code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from math import pow def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase ,_lowercase ,): """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count UpperCamelCase = int(pow(_lowercase ,_lowercase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n UpperCamelCase , UpperCamelCase = backtrack( _lowercase ,_lowercase ,current_number + 1 ,_lowercase ,_lowercase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. UpperCamelCase , UpperCamelCase = backtrack( _lowercase ,_lowercase ,current_number + 1 ,_lowercase ,_lowercase ) return current_sum, solutions_count def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(_lowercase ,_lowercase ,1 ,0 ,0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
34
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=0) -> int: UpperCamelCase = 1.0 if scale is None else scale UpperCamelCase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_)]) @property def UpperCAmelCase__ ( self) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase__ ( self) -> List[str]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase__ ( self) -> Any: return self.variance.sqrt() class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = args_dim UpperCamelCase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_) for dim in args_dim.values()]) UpperCamelCase = domain_map def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple[torch.Tensor]: UpperCamelCase = [proj(lowerCamelCase_) for proj in self.proj] return self.domain_map(*lowerCamelCase_) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__() UpperCamelCase = function def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_) -> Tuple: return self.function(lowerCamelCase_ , *lowerCamelCase_) class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , lowerCamelCase_ = 1) -> None: UpperCamelCase = dim UpperCamelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if self.dim == 1: return self.distribution_class(*lowerCamelCase_) else: return Independent(self.distribution_class(*lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Distribution: UpperCamelCase = self._base_distribution(lowerCamelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim) @property def UpperCAmelCase__ ( self) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase__ ( self) -> int: return len(self.event_shape) @property def UpperCAmelCase__ ( self) -> float: return 0.0 def UpperCAmelCase__ ( self , lowerCamelCase_) -> nn.Module: return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def UpperCAmelCase__ ( self , *lowerCamelCase_) -> List[str]: raise NotImplementedError() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCamelCase_) + 4.0)) / 2.0 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"df": 1, "loc": 1, "scale": 1} A_ = StudentT @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) UpperCamelCase = 2.0 + cls.squareplus(lowerCamelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"loc": 1, "scale": 1} A_ = Normal @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"total_count": 1, "logits": 1} A_ = NegativeBinomial @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = cls.squareplus(lowerCamelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
34
1
"""simple docstring""" import datasets from .evaluate import evaluate SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' SCREAMING_SNAKE_CASE_ = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' SCREAMING_SNAKE_CASE_ = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string'''), '''prediction_text''': datasets.Value('''string''')}, '''references''': { '''id''': datasets.Value('''string'''), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string'''), '''answer_start''': datasets.Value('''int32'''), }), }, }) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> int: UpperCamelCase = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} UpperCamelCase = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] UpperCamelCase = evaluate(dataset=lowerCamelCase_ , predictions=lowerCamelCase_) return score
34
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowercase ,id=_lowercase )
34
1
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = int(_lowercase ) if n_element < 1: UpperCamelCase = ValueError('''a should be a positive number''' ) raise my_error UpperCamelCase = [1] UpperCamelCase , UpperCamelCase , UpperCamelCase = (0, 0, 0) UpperCamelCase = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 ,hamming_list[j] * 3 ,hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') SCREAMING_SNAKE_CASE_ = hamming(int(n)) print('-----------------------------------------------------') print(f'The list with nth numbers is: {hamming_numbers}') print('-----------------------------------------------------')
34
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
34
1
"""simple docstring""" from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def UpperCAmelCase__ ( self , lowerCamelCase_) -> float: return 0.0 def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) UpperCamelCase = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 512 UpperCamelCase = [1] + [0] * (size - 1) UpperCamelCase = [filter_type.process(_lowercase ) for item in inputs] UpperCamelCase = [0] * (samplerate - size) # zero-padding outputs += filler UpperCamelCase = np.abs(np.fft.fft(_lowercase ) ) UpperCamelCase = 20 * np.logaa(_lowercase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 ,samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds UpperCamelCase = get_bounds(_lowercase ,_lowercase ) plt.ylim(max([-80, bounds[0]] ) ,min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(_lowercase ) plt.show() def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 512 UpperCamelCase = [1] + [0] * (size - 1) UpperCamelCase = [filter_type.process(_lowercase ) for item in inputs] UpperCamelCase = [0] * (samplerate - size) # zero-padding outputs += filler UpperCamelCase = np.angle(np.fft.fft(_lowercase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 ,samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi ,2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(_lowercase ,-2 * pi ) ) plt.show()
34
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
1
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = DebertaTokenizer A_ = True A_ = DebertaTokenizerFast def UpperCAmelCase__ ( self) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_)))) UpperCamelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCamelCase = {'''unk_token''': '''[UNK]'''} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(lowerCamelCase_) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(lowerCamelCase_)) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = '''lower newer''' UpperCamelCase = '''lower newer''' return input_text, output_text def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = self.get_tokenizer() UpperCamelCase = '''lower newer''' UpperCamelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCamelCase = tokenizer.tokenize(lowerCamelCase_) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_) , lowerCamelCase_) def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = self.get_tokenizer() UpperCamelCase = tokenizer('''Hello''' , '''World''') UpperCamelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , lowerCamelCase_) @slow def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''') UpperCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCamelCase_) UpperCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCamelCase_) UpperCamelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_) UpperCamelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class) for tokenizer_class in tokenizer_classes: UpperCamelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''') UpperCamelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] UpperCamelCase = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_) UpperCamelCase = [tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) for seq in encoding['''input_ids''']] # fmt: off UpperCamelCase = { '''input_ids''': [ [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 3_5, 8_3, 2_5_1_9_1, 1_6_3, 1_8_8_5_4, 1_3, 1_2_1_5_6, 1_2, 1_6_1_0_1, 2_5_3_7_6, 1_3_8_0_7, 9, 2_2_2_0_5, 2_7_8_9_3, 1_6_3_5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 2_4_5_3_6, 8_0, 4_3_7_9_7, 4_8_7_8, 7_3_7_3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_3_3, 7_8, 6_5, 1_6, 1_0, 3_7_2_4, 1_5_3_8, 3_3_1_8_3, 1_1_3_0_3, 4_3_7_9_7, 1_9_3_8, 4, 8_7_0, 2_4_1_6_5, 2_9_1_0_5, 5, 7_3_9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 3_6_1_7_3, 8_8, 8_0, 6_5_0, 7_8_2_1, 4_5_9_4_0, 6, 5_2, 2_5_5_9, 5, 1_8_3_6, 9, 5, 7_3_9_7, 1_3_1_7_1, 3_1, 5, 1_8_3_6, 9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCamelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , lowerCamelCase_) for expected, decoded in zip(lowerCamelCase_ , lowerCamelCase_): self.assertEqual(lowerCamelCase_ , lowerCamelCase_)
34
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase = getattr(_lowercase ,_lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase ,_lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) UpperCamelCase = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCamelCase = torch.tensor(_lowercase ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_lowercase ) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to(_lowercase ) else: UpperCamelCase = torch.tensor(_lowercase ,device=_lowercase ) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase ,requires_grad=old_value.requires_grad ) UpperCamelCase = new_value def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase ,nn.Linear ) or isinstance(_lowercase ,_lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase ,_lowercase ): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase ,_lowercase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase ,_lowercase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ,has_been_replaced=_lowercase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,_lowercase ,) return replace_with_bnb_linear(*_lowercase ,**_lowercase ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,_lowercase ,) return set_module_quantized_tensor_to_device(*_lowercase ,**_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase ,_lowercase ): UpperCamelCase = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(_lowercase ,[] ) UpperCamelCase = len(_lowercase ) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase ) - set(_lowercase ) UpperCamelCase = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase ,'''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names
34
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''falcon''' A_ = ['''past_key_values'''] def __init__( self , lowerCamelCase_=6_5_0_2_4 , lowerCamelCase_=4_5_4_4 , lowerCamelCase_=3_2 , lowerCamelCase_=7_1 , lowerCamelCase_=1e-5 , lowerCamelCase_=0.02 , lowerCamelCase_=True , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=None , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=1_1 , lowerCamelCase_=1_1 , **lowerCamelCase_ , ) -> Any: UpperCamelCase = vocab_size # Backward compatibility with n_embed kwarg UpperCamelCase = kwargs.pop('''n_embed''' , lowerCamelCase_) UpperCamelCase = hidden_size if n_embed is None else n_embed UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = layer_norm_epsilon UpperCamelCase = initializer_range UpperCamelCase = use_cache UpperCamelCase = hidden_dropout UpperCamelCase = attention_dropout UpperCamelCase = bos_token_id UpperCamelCase = eos_token_id UpperCamelCase = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCamelCase = alibi UpperCamelCase = new_decoder_architecture UpperCamelCase = multi_query # Ignored when new_decoder_architecture is True UpperCamelCase = parallel_attn UpperCamelCase = bias super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> int: return self.hidden_size // self.num_attention_heads @property def UpperCAmelCase__ ( self) -> str: return not self.alibi
34
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase ) count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 ) count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase ) return count def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_lowercase ,_lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_ = TemporaryFile() SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_ = np.load(outfile) SCREAMING_SNAKE_CASE_ = len(M) - 1 SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
34
1
"""simple docstring""" from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] for rt in rc.restypes: UpperCamelCase = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCamelCase = {name: i for i, name in enumerate(_lowercase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCamelCase = torch.tensor( _lowercase ,dtype=torch.intaa ,device=protein['''aatype'''].device ,) UpperCamelCase = torch.tensor( _lowercase ,dtype=torch.intaa ,device=protein['''aatype'''].device ,) UpperCamelCase = torch.tensor( _lowercase ,dtype=torch.floataa ,device=protein['''aatype'''].device ,) UpperCamelCase = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCamelCase = restype_atomaa_to_atomaa[protein_aatype] UpperCamelCase = restype_atomaa_mask[protein_aatype] UpperCamelCase = residx_atomaa_mask UpperCamelCase = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCamelCase = restype_atomaa_to_atomaa[protein_aatype] UpperCamelCase = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCamelCase = torch.zeros([21, 37] ,dtype=torch.floataa ,device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCamelCase = rc.restype_atoa[restype_letter] UpperCamelCase = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCamelCase = rc.atom_order[atom_name] UpperCamelCase = 1 UpperCamelCase = restype_atomaa_mask[protein_aatype] UpperCamelCase = residx_atomaa_mask return protein def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tree_map(lambda _lowercase : torch.tensor(_lowercase ,device=batch['''aatype'''].device ) ,_lowercase ,np.ndarray ) UpperCamelCase = tensor_tree_map(lambda _lowercase : np.array(_lowercase ) ,make_atomaa_masks(_lowercase ) ) return out
34
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE_ = os.path.join(git_repo_path, 'src', 'transformers') SCREAMING_SNAKE_CASE_ = '\n{0} = None\n' SCREAMING_SNAKE_CASE_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' SCREAMING_SNAKE_CASE_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowerCamelCase_) UpperCamelCase = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowerCamelCase_ , '''tokenizers''') UpperCamelCase = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowerCamelCase_ , '''tensorflow_text''') UpperCamelCase = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tensorflow_text''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers_and_vision''') def UpperCAmelCase__ ( self) -> int: UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCamelCase_) self.assertIn('''tensorflow_text''' , lowerCamelCase_) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCamelCase_) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , '''\nCONSTANT = None\n''') UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowerCamelCase_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowerCamelCase_)
34
1
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=2 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=3 , lowerCamelCase_=4 , lowerCamelCase_=None , ) -> Tuple: UpperCamelCase = parent UpperCamelCase = 1_3 UpperCamelCase = 7 UpperCamelCase = True UpperCamelCase = True UpperCamelCase = True UpperCamelCase = True UpperCamelCase = 9_9 UpperCamelCase = 3_8_4 UpperCamelCase = 2 UpperCamelCase = 4 UpperCamelCase = 3_7 UpperCamelCase = '''gelu''' UpperCamelCase = 0.1 UpperCamelCase = 0.1 UpperCamelCase = 5_1_2 UpperCamelCase = 1_6 UpperCamelCase = 2 UpperCamelCase = 0.02 UpperCamelCase = 3 UpperCamelCase = 4 UpperCamelCase = 1_2_8 UpperCamelCase = 2 UpperCamelCase = 9 UpperCamelCase = 1 UpperCamelCase = None def UpperCAmelCase__ ( self) -> int: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) UpperCamelCase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCamelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int: UpperCamelCase = TFConvBertModel(config=lowerCamelCase_) UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCamelCase = [input_ids, input_mask] UpperCamelCase = model(lowerCamelCase_) UpperCamelCase = model(lowerCamelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = TFConvBertForMaskedLM(config=lowerCamelCase_) UpperCamelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase = model(lowerCamelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = self.num_labels UpperCamelCase = TFConvBertForSequenceClassification(config=lowerCamelCase_) UpperCamelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase = model(lowerCamelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = self.num_choices UpperCamelCase = TFConvBertForMultipleChoice(config=lowerCamelCase_) UpperCamelCase = tf.tile(tf.expand_dims(lowerCamelCase_ , 1) , (1, self.num_choices, 1)) UpperCamelCase = tf.tile(tf.expand_dims(lowerCamelCase_ , 1) , (1, self.num_choices, 1)) UpperCamelCase = tf.tile(tf.expand_dims(lowerCamelCase_ , 1) , (1, self.num_choices, 1)) UpperCamelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCamelCase = model(lowerCamelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase = self.num_labels UpperCamelCase = TFConvBertForTokenClassification(config=lowerCamelCase_) UpperCamelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase = model(lowerCamelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = TFConvBertForQuestionAnswering(config=lowerCamelCase_) UpperCamelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase = model(lowerCamelCase_) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A_ = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A_ = False A_ = False A_ = False def UpperCAmelCase__ ( self) -> Dict: UpperCamelCase = TFConvBertModelTester(self) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=3_7) def UpperCAmelCase__ ( self) -> Optional[int]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_) @slow def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True UpperCamelCase = True if hasattr(lowerCamelCase_ , '''use_cache'''): UpperCamelCase = True UpperCamelCase = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length) UpperCamelCase = getattr(self.model_tester , '''key_length''' , lowerCamelCase_) for model_class in self.all_model_classes: UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = model_class(lowerCamelCase_) UpperCamelCase = len(model(lowerCamelCase_)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_) UpperCamelCase = os.path.join(lowerCamelCase_ , '''saved_model''' , '''1''') UpperCamelCase = tf.keras.models.load_model(lowerCamelCase_) UpperCamelCase = model(lowerCamelCase_) if self.is_encoder_decoder: UpperCamelCase = outputs['''encoder_hidden_states'''] UpperCamelCase = outputs['''encoder_attentions'''] else: UpperCamelCase = outputs['''hidden_states'''] UpperCamelCase = outputs['''attentions'''] self.assertEqual(len(lowerCamelCase_) , lowerCamelCase_) UpperCamelCase = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(lowerCamelCase_) , lowerCamelCase_) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowerCamelCase_) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''') self.assertIsNotNone(lowerCamelCase_) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True UpperCamelCase = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length) UpperCamelCase = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length) UpperCamelCase = getattr(self.model_tester , '''key_length''' , lowerCamelCase_) UpperCamelCase = getattr(self.model_tester , '''key_length''' , lowerCamelCase_) def check_decoder_attentions_output(lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) self.assertEqual(out_len % 2 , 0) UpperCamelCase = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase_) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowerCamelCase_): UpperCamelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCamelCase_) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCamelCase = True UpperCamelCase = False UpperCamelCase = model_class(lowerCamelCase_) UpperCamelCase = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_)) UpperCamelCase = len(lowerCamelCase_) self.assertEqual(config.output_hidden_states , lowerCamelCase_) check_encoder_attentions_output(lowerCamelCase_) if self.is_encoder_decoder: UpperCamelCase = model_class(lowerCamelCase_) UpperCamelCase = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_)) self.assertEqual(config.output_hidden_states , lowerCamelCase_) check_decoder_attentions_output(lowerCamelCase_) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCamelCase = True UpperCamelCase = model_class(lowerCamelCase_) UpperCamelCase = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_)) self.assertEqual(config.output_hidden_states , lowerCamelCase_) check_encoder_attentions_output(lowerCamelCase_) # Check attention is always last and order is fine UpperCamelCase = True UpperCamelCase = True UpperCamelCase = model_class(lowerCamelCase_) UpperCamelCase = model(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCamelCase_)) self.assertEqual(model.config.output_hidden_states , lowerCamelCase_) check_encoder_attentions_output(lowerCamelCase_) @require_tf class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''') UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]]) UpperCamelCase = model(lowerCamelCase_)[0] UpperCamelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , lowerCamelCase_) UpperCamelCase = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ]) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1e-4)
