature in input_mel] # is_longer is a list of bool UpperCamelCase = [[longer] for longer in is_longer] UpperCamelCase = {'''input_features''': input_mel, '''is_longer''': is_longer} UpperCamelCase = BatchFeature(lowerCamelCase_) if return_tensors is not None: UpperCamelCase = input_features.convert_to_tensors(lowerCamelCase_) return input_features
34
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Any: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase = mock_training_loop_function('''hello''') self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def UpperCAmelCase__ ( self) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(lowerCamelCase_): pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Dict: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): raise ValueError('''Oops, we had an error!''') with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase_) UpperCamelCase = release_memory(lowerCamelCase_) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase_)
34
1
"""simple docstring""" from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case_ : """simple docstring""" A_ = 42 # [batch_size x 3] A_ = 42 # [batch_size x 3] A_ = 42 # [batch_size x 3] A_ = 42 # [batch_size x 3] A_ = 42 A_ = 42 A_ = 42 A_ = 42 A_ = 42 def UpperCAmelCase__ ( self) -> List[Any]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape) == len(self.y.shape) == len(self.z.shape) == len(self.origin.shape) == 2 def UpperCAmelCase__ ( self) -> Optional[int]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa)) def UpperCAmelCase__ ( self) -> Any: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa)) def UpperCAmelCase__ ( self) -> torch.Tensor: UpperCamelCase = torch.arange(self.height * self.width) UpperCamelCase = torch.stack( [ pixel_indices % self.width, torch.div(lowerCamelCase_ , self.width , rounding_mode='''trunc'''), ] , axis=1 , ) return coords @property def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase , *UpperCamelCase = self.shape UpperCamelCase = int(np.prod(lowerCamelCase_)) UpperCamelCase = self.get_image_coords() UpperCamelCase = torch.broadcast_to(coords.unsqueeze(0) , [batch_size * inner_batch_size, *coords.shape]) UpperCamelCase = self.get_camera_rays(lowerCamelCase_) UpperCamelCase = rays.view(lowerCamelCase_ , inner_batch_size * self.height * self.width , 2 , 3) return rays def UpperCAmelCase__ ( self , lowerCamelCase_) -> torch.Tensor: UpperCamelCase , *UpperCamelCase , UpperCamelCase = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCamelCase = coords.view(lowerCamelCase_ , -1 , 2) UpperCamelCase = self.resolution() UpperCamelCase = self.fov() UpperCamelCase = (flat.float() / (res - 1)) * 2 - 1 UpperCamelCase = fracs * torch.tan(fov / 2) UpperCamelCase = fracs.view(lowerCamelCase_ , -1 , 2) UpperCamelCase = ( self.z.view(lowerCamelCase_ , 1 , 3) + self.x.view(lowerCamelCase_ , 1 , 3) * fracs[:, :, :1] + self.y.view(lowerCamelCase_ , 1 , 3) * fracs[:, :, 1:] ) UpperCamelCase = directions / directions.norm(dim=-1 , keepdim=lowerCamelCase_) UpperCamelCase = torch.stack( [ torch.broadcast_to(self.origin.view(lowerCamelCase_ , 1 , 3) , [batch_size, directions.shape[1], 3]), directions, ] , dim=2 , ) return rays.view(lowerCamelCase_ , *lowerCamelCase_ , 2 , 3) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=lowerCamelCase_ , height=lowerCamelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): UpperCamelCase = np.array([np.sin(_lowercase ), np.cos(_lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCamelCase = -z * 4 UpperCamelCase = np.array([np.cos(_lowercase ), -np.sin(_lowercase ), 0.0] ) UpperCamelCase = np.cross(_lowercase ,_lowercase ) origins.append(_lowercase ) xs.append(_lowercase ) ys.append(_lowercase ) zs.append(_lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(_lowercase ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(_lowercase ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(_lowercase ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(_lowercase ,axis=0 ) ).float() ,width=_lowercase ,height=_lowercase ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(_lowercase )) ,)
34
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ = 1_0_1) -> Tuple: UpperCamelCase = length def __len__( self) -> List[str]: return self.length def __getitem__( self , lowerCamelCase_) -> int: return i class snake_case_ : """simple docstring""" def __call__( self , lowerCamelCase_) -> str: return {"input_ids": torch.tensor(lowerCamelCase_), "labels": torch.tensor(lowerCamelCase_)} class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> List[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase = nn.Linear(1_2_0 , 8_0) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_neuroncore def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_multi_gpu def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE_ = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()[0] logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' f'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE_ = DummyDataset(dataset_length) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = list(range(len(_lowercase ) ) ) UpperCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} SCREAMING_SNAKE_CASE_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = None
34
1
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def __snake_case ( _lowercase ): """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(f'could not parse string as bool {string}' ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
34
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for tf_name, hf_name in patterns: UpperCamelCase = k.replace(_lowercase ,_lowercase ) return k def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = BigBirdPegasusConfig(**_lowercase ) UpperCamelCase = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCamelCase = torch_model.state_dict() UpperCamelCase = {} # separating decoder weights UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = DECODER_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = REMAINING_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCamelCase = mapping['''model.embed_positions.weight'''] UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(_lowercase ,strict=_lowercase ) UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tf.train.list_variables(_lowercase ) UpperCamelCase = {} UpperCamelCase = ['''global_step'''] for name, shape in tqdm(_lowercase ,desc='''converting tf checkpoint to dict''' ): UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase = tf.train.load_variable(_lowercase ,_lowercase ) UpperCamelCase = array return tf_weights def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = get_tf_weights_as_numpy(_lowercase ) UpperCamelCase = convert_bigbird_pegasus(_lowercase ,_lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
34
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ): """simple docstring""" if "resnet-50" in model_name: UpperCamelCase = ResNetConfig.from_pretrained('''microsoft/resnet-50''' ) elif "resnet-101" in model_name: UpperCamelCase = ResNetConfig.from_pretrained('''microsoft/resnet-101''' ) else: raise ValueError('''Model name should include either resnet50 or resnet101''' ) UpperCamelCase = DetrConfig(use_timm_backbone=_lowercase ,backbone_config=_lowercase ) # set label attributes UpperCamelCase = '''panoptic''' in model_name if is_panoptic: UpperCamelCase = 250 else: UpperCamelCase = 91 UpperCamelCase = '''huggingface/label-files''' UpperCamelCase = '''coco-detection-id2label.json''' UpperCamelCase = json.load(open(hf_hub_download(_lowercase ,_lowercase ,repo_type='''dataset''' ) ,'''r''' ) ) UpperCamelCase = {int(_lowercase ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} return config, is_panoptic def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') ) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') ) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') ) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') ) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) return rename_keys def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = state_dict.pop(_lowercase ) UpperCamelCase = val def __snake_case ( _lowercase ,_lowercase=False ): """simple docstring""" UpperCamelCase = '''''' if is_panoptic: UpperCamelCase = '''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) UpperCamelCase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCamelCase = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) UpperCamelCase = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCamelCase = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) UpperCamelCase = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCamelCase = in_proj_weight_cross_attn[:256, :] UpperCamelCase = in_proj_bias_cross_attn[:256] UpperCamelCase = in_proj_weight_cross_attn[256:512, :] UpperCamelCase = in_proj_bias_cross_attn[256:512] UpperCamelCase = in_proj_weight_cross_attn[-256:, :] UpperCamelCase = in_proj_bias_cross_attn[-256:] def __snake_case ( ): """simple docstring""" UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) return im @torch.no_grad() def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=False ): """simple docstring""" UpperCamelCase , UpperCamelCase = get_detr_config(_lowercase ) # load original model from torch hub UpperCamelCase = { '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(f'Converting model {model_name}...' ) UpperCamelCase = torch.hub.load('''facebookresearch/detr''' ,model_name_to_original_name[model_name] ,pretrained=_lowercase ).eval() UpperCamelCase = detr.state_dict() # rename keys for src, dest in create_rename_keys(_lowercase ): if is_panoptic: UpperCamelCase = '''detr.''' + src rename_key(_lowercase ,_lowercase ,_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase ,is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase = '''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): UpperCamelCase = state_dict.pop(_lowercase ) UpperCamelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCamelCase = state_dict.pop(_lowercase ) UpperCamelCase = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: UpperCamelCase = state_dict.pop(_lowercase ) UpperCamelCase = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): UpperCamelCase = state_dict.pop(_lowercase ) UpperCamelCase = val # finally, create HuggingFace model and load state dict UpperCamelCase = DetrForSegmentation(_lowercase ) if is_panoptic else DetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() # verify our conversion on an image UpperCamelCase = '''coco_panoptic''' if is_panoptic else '''coco_detection''' UpperCamelCase = DetrImageProcessor(format=_lowercase ) UpperCamelCase = processor(images=prepare_img() ,return_tensors='''pt''' ) UpperCamelCase = encoding['''pixel_values'''] UpperCamelCase = detr(_lowercase ) UpperCamelCase = model(_lowercase ) assert torch.allclose(outputs.logits ,original_outputs['''pred_logits'''] ,atol=1e-3 ) assert torch.allclose(outputs.pred_boxes ,original_outputs['''pred_boxes'''] ,atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs['''pred_masks'''] ,atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''' ) model.push_to_hub(f'nielsr/{model_name}' ) processor.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
34
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
1
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ['''vqvae'''] def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> List[Any]: super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , mel=lowerCamelCase_ , vqvae=lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: return 5_0 if isinstance(self.scheduler , lowerCamelCase_) else 1_0_0_0 @torch.no_grad() def __call__( self , lowerCamelCase_ = 1 , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = 0 , lowerCamelCase_ = 0 , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = 0 , lowerCamelCase_ = 0 , lowerCamelCase_ = None , lowerCamelCase_ = 0 , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: UpperCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(lowerCamelCase_) UpperCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: UpperCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: UpperCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowerCamelCase_ , device=self.device , ) UpperCamelCase = noise UpperCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = self.mel.audio_slice_to_image(lowerCamelCase_) UpperCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''').reshape( (input_image.height, input_image.width)) UpperCamelCase = (input_image / 2_5_5) * 2 - 1 UpperCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: UpperCamelCase = self.vqvae.encode(torch.unsqueeze(lowerCamelCase_ , 0)).latent_dist.sample( generator=lowerCamelCase_)[0] UpperCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: UpperCamelCase = self.scheduler.add_noise(lowerCamelCase_ , lowerCamelCase_ , self.scheduler.timesteps[start_step - 1]) UpperCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) UpperCamelCase = int(mask_start_secs * pixels_per_second) UpperCamelCase = int(mask_end_secs * pixels_per_second) UpperCamelCase = self.scheduler.add_noise(lowerCamelCase_ , lowerCamelCase_ , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , lowerCamelCase_): UpperCamelCase = self.unet(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)['''sample'''] else: UpperCamelCase = self.unet(lowerCamelCase_ , lowerCamelCase_)['''sample'''] if isinstance(self.scheduler , lowerCamelCase_): UpperCamelCase = self.scheduler.step( model_output=lowerCamelCase_ , timestep=lowerCamelCase_ , sample=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , )['''prev_sample'''] else: UpperCamelCase = self.scheduler.step( model_output=lowerCamelCase_ , timestep=lowerCamelCase_ , sample=lowerCamelCase_ , generator=lowerCamelCase_ , )['''prev_sample'''] if mask is not None: if mask_start > 0: UpperCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: UpperCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance UpperCamelCase = 1 / self.vqvae.config.scaling_factor * images UpperCamelCase = self.vqvae.decode(lowerCamelCase_)['''sample'''] UpperCamelCase = (images / 2 + 0.5).clamp(0 , 1) UpperCamelCase = images.cpu().permute(0 , 2 , 3 , 1).numpy() UpperCamelCase = (images * 2_5_5).round().astype('''uint8''') UpperCamelCase = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowerCamelCase_ , mode='''RGB''').convert('''L''') for _ in images)) UpperCamelCase = [self.mel.image_to_audio(lowerCamelCase_) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowerCamelCase_)[:, np.newaxis, :]) , **ImagePipelineOutput(lowerCamelCase_)) @torch.no_grad() def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = 5_0) -> np.ndarray: assert isinstance(self.scheduler , lowerCamelCase_) self.scheduler.set_timesteps(lowerCamelCase_) UpperCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''').reshape((1, image.height, image.width)) for image in images]) UpperCamelCase = (sample / 2_5_5) * 2 - 1 UpperCamelCase = torch.Tensor(lowerCamelCase_).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): UpperCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps UpperCamelCase = self.scheduler.alphas_cumprod[t] UpperCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) UpperCamelCase = 1 - alpha_prod_t UpperCamelCase = self.unet(lowerCamelCase_ , lowerCamelCase_)['''sample'''] UpperCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output UpperCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) UpperCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor: UpperCamelCase = acos(torch.dot(torch.flatten(lowerCamelCase_) , torch.flatten(lowerCamelCase_)) / torch.norm(lowerCamelCase_) / torch.norm(lowerCamelCase_)) return sin((1 - alpha) * theta) * xa / sin(lowerCamelCase_) + sin(alpha * theta) * xa / sin(lowerCamelCase_)
34
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> Any: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase_ , ) return config, input_ids, attention_mask def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = FlaxDistilBertModelTester(self) @slow def UpperCAmelCase__ ( self) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowerCamelCase_) @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)[0] UpperCamelCase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , lowerCamelCase_) UpperCamelCase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4))
34
1
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore SCREAMING_SNAKE_CASE_ = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" SCREAMING_SNAKE_CASE_ = [file for file in filepaths if file != file.lower()] if upper_files: print(f'{len(upper_files)} files contain uppercase characters:') print('\n'.join(upper_files) + '\n') SCREAMING_SNAKE_CASE_ = [file for file in filepaths if ' ' in file] if space_files: print(f'{len(space_files)} files contain space characters:') print('\n'.join(space_files) + '\n') SCREAMING_SNAKE_CASE_ = [file for file in filepaths if '-' in file] if hyphen_files: print(f'{len(hyphen_files)} files contain hyphen characters:') print('\n'.join(hyphen_files) + '\n') SCREAMING_SNAKE_CASE_ = [file for file in filepaths if os.sep not in file] if nodir_files: print(f'{len(nodir_files)} files are not in a directory:') print('\n'.join(nodir_files) + '\n') SCREAMING_SNAKE_CASE_ = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
34
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) A_ = Features({'''image''': Image()} ) A_ = Features({'''labels''': ClassLabel} ) A_ = "image" A_ = "labels" def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.') if not isinstance(features[self.label_column] , lowerCamelCase_): raise ValueError(F'Column {self.label_column} is not a ClassLabel.') UpperCamelCase = copy.deepcopy(self) UpperCamelCase = self.label_schema.copy() UpperCamelCase = features[self.label_column] UpperCamelCase = label_schema return task_template @property def UpperCAmelCase__ ( self) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
34
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
1
"""simple docstring""" def __snake_case ( _lowercase = 100 ): """simple docstring""" UpperCamelCase = set() UpperCamelCase = 0 UpperCamelCase = n + 1 # maximum limit for a in range(2 ,_lowercase ): for b in range(2 ,_lowercase ): UpperCamelCase = a**b # calculates the current power collect_powers.add(_lowercase ) # adds the result to the set return len(_lowercase ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