34
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __snake_case ( _lowercase ): """simple docstring""" if "cls_token" in name: UpperCamelCase = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: UpperCamelCase = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: UpperCamelCase = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: UpperCamelCase = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: UpperCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: UpperCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: UpperCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: UpperCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: UpperCamelCase = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: UpperCamelCase = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: UpperCamelCase = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCamelCase = key.split('''.''' ) UpperCamelCase = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase = config.decoder_hidden_size UpperCamelCase = '''decoder.decoder_layers.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = config.hidden_size UpperCamelCase = '''vit.encoder.layer.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = val return orig_state_dict def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 elif "huge" in checkpoint_url: UpperCamelCase = 14 UpperCamelCase = 1280 UpperCamelCase = 5120 UpperCamelCase = 32 UpperCamelCase = 16 UpperCamelCase = ViTMAEForPreTraining(_lowercase ) UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' )['''model'''] UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = convert_state_dict(_lowercase ,_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCamelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = image_processor(images=_lowercase ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits if "large" in checkpoint_url: UpperCamelCase = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
34
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) A_ = '''CIDAS/clipseg-rd64-refined''' A_ = '''image_segmenter''' A_ = CLIPSegForImageSegmentation A_ = ['''image''', '''text'''] A_ = ['''image'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(self , ['''vision''']) super().__init__(*lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> str: return self.pre_processor(text=[label] , images=[image] , padding=lowerCamelCase_ , return_tensors='''pt''') def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: with torch.no_grad(): UpperCamelCase = self.model(**lowerCamelCase_).logits return logits def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = outputs.cpu().detach().numpy() UpperCamelCase = 0 UpperCamelCase = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta))
34
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Any: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase = mock_training_loop_function('''hello''') self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def UpperCAmelCase__ ( self) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(lowerCamelCase_): pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Dict: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): raise ValueError('''Oops, we had an error!''') with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase_) UpperCamelCase = release_memory(lowerCamelCase_) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase_)
34
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(self , ['''sentencepiece''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(self , ['''sentencepiece'''])
34
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ = 1_0_1) -> Tuple: UpperCamelCase = length def __len__( self) -> List[str]: return self.length def __getitem__( self , lowerCamelCase_) -> int: return i class snake_case_ : """simple docstring""" def __call__( self , lowerCamelCase_) -> str: return {"input_ids": torch.tensor(lowerCamelCase_), "labels": torch.tensor(lowerCamelCase_)} class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> List[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase = nn.Linear(1_2_0 , 8_0) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_neuroncore def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_multi_gpu def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE_ = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()[0] logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' f'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE_ = DummyDataset(dataset_length) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = list(range(len(_lowercase ) ) ) UpperCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} SCREAMING_SNAKE_CASE_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = None
34
1
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __snake_case ( _lowercase ,_lowercase=False ): """simple docstring""" try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_REMOTE', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_LOCAL', default=True) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __snake_case ( _lowercase ): """simple docstring""" try: import faiss # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires faiss''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import regex # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires regex''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TORCH_AVAILABLE: UpperCamelCase = unittest.skip('''test requires PyTorch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TF_AVAILABLE: UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.JAX_AVAILABLE: UpperCamelCase = unittest.skip('''test requires JAX''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.PIL_AVAILABLE: UpperCamelCase = unittest.skip('''test requires Pillow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" def _require_spacy_model(_lowercase ): try: import spacy # noqa F401 spacy.load(_lowercase ) except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_lowercase ) )(_lowercase ) else: return test_case return _require_spacy_model def __snake_case ( _lowercase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase = unittest.skip('''test is slow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: UpperCamelCase = unittest.skip('''test is local''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase = unittest.skip('''test is packaged''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase = unittest.skip('''test requires remote''' )(_lowercase ) return test_case def __snake_case ( *_lowercase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_lowercase ) and name.startswith('''test''' ): for decorator in decorators: UpperCamelCase = decorator(_lowercase ) setattr(cls ,_lowercase ,_lowercase ) return cls return decorate class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 0 A_ = 1 A_ = 2 @contextmanager def __snake_case ( _lowercase=OfflineSimulationMode.CONNECTION_FAILS ,_lowercase=1e-16 ): """simple docstring""" UpperCamelCase = requests.Session().request def timeout_request(_lowercase ,_lowercase ,_lowercase ,**_lowercase ): # Change the url to an invalid url so that the connection hangs UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) UpperCamelCase = timeout try: return online_request(_lowercase ,_lowercase ,**_lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase = url UpperCamelCase = e.args[0] UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' ,f'OfflineMock[{url}]' ),) UpperCamelCase = (max_retry_error,) raise def raise_connection_error(_lowercase ,_lowercase ,**_lowercase ): raise requests.ConnectionError('''Offline mode is enabled.''' ,request=_lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' ,_lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' ,_lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' ,_lowercase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowercase ,**_lowercase ) as tmp_dir: try: os.chdir(_lowercase ) yield finally: os.chdir(_lowercase ) @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() def __snake_case ( _lowercase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_lowercase ,*_lowercase ,**_lowercase ): try: return func(*_lowercase ,**_lowercase ) except HTTPError as err: if str(_lowercase ).startswith('''500''' ) or str(_lowercase ).startswith('''502''' ): pytest.xfail(str(_lowercase ) ) raise err return decorator.decorator(_wrapper ,_lowercase ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" while True: UpperCamelCase = await stream.readline() if line: callback(_lowercase ) else: break async def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ,_lowercase=False ): """simple docstring""" if echo: print('''\nRunning: ''' ,''' '''.join(_lowercase ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=_lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=_lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(_lowercase ,_lowercase ,_lowercase ,_lowercase="" ): UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase ,_lowercase ,file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stdout ,label='''stdout:''' ) ), _read_stream(p.stderr ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stderr ,label='''stderr:''' ) ), ] ,timeout=_lowercase ,) return _RunOutput(await p.wait() ,_lowercase ,_lowercase ) def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=180 ,_lowercase=False ,_lowercase=True ): """simple docstring""" UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(_lowercase ,env=_lowercase ,stdin=_lowercase ,timeout=_lowercase ,quiet=_lowercase ,echo=_lowercase ) ) UpperCamelCase = ''' '''.join(_lowercase ) if result.returncode > 0: UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def __snake_case ( ): """simple docstring""" UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' ,'''gw0''' ) UpperCamelCase = re.sub(r'''^gw''' ,'''''' ,_lowercase ,0 ,re.M ) return int(_lowercase ) def __snake_case ( ): """simple docstring""" UpperCamelCase = 2_9500 UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
34
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for tf_name, hf_name in patterns: UpperCamelCase = k.replace(_lowercase ,_lowercase ) return k def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = BigBirdPegasusConfig(**_lowercase ) UpperCamelCase = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCamelCase = torch_model.state_dict() UpperCamelCase = {} # separating decoder weights UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = DECODER_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = REMAINING_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCamelCase = mapping['''model.embed_positions.weight'''] UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(_lowercase ,strict=_lowercase ) UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tf.train.list_variables(_lowercase ) UpperCamelCase = {} UpperCamelCase = ['''global_step'''] for name, shape in tqdm(_lowercase ,desc='''converting tf checkpoint to dict''' ): UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase = tf.train.load_variable(_lowercase ,_lowercase ) UpperCamelCase = array return tf_weights def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = get_tf_weights_as_numpy(_lowercase ) UpperCamelCase = convert_bigbird_pegasus(_lowercase ,_lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
34
1
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __snake_case ( _lowercase ,_lowercase = "cpu" ,_lowercase = None ): """simple docstring""" UpperCamelCase = torch.load(_lowercase ,map_location=_lowercase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowercase ,torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) UpperCamelCase = v.half() if save_path is None: # overwrite src_path UpperCamelCase = src_path torch.save(_lowercase ,_lowercase ) if __name__ == "__main__": fire.Fire(convert)
34
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
1
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = IFPipeline A_ = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} A_ = TEXT_TO_IMAGE_BATCH_PARAMS A_ = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCAmelCase__ ( self) -> Optional[int]: return self._get_dummy_components() def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Optional[int]: if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''') def UpperCAmelCase__ ( self) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1) def UpperCAmelCase__ ( self) -> Optional[int]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def UpperCAmelCase__ ( self) -> List[Any]: self._test_save_load_local() def UpperCAmelCase__ ( self) -> Any: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase__ ( self) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> int: # if UpperCamelCase = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa) UpperCamelCase = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''') UpperCamelCase , UpperCamelCase = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''') del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCamelCase = None UpperCamelCase = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCamelCase = IFImgaImgPipeline(**pipe_a.components) UpperCamelCase = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCamelCase = IFInpaintingPipeline(**pipe_a.components) UpperCamelCase = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase = torch.Generator(device='''cpu''').manual_seed(0) UpperCamelCase = pipe_a( prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , num_inference_steps=2 , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCamelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''') assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase = torch.Generator(device='''cpu''').manual_seed(0) UpperCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(lowerCamelCase_) UpperCamelCase = pipe_a( prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCamelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''') assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(lowerCamelCase_) UpperCamelCase = torch.Generator(device='''cpu''').manual_seed(0) UpperCamelCase = pipe_a( prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , image=lowerCamelCase_ , num_inference_steps=2 , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCamelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''') assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase = torch.Generator(device='''cpu''').manual_seed(0) UpperCamelCase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0)).to(lowerCamelCase_) UpperCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(lowerCamelCase_) UpperCamelCase = pipe_a( prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , image=lowerCamelCase_ , original_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCamelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''') assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(lowerCamelCase_) UpperCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1)).to(lowerCamelCase_) UpperCamelCase = torch.Generator(device='''cpu''').manual_seed(0) UpperCamelCase = pipe_a( prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , num_inference_steps=2 , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCamelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''') assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase = torch.Generator(device='''cpu''').manual_seed(0) UpperCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(lowerCamelCase_) UpperCamelCase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0)).to(lowerCamelCase_) UpperCamelCase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1)).to(lowerCamelCase_) UpperCamelCase = pipe_a( prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , original_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCamelCase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''') assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_) def __snake_case ( ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
34
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> Any: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase_ , ) return config, input_ids, attention_mask def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = FlaxDistilBertModelTester(self) @slow def UpperCAmelCase__ ( self) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowerCamelCase_) @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)[0] UpperCamelCase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , lowerCamelCase_) UpperCamelCase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4))
34
1
"""simple docstring""" import inspect import unittest class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase__ ( self) -> Union[str, Any]: import diffusers from diffusers.dependency_versions_table import deps UpperCamelCase = inspect.getmembers(lowerCamelCase_ , inspect.isclass) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": UpperCamelCase = '''k-diffusion''' elif backend == "invisible_watermark": UpperCamelCase = '''invisible-watermark''' assert backend in deps, F'{backend} is not in the deps table!'
34
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = '''left''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<eop>", "<eod>"] , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = 3 UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> List[str]: return len(self.sp_model) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> str: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: if self.remove_space: UpperCamelCase = ''' '''.join(inputs.strip().split()) else: UpperCamelCase = inputs UpperCamelCase = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCamelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase_) UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_)]) if self.do_lower_case: UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) UpperCamelCase = [] for piece in pieces: if len(lowerCamelCase_) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCamelCase = cur_pieces[1:] else: UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCamelCase_) else: new_pieces.append(lowerCamelCase_) return new_pieces def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.sp_model.IdToPiece(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: UpperCamelCase = ''''''.join(lowerCamelCase_).replace(lowerCamelCase_ , ''' ''').strip() return out_string def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> str: UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCamelCase_) UpperCamelCase = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) UpperCamelCase = [] sub_texts.append(lowerCamelCase_) else: current_sub_text.append(lowerCamelCase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(lowerCamelCase_) return clean_text else: return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) + [1, 1] return ([0] * len(lowerCamelCase_)) + [1, 1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,)
34
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
1
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = AutoConfig.from_pretrained(_lowercase ) UpperCamelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowercase ) UpperCamelCase = checkpoints.load_tax_checkpoint(_lowercase ) UpperCamelCase = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": UpperCamelCase = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": UpperCamelCase = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): UpperCamelCase = f'layers_{str(_lowercase )}' # Self-Attention UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning UpperCamelCase = flax_model.params['''encoder''']['''block'''][str(_lowercase )]['''layer'''] UpperCamelCase = tax_attention_key UpperCamelCase = tax_attention_out UpperCamelCase = tax_attention_query UpperCamelCase = tax_attention_value UpperCamelCase = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase = tax_global_layer_norm if split_mlp_wi: UpperCamelCase = tax_mlp_wi_a UpperCamelCase = tax_mlp_wi_a else: UpperCamelCase = tax_mlp_wi UpperCamelCase = tax_mlp_wo UpperCamelCase = tax_mlp_layer_norm UpperCamelCase = flax_model_encoder_layer_block # Only for layer 0: UpperCamelCase = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T UpperCamelCase = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T UpperCamelCase = tax_encoder_global_rel_embedding # Assigning UpperCamelCase = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] UpperCamelCase = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): UpperCamelCase = f'layers_{str(_lowercase )}' # Self-Attention UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] UpperCamelCase = tax_enc_dec_attention_module['''key''']['''kernel'''] UpperCamelCase = tax_enc_dec_attention_module['''out''']['''kernel'''] UpperCamelCase = tax_enc_dec_attention_module['''query''']['''kernel'''] UpperCamelCase = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning UpperCamelCase = flax_model.params['''decoder''']['''block'''][str(_lowercase )]['''layer'''] UpperCamelCase = tax_attention_key UpperCamelCase = tax_attention_out UpperCamelCase = tax_attention_query UpperCamelCase = tax_attention_value UpperCamelCase = tax_pre_attention_layer_norm UpperCamelCase = tax_enc_dec_attention_key UpperCamelCase = tax_enc_dec_attention_out UpperCamelCase = tax_enc_dec_attention_query UpperCamelCase = tax_enc_dec_attention_value UpperCamelCase = tax_cross_layer_norm if split_mlp_wi: UpperCamelCase = tax_mlp_wi_a UpperCamelCase = tax_mlp_wi_a else: UpperCamelCase = tax_mlp_wi UpperCamelCase = tax_mlp_wo UpperCamelCase = txa_mlp_layer_norm UpperCamelCase = flax_model_decoder_layer_block # Decoder Normalization UpperCamelCase = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] UpperCamelCase = txa_decoder_norm # Only for layer 0: UpperCamelCase = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T UpperCamelCase = tax_decoder_rel_embedding # Token Embeddings UpperCamelCase = tax_model['''target''']['''token_embedder''']['''embedding'''] UpperCamelCase = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: UpperCamelCase = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(_lowercase ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