34
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __snake_case ( _lowercase ,_lowercase=False ): """simple docstring""" try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_REMOTE', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_LOCAL', default=True) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __snake_case ( _lowercase ): """simple docstring""" try: import faiss # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires faiss''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import regex # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires regex''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TORCH_AVAILABLE: UpperCamelCase = unittest.skip('''test requires PyTorch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TF_AVAILABLE: UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.JAX_AVAILABLE: UpperCamelCase = unittest.skip('''test requires JAX''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.PIL_AVAILABLE: UpperCamelCase = unittest.skip('''test requires Pillow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" def _require_spacy_model(_lowercase ): try: import spacy # noqa F401 spacy.load(_lowercase ) except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_lowercase ) )(_lowercase ) else: return test_case return _require_spacy_model def __snake_case ( _lowercase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase = unittest.skip('''test is slow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: UpperCamelCase = unittest.skip('''test is local''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase = unittest.skip('''test is packaged''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase = unittest.skip('''test requires remote''' )(_lowercase ) return test_case def __snake_case ( *_lowercase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_lowercase ) and name.startswith('''test''' ): for decorator in decorators: UpperCamelCase = decorator(_lowercase ) setattr(cls ,_lowercase ,_lowercase ) return cls return decorate class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 0 A_ = 1 A_ = 2 @contextmanager def __snake_case ( _lowercase=OfflineSimulationMode.CONNECTION_FAILS ,_lowercase=1e-16 ): """simple docstring""" UpperCamelCase = requests.Session().request def timeout_request(_lowercase ,_lowercase ,_lowercase ,**_lowercase ): # Change the url to an invalid url so that the connection hangs UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) UpperCamelCase = timeout try: return online_request(_lowercase ,_lowercase ,**_lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase = url UpperCamelCase = e.args[0] UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' ,f'OfflineMock[{url}]' ),) UpperCamelCase = (max_retry_error,) raise def raise_connection_error(_lowercase ,_lowercase ,**_lowercase ): raise requests.ConnectionError('''Offline mode is enabled.''' ,request=_lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' ,_lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' ,_lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' ,_lowercase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowercase ,**_lowercase ) as tmp_dir: try: os.chdir(_lowercase ) yield finally: os.chdir(_lowercase ) @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() def __snake_case ( _lowercase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_lowercase ,*_lowercase ,**_lowercase ): try: return func(*_lowercase ,**_lowercase ) except HTTPError as err: if str(_lowercase ).startswith('''500''' ) or str(_lowercase ).startswith('''502''' ): pytest.xfail(str(_lowercase ) ) raise err return decorator.decorator(_wrapper ,_lowercase ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" while True: UpperCamelCase = await stream.readline() if line: callback(_lowercase ) else: break async def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ,_lowercase=False ): """simple docstring""" if echo: print('''\nRunning: ''' ,''' '''.join(_lowercase ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=_lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=_lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(_lowercase ,_lowercase ,_lowercase ,_lowercase="" ): UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase ,_lowercase ,file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stdout ,label='''stdout:''' ) ), _read_stream(p.stderr ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stderr ,label='''stderr:''' ) ), ] ,timeout=_lowercase ,) return _RunOutput(await p.wait() ,_lowercase ,_lowercase ) def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=180 ,_lowercase=False ,_lowercase=True ): """simple docstring""" UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(_lowercase ,env=_lowercase ,stdin=_lowercase ,timeout=_lowercase ,quiet=_lowercase ,echo=_lowercase ) ) UpperCamelCase = ''' '''.join(_lowercase ) if result.returncode > 0: UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def __snake_case ( ): """simple docstring""" UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' ,'''gw0''' ) UpperCamelCase = re.sub(r'''^gw''' ,'''''' ,_lowercase ,0 ,re.M ) return int(_lowercase ) def __snake_case ( ): """simple docstring""" UpperCamelCase = 2_9500 UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
34
1
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase ) count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 ) count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase ) return count def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_lowercase ,_lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_ = TemporaryFile() SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_ = np.load(outfile) SCREAMING_SNAKE_CASE_ = len(M) - 1 SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
34
"""simple docstring""" import operator def __snake_case ( _lowercase ,_lowercase = False ,_lowercase = None ): """simple docstring""" UpperCamelCase = operator.lt if reverse else operator.gt UpperCamelCase = solution or [] if not arr: return solution UpperCamelCase = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase ,sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: UpperCamelCase = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase ,_lowercase ): solution.insert(_lowercase ,_lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase ,_lowercase ,_lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
34
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json', } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''layoutlmv3''' def __init__( self , lowerCamelCase_=5_0_2_6_5 , lowerCamelCase_=7_6_8 , lowerCamelCase_=1_2 , lowerCamelCase_=1_2 , lowerCamelCase_=3_0_7_2 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-5 , lowerCamelCase_=1 , lowerCamelCase_=0 , lowerCamelCase_=2 , lowerCamelCase_=1_0_2_4 , lowerCamelCase_=1_2_8 , lowerCamelCase_=1_2_8 , lowerCamelCase_=True , lowerCamelCase_=3_2 , lowerCamelCase_=1_2_8 , lowerCamelCase_=6_4 , lowerCamelCase_=2_5_6 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=2_2_4 , lowerCamelCase_=3 , lowerCamelCase_=1_6 , lowerCamelCase_=None , **lowerCamelCase_ , ) -> Optional[Any]: super().__init__( vocab_size=lowerCamelCase_ , hidden_size=lowerCamelCase_ , num_hidden_layers=lowerCamelCase_ , num_attention_heads=lowerCamelCase_ , intermediate_size=lowerCamelCase_ , hidden_act=lowerCamelCase_ , hidden_dropout_prob=lowerCamelCase_ , attention_probs_dropout_prob=lowerCamelCase_ , max_position_embeddings=lowerCamelCase_ , type_vocab_size=lowerCamelCase_ , initializer_range=lowerCamelCase_ , layer_norm_eps=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = max_ad_position_embeddings UpperCamelCase = coordinate_size UpperCamelCase = shape_size UpperCamelCase = has_relative_attention_bias UpperCamelCase = rel_pos_bins UpperCamelCase = max_rel_pos UpperCamelCase = has_spatial_attention_bias UpperCamelCase = rel_ad_pos_bins UpperCamelCase = max_rel_ad_pos UpperCamelCase = text_embed UpperCamelCase = visual_embed UpperCamelCase = input_size UpperCamelCase = num_channels UpperCamelCase = patch_size UpperCamelCase = classifier_dropout class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = version.parse('''1.12''' ) @property def UpperCAmelCase__ ( self) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ]) @property def UpperCAmelCase__ ( self) -> float: return 1e-5 @property def UpperCAmelCase__ ( self) -> int: return 1_2 def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = -1 , lowerCamelCase_ = -1 , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = 3 , lowerCamelCase_ = 4_0 , lowerCamelCase_ = 4_0 , ) -> Mapping[str, Any]: setattr(processor.image_processor , '''apply_ocr''' , lowerCamelCase_) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase = processor.tokenizer.num_special_tokens_to_add(lowerCamelCase_) UpperCamelCase = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase_) # Generate dummy inputs according to compute batch and sequence UpperCamelCase = [[''' '''.join([processor.tokenizer.unk_token]) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCamelCase = [[[4_8, 8_4, 7_3, 1_2_8]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCamelCase = self._generate_dummy_images(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = dict( processor( lowerCamelCase_ , text=lowerCamelCase_ , boxes=lowerCamelCase_ , return_tensors=lowerCamelCase_ , )) return inputs
34
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' SCREAMING_SNAKE_CASE_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any: if return_pvalue: UpperCamelCase = pearsonr(lowerCamelCase_ , lowerCamelCase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_ , lowerCamelCase_)[0])}
34
1
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): SCREAMING_SNAKE_CASE_ = 'pt' elif is_tf_available(): SCREAMING_SNAKE_CASE_ = 'tf' else: SCREAMING_SNAKE_CASE_ = 'jax' class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = PerceiverTokenizer A_ = False def UpperCAmelCase__ ( self) -> Optional[int]: super().setUp() UpperCamelCase = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname) @cached_property def UpperCAmelCase__ ( self) -> Any: return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''') def UpperCAmelCase__ ( self , **lowerCamelCase_) -> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=2_0 , lowerCamelCase_=5) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. UpperCamelCase = [] for i in range(len(lowerCamelCase_)): try: UpperCamelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCamelCase_) except UnicodeDecodeError: pass toks.append((i, tok)) UpperCamelCase = list(filter(lambda lowerCamelCase_: re.match(R'''^[ a-zA-Z]+$''' , t[1]) , lowerCamelCase_)) UpperCamelCase = list(filter(lambda lowerCamelCase_: [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCamelCase_) , lowerCamelCase_)) if max_length is not None and len(lowerCamelCase_) > max_length: UpperCamelCase = toks[:max_length] if min_length is not None and len(lowerCamelCase_) < min_length and len(lowerCamelCase_) > 0: while len(lowerCamelCase_) < min_length: UpperCamelCase = toks + toks # toks_str = [t[1] for t in toks] UpperCamelCase = [t[0] for t in toks] # Ensure consistency UpperCamelCase = tokenizer.decode(lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_) if " " not in output_txt and len(lowerCamelCase_) > 1: UpperCamelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCamelCase_) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCamelCase_) ) if with_prefix_space: UpperCamelCase = ''' ''' + output_txt UpperCamelCase = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_) return output_txt, output_ids def UpperCAmelCase__ ( self) -> int: UpperCamelCase = self.perceiver_tokenizer UpperCamelCase = '''Unicode €.''' UpperCamelCase = tokenizer(lowerCamelCase_) UpperCamelCase = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['''input_ids'''] , lowerCamelCase_) # decoding UpperCamelCase = tokenizer.decode(lowerCamelCase_) self.assertEqual(lowerCamelCase_ , '''[CLS]Unicode €.