34
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __snake_case ( _lowercase ,_lowercase=False ): """simple docstring""" try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_REMOTE', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_LOCAL', default=True) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __snake_case ( _lowercase ): """simple docstring""" try: import faiss # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires faiss''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import regex # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires regex''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TORCH_AVAILABLE: UpperCamelCase = unittest.skip('''test requires PyTorch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TF_AVAILABLE: UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.JAX_AVAILABLE: UpperCamelCase = unittest.skip('''test requires JAX''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.PIL_AVAILABLE: UpperCamelCase = unittest.skip('''test requires Pillow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" def _require_spacy_model(_lowercase ): try: import spacy # noqa F401 spacy.load(_lowercase ) except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_lowercase ) )(_lowercase ) else: return test_case return _require_spacy_model def __snake_case ( _lowercase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase = unittest.skip('''test is slow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: UpperCamelCase = unittest.skip('''test is local''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase = unittest.skip('''test is packaged''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase = unittest.skip('''test requires remote''' )(_lowercase ) return test_case def __snake_case ( *_lowercase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_lowercase ) and name.startswith('''test''' ): for decorator in decorators: UpperCamelCase = decorator(_lowercase ) setattr(cls ,_lowercase ,_lowercase ) return cls return decorate class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 0 A_ = 1 A_ = 2 @contextmanager def __snake_case ( _lowercase=OfflineSimulationMode.CONNECTION_FAILS ,_lowercase=1e-16 ): """simple docstring""" UpperCamelCase = requests.Session().request def timeout_request(_lowercase ,_lowercase ,_lowercase ,**_lowercase ): # Change the url to an invalid url so that the connection hangs UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) UpperCamelCase = timeout try: return online_request(_lowercase ,_lowercase ,**_lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase = url UpperCamelCase = e.args[0] UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' ,f'OfflineMock[{url}]' ),) UpperCamelCase = (max_retry_error,) raise def raise_connection_error(_lowercase ,_lowercase ,**_lowercase ): raise requests.ConnectionError('''Offline mode is enabled.''' ,request=_lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' ,_lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' ,_lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' ,_lowercase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowercase ,**_lowercase ) as tmp_dir: try: os.chdir(_lowercase ) yield finally: os.chdir(_lowercase ) @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() def __snake_case ( _lowercase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_lowercase ,*_lowercase ,**_lowercase ): try: return func(*_lowercase ,**_lowercase ) except HTTPError as err: if str(_lowercase ).startswith('''500''' ) or str(_lowercase ).startswith('''502''' ): pytest.xfail(str(_lowercase ) ) raise err return decorator.decorator(_wrapper ,_lowercase ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" while True: UpperCamelCase = await stream.readline() if line: callback(_lowercase ) else: break async def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ,_lowercase=False ): """simple docstring""" if echo: print('''\nRunning: ''' ,''' '''.join(_lowercase ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=_lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=_lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(_lowercase ,_lowercase ,_lowercase ,_lowercase="" ): UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase ,_lowercase ,file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stdout ,label='''stdout:''' ) ), _read_stream(p.stderr ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stderr ,label='''stderr:''' ) ), ] ,timeout=_lowercase ,) return _RunOutput(await p.wait() ,_lowercase ,_lowercase ) def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=180 ,_lowercase=False ,_lowercase=True ): """simple docstring""" UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(_lowercase ,env=_lowercase ,stdin=_lowercase ,timeout=_lowercase ,quiet=_lowercase ,echo=_lowercase ) ) UpperCamelCase = ''' '''.join(_lowercase ) if result.returncode > 0: UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def __snake_case ( ): """simple docstring""" UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' ,'''gw0''' ) UpperCamelCase = re.sub(r'''^gw''' ,'''''' ,_lowercase ,0 ,re.M ) return int(_lowercase ) def __snake_case ( ): """simple docstring""" UpperCamelCase = 2_9500 UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
34
1
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=6 , lowerCamelCase_=1_7 , lowerCamelCase_=2_3 , lowerCamelCase_=1_1 , lowerCamelCase_=True , ) -> Dict: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = act_dim UpperCamelCase = state_dim UpperCamelCase = hidden_size UpperCamelCase = max_length UpperCamelCase = is_training def UpperCAmelCase__ ( self) -> str: UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim)) UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim)) UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1)) UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1)) UpperCamelCase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0) UpperCamelCase = random_attention_mask((self.batch_size, self.seq_length)) UpperCamelCase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def UpperCAmelCase__ ( self) -> str: return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Tuple: UpperCamelCase = DecisionTransformerModel(config=lowerCamelCase_) model.to(lowerCamelCase_) model.eval() UpperCamelCase = model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) self.parent.assertEqual(result.state_preds.shape , states.shape) self.parent.assertEqual(result.action_preds.shape , actions.shape) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size)) # seq length *3 as there are 3 modelities: states, returns and actions def UpperCAmelCase__ ( self) -> int: UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = (DecisionTransformerModel,) if is_torch_available() else () A_ = () A_ = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids A_ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features A_ = False A_ = False A_ = False A_ = False A_ = False A_ = False A_ = False A_ = False A_ = False def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = DecisionTransformerModelTester(self) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=3_7) def UpperCAmelCase__ ( self) -> str: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_) @slow def UpperCAmelCase__ ( self) -> Optional[int]: for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = DecisionTransformerModel.from_pretrained(lowerCamelCase_) self.assertIsNotNone(lowerCamelCase_) def UpperCAmelCase__ ( self) -> str: UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_) UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(lowerCamelCase_)] , lowerCamelCase_) @require_torch class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> int: UpperCamelCase = 2 # number of steps of autoregressive prediction we will perform UpperCamelCase = 1_0 # defined by the RL environment, may be normalized UpperCamelCase = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''') UpperCamelCase = model.to(lowerCamelCase_) UpperCamelCase = model.config torch.manual_seed(0) UpperCamelCase = torch.randn(1 , 1 , config.state_dim).to(device=lowerCamelCase_ , dtype=torch.floataa) # env.reset() UpperCamelCase = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=lowerCamelCase_) UpperCamelCase = torch.tensor(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.floataa).reshape(1 , 1 , 1) UpperCamelCase = state UpperCamelCase = torch.zeros(1 , 0 , config.act_dim , device=lowerCamelCase_ , dtype=torch.floataa) UpperCamelCase = torch.zeros(1 , 0 , device=lowerCamelCase_ , dtype=torch.floataa) UpperCamelCase = torch.tensor(0 , device=lowerCamelCase_ , dtype=torch.long).reshape(1 , 1) for step in range(lowerCamelCase_): UpperCamelCase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowerCamelCase_)] , dim=1) UpperCamelCase = torch.cat([rewards, torch.zeros(1 , 1 , device=lowerCamelCase_)] , dim=1) UpperCamelCase = torch.ones(1 , states.shape[1]).to(dtype=torch.long , device=states.device) with torch.no_grad(): UpperCamelCase , UpperCamelCase , UpperCamelCase = model( states=lowerCamelCase_ , actions=lowerCamelCase_ , rewards=lowerCamelCase_ , returns_to_go=lowerCamelCase_ , timesteps=lowerCamelCase_ , attention_mask=lowerCamelCase_ , return_dict=lowerCamelCase_ , ) self.assertEqual(action_pred.shape , actions.shape) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4)) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = ( # env.step(action) torch.randn(1 , 1 , config.state_dim).to(device=lowerCamelCase_ , dtype=torch.floataa), 1.0, False, {}, ) UpperCamelCase = action_pred[0, -1] UpperCamelCase = torch.cat([states, state] , dim=1) UpperCamelCase = returns_to_go[0, -1] - reward UpperCamelCase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1)] , dim=1) UpperCamelCase = torch.cat( [timesteps, torch.ones((1, 1) , device=lowerCamelCase_ , dtype=torch.long) * (step + 1)] , dim=1)
34
"""simple docstring""" import operator def __snake_case ( _lowercase ,_lowercase = False ,_lowercase = None ): """simple docstring""" UpperCamelCase = operator.lt if reverse else operator.gt UpperCamelCase = solution or [] if not arr: return solution UpperCamelCase = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase ,sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: UpperCamelCase = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase ,_lowercase ): solution.insert(_lowercase ,_lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase ,_lowercase ,_lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
34
1
"""simple docstring""" import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" A_ = 1 @register_to_config def __init__( self , lowerCamelCase_ = 1_0_0_0 , lowerCamelCase_ = None) -> Optional[int]: # set `betas`, `alphas`, `timesteps` self.set_timesteps(lowerCamelCase_) # standard deviation of the initial noise distribution UpperCamelCase = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. UpperCamelCase = 4 # running values UpperCamelCase = [] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> str: UpperCamelCase = num_inference_steps UpperCamelCase = torch.linspace(1 , 0 , num_inference_steps + 1)[:-1] UpperCamelCase = torch.cat([steps, torch.tensor([0.0])]) if self.config.trained_betas is not None: UpperCamelCase = torch.tensor(self.config.trained_betas , dtype=torch.floataa) else: UpperCamelCase = torch.sin(steps * math.pi / 2) ** 2 UpperCamelCase = (1.0 - self.betas**2) ** 0.5 UpperCamelCase = (torch.atana(self.betas , self.alphas) / math.pi * 2)[:-1] UpperCamelCase = timesteps.to(lowerCamelCase_) UpperCamelCase = [] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = True , ) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''') UpperCamelCase = (self.timesteps == timestep).nonzero().item() UpperCamelCase = timestep_index + 1 UpperCamelCase = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(lowerCamelCase_) if len(self.ets) == 1: UpperCamelCase = self.ets[-1] elif len(self.ets) == 2: UpperCamelCase = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets) == 3: UpperCamelCase = (2_3 * self.ets[-1] - 1_6 * self.ets[-2] + 5 * self.ets[-3]) / 1_2 else: UpperCamelCase = (1 / 2_4) * (5_5 * self.ets[-1] - 5_9 * self.ets[-2] + 3_7 * self.ets[-3] - 9 * self.ets[-4]) UpperCamelCase = self._get_prev_sample(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_) -> torch.FloatTensor: return sample def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any: UpperCamelCase = self.alphas[timestep_index] UpperCamelCase = self.betas[timestep_index] UpperCamelCase = self.alphas[prev_timestep_index] UpperCamelCase = self.betas[prev_timestep_index] UpperCamelCase = (sample - sigma * ets) / max(lowerCamelCase_ , 1e-8) UpperCamelCase = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self) -> List[str]: return self.config.num_train_timesteps
34
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' SCREAMING_SNAKE_CASE_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any: if return_pvalue: UpperCamelCase = pearsonr(lowerCamelCase_ , lowerCamelCase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_ , lowerCamelCase_)[0])}
34
1
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. SCREAMING_SNAKE_CASE_ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. SCREAMING_SNAKE_CASE_ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. SCREAMING_SNAKE_CASE_ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = len([g for position, g in enumerate(_lowercase ) if g == main_target[position]] ) return (item, float(_lowercase )) def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = random.randint(0 ,len(_lowercase ) - 1 ) UpperCamelCase = parent_a[:random_slice] + parent_a[random_slice:] UpperCamelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = list(_lowercase ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: UpperCamelCase = random.choice(_lowercase ) return "".join(_lowercase ) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,): """simple docstring""" UpperCamelCase = [] # Generate more children proportionally to the fitness score. UpperCamelCase = int(parent_a[1] * 100 ) + 1 UpperCamelCase = 10 if child_n >= 10 else child_n for _ in range(_lowercase ): UpperCamelCase = population_score[random.randint(0 ,_lowercase )][0] UpperCamelCase , UpperCamelCase = crossover(parent_a[0] ,_lowercase ) # Append new string to the population list. pop.append(mutate(_lowercase ,_lowercase ) ) pop.append(mutate(_lowercase ,_lowercase ) ) return pop def __snake_case ( _lowercase ,_lowercase ,_lowercase = True ): """simple docstring""" if N_POPULATION < N_SELECTED: UpperCamelCase = f'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_lowercase ) # Verify that the target contains no genes besides the ones inside genes variable. UpperCamelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: UpperCamelCase = f'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_lowercase ) # Generate random starting population. UpperCamelCase = [] for _ in range(_lowercase ): population.append(''''''.join([random.choice(_lowercase ) for i in range(len(_lowercase ) )] ) ) # Just some logs to know what the algorithms is doing. UpperCamelCase , UpperCamelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_lowercase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. UpperCamelCase = [evaluate(_lowercase ,_lowercase ) for item in population] # Check if there is a matching evolution. UpperCamelCase = sorted(_lowercase ,key=lambda _lowercase : x[1] ,reverse=_lowercase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'\nGeneration: {generation}' f'\nTotal Population:{total_population}' f'\nBest score: {population_score[0][1]}' f'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. UpperCamelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_lowercase ) # Normalize population score to be between 0 and 1. UpperCamelCase = [ (item, score / len(_lowercase )) for item, score in population_score ] # This is selection for i in range(_lowercase ): population.extend(select(population_score[int(_lowercase )] ,_lowercase ,_lowercase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_lowercase ) > N_POPULATION: break if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = ( 'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!' ) SCREAMING_SNAKE_CASE_ = list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
34
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ComputeEnvironment.AMAZON_SAGEMAKER A_ = True A_ = '''ml.p3.2xlarge''' A_ = '''accelerate_sagemaker_execution_role''' A_ = '''hf-sm''' A_ = '''us-east-1''' A_ = 1 A_ = '''accelerate-sagemaker-1''' A_ = '''1.6''' A_ = '''4.4''' A_ = '''train.py''' A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args['''model_name_or_path'''] , lowerCamelCase_) assert isinstance(converted_args['''do_train'''] , lowerCamelCase_) assert isinstance(converted_args['''epochs'''] , lowerCamelCase_) assert isinstance(converted_args['''learning_rate'''] , lowerCamelCase_) assert isinstance(converted_args['''max_steps'''] , lowerCamelCase_) with pytest.raises(lowerCamelCase_): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
34
1
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __snake_case ( ): """simple docstring""" UpperCamelCase = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' ,type=_lowercase ,default=1 ,help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' ,type=_lowercase ,help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) ,) # rest from the training program parser.add_argument('''training_script_args''' ,nargs=_lowercase ) return parser.parse_args() def __snake_case ( ): """simple docstring""" UpperCamelCase = parse_args() # Import training_script as a module. UpperCamelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCamelCase = script_fpath.stem UpperCamelCase = importlib.import_module(_lowercase ) # Patch sys.argv UpperCamelCase = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
34
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class snake_case_ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCamelCase_ = " ") -> List[str]: UpperCamelCase = sentence_delimiter def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return list(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase_): chars.extend(self.process_string(lowerCamelCase_)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_) - 1: chars.append(self.sentence_delimiter) return chars SCREAMING_SNAKE_CASE_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig SCREAMING_SNAKE_CASE_ = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring SCREAMING_SNAKE_CASE_ = 'UperNetConfig' class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 0 , lowerCamelCase_ = False , lowerCamelCase_ = 1 , ) -> None: super().__init__() UpperCamelCase = nn.Convad( in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , kernel_size=lowerCamelCase_ , padding=lowerCamelCase_ , bias=lowerCamelCase_ , dilation=lowerCamelCase_ , ) UpperCamelCase = nn.BatchNormad(lowerCamelCase_) UpperCamelCase = nn.ReLU() def UpperCAmelCase__ ( self , lowerCamelCase_) -> torch.Tensor: UpperCamelCase = self.conv(lowerCamelCase_) UpperCamelCase = self.batch_norm(lowerCamelCase_) UpperCamelCase = self.activation(lowerCamelCase_) return output class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> None: super().__init__() UpperCamelCase = [ nn.AdaptiveAvgPoolad(lowerCamelCase_), UperNetConvModule(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1), ] for i, layer in enumerate(self.layers): self.add_module(str(lowerCamelCase_) , lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> torch.Tensor: UpperCamelCase = input for layer in self.layers: UpperCamelCase = layer(lowerCamelCase_) return hidden_state class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> None: super().__init__() UpperCamelCase = pool_scales UpperCamelCase = align_corners UpperCamelCase = in_channels UpperCamelCase = channels UpperCamelCase = [] for i, pool_scale in enumerate(lowerCamelCase_): UpperCamelCase = UperNetPyramidPoolingBlock(pool_scale=lowerCamelCase_ , in_channels=lowerCamelCase_ , channels=lowerCamelCase_) self.blocks.append(lowerCamelCase_) self.add_module(str(lowerCamelCase_) , lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[torch.Tensor]: UpperCamelCase = [] for ppm in self.blocks: UpperCamelCase = ppm(lowerCamelCase_) UpperCamelCase = nn.functional.interpolate( lowerCamelCase_ , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners) ppm_outs.append(lowerCamelCase_) return ppm_outs class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_) -> Any: super().__init__() UpperCamelCase = config UpperCamelCase = config.pool_scales # e.g. (1, 2, 3, 6) UpperCamelCase = in_channels UpperCamelCase = config.hidden_size UpperCamelCase = False UpperCamelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1) # PSP Module UpperCamelCase = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCamelCase = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCamelCase = nn.ModuleList() UpperCamelCase = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCamelCase = UperNetConvModule(lowerCamelCase_ , self.channels , kernel_size=1) UpperCamelCase = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1) self.lateral_convs.append(lowerCamelCase_) self.fpn_convs.append(lowerCamelCase_) UpperCamelCase = UperNetConvModule( len(self.in_channels) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def UpperCAmelCase__ ( self) -> Union[str, Any]: self.apply(self._init_weights) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: if isinstance(lowerCamelCase_ , nn.Convad): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: UpperCamelCase = inputs[-1] UpperCamelCase = [x] psp_outs.extend(self.psp_modules(lowerCamelCase_)) UpperCamelCase = torch.cat(lowerCamelCase_ , dim=1) UpperCamelCase = self.bottleneck(lowerCamelCase_) return output def UpperCAmelCase__ ( self , lowerCamelCase_) -> torch.Tensor: # build laterals UpperCamelCase = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] laterals.append(self.psp_forward(lowerCamelCase_)) # build top-down path UpperCamelCase = len(lowerCamelCase_) for i in range(used_backbone_levels - 1 , 0 , -1): UpperCamelCase = laterals[i - 1].shape[2:] UpperCamelCase = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=lowerCamelCase_ , mode='''bilinear''' , align_corners=self.align_corners) # build outputs UpperCamelCase = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] # append psp feature fpn_outs.append(laterals[-1]) for i in range(used_backbone_levels - 1 , 0 , -1): UpperCamelCase = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners) UpperCamelCase = torch.cat(lowerCamelCase_ , dim=1) UpperCamelCase = self.fpn_bottleneck(lowerCamelCase_) UpperCamelCase = self.classifier(lowerCamelCase_) return output class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ = 2 , lowerCamelCase_ = 3 , lowerCamelCase_ = 1) -> None: super().__init__() UpperCamelCase = config UpperCamelCase = config.auxiliary_in_channels UpperCamelCase = config.auxiliary_channels UpperCamelCase = config.auxiliary_num_convs UpperCamelCase = config.auxiliary_concat_input UpperCamelCase = in_index UpperCamelCase = (kernel_size // 2) * dilation UpperCamelCase = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=lowerCamelCase_ , padding=lowerCamelCase_ , dilation=lowerCamelCase_)) for i in range(self.num_convs - 1): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=lowerCamelCase_ , padding=lowerCamelCase_ , dilation=lowerCamelCase_)) if self.num_convs == 0: UpperCamelCase = nn.Identity() else: UpperCamelCase = nn.Sequential(*lowerCamelCase_) if self.concat_input: UpperCamelCase = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=lowerCamelCase_ , padding=kernel_size // 2) UpperCamelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1) def UpperCAmelCase__ ( self) -> Optional[int]: self.apply(self._init_weights) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: if isinstance(lowerCamelCase_ , nn.Convad): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase__ ( self , lowerCamelCase_) -> torch.Tensor: # just take the relevant feature maps UpperCamelCase = encoder_hidden_states[self.in_index] UpperCamelCase = self.convs(lowerCamelCase_) if self.concat_input: UpperCamelCase = self.conv_cat(torch.cat([hidden_states, output] , dim=1)) UpperCamelCase = self.classifier(lowerCamelCase_) return output class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = UperNetConfig A_ = '''pixel_values''' A_ = True def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: if isinstance(lowerCamelCase_ , lowerCamelCase_): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase__ ( self) -> List[Any]: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=False) -> str: if isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = value SCREAMING_SNAKE_CASE_ = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' SCREAMING_SNAKE_CASE_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.''' , lowerCamelCase_ , ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__(lowerCamelCase_) UpperCamelCase = AutoBackbone.from_config(config.backbone_config) # Semantic segmentation head(s) UpperCamelCase = UperNetHead(lowerCamelCase_ , in_channels=self.backbone.channels) UpperCamelCase = UperNetFCNHead(lowerCamelCase_) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''')) @replace_return_docstrings(output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC) def UpperCAmelCase__ ( self , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Union[tuple, SemanticSegmenterOutput]: UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = output_attentions if output_attentions is not None else self.config.output_attentions UpperCamelCase = self.backbone.forward_with_filtered_kwargs( lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , output_attentions=lowerCamelCase_) UpperCamelCase = outputs.feature_maps UpperCamelCase = self.decode_head(lowerCamelCase_) UpperCamelCase = nn.functional.interpolate(lowerCamelCase_ , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=lowerCamelCase_) UpperCamelCase = None if self.auxiliary_head is not None: UpperCamelCase = self.auxiliary_head(lowerCamelCase_) UpperCamelCase = nn.functional.interpolate( lowerCamelCase_ , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=lowerCamelCase_) UpperCamelCase = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''') else: # compute weighted loss UpperCamelCase = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index) UpperCamelCase = loss_fct(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = loss_fct(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCamelCase = (logits,) + outputs[1:] else: UpperCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=lowerCamelCase_ , logits=lowerCamelCase_ , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
34
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = '''left''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<eop>", "<eod>"] , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = 3 UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> List[str]: return len(self.sp_model) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> str: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: if self.remove_space: UpperCamelCase = ''' '''.join(inputs.strip().split()) else: UpperCamelCase = inputs UpperCamelCase = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCamelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase_) UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_)]) if self.do_lower_case: UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) UpperCamelCase = [] for piece in pieces: if len(lowerCamelCase_) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCamelCase = cur_pieces[1:] else: UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCamelCase_) else: new_pieces.append(lowerCamelCase_) return new_pieces def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.sp_model.IdToPiece(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: UpperCamelCase = ''''''.join(lowerCamelCase_).replace(lowerCamelCase_ , ''' ''').strip() return out_string def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> str: UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCamelCase_) UpperCamelCase = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) UpperCamelCase = [] sub_texts.append(lowerCamelCase_) else: current_sub_text.append(lowerCamelCase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(lowerCamelCase_) return clean_text else: return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) + [1, 1] return ([0] * len(lowerCamelCase_)) + [1, 1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,)
34
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = dataset UpperCamelCase = process UpperCamelCase = params def __len__( self) -> List[str]: return len(self.dataset) def __getitem__( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = self.dataset[i] UpperCamelCase = self.process(lowerCamelCase_ , **self.params) return processed class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None) -> str: UpperCamelCase = loader UpperCamelCase = infer UpperCamelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether UpperCamelCase = None UpperCamelCase = loader_batch_size # Internal bookkeeping UpperCamelCase = None UpperCamelCase = None def __len__( self) -> Optional[int]: return len(self.loader) def __iter__( self) -> List[Any]: UpperCamelCase = iter(self.loader) return self def UpperCAmelCase__ ( self) -> str: if isinstance(self._loader_batch_data , torch.Tensor): # Batch data is simple tensor, just fetch the slice UpperCamelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) UpperCamelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): # Convert ModelOutput to tuple first UpperCamelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor): UpperCamelCase = tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0] , np.ndarray): UpperCamelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0) for el in element) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(lowerCamelCase_ , lowerCamelCase_): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor): UpperCamelCase = tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0] , np.ndarray): UpperCamelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0) for el in element) continue if element is None: # This can happen for optional data that get passed around UpperCamelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCamelCase = element[self._loader_batch_index].unsqueeze(0) elif isinstance(element[self._loader_batch_index] , np.ndarray): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCamelCase = np.expand_dims(element[self._loader_batch_index] , 0) else: # This is typically a list, so no need to `unsqueeze`. UpperCamelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 UpperCamelCase = self._loader_batch_data.__class__(lowerCamelCase_) self._loader_batch_index += 1 return result def UpperCAmelCase__ ( self) -> str: if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch UpperCamelCase = next(self.iterator) UpperCamelCase = self.infer(lowerCamelCase_ , **self.params) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(lowerCamelCase_ , torch.Tensor): UpperCamelCase = processed else: UpperCamelCase = list(processed.keys())[0] UpperCamelCase = processed[key] if isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) else: UpperCamelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCamelCase = observed_batch_size # Setting internal index to unwrap the batch UpperCamelCase = processed UpperCamelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None) -> Any: super().__init__(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) def __iter__( self) -> Dict: UpperCamelCase = iter(self.loader) UpperCamelCase = None return self def UpperCAmelCase__ ( self) -> Optional[int]: if self.subiterator is None: UpperCamelCase = self.infer(next(self.iterator) , **self.params) try: # Try to return next item UpperCamelCase = next(self.subiterator) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators UpperCamelCase = self.infer(next(self.iterator) , **self.params) UpperCamelCase = next(self.subiterator) return processed class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __iter__( self) -> Union[str, Any]: UpperCamelCase = iter(self.loader) return self def UpperCAmelCase__ ( self) -> Tuple: # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. UpperCamelCase = False UpperCamelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: UpperCamelCase = self.loader_batch_item() UpperCamelCase = item.pop('''is_last''') accumulator.append(lowerCamelCase_) if is_last: return accumulator while not is_last: UpperCamelCase = self.infer(next(self.iterator) , **self.params) if self.loader_batch_size is not None: if isinstance(lowerCamelCase_ , torch.Tensor): UpperCamelCase = processed else: UpperCamelCase = list(processed.keys())[0] UpperCamelCase = processed[key] if isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) else: UpperCamelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCamelCase = observed_batch_size UpperCamelCase = processed UpperCamelCase = 0 while self._loader_batch_index < self.loader_batch_size: UpperCamelCase = self.loader_batch_item() UpperCamelCase = item.pop('''is_last''') accumulator.append(lowerCamelCase_) if is_last: return accumulator else: UpperCamelCase = processed UpperCamelCase = item.pop('''is_last''') accumulator.append(lowerCamelCase_) return accumulator class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = dataset UpperCamelCase = key def __len__( self) -> str: return len(self.dataset) def __getitem__( self , lowerCamelCase_) -> Optional[Any]: return self.dataset[i][self.key] class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = dataset UpperCamelCase = keya UpperCamelCase = keya def __len__( self) -> Optional[Any]: return len(self.dataset) def __getitem__( self , lowerCamelCase_) -> str: return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
34
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } SCREAMING_SNAKE_CASE_ = { 'openbmb/cpm-ant-10b': 1024, } def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = collections.OrderedDict() with open(_lowercase ,'''r''' ,encoding='''utf-8''' ) as reader: UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): UpperCamelCase = token.rstrip('''\n''' ) UpperCamelCase = index return vocab class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_=2_0_0) -> Any: UpperCamelCase = vocab UpperCamelCase = unk_token UpperCamelCase = max_input_chars_per_word def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = list(lowerCamelCase_) if len(lowerCamelCase_) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase = 0 UpperCamelCase = [] while start < len(lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = None while start < end: UpperCamelCase = ''''''.join(chars[start:end]) if substr in self.vocab: UpperCamelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(lowerCamelCase_) UpperCamelCase = end return sub_tokens class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] A_ = False def __init__( self , lowerCamelCase_ , lowerCamelCase_="<d>" , lowerCamelCase_="</d>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<unk>" , lowerCamelCase_="</n>" , lowerCamelCase_="</_>" , lowerCamelCase_="left" , **lowerCamelCase_ , ) -> List[str]: requires_backends(self , ['''jieba''']) super().__init__( bod_token=lowerCamelCase_ , eod_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , line_token=lowerCamelCase_ , space_token=lowerCamelCase_ , padding_side=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = bod_token UpperCamelCase = eod_token UpperCamelCase = load_vocab(lowerCamelCase_) UpperCamelCase = self.encoder[space_token] UpperCamelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def UpperCAmelCase__ ( self) -> Dict: return self.encoder[self.bod_token] @property def UpperCAmelCase__ ( self) -> str: return self.encoder[self.eod_token] @property def UpperCAmelCase__ ( self) -> List[Any]: return self.encoder["\n"] @property def UpperCAmelCase__ ( self) -> int: return len(self.encoder) def UpperCAmelCase__ ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = [] for x in jieba.cut(lowerCamelCase_ , cut_all=lowerCamelCase_): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase_)) return output_tokens def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> Tuple: UpperCamelCase = [i for i in token_ids if i >= 0] UpperCamelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return token in self.encoder def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return "".join(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token)) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return self.decoder.get(lowerCamelCase_ , self.unk_token) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if os.path.isdir(lowerCamelCase_): UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: UpperCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCamelCase = 0 if " " in self.encoder: UpperCamelCase = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase = self.encoder['''\n'''] del self.encoder["\n"] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''') UpperCamelCase = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) return [1] + ([0] * len(lowerCamelCase_))
34
1
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> List[Any]: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) UpperCamelCase = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = True UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = True A_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = FlaxRobertaModelTester(self) @slow def UpperCAmelCase__ ( self) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''roberta-base''' , from_pt=lowerCamelCase_) UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowerCamelCase_)
34
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=0) -> int: UpperCamelCase = 1.0 if scale is None else scale UpperCamelCase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_)]) @property def UpperCAmelCase__ ( self) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase__ ( self) -> List[str]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase__ ( self) -> Any: return self.variance.sqrt() class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = args_dim UpperCamelCase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_) for dim in args_dim.values()]) UpperCamelCase = domain_map def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple[torch.Tensor]: UpperCamelCase = [proj(lowerCamelCase_) for proj in self.proj] return self.domain_map(*lowerCamelCase_) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__() UpperCamelCase = function def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_) -> Tuple: return self.function(lowerCamelCase_ , *lowerCamelCase_) class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , lowerCamelCase_ = 1) -> None: UpperCamelCase = dim UpperCamelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if self.dim == 1: return self.distribution_class(*lowerCamelCase_) else: return Independent(self.distribution_class(*lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Distribution: UpperCamelCase = self._base_distribution(lowerCamelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim) @property def UpperCAmelCase__ ( self) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase__ ( self) -> int: return len(self.event_shape) @property def UpperCAmelCase__ ( self) -> float: return 0.0 def UpperCAmelCase__ ( self , lowerCamelCase_) -> nn.Module: return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def UpperCAmelCase__ ( self , *lowerCamelCase_) -> List[str]: raise NotImplementedError() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCamelCase_) + 4.0)) / 2.0 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"df": 1, "loc": 1, "scale": 1} A_ = StudentT @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) UpperCamelCase = 2.0 + cls.squareplus(lowerCamelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"loc": 1, "scale": 1} A_ = Normal @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"total_count": 1, "logits": 1} A_ = NegativeBinomial @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = cls.squareplus(lowerCamelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
34
1
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # pylint: disable=invalid-name class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Dict: super().__init__() if safety_checker is None: logger.warning( F'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''') self.register_modules( speech_model=lowerCamelCase_ , speech_processor=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , ) def UpperCAmelCase__ ( self , lowerCamelCase_ = "auto") -> str: if slice_size == "auto": UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase_) def UpperCAmelCase__ ( self) -> Dict: self.enable_attention_slicing(lowerCamelCase_) @torch.no_grad() def __call__( self , lowerCamelCase_ , lowerCamelCase_=1_6_0_0_0 , lowerCamelCase_ = 5_1_2 , lowerCamelCase_ = 5_1_2 , lowerCamelCase_ = 5_0 , lowerCamelCase_ = 7.5 , lowerCamelCase_ = None , lowerCamelCase_ = 1 , lowerCamelCase_ = 0.0 , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = "pil" , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = 1 , **lowerCamelCase_ , ) -> Any: UpperCamelCase = self.speech_processor.feature_extractor( lowerCamelCase_ , return_tensors='''pt''' , sampling_rate=lowerCamelCase_).input_features.to(self.device) UpperCamelCase = self.speech_model.generate(lowerCamelCase_ , max_length=4_8_0_0_0_0) UpperCamelCase = self.speech_processor.tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , normalize=lowerCamelCase_)[ 0 ] if isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = 1 elif isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase_)}') if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.') if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase_ , lowerCamelCase_) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(lowerCamelCase_)}.') # get prompt text embeddings UpperCamelCase = self.tokenizer( lowerCamelCase_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F' {self.tokenizer.model_max_length} tokens: {removed_text}') UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase , UpperCamelCase , UpperCamelCase = text_embeddings.shape UpperCamelCase = text_embeddings.repeat(1 , lowerCamelCase_ , 1) UpperCamelCase = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCamelCase_ , -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase = 42 if negative_prompt is None: UpperCamelCase = [''''''] * batch_size elif type(lowerCamelCase_) is not type(lowerCamelCase_): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase_)} !=' F' {type(lowerCamelCase_)}.') elif isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [negative_prompt] elif batch_size != len(lowerCamelCase_): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase_)}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ''' the batch size of `prompt`.''') else: UpperCamelCase = negative_prompt UpperCamelCase = text_input_ids.shape[-1] UpperCamelCase = self.tokenizer( lowerCamelCase_ , padding='''max_length''' , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ , return_tensors='''pt''' , ) UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase = uncond_embeddings.shape[1] UpperCamelCase = uncond_embeddings.repeat(1 , lowerCamelCase_ , 1) UpperCamelCase = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCamelCase_ , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase = torch.randn(lowerCamelCase_ , generator=lowerCamelCase_ , device='''cpu''' , dtype=lowerCamelCase_).to( self.device) else: UpperCamelCase = torch.randn(lowerCamelCase_ , generator=lowerCamelCase_ , device=self.device , dtype=lowerCamelCase_) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}') UpperCamelCase = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(lowerCamelCase_) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase = '''eta''' in set(inspect.signature(self.scheduler.step).parameters.keys()) UpperCamelCase = {} if accepts_eta: UpperCamelCase = eta for i, t in enumerate(self.progress_bar(lowerCamelCase_)): # expand the latents if we are doing classifier free guidance UpperCamelCase = torch.cat([latents] * 2) if do_classifier_free_guidance else latents UpperCamelCase = self.scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_) # predict the noise residual UpperCamelCase = self.unet(lowerCamelCase_ , lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase = noise_pred.chunk(2) UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = 1 / 0.1_8215 * latents UpperCamelCase = self.vae.decode(lowerCamelCase_).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(lowerCamelCase_) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase_ , nsfw_content_detected=lowerCamelCase_)