[SEP]''') UpperCamelCase = tokenizer('''e è é ê ë''') UpperCamelCase = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['''input_ids'''] , lowerCamelCase_) # decoding UpperCamelCase = tokenizer.decode(lowerCamelCase_) self.assertEqual(lowerCamelCase_ , '''[CLS]e è é ê ë[SEP]''') # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''')) , '''[CLS]e è é ê ë[SEP]''') def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = self.perceiver_tokenizer UpperCamelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off UpperCamelCase = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on UpperCamelCase = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors=lowerCamelCase_) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_) if FRAMEWORK != "jax": UpperCamelCase = list(batch.input_ids.numpy()[0]) else: UpperCamelCase = list(batch.input_ids.tolist()[0]) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_) self.assertEqual((2, 3_8) , batch.input_ids.shape) self.assertEqual((2, 3_8) , batch.attention_mask.shape) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = self.perceiver_tokenizer UpperCamelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCamelCase = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors=lowerCamelCase_) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , lowerCamelCase_) self.assertIn('''attention_mask''' , lowerCamelCase_) self.assertNotIn('''decoder_input_ids''' , lowerCamelCase_) self.assertNotIn('''decoder_attention_mask''' , lowerCamelCase_) def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = self.perceiver_tokenizer UpperCamelCase = [ '''Summary of the text.''', '''Another summary.''', ] UpperCamelCase = tokenizer( text_target=lowerCamelCase_ , max_length=3_2 , padding='''max_length''' , truncation=lowerCamelCase_ , return_tensors=lowerCamelCase_) self.assertEqual(3_2 , targets['''input_ids'''].shape[1]) def UpperCAmelCase__ ( self) -> Optional[int]: # safety check on max_len default value so we are sure the test works UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): self.assertNotEqual(tokenizer.model_max_length , 4_2) # Now let's start the test UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): # Isolate this from the other tests because we save additional tokens/etc UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = ''' He is very happy, UNwant\u00E9d,running''' UpperCamelCase = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_) tokenizer.save_pretrained(lowerCamelCase_) UpperCamelCase = tokenizer.__class__.from_pretrained(lowerCamelCase_) UpperCamelCase = after_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_) shutil.rmtree(lowerCamelCase_) UpperCamelCase = self.get_tokenizers(model_max_length=4_2) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): # Isolate this from the other tests because we save additional tokens/etc UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam''']) UpperCamelCase = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''') tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens}) UpperCamelCase = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_) tokenizer.save_pretrained(lowerCamelCase_) UpperCamelCase = tokenizer.__class__.from_pretrained(lowerCamelCase_) UpperCamelCase = after_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length , 4_2) UpperCamelCase = tokenizer.__class__.from_pretrained(lowerCamelCase_ , model_max_length=4_3) self.assertEqual(tokenizer.model_max_length , 4_3) shutil.rmtree(lowerCamelCase_) def UpperCAmelCase__ ( self) -> str: UpperCamelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase_) with open(os.path.join(lowerCamelCase_ , '''special_tokens_map.json''') , encoding='''utf-8''') as json_file: UpperCamelCase = json.load(lowerCamelCase_) with open(os.path.join(lowerCamelCase_ , '''tokenizer_config.json''') , encoding='''utf-8''') as json_file: UpperCamelCase = json.load(lowerCamelCase_) UpperCamelCase = [F'<extra_id_{i}>' for i in range(1_2_5)] UpperCamelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] UpperCamelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowerCamelCase_ , '''special_tokens_map.json''') , '''w''' , encoding='''utf-8''') as outfile: json.dump(lowerCamelCase_ , lowerCamelCase_) with open(os.path.join(lowerCamelCase_ , '''tokenizer_config.json''') , '''w''' , encoding='''utf-8''') as outfile: json.dump(lowerCamelCase_ , lowerCamelCase_) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCamelCase = tokenizer_class.from_pretrained( lowerCamelCase_ , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''])) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCamelCase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowerCamelCase_)] UpperCamelCase = tokenizer_class.from_pretrained( lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''])) , ) def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8]) , '''�''') def UpperCAmelCase__ ( self) -> Optional[Any]: pass def UpperCAmelCase__ ( self) -> Union[str, Any]: pass def UpperCAmelCase__ ( self) -> List[Any]: pass def UpperCAmelCase__ ( self) -> Tuple: pass def UpperCAmelCase__ ( self) -> Optional[int]: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens UpperCamelCase = self.get_tokenizers(fast=lowerCamelCase_ , do_lower_case=lowerCamelCase_) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): UpperCamelCase = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] UpperCamelCase = tokenizer.convert_tokens_to_string(lowerCamelCase_) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_)
34
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ComputeEnvironment.AMAZON_SAGEMAKER A_ = True A_ = '''ml.p3.2xlarge''' A_ = '''accelerate_sagemaker_execution_role''' A_ = '''hf-sm''' A_ = '''us-east-1''' A_ = 1 A_ = '''accelerate-sagemaker-1''' A_ = '''1.6''' A_ = '''4.4''' A_ = '''train.py''' A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args['''model_name_or_path'''] , lowerCamelCase_) assert isinstance(converted_args['''do_train'''] , lowerCamelCase_) assert isinstance(converted_args['''epochs'''] , lowerCamelCase_) assert isinstance(converted_args['''learning_rate'''] , lowerCamelCase_) assert isinstance(converted_args['''max_steps'''] , lowerCamelCase_) with pytest.raises(lowerCamelCase_): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
34
1