34
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowercase ,id=_lowercase )
34
1
"""simple docstring""" import argparse import struct import unittest class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_) -> None: UpperCamelCase = data # Initialize hash values UpperCamelCase = [ 0X6A09_E667, 0XBB67_AE85, 0X3C6E_F372, 0XA54F_F53A, 0X510E_527F, 0X9B05_688C, 0X1F83_D9AB, 0X5BE0_CD19, ] # Initialize round constants UpperCamelCase = [ 0X428A_2F98, 0X7137_4491, 0XB5C0_FBCF, 0XE9B5_DBA5, 0X3956_C25B, 0X59F1_11F1, 0X923F_82A4, 0XAB1C_5ED5, 0XD807_AA98, 0X1283_5B01, 0X2431_85BE, 0X550C_7DC3, 0X72BE_5D74, 0X80DE_B1FE, 0X9BDC_06A7, 0XC19B_F174, 0XE49B_69C1, 0XEFBE_4786, 0X0FC1_9DC6, 0X240C_A1CC, 0X2DE9_2C6F, 0X4A74_84AA, 0X5CB0_A9DC, 0X76F9_88DA, 0X983E_5152, 0XA831_C66D, 0XB003_27C8, 0XBF59_7FC7, 0XC6E0_0BF3, 0XD5A7_9147, 0X06CA_6351, 0X1429_2967, 0X27B7_0A85, 0X2E1B_2138, 0X4D2C_6DFC, 0X5338_0D13, 0X650A_7354, 0X766A_0ABB, 0X81C2_C92E, 0X9272_2C85, 0XA2BF_E8A1, 0XA81A_664B, 0XC24B_8B70, 0XC76C_51A3, 0XD192_E819, 0XD699_0624, 0XF40E_3585, 0X106A_A070, 0X19A4_C116, 0X1E37_6C08, 0X2748_774C, 0X34B0_BCB5, 0X391C_0CB3, 0X4ED8_AA4A, 0X5B9C_CA4F, 0X682E_6FF3, 0X748F_82EE, 0X78A5_636F, 0X84C8_7814, 0X8CC7_0208, 0X90BE_FFFA, 0XA450_6CEB, 0XBEF9_A3F7, 0XC671_78F2, ] UpperCamelCase = self.preprocessing(self.data) self.final_hash() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> bytes: UpperCamelCase = B'''\x80''' + (B'''\x00''' * (6_3 - (len(lowerCamelCase_) + 8) % 6_4)) UpperCamelCase = struct.pack('''>Q''' , (len(lowerCamelCase_) * 8)) return data + padding + big_endian_integer def UpperCAmelCase__ ( self) -> None: # Convert into blocks of 64 bytes UpperCamelCase = [ self.preprocessed_data[x : x + 6_4] for x in range(0 , len(self.preprocessed_data) , 6_4) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase = list(struct.unpack('''>16L''' , lowerCamelCase_)) # add 48 0-ed integers words += [0] * 4_8 UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.hashes for index in range(0 , 6_4): if index > 1_5: # modify the zero-ed indexes at the end of the array UpperCamelCase = ( self.ror(words[index - 1_5] , 7) ^ self.ror(words[index - 1_5] , 1_8) ^ (words[index - 1_5] >> 3) ) UpperCamelCase = ( self.ror(words[index - 2] , 1_7) ^ self.ror(words[index - 2] , 1_9) ^ (words[index - 2] >> 1_0) ) UpperCamelCase = ( words[index - 1_6] + sa + words[index - 7] + sa ) % 0X1_0000_0000 # Compression UpperCamelCase = self.ror(lowerCamelCase_ , 6) ^ self.ror(lowerCamelCase_ , 1_1) ^ self.ror(lowerCamelCase_ , 2_5) UpperCamelCase = (e & f) ^ ((~e & 0XFFFF_FFFF) & g) UpperCamelCase = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0000_0000 UpperCamelCase = self.ror(lowerCamelCase_ , 2) ^ self.ror(lowerCamelCase_ , 1_3) ^ self.ror(lowerCamelCase_ , 2_2) UpperCamelCase = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase = (sa + maj) % 0X1_0000_0000 UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = ( g, f, e, ((d + tempa) % 0X1_0000_0000), c, b, a, ((tempa + tempa) % 0X1_0000_0000), ) UpperCamelCase = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase = [ ((element + mutated_hash_values[index]) % 0X1_0000_0000) for index, element in enumerate(self.hashes) ] UpperCamelCase = ''''''.join([hex(lowerCamelCase_)[2:].zfill(8) for value in self.hashes]) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> int: return 0XFFFF_FFFF & (value << (3_2 - rotations)) | (value >> rotations) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> None: import hashlib UpperCamelCase = bytes('''Test String''' , '''utf-8''') self.assertEqual(SHAaaa(lowerCamelCase_).hash , hashlib.shaaaa(lowerCamelCase_).hexdigest()) def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''-s''' ,'''--string''' ,dest='''input_string''' ,default='''Hello World!! Welcome to Cryptography''' ,help='''Hash the string''' ,) parser.add_argument( '''-f''' ,'''--file''' ,dest='''input_file''' ,help='''Hash contents of a file''' ) UpperCamelCase = parser.parse_args() UpperCamelCase = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file ,'''rb''' ) as f: UpperCamelCase = f.read() else: UpperCamelCase = bytes(_lowercase ,'''utf-8''' ) print(SHAaaa(_lowercase ).hash ) if __name__ == "__main__": main()
34
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
34
1
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
1
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ = 1_0_1) -> Tuple: UpperCamelCase = length def __len__( self) -> List[str]: return self.length def __getitem__( self , lowerCamelCase_) -> int: return i class snake_case_ : """simple docstring""" def __call__( self , lowerCamelCase_) -> str: return {"input_ids": torch.tensor(lowerCamelCase_), "labels": torch.tensor(lowerCamelCase_)} class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> List[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase = nn.Linear(1_2_0 , 8_0) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_neuroncore def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_multi_gpu def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE_ = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()[0] logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' f'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE_ = DummyDataset(dataset_length) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = list(range(len(_lowercase ) ) ) UpperCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} SCREAMING_SNAKE_CASE_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = None
34
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase = getattr(_lowercase ,_lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase ,_lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) UpperCamelCase = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCamelCase = torch.tensor(_lowercase ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_lowercase ) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to(_lowercase ) else: UpperCamelCase = torch.tensor(_lowercase ,device=_lowercase ) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase ,requires_grad=old_value.requires_grad ) UpperCamelCase = new_value def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase ,nn.Linear ) or isinstance(_lowercase ,_lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase ,_lowercase ): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase ,_lowercase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase ,_lowercase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ,has_been_replaced=_lowercase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,_lowercase ,) return replace_with_bnb_linear(*_lowercase ,**_lowercase ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,_lowercase ,) return set_module_quantized_tensor_to_device(*_lowercase ,**_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase ,_lowercase ): UpperCamelCase = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(_lowercase ,[] ) UpperCamelCase = len(_lowercase ) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase ) - set(_lowercase ) UpperCamelCase = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase ,'''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names
34
1
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = {} def __snake_case ( _lowercase ,_lowercase ,_lowercase = None ,): """simple docstring""" UpperCamelCase = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) UpperCamelCase = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) UpperCamelCase = format_type def __snake_case ( _lowercase ,_lowercase ,_lowercase = None ): """simple docstring""" UpperCamelCase = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): UpperCamelCase = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: SCREAMING_SNAKE_CASE_ = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: SCREAMING_SNAKE_CASE_ = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: SCREAMING_SNAKE_CASE_ = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def __snake_case ( _lowercase ): """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __snake_case ( _lowercase ,**_lowercase ): """simple docstring""" UpperCamelCase = get_format_type_from_alias(_lowercase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**_lowercase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
34
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase ) count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 ) count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase ) return count def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_lowercase ,_lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_ = TemporaryFile() SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_ = np.load(outfile) SCREAMING_SNAKE_CASE_ = len(M) - 1 SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
34
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''data2vec-text''' def __init__( self , lowerCamelCase_=3_0_5_2_2 , lowerCamelCase_=7_6_8 , lowerCamelCase_=1_2 , lowerCamelCase_=1_2 , lowerCamelCase_=3_0_7_2 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-12 , lowerCamelCase_=1 , lowerCamelCase_=0 , lowerCamelCase_=2 , lowerCamelCase_="absolute" , lowerCamelCase_=True , lowerCamelCase_=None , **lowerCamelCase_ , ) -> List[str]: super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = use_cache UpperCamelCase = classifier_dropout class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @property def UpperCAmelCase__ ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
34
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE_ = os.path.join(git_repo_path, 'src', 'transformers') SCREAMING_SNAKE_CASE_ = '\n{0} = None\n' SCREAMING_SNAKE_CASE_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' SCREAMING_SNAKE_CASE_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowerCamelCase_) UpperCamelCase = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowerCamelCase_ , '''tokenizers''') UpperCamelCase = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowerCamelCase_ , '''tensorflow_text''') UpperCamelCase = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tensorflow_text''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers_and_vision''') def UpperCAmelCase__ ( self) -> int: UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCamelCase_) self.assertIn('''tensorflow_text''' , lowerCamelCase_) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCamelCase_) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , '''\nCONSTANT = None\n''') UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowerCamelCase_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowerCamelCase_)
34
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_ = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __snake_case ( _lowercase ): """simple docstring""" if "cls_token" in name: UpperCamelCase = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: UpperCamelCase = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: UpperCamelCase = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: UpperCamelCase = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: UpperCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: UpperCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: UpperCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: UpperCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: UpperCamelCase = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: UpperCamelCase = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: UpperCamelCase = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCamelCase = key.split('''.''' ) UpperCamelCase = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase = config.decoder_hidden_size UpperCamelCase = '''decoder.decoder_layers.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = config.hidden_size UpperCamelCase = '''vit.encoder.layer.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = val return orig_state_dict def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 elif "huge" in checkpoint_url: UpperCamelCase = 14 UpperCamelCase = 1280 UpperCamelCase = 5120 UpperCamelCase = 32 UpperCamelCase = 16 UpperCamelCase = ViTMAEForPreTraining(_lowercase ) UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' )['''model'''] UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = convert_state_dict(_lowercase ,_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCamelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = image_processor(images=_lowercase ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits if "large" in checkpoint_url: UpperCamelCase = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
34
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" requires_backends(_lowercase ,['''torch'''] ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" requires_backends(_lowercase ,['''torch'''] ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" requires_backends(_lowercase ,['''torch'''] ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" requires_backends(_lowercase ,['''torch'''] ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" requires_backends(_lowercase ,['''torch'''] ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" requires_backends(_lowercase ,['''torch'''] ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" requires_backends(_lowercase ,['''torch'''] ) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> int: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Dict: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Tuple: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> Any: requires_backends(cls , ['''torch''']) class snake_case_ ( metaclass=lowerCamelCase_ ): """simple docstring""" A_ = ['''torch'''] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> Union[str, Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> str: requires_backends(cls , ['''torch''']) @classmethod def UpperCAmelCase__ ( cls , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: requires_backends(cls , ['''torch'''])
34
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Any: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase = mock_training_loop_function('''hello''') self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def UpperCAmelCase__ ( self) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(lowerCamelCase_): pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Dict: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): raise ValueError('''Oops, we had an error!''') with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase_) UpperCamelCase = release_memory(lowerCamelCase_) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase_)
34
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ = 1_0_1) -> Tuple: UpperCamelCase = length def __len__( self) -> List[str]: return self.length def __getitem__( self , lowerCamelCase_) -> int: return i class snake_case_ : """simple docstring""" def __call__( self , lowerCamelCase_) -> str: return {"input_ids": torch.tensor(lowerCamelCase_), "labels": torch.tensor(lowerCamelCase_)} class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> List[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase = nn.Linear(1_2_0 , 8_0) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_neuroncore def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_multi_gpu def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE_ = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()[0] logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' f'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE_ = DummyDataset(dataset_length) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = list(range(len(_lowercase ) ) ) UpperCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} SCREAMING_SNAKE_CASE_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = None
34
1
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class snake_case_ : """simple docstring""" A_ = None def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) UpperCamelCase = json.loads(feat_extract.to_json_string()) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = os.path.join(lowerCamelCase_ , '''feat_extract.json''') feat_extract_first.to_json_file(lowerCamelCase_) UpperCamelCase = self.feature_extraction_class.from_json_file(lowerCamelCase_) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict()) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = feat_extract_first.save_pretrained(lowerCamelCase_)[0] check_json_file_has_correct_format(lowerCamelCase_) UpperCamelCase = self.feature_extraction_class.from_pretrained(lowerCamelCase_) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict()) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = self.feature_extraction_class() self.assertIsNotNone(lowerCamelCase_)
34
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for tf_name, hf_name in patterns: UpperCamelCase = k.replace(_lowercase ,_lowercase ) return k def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = BigBirdPegasusConfig(**_lowercase ) UpperCamelCase = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCamelCase = torch_model.state_dict() UpperCamelCase = {} # separating decoder weights UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = DECODER_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = REMAINING_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCamelCase = mapping['''model.embed_positions.weight'''] UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(_lowercase ,strict=_lowercase ) UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tf.train.list_variables(_lowercase ) UpperCamelCase = {} UpperCamelCase = ['''global_step'''] for name, shape in tqdm(_lowercase ,desc='''converting tf checkpoint to dict''' ): UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase = tf.train.load_variable(_lowercase ,_lowercase ) UpperCamelCase = array return tf_weights def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = get_tf_weights_as_numpy(_lowercase ) UpperCamelCase = convert_bigbird_pegasus(_lowercase ,_lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
34
1
"""simple docstring""" from __future__ import annotations from scipy.special import comb # type: ignore class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. UpperCamelCase = len(lowerCamelCase_) - 1 def UpperCAmelCase__ ( self , lowerCamelCase_) -> list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." UpperCamelCase = [] for i in range(len(self.list_of_points)): # basis function for each i output_values.append( comb(self.degree , lowerCamelCase_) * ((1 - t) ** (self.degree - i)) * (t**i)) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(lowerCamelCase_) , 5) == 1 return output_values def UpperCAmelCase__ ( self , lowerCamelCase_) -> tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." UpperCamelCase = self.basis_function(lowerCamelCase_) UpperCamelCase = 0.0 UpperCamelCase = 0.0 for i in range(len(self.list_of_points)): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def UpperCAmelCase__ ( self , lowerCamelCase_ = 0.01) -> List[Any]: from matplotlib import pyplot as plt # type: ignore UpperCamelCase = [] # x coordinates of points to plot UpperCamelCase = [] # y coordinates of points to plot UpperCamelCase = 0.0 while t <= 1: UpperCamelCase = self.bezier_curve_function(lowerCamelCase_) to_plot_x.append(value[0]) to_plot_y.append(value[1]) t += step_size UpperCamelCase = [i[0] for i in self.list_of_points] UpperCamelCase = [i[1] for i in self.list_of_points] plt.plot( lowerCamelCase_ , lowerCamelCase_ , color='''blue''' , label='''Curve of Degree ''' + str(self.degree) , ) plt.scatter(lowerCamelCase_ , lowerCamelCase_ , color='''red''' , label='''Control Points''') plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
34
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''decision_transformer''' A_ = ['''past_key_values'''] A_ = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowerCamelCase_=1_7 , lowerCamelCase_=4 , lowerCamelCase_=1_2_8 , lowerCamelCase_=4_0_9_6 , lowerCamelCase_=True , lowerCamelCase_=1 , lowerCamelCase_=1_0_2_4 , lowerCamelCase_=3 , lowerCamelCase_=1 , lowerCamelCase_=None , lowerCamelCase_="relu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=1e-5 , lowerCamelCase_=0.02 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=5_0_2_5_6 , lowerCamelCase_=5_0_2_5_6 , lowerCamelCase_=False , lowerCamelCase_=False , **lowerCamelCase_ , ) -> Any: UpperCamelCase = state_dim UpperCamelCase = act_dim UpperCamelCase = hidden_size UpperCamelCase = max_ep_len UpperCamelCase = action_tanh UpperCamelCase = vocab_size UpperCamelCase = n_positions UpperCamelCase = n_layer UpperCamelCase = n_head UpperCamelCase = n_inner UpperCamelCase = activation_function UpperCamelCase = resid_pdrop UpperCamelCase = embd_pdrop UpperCamelCase = attn_pdrop UpperCamelCase = layer_norm_epsilon UpperCamelCase = initializer_range UpperCamelCase = scale_attn_weights UpperCamelCase = use_cache UpperCamelCase = scale_attn_by_inverse_layer_idx UpperCamelCase = reorder_and_upcast_attn UpperCamelCase = bos_token_id UpperCamelCase = eos_token_id super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_)
34
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> Any: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase_ , ) return config, input_ids, attention_mask def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = FlaxDistilBertModelTester(self) @slow def UpperCAmelCase__ ( self) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowerCamelCase_) @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)[0] UpperCamelCase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , lowerCamelCase_) UpperCamelCase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4))
34
1
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path SCREAMING_SNAKE_CASE_ = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) SCREAMING_SNAKE_CASE_ = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} SCREAMING_SNAKE_CASE_ = 'zero2' SCREAMING_SNAKE_CASE_ = 'zero3' SCREAMING_SNAKE_CASE_ = [ZEROa, ZEROa] def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = parameterized.to_safe_name('''_'''.join(str(_lowercase ) for x in param.args ) ) return f'{func.__name__}_{param_based_name}' # Cartesian-product of zero stages with models to test SCREAMING_SNAKE_CASE_ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> str: self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> Dict: self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1_0 , lowerCamelCase_ = True , lowerCamelCase_ = True , lowerCamelCase_ = True , ) -> Union[str, Any]: UpperCamelCase = models[model] UpperCamelCase = self.run_trainer( stage=lowerCamelCase_ , model_name=lowerCamelCase_ , eval_steps=lowerCamelCase_ , num_train_epochs=1 , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) self.do_checks(lowerCamelCase_) return output_dir def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1_0 , lowerCamelCase_ = 1 , lowerCamelCase_ = True , lowerCamelCase_ = True , ) -> Dict: UpperCamelCase = self.get_auto_remove_tmp_dir('''./xxx''' , after=lowerCamelCase_) UpperCamelCase = F'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(lowerCamelCase_)}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split() if fpaa: args.extend(['''--fp16''']) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files UpperCamelCase = F'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split() UpperCamelCase = [F'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'] UpperCamelCase = self.get_launcher(lowerCamelCase_) UpperCamelCase = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) return output_dir def UpperCAmelCase__ ( self , lowerCamelCase_=False) -> List[Any]: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) UpperCamelCase = min(2 , get_gpu_count()) if distributed else 1 return F'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
34
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
1
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = FunnelTokenizer A_ = FunnelTokenizerFast A_ = True A_ = True def UpperCAmelCase__ ( self) -> Any: super().setUp() UpperCamelCase = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> int: return FunnelTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> List[str]: return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: UpperCamelCase = '''UNwant\u00E9d,running''' UpperCamelCase = '''unwanted, running''' return input_text, output_text def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.tokenizer_class(self.vocab_file) UpperCamelCase = tokenizer.tokenize('''UNwant\u00E9d,running''') self.assertListEqual(lowerCamelCase_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_) , [7, 4, 5, 1_0, 8, 9]) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = self.get_tokenizers(do_lower_case=lowerCamelCase_) for tokenizer in tokenizers: UpperCamelCase = tokenizer('''UNwant\u00E9d,running''') UpperCamelCase = len(inputs['''input_ids''']) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len) UpperCamelCase = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''') self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len)
34
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __snake_case ( _lowercase ,_lowercase=False ): """simple docstring""" try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_REMOTE', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_LOCAL', default=True) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __snake_case ( _lowercase ): """simple docstring""" try: import faiss # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires faiss''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import regex # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires regex''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TORCH_AVAILABLE: UpperCamelCase = unittest.skip('''test requires PyTorch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TF_AVAILABLE: UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.JAX_AVAILABLE: UpperCamelCase = unittest.skip('''test requires JAX''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.PIL_AVAILABLE: UpperCamelCase = unittest.skip('''test requires Pillow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" def _require_spacy_model(_lowercase ): try: import spacy # noqa F401 spacy.load(_lowercase ) except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_lowercase ) )(_lowercase ) else: return test_case return _require_spacy_model def __snake_case ( _lowercase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase = unittest.skip('''test is slow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: UpperCamelCase = unittest.skip('''test is local''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase = unittest.skip('''test is packaged''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase = unittest.skip('''test requires remote''' )(_lowercase ) return test_case def __snake_case ( *_lowercase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_lowercase ) and name.startswith('''test''' ): for decorator in decorators: UpperCamelCase = decorator(_lowercase ) setattr(cls ,_lowercase ,_lowercase ) return cls return decorate class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 0 A_ = 1 A_ = 2 @contextmanager def __snake_case ( _lowercase=OfflineSimulationMode.CONNECTION_FAILS ,_lowercase=1e-16 ): """simple docstring""" UpperCamelCase = requests.Session().request def timeout_request(_lowercase ,_lowercase ,_lowercase ,**_lowercase ): # Change the url to an invalid url so that the connection hangs UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) UpperCamelCase = timeout try: return online_request(_lowercase ,_lowercase ,**_lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase = url UpperCamelCase = e.args[0] UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' ,f'OfflineMock[{url}]' ),) UpperCamelCase = (max_retry_error,) raise def raise_connection_error(_lowercase ,_lowercase ,**_lowercase ): raise requests.ConnectionError('''Offline mode is enabled.''' ,request=_lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' ,_lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' ,_lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' ,_lowercase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowercase ,**_lowercase ) as tmp_dir: try: os.chdir(_lowercase ) yield finally: os.chdir(_lowercase ) @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() def __snake_case ( _lowercase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_lowercase ,*_lowercase ,**_lowercase ): try: return func(*_lowercase ,**_lowercase ) except HTTPError as err: if str(_lowercase ).startswith('''500''' ) or str(_lowercase ).startswith('''502''' ): pytest.xfail(str(_lowercase ) ) raise err return decorator.decorator(_wrapper ,_lowercase ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" while True: UpperCamelCase = await stream.readline() if line: callback(_lowercase ) else: break async def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ,_lowercase=False ): """simple docstring""" if echo: print('''\nRunning: ''' ,''' '''.join(_lowercase ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=_lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=_lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(_lowercase ,_lowercase ,_lowercase ,_lowercase="" ): UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase ,_lowercase ,file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stdout ,label='''stdout:''' ) ), _read_stream(p.stderr ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stderr ,label='''stderr:''' ) ), ] ,timeout=_lowercase ,) return _RunOutput(await p.wait() ,_lowercase ,_lowercase ) def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=180 ,_lowercase=False ,_lowercase=True ): """simple docstring""" UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(_lowercase ,env=_lowercase ,stdin=_lowercase ,timeout=_lowercase ,quiet=_lowercase ,echo=_lowercase ) ) UpperCamelCase = ''' '''.join(_lowercase ) if result.returncode > 0: UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def __snake_case ( ): """simple docstring""" UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' ,'''gw0''' ) UpperCamelCase = re.sub(r'''^gw''' ,'''''' ,_lowercase ,0 ,re.M ) return int(_lowercase ) def __snake_case ( ): """simple docstring""" UpperCamelCase = 2_9500 UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
34
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_) -> Optional[int]: UpperCamelCase = data def __iter__( self) -> Tuple: for element in self.data: yield element def __snake_case ( _lowercase=True ): """simple docstring""" UpperCamelCase = Accelerator(even_batches=_lowercase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase = False ): """simple docstring""" if iterable: UpperCamelCase = DummyIterableDataset(torch.as_tensor(range(_lowercase ) ) ) else: UpperCamelCase = TensorDataset(torch.as_tensor(range(_lowercase ) ) ) UpperCamelCase = DataLoader(_lowercase ,batch_size=_lowercase ) UpperCamelCase = accelerator.prepare(_lowercase ) return dl def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase ,_lowercase ,): """simple docstring""" UpperCamelCase = create_dataloader(accelerator=_lowercase ,dataset_size=_lowercase ,batch_size=_lowercase ) UpperCamelCase = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def __snake_case ( ): """simple docstring""" UpperCamelCase = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( _lowercase ,dataset_size=3 ,batch_size=1 ,process_0_expected_batch_sizes=[1, 1] ,process_1_expected_batch_sizes=[1, 1] ,) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( _lowercase ,dataset_size=7 ,batch_size=2 ,process_0_expected_batch_sizes=[2, 2] ,process_1_expected_batch_sizes=[2, 2] ,) def __snake_case ( ): """simple docstring""" UpperCamelCase = create_accelerator(even_batches=_lowercase ) verify_dataloader_batch_sizes( _lowercase ,dataset_size=3 ,batch_size=1 ,process_0_expected_batch_sizes=[1, 1] ,process_1_expected_batch_sizes=[1] ,) verify_dataloader_batch_sizes( _lowercase ,dataset_size=7 ,batch_size=2 ,process_0_expected_batch_sizes=[2, 2] ,process_1_expected_batch_sizes=[2, 1] ,) def __snake_case ( ): """simple docstring""" UpperCamelCase = create_accelerator(even_batches=_lowercase ) UpperCamelCase = torch.nn.Linear(1 ,1 ) UpperCamelCase = accelerator.prepare(_lowercase ) UpperCamelCase = create_dataloader(_lowercase ,dataset_size=3 ,batch_size=1 ) UpperCamelCase = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(_lowercase ): UpperCamelCase = ddp_model(batch[0].float() ) UpperCamelCase = output.sum() loss.backward() batch_idxs.append(_lowercase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def __snake_case ( _lowercase ): """simple docstring""" with warnings.catch_warnings(record=_lowercase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category ,_lowercase ) assert "only supported for multi-GPU" in str(w[-1].message ) def __snake_case ( ): """simple docstring""" UpperCamelCase = True UpperCamelCase = False UpperCamelCase = create_accelerator(even_batches=_lowercase ) UpperCamelCase = torch.nn.Linear(1 ,1 ) UpperCamelCase = accelerator.prepare(_lowercase ) UpperCamelCase = create_dataloader(_lowercase ,dataset_size=3 ,batch_size=1 ) UpperCamelCase = create_dataloader(_lowercase ,dataset_size=3 ,batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] ,even_batches=_lowercase ): UpperCamelCase = train_dl.batch_sampler.even_batches UpperCamelCase = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def __snake_case ( ): """simple docstring""" UpperCamelCase = True UpperCamelCase = False UpperCamelCase = create_accelerator(even_batches=_lowercase ) UpperCamelCase = torch.nn.Linear(1 ,1 ) UpperCamelCase = accelerator.prepare(_lowercase ) create_dataloader(_lowercase ,dataset_size=3 ,batch_size=1 ,iterable=_lowercase ) UpperCamelCase = create_dataloader(_lowercase ,dataset_size=3 ,batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('''ignore''' ) try: with accelerator.join_uneven_inputs([ddp_model] ,even_batches=_lowercase ): UpperCamelCase = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def __snake_case ( ): """simple docstring""" UpperCamelCase = create_accelerator() UpperCamelCase = torch.nn.Linear(1 ,1 ) UpperCamelCase = accelerator.prepare(_lowercase ) create_dataloader(_lowercase ,dataset_size=3 ,batch_size=1 ,iterable=_lowercase ) with warnings.catch_warnings(record=_lowercase ) as w: with accelerator.join_uneven_inputs([ddp_model] ,even_batches=_lowercase ): pass assert issubclass(w[-1].category ,_lowercase ) assert "only supported for map-style datasets" in str(w[-1].message ) def __snake_case ( ): """simple docstring""" UpperCamelCase = create_accelerator() accelerator.print('''Test that even_batches variable ensures uniform batches across processes''' ) test_default_ensures_even_batch_sizes() accelerator.print('''Run tests with even_batches disabled''' ) test_can_disable_even_batches() accelerator.print('''Test joining uneven inputs''' ) test_can_join_uneven_inputs() accelerator.print('''Test overriding even_batches when joining uneven inputs''' ) test_join_can_override_even_batches() accelerator.print('''Test overriding even_batches for mixed dataloader types''' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('''Test overriding even_batches raises a warning for iterable dataloaders''' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('''Test join with non DDP distributed raises warning''' ) UpperCamelCase = accelerator.state.distributed_type UpperCamelCase = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(_lowercase ) UpperCamelCase = original_state if __name__ == "__main__": main()
34
"""simple docstring""" import operator def __snake_case ( _lowercase ,_lowercase = False ,_lowercase = None ): """simple docstring""" UpperCamelCase = operator.lt if reverse else operator.gt UpperCamelCase = solution or [] if not arr: return solution UpperCamelCase = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase ,sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: UpperCamelCase = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase ,_lowercase ): solution.insert(_lowercase ,_lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase ,_lowercase ,_lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
34
1
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ['''image_processor''', '''tokenizer'''] A_ = '''AutoImageProcessor''' A_ = '''AutoTokenizer''' def __init__( self , lowerCamelCase_ , lowerCamelCase_) -> Tuple: super().__init__(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = self.image_processor def __call__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_) -> str: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''') if text is not None: UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_) if images is not None: UpperCamelCase = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_) if text is not None and images is not None: UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_) , tensor_type=lowerCamelCase_) def UpperCAmelCase__ ( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[str]: return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , *lowerCamelCase_ , **lowerCamelCase_) -> List[Any]: return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> Union[str, Any]: return ["input_ids", "attention_mask", "pixel_values"]
34
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' SCREAMING_SNAKE_CASE_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any: if return_pvalue: UpperCamelCase = pearsonr(lowerCamelCase_ , lowerCamelCase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_ , lowerCamelCase_)[0])}
34
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self) -> str: UpperCamelCase = 1 UpperCamelCase = 3 UpperCamelCase = (3_2, 3_2) UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(lowerCamelCase_) return image @property def UpperCAmelCase__ ( self) -> Optional[int]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def UpperCAmelCase__ ( self) -> Tuple: torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCAmelCase__ ( self) -> Dict: torch.manual_seed(0) UpperCamelCase = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> List[str]: def extract(*lowerCamelCase_ , **lowerCamelCase_): class snake_case_ : """simple docstring""" def __init__( self) -> Tuple: UpperCamelCase = torch.ones([0]) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: self.pixel_values.to(lowerCamelCase_) return self return Out() return extract def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.dummy_cond_unet UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) UpperCamelCase = self.dummy_vae UpperCamelCase = self.dummy_text_encoder UpperCamelCase = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''') UpperCamelCase = 7_7 UpperCamelCase = self.dummy_image.to(lowerCamelCase_) UpperCamelCase = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk UpperCamelCase = AltDiffusionImgaImgPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCamelCase_) UpperCamelCase = alt_pipe.to(lowerCamelCase_) alt_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = '''A painting of a squirrel eating a burger''' UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(0) UpperCamelCase = alt_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=lowerCamelCase_ , ) UpperCamelCase = output.images UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(0) UpperCamelCase = alt_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=lowerCamelCase_ , return_dict=lowerCamelCase_ , )[0] UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5e-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''') def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = self.dummy_cond_unet UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) UpperCamelCase = self.dummy_vae UpperCamelCase = self.dummy_text_encoder UpperCamelCase = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''') UpperCamelCase = 7_7 UpperCamelCase = self.dummy_image.to(lowerCamelCase_) # put models in fp16 UpperCamelCase = unet.half() UpperCamelCase = vae.half() UpperCamelCase = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase = AltDiffusionImgaImgPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCamelCase_) UpperCamelCase = alt_pipe.to(lowerCamelCase_) alt_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = '''A painting of a squirrel eating a burger''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = alt_pipe( [prompt] , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , image=lowerCamelCase_ , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''') def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') # resize to resolution that is divisible by 8 but not 16 or 32 UpperCamelCase = init_image.resize((7_6_0, 5_0_4)) UpperCamelCase = '''BAAI/AltDiffusion''' UpperCamelCase = AltDiffusionImgaImgPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''A fantasy landscape, trending on artstation''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , strength=0.75 , guidance_scale=7.5 , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] UpperCamelCase = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) UpperCamelCase = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') UpperCamelCase = init_image.resize((7_6_8, 5_1_2)) UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''') UpperCamelCase = '''BAAI/AltDiffusion''' UpperCamelCase = AltDiffusionImgaImgPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''A fantasy landscape, trending on artstation''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , strength=0.75 , guidance_scale=7.5 , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image).max() < 1e-2
34