"""simple docstring""" from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # pylint: disable=invalid-name def __snake_case ( _lowercase ): """simple docstring""" if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(_lowercase ): return ext raise Exception( f'Unable to determine file format from file extension {path}. ' f'Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = pipeline( task=args.task ,model=args.model if args.model else None ,config=args.config ,tokenizer=args.tokenizer ,device=args.device ,) UpperCamelCase = try_infer_format_from_ext(args.input ) if args.format == '''infer''' else args.format UpperCamelCase = PipelineDataFormat.from_str( format=_lowercase ,output_path=args.output ,input_path=args.input ,column=args.column if args.column else nlp.default_input_names ,overwrite=args.overwrite ,) return RunCommand(_lowercase ,_lowercase ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_) -> List[str]: UpperCamelCase = nlp UpperCamelCase = reader @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> Any: UpperCamelCase = parser.add_parser('''run''' , help='''Run a pipeline through the CLI''') run_parser.add_argument('''--task''' , choices=get_supported_tasks() , help='''Task to run''') run_parser.add_argument('''--input''' , type=lowerCamelCase_ , help='''Path to the file to use for inference''') run_parser.add_argument('''--output''' , type=lowerCamelCase_ , help='''Path to the file that will be used post to write results.''') run_parser.add_argument('''--model''' , type=lowerCamelCase_ , help='''Name or path to the model to instantiate.''') run_parser.add_argument('''--config''' , type=lowerCamelCase_ , help='''Name or path to the model\'s config to instantiate.''') run_parser.add_argument( '''--tokenizer''' , type=lowerCamelCase_ , help='''Name of the tokenizer to use. (default: same as the model name)''') run_parser.add_argument( '''--column''' , type=lowerCamelCase_ , help='''Name of the column to use as input. (For multi columns input as QA use column1,columns2)''' , ) run_parser.add_argument( '''--format''' , type=lowerCamelCase_ , default='''infer''' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='''Input format to read from''' , ) run_parser.add_argument( '''--device''' , type=lowerCamelCase_ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) run_parser.add_argument('''--overwrite''' , action='''store_true''' , help='''Allow overwriting the output file.''') run_parser.set_defaults(func=lowerCamelCase_) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase , UpperCamelCase = self._nlp, [] for entry in self._reader: UpperCamelCase = nlp(**lowerCamelCase_) if self._reader.is_multi_columns else nlp(lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_): outputs.append(lowerCamelCase_) else: outputs += output # Saving data if self._nlp.binary_output: UpperCamelCase = self._reader.save_binary(lowerCamelCase_) logger.warning(F'Current pipeline requires output to be in binary format, saving at {binary_path}') else: self._reader.save(lowerCamelCase_)
34
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class snake_case_ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCamelCase_ = " ") -> List[str]: UpperCamelCase = sentence_delimiter def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return list(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase_): chars.extend(self.process_string(lowerCamelCase_)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_) - 1: chars.append(self.sentence_delimiter) return chars SCREAMING_SNAKE_CASE_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
1
"""simple docstring""" from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 42 A_ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
34
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = '''left''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<eop>", "<eod>"] , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = 3 UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> List[str]: return len(self.sp_model) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> str: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: if self.remove_space: UpperCamelCase = ''' '''.join(inputs.strip().split()) else: UpperCamelCase = inputs UpperCamelCase = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCamelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase_) UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_)]) if self.do_lower_case: UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) UpperCamelCase = [] for piece in pieces: if len(lowerCamelCase_) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCamelCase = cur_pieces[1:] else: UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCamelCase_) else: new_pieces.append(lowerCamelCase_) return new_pieces def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.sp_model.IdToPiece(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: UpperCamelCase = ''''''.join(lowerCamelCase_).replace(lowerCamelCase_ , ''' ''').strip() return out_string def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> str: UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCamelCase_) UpperCamelCase = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) UpperCamelCase = [] sub_texts.append(lowerCamelCase_) else: current_sub_text.append(lowerCamelCase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(lowerCamelCase_) return clean_text else: return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) + [1, 1] return ([0] * len(lowerCamelCase_)) + [1, 1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,)
34
1
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir('fixtures/test_sentencepiece.model') SCREAMING_SNAKE_CASE_ = {'target_lang': 'fi', 'source_lang': 'en'} SCREAMING_SNAKE_CASE_ = '>>zh<<' SCREAMING_SNAKE_CASE_ = 'Helsinki-NLP/' if is_torch_available(): SCREAMING_SNAKE_CASE_ = 'pt' elif is_tf_available(): SCREAMING_SNAKE_CASE_ = 'tf' else: SCREAMING_SNAKE_CASE_ = 'jax' @require_sentencepiece class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = MarianTokenizer A_ = False A_ = True def UpperCAmelCase__ ( self) -> Union[str, Any]: super().setUp() UpperCamelCase = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_)))) UpperCamelCase = Path(self.tmpdirname) save_json(lowerCamelCase_ , save_dir / VOCAB_FILES_NAMES['''vocab''']) save_json(lowerCamelCase_ , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file''']) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowerCamelCase_ , save_dir / VOCAB_FILES_NAMES['''source_spm''']) copyfile(lowerCamelCase_ , save_dir / VOCAB_FILES_NAMES['''target_spm''']) UpperCamelCase = MarianTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return ( "This is a test", "This is a test", ) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = '''</s>''' UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_) , lowerCamelCase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_) , lowerCamelCase_) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''</s>''') self.assertEqual(vocab_keys[1] , '''<unk>''') self.assertEqual(vocab_keys[-1] , '''<pad>''') self.assertEqual(len(lowerCamelCase_) , 9) def UpperCAmelCase__ ( self) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 9) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = MarianTokenizer.from_pretrained(F'{ORG_NAME}opus-mt-en-de') UpperCamelCase = en_de_tokenizer(['''I am a small frog'''] , return_tensors=lowerCamelCase_) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0] self.assertListEqual(lowerCamelCase_ , batch.input_ids[0]) UpperCamelCase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowerCamelCase_) UpperCamelCase = [x.name for x in Path(lowerCamelCase_).glob('''*''')] self.assertIn('''source.spm''' , lowerCamelCase_) MarianTokenizer.from_pretrained(lowerCamelCase_) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = self.get_tokenizer() UpperCamelCase = tok( ['''I am a small frog''' * 1_0_0_0, '''I am a small frog'''] , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , return_tensors=lowerCamelCase_) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_) self.assertEqual(batch.input_ids.shape , (2, 5_1_2)) def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = self.get_tokenizer() UpperCamelCase = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=lowerCamelCase_ , return_tensors=lowerCamelCase_) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_) self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0)) @slow def UpperCAmelCase__ ( self) -> List[str]: # fmt: off UpperCamelCase = {'''input_ids''': [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , ) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''') UpperCamelCase = '''Tämä on testi''' UpperCamelCase = '''This is a test''' UpperCamelCase = [7_6, 7, 2_0_4_7, 2] UpperCamelCase = [6_9, 1_2, 1_1, 9_4_0, 2] UpperCamelCase = tokenizer(lowerCamelCase_).input_ids self.assertListEqual(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = tokenizer(text_target=lowerCamelCase_).input_ids self.assertListEqual(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) self.assertEqual(lowerCamelCase_ , lowerCamelCase_)
34
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } SCREAMING_SNAKE_CASE_ = { 'openbmb/cpm-ant-10b': 1024, } def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = collections.OrderedDict() with open(_lowercase ,'''r''' ,encoding='''utf-8''' ) as reader: UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): UpperCamelCase = token.rstrip('''\n''' ) UpperCamelCase = index return vocab class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_=2_0_0) -> Any: UpperCamelCase = vocab UpperCamelCase = unk_token UpperCamelCase = max_input_chars_per_word def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = list(lowerCamelCase_) if len(lowerCamelCase_) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase = 0 UpperCamelCase = [] while start < len(lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = None while start < end: UpperCamelCase = ''''''.join(chars[start:end]) if substr in self.vocab: UpperCamelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(lowerCamelCase_) UpperCamelCase = end return sub_tokens class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] A_ = False def __init__( self , lowerCamelCase_ , lowerCamelCase_="<d>" , lowerCamelCase_="</d>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<unk>" , lowerCamelCase_="</n>" , lowerCamelCase_="</_>" , lowerCamelCase_="left" , **lowerCamelCase_ , ) -> List[str]: requires_backends(self , ['''jieba''']) super().__init__( bod_token=lowerCamelCase_ , eod_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , line_token=lowerCamelCase_ , space_token=lowerCamelCase_ , padding_side=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = bod_token UpperCamelCase = eod_token UpperCamelCase = load_vocab(lowerCamelCase_) UpperCamelCase = self.encoder[space_token] UpperCamelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def UpperCAmelCase__ ( self) -> Dict: return self.encoder[self.bod_token] @property def UpperCAmelCase__ ( self) -> str: return self.encoder[self.eod_token] @property def UpperCAmelCase__ ( self) -> List[Any]: return self.encoder["\n"] @property def UpperCAmelCase__ ( self) -> int: return len(self.encoder) def UpperCAmelCase__ ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = [] for x in jieba.cut(lowerCamelCase_ , cut_all=lowerCamelCase_): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase_)) return output_tokens def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> Tuple: UpperCamelCase = [i for i in token_ids if i >= 0] UpperCamelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return token in self.encoder def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return "".join(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token)) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return self.decoder.get(lowerCamelCase_ , self.unk_token) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if os.path.isdir(lowerCamelCase_): UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: UpperCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCamelCase = 0 if " " in self.encoder: UpperCamelCase = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase = self.encoder['''\n'''] del self.encoder["\n"] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''') UpperCamelCase = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) return [1] + ([0] * len(lowerCamelCase_))
34
1