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ComputeEnvironment.AMAZON_SAGEMAKER A_ = True A_ = '''ml.p3.2xlarge''' A_ = '''accelerate_sagemaker_execution_role''' A_ = '''hf-sm''' A_ = '''us-east-1''' A_ = 1 A_ = '''accelerate-sagemaker-1''' A_ = '''1.6''' A_ = '''4.4''' A_ = '''train.py''' A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args['''model_name_or_path'''] , lowerCamelCase_) assert isinstance(converted_args['''do_train'''] , lowerCamelCase_) assert isinstance(converted_args['''epochs'''] , lowerCamelCase_) assert isinstance(converted_args['''learning_rate'''] , lowerCamelCase_) assert isinstance(converted_args['''max_steps'''] , lowerCamelCase_) with pytest.raises(lowerCamelCase_): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
34
1
"""simple docstring""" import math import qiskit def __snake_case ( _lowercase = 1 ,_lowercase = 1 ,_lowercase = 1 ): """simple docstring""" if ( isinstance(_lowercase ,_lowercase ) or isinstance(_lowercase ,_lowercase ) or isinstance(_lowercase ,_lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(_lowercase ) != input_a) or (math.floor(_lowercase ) != input_a) or (math.floor(_lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCamelCase = qiskit.QuantumRegister(4 ,'''qr''' ) UpperCamelCase = qiskit.ClassicalRegister(2 ,'''cr''' ) # list the entries UpperCamelCase = [input_a, input_a, carry_in] UpperCamelCase = qiskit.QuantumCircuit(_lowercase ,_lowercase ) for i in range(0 ,3 ): if entry[i] == 2: quantum_circuit.h(_lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(_lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(_lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 ,1 ,3 ) # ccx = toffoli gate quantum_circuit.cx(0 ,1 ) quantum_circuit.ccx(1 ,2 ,3 ) quantum_circuit.cx(1 ,2 ) quantum_circuit.cx(0 ,1 ) quantum_circuit.measure([2, 3] ,_lowercase ) # measure the last two qbits UpperCamelCase = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCamelCase = qiskit.execute(_lowercase ,_lowercase ,shots=1000 ) return job.result().get_counts(_lowercase ) if __name__ == "__main__": print(f'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
34
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class snake_case_ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCamelCase_ = " ") -> List[str]: UpperCamelCase = sentence_delimiter def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return list(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase_): chars.extend(self.process_string(lowerCamelCase_)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_) - 1: chars.append(self.sentence_delimiter) return chars SCREAMING_SNAKE_CASE_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
1
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('0.8.3'): raise Exception('requires gluonnlp == 0.8.3') if version.parse(mx.__version__) != version.parse('1.5.0'): raise Exception('requires mxnet == 1.5.0') logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = 'The Nymphenburg Palace is a beautiful palace in Munich!' def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 1024, '''hidden_size''': 768, '''max_length''': 512, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 1024, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1e-5, '''token_type_vocab_size''': 2, } UpperCamelCase = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py UpperCamelCase = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] ,num_layers=predefined_args['''num_layers'''] ,units=predefined_args['''units'''] ,hidden_size=predefined_args['''hidden_size'''] ,max_length=predefined_args['''max_length'''] ,num_heads=predefined_args['''num_heads'''] ,scaled=predefined_args['''scaled'''] ,dropout=predefined_args['''dropout'''] ,output_attention=_lowercase ,output_all_encodings=_lowercase ,use_residual=predefined_args['''use_residual'''] ,activation=predefined_args.get('''activation''' ,'''gelu''' ) ,layer_norm_eps=predefined_args.get('''layer_norm_eps''' ,_lowercase ) ,) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later UpperCamelCase = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab UpperCamelCase = os.path.join(get_home_dir() ,'''models''' ) UpperCamelCase = _load_vocab(_lowercase ,_lowercase ,_lowercase ,cls=_lowercase ) UpperCamelCase = nlp.model.BERTModel( _lowercase ,len(_lowercase ) ,units=predefined_args['''units'''] ,embed_size=predefined_args['''embed_size'''] ,embed_dropout=predefined_args['''embed_dropout'''] ,word_embed=predefined_args['''word_embed'''] ,use_pooler=_lowercase ,use_token_type_embed=_lowercase ,token_type_vocab_size=predefined_args['''token_type_vocab_size'''] ,use_classifier=_lowercase ,use_decoder=_lowercase ,) original_bort.load_parameters(_lowercase ,cast_dtype=_lowercase ,ignore_extra=_lowercase ) UpperCamelCase = original_bort._collect_params_with_prefix() # Build our config 🤗 UpperCamelCase = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(_lowercase ), } UpperCamelCase = BertConfig.from_dict(_lowercase ) UpperCamelCase = BertForMaskedLM(_lowercase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(_lowercase ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(_lowercase ,_lowercase ): UpperCamelCase = hf_param.shape UpperCamelCase = to_torch(params[gluon_param] ) UpperCamelCase = gluon_param.shape assert ( shape_hf == shape_gluon ), f'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers' return gluon_param UpperCamelCase = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight ,'''word_embed.0.weight''' ) UpperCamelCase = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight ,'''encoder.position_weight''' ) UpperCamelCase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias ,'''encoder.layer_norm.beta''' ) UpperCamelCase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight ,'''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) UpperCamelCase = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): UpperCamelCase = hf_bort_model.bert.encoder.layer[i] # self attention UpperCamelCase = layer.attention.self UpperCamelCase = check_and_map_params( self_attn.key.bias.data ,f'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' ) UpperCamelCase = check_and_map_params( self_attn.key.weight.data ,f'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' ) UpperCamelCase = check_and_map_params( self_attn.query.bias.data ,f'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' ) UpperCamelCase = check_and_map_params( self_attn.query.weight.data ,f'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' ) UpperCamelCase = check_and_map_params( self_attn.value.bias.data ,f'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' ) UpperCamelCase = check_and_map_params( self_attn.value.weight.data ,f'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' ) # self attention output UpperCamelCase = layer.attention.output UpperCamelCase = check_and_map_params( self_output.dense.bias ,f'encoder.transformer_cells.{i}.proj.bias' ) UpperCamelCase = check_and_map_params( self_output.dense.weight ,f'encoder.transformer_cells.{i}.proj.weight' ) UpperCamelCase = check_and_map_params( self_output.LayerNorm.bias ,f'encoder.transformer_cells.{i}.layer_norm.beta' ) UpperCamelCase = check_and_map_params( self_output.LayerNorm.weight ,f'encoder.transformer_cells.{i}.layer_norm.gamma' ) # intermediate UpperCamelCase = layer.intermediate UpperCamelCase = check_and_map_params( intermediate.dense.bias ,f'encoder.transformer_cells.{i}.ffn.ffn_1.bias' ) UpperCamelCase = check_and_map_params( intermediate.dense.weight ,f'encoder.transformer_cells.{i}.ffn.ffn_1.weight' ) # output UpperCamelCase = layer.output UpperCamelCase = check_and_map_params( bert_output.dense.bias ,f'encoder.transformer_cells.{i}.ffn.ffn_2.bias' ) UpperCamelCase = check_and_map_params( bert_output.dense.weight ,f'encoder.transformer_cells.{i}.ffn.ffn_2.weight' ) UpperCamelCase = check_and_map_params( bert_output.LayerNorm.bias ,f'encoder.transformer_cells.{i}.ffn.layer_norm.beta' ) UpperCamelCase = check_and_map_params( bert_output.LayerNorm.weight ,f'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models UpperCamelCase = RobertaTokenizer.from_pretrained('''roberta-base''' ) UpperCamelCase = tokenizer.encode_plus(_lowercase )['''input_ids'''] # Get gluon output UpperCamelCase = mx.nd.array([input_ids] ) UpperCamelCase = original_bort(inputs=_lowercase ,token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(_lowercase ) UpperCamelCase = BertModel.from_pretrained(_lowercase ) hf_bort_model.eval() UpperCamelCase = tokenizer.encode_plus(_lowercase ,return_tensors='''pt''' ) UpperCamelCase = hf_bort_model(**_lowercase )[0] UpperCamelCase = output_gluon[0].asnumpy() UpperCamelCase = output_hf[0].detach().numpy() UpperCamelCase = np.max(np.abs(hf_layer - gluon_layer ) ).item() UpperCamelCase = np.allclose(_lowercase ,_lowercase ,atol=1e-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' ,_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bort_checkpoint_path', default=None, type=str, required=True, help='Path the official Bort params file.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
34
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = '''left''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<eop>", "<eod>"] , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = 3 UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> List[str]: return len(self.sp_model) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> str: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: if self.remove_space: UpperCamelCase = ''' '''.join(inputs.strip().split()) else: UpperCamelCase = inputs UpperCamelCase = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCamelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase_) UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_)]) if self.do_lower_case: UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) UpperCamelCase = [] for piece in pieces: if len(lowerCamelCase_) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCamelCase = cur_pieces[1:] else: UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCamelCase_) else: new_pieces.append(lowerCamelCase_) return new_pieces def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.sp_model.IdToPiece(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: UpperCamelCase = ''''''.join(lowerCamelCase_).replace(lowerCamelCase_ , ''' ''').strip() return out_string def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> str: UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCamelCase_) UpperCamelCase = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) UpperCamelCase = [] sub_texts.append(lowerCamelCase_) else: current_sub_text.append(lowerCamelCase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(lowerCamelCase_) return clean_text else: return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) + [1, 1] return ([0] * len(lowerCamelCase_)) + [1, 1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,)
34
1
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" if n == 1 or not isinstance(_lowercase ,_lowercase ): return 0 elif n == 2: return 1 else: UpperCamelCase = [0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = 2 while digits < n: index += 1 UpperCamelCase = len(str(fibonacci(_lowercase ) ) ) return index def __snake_case ( _lowercase = 1000 ): """simple docstring""" return fibonacci_digits_index(_lowercase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
34
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } SCREAMING_SNAKE_CASE_ = { 'openbmb/cpm-ant-10b': 1024, } def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = collections.OrderedDict() with open(_lowercase ,'''r''' ,encoding='''utf-8''' ) as reader: UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): UpperCamelCase = token.rstrip('''\n''' ) UpperCamelCase = index return vocab class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_=2_0_0) -> Any: UpperCamelCase = vocab UpperCamelCase = unk_token UpperCamelCase = max_input_chars_per_word def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = list(lowerCamelCase_) if len(lowerCamelCase_) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase = 0 UpperCamelCase = [] while start < len(lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = None while start < end: UpperCamelCase = ''''''.join(chars[start:end]) if substr in self.vocab: UpperCamelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(lowerCamelCase_) UpperCamelCase = end return sub_tokens class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] A_ = False def __init__( self , lowerCamelCase_ , lowerCamelCase_="<d>" , lowerCamelCase_="</d>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<unk>" , lowerCamelCase_="</n>" , lowerCamelCase_="</_>" , lowerCamelCase_="left" , **lowerCamelCase_ , ) -> List[str]: requires_backends(self , ['''jieba''']) super().__init__( bod_token=lowerCamelCase_ , eod_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , line_token=lowerCamelCase_ , space_token=lowerCamelCase_ , padding_side=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = bod_token UpperCamelCase = eod_token UpperCamelCase = load_vocab(lowerCamelCase_) UpperCamelCase = self.encoder[space_token] UpperCamelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def UpperCAmelCase__ ( self) -> Dict: return self.encoder[self.bod_token] @property def UpperCAmelCase__ ( self) -> str: return self.encoder[self.eod_token] @property def UpperCAmelCase__ ( self) -> List[Any]: return self.encoder["\n"] @property def UpperCAmelCase__ ( self) -> int: return len(self.encoder) def UpperCAmelCase__ ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = [] for x in jieba.cut(lowerCamelCase_ , cut_all=lowerCamelCase_): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase_)) return output_tokens def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> Tuple: UpperCamelCase = [i for i in token_ids if i >= 0] UpperCamelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return token in self.encoder def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return "".join(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token)) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return self.decoder.get(lowerCamelCase_ , self.unk_token) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if os.path.isdir(lowerCamelCase_): UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: UpperCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCamelCase = 0 if " " in self.encoder: UpperCamelCase = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase = self.encoder['''\n'''] del self.encoder["\n"] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''') UpperCamelCase = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) return [1] + ([0] * len(lowerCamelCase_))
34
1
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch SCREAMING_SNAKE_CASE_ = True except ImportError: SCREAMING_SNAKE_CASE_ = False try: from torch.hub import _get_torch_home SCREAMING_SNAKE_CASE_ = _get_torch_home() except ImportError: SCREAMING_SNAKE_CASE_ = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) SCREAMING_SNAKE_CASE_ = os.path.join(torch_cache_home, 'transformers') SCREAMING_SNAKE_CASE_ = 'https://cdn.huggingface.co' SCREAMING_SNAKE_CASE_ = 'https://s3.amazonaws.com/models.huggingface.co/bert' SCREAMING_SNAKE_CASE_ = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) SCREAMING_SNAKE_CASE_ = os.path.join(PATH, 'config.yaml') SCREAMING_SNAKE_CASE_ = os.path.join(PATH, 'attributes.txt') SCREAMING_SNAKE_CASE_ = os.path.join(PATH, 'objects.txt') SCREAMING_SNAKE_CASE_ = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) SCREAMING_SNAKE_CASE_ = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) SCREAMING_SNAKE_CASE_ = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) SCREAMING_SNAKE_CASE_ = 'pytorch_model.bin' SCREAMING_SNAKE_CASE_ = 'config.yaml' def __snake_case ( _lowercase=OBJECTS ,_lowercase=ATTRIBUTES ): """simple docstring""" UpperCamelCase = [] with open(_lowercase ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) UpperCamelCase = [] with open(_lowercase ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = OrderedDict() with open(_lowercase ,'''rb''' ) as f: UpperCamelCase = pkl.load(_lowercase )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): UpperCamelCase = ckp.pop(_lowercase ) if isinstance(_lowercase ,np.ndarray ): UpperCamelCase = torch.tensor(_lowercase ) else: assert isinstance(_lowercase ,torch.tensor ), type(_lowercase ) UpperCamelCase = v return r class snake_case_ : """simple docstring""" A_ = {} def __init__( self , lowerCamelCase_ , lowerCamelCase_ = "root" , lowerCamelCase_=0) -> str: UpperCamelCase = name UpperCamelCase = level UpperCamelCase = {} for k, v in dictionary.items(): if v is None: raise ValueError() UpperCamelCase = copy.deepcopy(lowerCamelCase_) UpperCamelCase = copy.deepcopy(lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = Config(lowerCamelCase_ , name=lowerCamelCase_ , level=level + 1) UpperCamelCase = v setattr(self , lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = d def __repr__( self) -> List[Any]: return str(list((self._pointer.keys()))) def __setattr__( self , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase = val UpperCamelCase = val UpperCamelCase = key.split('''.''') UpperCamelCase = len(lowerCamelCase_) - 1 UpperCamelCase = self._pointer if len(lowerCamelCase_) > 1: for i, l in enumerate(lowerCamelCase_): if hasattr(self , lowerCamelCase_) and isinstance(getattr(self , lowerCamelCase_) , lowerCamelCase_): setattr(getattr(self , lowerCamelCase_) , '''.'''.join(levels[i:]) , lowerCamelCase_) if l == last_level: UpperCamelCase = val else: UpperCamelCase = pointer[l] def UpperCAmelCase__ ( self) -> Any: return self._pointer def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: with open(F'{file_name}' , '''w''') as stream: dump(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> str: with open(F'{file_name}' , '''w''') as stream: json.dump(lowerCamelCase_ , lowerCamelCase_) @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> Optional[Any]: with open(lowerCamelCase_) as stream: UpperCamelCase = load(lowerCamelCase_ , Loader=lowerCamelCase_) return data def __str__( self) -> List[Any]: UpperCamelCase = ''' ''' if self._name != "root": UpperCamelCase = F'{t * (self._level-1)}{self._name}:\n' else: UpperCamelCase = '''''' UpperCamelCase = self._level for i, (k, v) in enumerate(self._pointer.items()): if isinstance(lowerCamelCase_ , lowerCamelCase_): r += F'{t * (self._level)}{v}\n' self._level += 1 else: r += F'{t * (self._level)}{k}: {v} ({type(lowerCamelCase_).__name__})\n' UpperCamelCase = level return r[:-1] @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: UpperCamelCase , UpperCamelCase = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_) return cls(lowerCamelCase_) @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , **lowerCamelCase_) -> Dict: UpperCamelCase = kwargs.pop('''cache_dir''' , lowerCamelCase_) UpperCamelCase = kwargs.pop('''force_download''' , lowerCamelCase_) UpperCamelCase = kwargs.pop('''resume_download''' , lowerCamelCase_) UpperCamelCase = kwargs.pop('''proxies''' , lowerCamelCase_) UpperCamelCase = kwargs.pop('''local_files_only''' , lowerCamelCase_) if os.path.isdir(lowerCamelCase_): UpperCamelCase = os.path.join(lowerCamelCase_ , lowerCamelCase_) elif os.path.isfile(lowerCamelCase_) or is_remote_url(lowerCamelCase_): UpperCamelCase = pretrained_model_name_or_path else: UpperCamelCase = hf_bucket_url(lowerCamelCase_ , filename=lowerCamelCase_ , use_cdn=lowerCamelCase_) try: # Load from URL or cache if already cached UpperCamelCase = cached_path( lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) # Load config dict if resolved_config_file is None: raise EnvironmentError UpperCamelCase = Config.load_yaml(lowerCamelCase_) except EnvironmentError: UpperCamelCase = '''Can\'t load config for''' raise EnvironmentError(lowerCamelCase_) if resolved_config_file == config_file: print('''loading configuration file from path''') else: print('''loading configuration file cache''') return Config.load_yaml(lowerCamelCase_), kwargs def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = torch.load('''dump.pt''' ,map_location=in_tensor.device ) UpperCamelCase = in_tensor.numpy() UpperCamelCase = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(_lowercase ,_lowercase ,rtol=0.01 ,atol=0.1 ), ( f'{sum([1 for x in np.isclose(_lowercase ,_lowercase ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %' " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = urlparse(_lowercase ) return parsed.scheme in ("http", "https") def __snake_case ( _lowercase ,_lowercase ,_lowercase=True ): """simple docstring""" UpperCamelCase = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX UpperCamelCase = '''/''' not in model_id if legacy_format: return f'{endpoint}/{model_id}-{filename}' else: return f'{endpoint}/{model_id}/{filename}' def __snake_case ( _lowercase ,_lowercase ,_lowercase=None ,_lowercase=0 ,_lowercase=None ,): """simple docstring""" UpperCamelCase = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(_lowercase ,_lowercase ): ua += "; " + "; ".join('''{}/{}'''.format(_lowercase ,_lowercase ) for k, v in user_agent.items() ) elif isinstance(_lowercase ,_lowercase ): ua += "; " + user_agent UpperCamelCase = {'''user-agent''': ua} if resume_size > 0: UpperCamelCase = '''bytes=%d-''' % (resume_size,) UpperCamelCase = requests.get(_lowercase ,stream=_lowercase ,proxies=_lowercase ,headers=_lowercase ) if response.status_code == 416: # Range not satisfiable return UpperCamelCase = response.headers.get('''Content-Length''' ) UpperCamelCase = resume_size + int(_lowercase ) if content_length is not None else None UpperCamelCase = tqdm( unit='''B''' ,unit_scale=_lowercase ,total=_lowercase ,initial=_lowercase ,desc='''Downloading''' ,) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(_lowercase ) ) temp_file.write(_lowercase ) progress.close() def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=False ,_lowercase=None ,_lowercase=10 ,_lowercase=False ,_lowercase=None ,_lowercase=False ,): """simple docstring""" if cache_dir is None: UpperCamelCase = TRANSFORMERS_CACHE if isinstance(_lowercase ,_lowercase ): UpperCamelCase = str(_lowercase ) os.makedirs(_lowercase ,exist_ok=_lowercase ) UpperCamelCase = None if not local_files_only: try: UpperCamelCase = requests.head(_lowercase ,allow_redirects=_lowercase ,proxies=_lowercase ,timeout=_lowercase ) if response.status_code == 200: UpperCamelCase = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass UpperCamelCase = url_to_filename(_lowercase ,_lowercase ) # get cache path to put the file UpperCamelCase = os.path.join(_lowercase ,_lowercase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(_lowercase ): return cache_path else: UpperCamelCase = [ file for file in fnmatch.filter(os.listdir(_lowercase ) ,filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(_lowercase ) > 0: return os.path.join(_lowercase ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(_lowercase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. UpperCamelCase = cache_path + '''.lock''' with FileLock(_lowercase ): # If the download just completed while the lock was activated. if os.path.exists(_lowercase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: UpperCamelCase = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(_lowercase ,'''a+b''' ) as f: yield f UpperCamelCase = _resumable_file_manager if os.path.exists(_lowercase ): UpperCamelCase = os.stat(_lowercase ).st_size else: UpperCamelCase = 0 else: UpperCamelCase = partial(tempfile.NamedTemporaryFile ,dir=_lowercase ,delete=_lowercase ) UpperCamelCase = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' ,_lowercase ,temp_file.name ,) http_get( _lowercase ,_lowercase ,proxies=_lowercase ,resume_size=_lowercase ,user_agent=_lowercase ,) os.replace(temp_file.name ,_lowercase ) UpperCamelCase = {'''url''': url, '''etag''': etag} UpperCamelCase = cache_path + '''.json''' with open(_lowercase ,'''w''' ) as meta_file: json.dump(_lowercase ,_lowercase ) return cache_path def __snake_case ( _lowercase ,_lowercase=None ): """simple docstring""" UpperCamelCase = url.encode('''utf-8''' ) UpperCamelCase = shaaaa(_lowercase ) UpperCamelCase = url_hash.hexdigest() if etag: UpperCamelCase = etag.encode('''utf-8''' ) UpperCamelCase = shaaaa(_lowercase ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=False ,_lowercase=None ,_lowercase=False ,_lowercase=None ,_lowercase=False ,_lowercase=False ,_lowercase=False ,): """simple docstring""" if cache_dir is None: UpperCamelCase = TRANSFORMERS_CACHE if isinstance(_lowercase ,_lowercase ): UpperCamelCase = str(_lowercase ) if isinstance(_lowercase ,_lowercase ): UpperCamelCase = str(_lowercase ) if is_remote_url(_lowercase ): # URL, so get it from the cache (downloading if necessary) UpperCamelCase = get_from_cache( _lowercase ,cache_dir=_lowercase ,force_download=_lowercase ,proxies=_lowercase ,resume_download=_lowercase ,user_agent=_lowercase ,local_files_only=_lowercase ,) elif os.path.exists(_lowercase ): # File, and it exists. UpperCamelCase = url_or_filename elif urlparse(_lowercase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(_lowercase ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(_lowercase ) ) if extract_compressed_file: if not is_zipfile(_lowercase ) and not tarfile.is_tarfile(_lowercase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" UpperCamelCase , UpperCamelCase = os.path.split(_lowercase ) UpperCamelCase = output_file.replace('''.''' ,'''-''' ) + '''-extracted''' UpperCamelCase = os.path.join(_lowercase ,_lowercase ) if os.path.isdir(_lowercase ) and os.listdir(_lowercase ) and not force_extract: return output_path_extracted # Prevent parallel extractions UpperCamelCase = output_path + '''.lock''' with FileLock(_lowercase ): shutil.rmtree(_lowercase ,ignore_errors=_lowercase ) os.makedirs(_lowercase ) if is_zipfile(_lowercase ): with ZipFile(_lowercase ,'''r''' ) as zip_file: zip_file.extractall(_lowercase ) zip_file.close() elif tarfile.is_tarfile(_lowercase ): UpperCamelCase = tarfile.open(_lowercase ) tar_file.extractall(_lowercase ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(_lowercase ) ) return output_path_extracted return output_path def __snake_case ( _lowercase ,_lowercase="," ): """simple docstring""" assert isinstance(_lowercase ,_lowercase ) if os.path.isfile(_lowercase ): with open(_lowercase ) as f: UpperCamelCase = eval(f.read() ) else: UpperCamelCase = requests.get(_lowercase ) try: UpperCamelCase = requests.json() except Exception: UpperCamelCase = req.content.decode() assert data is not None, "could not connect" try: UpperCamelCase = eval(_lowercase ) except Exception: UpperCamelCase = data.split('''\n''' ) req.close() return data def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = requests.get(_lowercase ) UpperCamelCase = np.array(Image.open(BytesIO(response.content ) ) ) return img def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(_lowercase ) with open(_lowercase ,'''rb''' ) as stream: UpperCamelCase = pkl.load(_lowercase ) UpperCamelCase = weights.pop('''model''' ) UpperCamelCase = {} for k, v in model.items(): UpperCamelCase = torch.from_numpy(_lowercase ) if "running_var" in k: UpperCamelCase = torch.tensor([0] ) UpperCamelCase = k.replace('''running_var''' ,'''num_batches_tracked''' ) UpperCamelCase = zero return new def __snake_case ( ): """simple docstring""" print(f'{os.path.abspath(os.path.join(_lowercase ,os.pardir ) )}/demo.ipynb' ) def __snake_case ( _lowercase ,_lowercase="RGB" ): """simple docstring""" assert isinstance(_lowercase ,_lowercase ) if os.path.isfile(_lowercase ): UpperCamelCase = cva.imread(_lowercase ) else: UpperCamelCase = get_image_from_url(_lowercase ) assert img is not None, f'could not connect to: {im}' UpperCamelCase = cva.cvtColor(_lowercase ,cva.COLOR_BGR2RGB ) if input_format == "RGB": UpperCamelCase = img[:, :, ::-1] return img def __snake_case ( _lowercase ,_lowercase=1 ): """simple docstring""" return (images[i : i + batch] for i in range(0 ,len(_lowercase ) ,_lowercase ))
34
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=0) -> int: UpperCamelCase = 1.0 if scale is None else scale UpperCamelCase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_)]) @property def UpperCAmelCase__ ( self) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase__ ( self) -> List[str]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase__ ( self) -> Any: return self.variance.sqrt() class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = args_dim UpperCamelCase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_) for dim in args_dim.values()]) UpperCamelCase = domain_map def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple[torch.Tensor]: UpperCamelCase = [proj(lowerCamelCase_) for proj in self.proj] return self.domain_map(*lowerCamelCase_) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__() UpperCamelCase = function def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_) -> Tuple: return self.function(lowerCamelCase_ , *lowerCamelCase_) class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , lowerCamelCase_ = 1) -> None: UpperCamelCase = dim UpperCamelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if self.dim == 1: return self.distribution_class(*lowerCamelCase_) else: return Independent(self.distribution_class(*lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Distribution: UpperCamelCase = self._base_distribution(lowerCamelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim) @property def UpperCAmelCase__ ( self) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase__ ( self) -> int: return len(self.event_shape) @property def UpperCAmelCase__ ( self) -> float: return 0.0 def UpperCAmelCase__ ( self , lowerCamelCase_) -> nn.Module: return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def UpperCAmelCase__ ( self , *lowerCamelCase_) -> List[str]: raise NotImplementedError() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCamelCase_) + 4.0)) / 2.0 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"df": 1, "loc": 1, "scale": 1} A_ = StudentT @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) UpperCamelCase = 2.0 + cls.squareplus(lowerCamelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"loc": 1, "scale": 1} A_ = Normal @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"total_count": 1, "logits": 1} A_ = NegativeBinomial @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = cls.squareplus(lowerCamelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
34
1
"""simple docstring""" import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = FlaxAutoencoderKL @property def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = 4 UpperCamelCase = 3 UpperCamelCase = (3_2, 3_2) UpperCamelCase = jax.random.PRNGKey(0) UpperCamelCase = jax.random.uniform(lowerCamelCase_ , ((batch_size, num_channels) + sizes)) return {"sample": image, "prng_key": prng_key} def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = { '''block_out_channels''': [3_2, 6_4], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } UpperCamelCase = self.dummy_input return init_dict, inputs_dict
34
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowercase ,id=_lowercase )
34
1
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_) -> int: UpperCamelCase = [[] for _ in range(lowerCamelCase_)] UpperCamelCase = size def __getitem__( self , lowerCamelCase_) -> Iterator[Edge]: return iter(self._graph[vertex]) @property def UpperCAmelCase__ ( self) -> Union[str, Any]: return self._size def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''') if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''') self._graph[from_vertex].append(Edge(lowerCamelCase_ , lowerCamelCase_)) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> int | None: UpperCamelCase = deque([start_vertex]) UpperCamelCase = [None] * self.size UpperCamelCase = 0 while queue: UpperCamelCase = queue.popleft() UpperCamelCase = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: UpperCamelCase = current_distance + edge.weight UpperCamelCase = distances[edge.destination_vertex] if ( isinstance(lowerCamelCase_ , lowerCamelCase_) and new_distance >= dest_vertex_distance ): continue UpperCamelCase = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex) else: queue.append(edge.destination_vertex) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''') return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
34
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
34
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __snake_case ( _lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if attention_mask is None: UpperCamelCase = tf.cast(tf.math.not_equal(_lowercase ,config.pad_token_id ) ,tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class snake_case_ : """simple docstring""" A_ = OPTConfig A_ = {} A_ = '''gelu''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=9_9 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=4 , lowerCamelCase_=4 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=2_0 , lowerCamelCase_=2 , lowerCamelCase_=1 , lowerCamelCase_=0 , lowerCamelCase_=1_6 , lowerCamelCase_=1_6 , ) -> Union[str, Any]: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = eos_token_id UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id UpperCamelCase = embed_dim UpperCamelCase = word_embed_proj_dim UpperCamelCase = False def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1) UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCamelCase_ , **self.config_updates , ) UpperCamelCase = prepare_opt_inputs_dict(lowerCamelCase_ , lowerCamelCase_) return config, inputs_dict def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> Any: UpperCamelCase = TFOPTModel(config=lowerCamelCase_) UpperCamelCase = inputs_dict['''input_ids'''] UpperCamelCase = input_ids[:1, :] UpperCamelCase = inputs_dict['''attention_mask'''][:1, :] UpperCamelCase = 1 # first forward pass UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , use_cache=lowerCamelCase_) UpperCamelCase , UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size) UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1) UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)[0] UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1])) UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase_ , lowerCamelCase_ , rtol=1e-3) @require_tf class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () A_ = (TFOPTForCausalLM,) if is_tf_available() else () A_ = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) A_ = False A_ = False A_ = False A_ = 10 def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = TFOPTModelTester(self) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_) def UpperCAmelCase__ ( self) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase_) def UpperCAmelCase__ ( self) -> str: UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCamelCase_ , lowerCamelCase_): if hasattr(lowerCamelCase_ , '''weight'''): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCamelCase_ , '''weight'''): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings UpperCamelCase = model_class(config=lowerCamelCase_) UpperCamelCase = _get_word_embedding_weight(lowerCamelCase_ , model.get_input_embeddings()) UpperCamelCase = _get_word_embedding_weight(lowerCamelCase_ , model.get_output_embeddings()) # reshape the embeddings model.resize_token_embeddings(lowerCamelCase_) UpperCamelCase = _get_word_embedding_weight(lowerCamelCase_ , model.get_input_embeddings()) UpperCamelCase = _get_word_embedding_weight(lowerCamelCase_ , model.get_output_embeddings()) # check that the resized embeddings size matches the desired size. UpperCamelCase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowerCamelCase_) # check that weights remain the same after resizing UpperCamelCase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(pa - pa)) > 0: UpperCamelCase = False self.assertTrue(lowerCamelCase_) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowerCamelCase_) UpperCamelCase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(pa - pa)) > 0: UpperCamelCase = False self.assertTrue(lowerCamelCase_) def __snake_case ( _lowercase ): """simple docstring""" return tf.constant(_lowercase ,dtype=tf.intaa ) @require_tf class snake_case_ ( unittest.TestCase ): """simple docstring""" A_ = 99 def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = tf.ones((4, 1) , dtype=tf.intaa) * 2 UpperCamelCase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3) + 3, eos_column_vector] , axis=1) UpperCamelCase = input_ids.shape[0] UpperCamelCase = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = TFOPTModel.from_pretrained('''facebook/opt-350m''') UpperCamelCase = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]]) UpperCamelCase = tf.not_equal(lowerCamelCase_ , model.config.pad_token_id) with tf.GradientTape(): UpperCamelCase = model(input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_).last_hidden_state UpperCamelCase = (1, 1_1, 5_1_2) self.assertEqual(output.shape , lowerCamelCase_) UpperCamelCase = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]]) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase_ , atol=4e-3)) UpperCamelCase = tf.function(lowerCamelCase_ , jit_compile=lowerCamelCase_) UpperCamelCase = xla_generate(lowerCamelCase_ , lowerCamelCase_)[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase_ , atol=4e-2)) @require_tf @slow class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> Union[str, Any]: super().setUp() UpperCamelCase = '''facebook/opt-350m''' def UpperCAmelCase__ ( self) -> int: UpperCamelCase = TFOPTForCausalLM.from_pretrained(self.path_model) UpperCamelCase = GPTaTokenizer.from_pretrained(self.path_model) UpperCamelCase = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False UpperCamelCase = tokenizer(lowerCamelCase_ , return_tensors='''tf''' , padding=lowerCamelCase_ , add_special_tokens=lowerCamelCase_) UpperCamelCase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask)[0] , axis=-1) UpperCamelCase = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ]) self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-4)) UpperCamelCase = tf.function(lowerCamelCase_ , jit_compile=lowerCamelCase_) UpperCamelCase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask)[0] , axis=-1) self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-4)) @require_tf @slow class snake_case_ ( unittest.TestCase ): """simple docstring""" @property def UpperCAmelCase__ ( self) -> Tuple: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = '''facebook/opt-125m''' UpperCamelCase = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] UpperCamelCase = [] UpperCamelCase = GPTaTokenizer.from_pretrained(lowerCamelCase_) UpperCamelCase = TFOPTForCausalLM.from_pretrained(lowerCamelCase_) for prompt in self.prompts: UpperCamelCase = tokenizer(lowerCamelCase_ , return_tensors='''tf''').input_ids UpperCamelCase = model.generate(lowerCamelCase_ , max_length=1_0) UpperCamelCase = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = '''facebook/opt-350m''' UpperCamelCase = GPTaTokenizer.from_pretrained(lowerCamelCase_) UpperCamelCase = TFOPTForCausalLM.from_pretrained(lowerCamelCase_) UpperCamelCase = '''left''' # use different length sentences to test batching UpperCamelCase = [ '''Hello, my dog is a little''', '''Today, I''', ] UpperCamelCase = tokenizer(lowerCamelCase_ , return_tensors='''tf''' , padding=lowerCamelCase_) UpperCamelCase = inputs['''input_ids'''] UpperCamelCase = model.generate(input_ids=lowerCamelCase_ , attention_mask=inputs['''attention_mask''']) UpperCamelCase = tokenizer(sentences[0] , return_tensors='''tf''').input_ids UpperCamelCase = model.generate(input_ids=lowerCamelCase_) UpperCamelCase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa)) UpperCamelCase = tokenizer(sentences[1] , return_tensors='''tf''').input_ids UpperCamelCase = model.generate(input_ids=lowerCamelCase_ , max_length=model.config.max_length - num_paddings) UpperCamelCase = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) UpperCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCamelCase_) UpperCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCamelCase_) UpperCamelCase = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_) self.assertListEqual(lowerCamelCase_ , [non_padded_sentence, padded_sentence]) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = '''facebook/opt-350m''' UpperCamelCase = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] UpperCamelCase = [] UpperCamelCase = GPTaTokenizer.from_pretrained(lowerCamelCase_) UpperCamelCase = TFOPTForCausalLM.from_pretrained(lowerCamelCase_) for prompt in self.prompts: UpperCamelCase = tokenizer(lowerCamelCase_ , return_tensors='''tf''').input_ids UpperCamelCase = model.generate(lowerCamelCase_ , max_length=1_0) UpperCamelCase = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase_ , lowerCamelCase_)
34
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
1
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''umt5''' A_ = ['''past_key_values'''] def __init__( self , lowerCamelCase_=2_5_0_1_1_2 , lowerCamelCase_=5_1_2 , lowerCamelCase_=6_4 , lowerCamelCase_=1_0_2_4 , lowerCamelCase_=8 , lowerCamelCase_=None , lowerCamelCase_=6 , lowerCamelCase_=3_2 , lowerCamelCase_=1_2_8 , lowerCamelCase_=0.1 , lowerCamelCase_=1e-6 , lowerCamelCase_=1.0 , lowerCamelCase_="gated-gelu" , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_="T5Tokenizer" , lowerCamelCase_=True , lowerCamelCase_=0 , lowerCamelCase_=1 , lowerCamelCase_=0 , **lowerCamelCase_ , ) -> int: super().__init__( is_encoder_decoder=lowerCamelCase_ , tokenizer_class=lowerCamelCase_ , tie_word_embeddings=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = vocab_size UpperCamelCase = d_model UpperCamelCase = d_kv UpperCamelCase = d_ff UpperCamelCase = num_layers UpperCamelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCamelCase = num_heads UpperCamelCase = relative_attention_num_buckets UpperCamelCase = relative_attention_max_distance UpperCamelCase = dropout_rate UpperCamelCase = layer_norm_epsilon UpperCamelCase = initializer_factor UpperCamelCase = feed_forward_proj UpperCamelCase = use_cache UpperCamelCase = self.feed_forward_proj.split('''-''') UpperCamelCase = act_info[-1] UpperCamelCase = act_info[0] == '''gated''' if len(lowerCamelCase_) > 1 and act_info[0] != "gated" or len(lowerCamelCase_) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''') if feed_forward_proj == "gated-gelu": UpperCamelCase = '''gelu_new''' @property def UpperCAmelCase__ ( self) -> Tuple: return self.d_model @property def UpperCAmelCase__ ( self) -> Union[str, Any]: return self.num_heads @property def UpperCAmelCase__ ( self) -> List[str]: return self.num_layers class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def UpperCAmelCase__ ( self) -> Mapping[str, Mapping[int, str]]: UpperCamelCase = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: UpperCamelCase = '''past_encoder_sequence + sequence''' UpperCamelCase = {0: '''batch'''} UpperCamelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} UpperCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ , direction='''inputs''') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def UpperCAmelCase__ ( self) -> int: return 1_3 @property def UpperCAmelCase__ ( self) -> float: return 5e-4
34
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase = getattr(_lowercase ,_lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase ,_lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) UpperCamelCase = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCamelCase = torch.tensor(_lowercase ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_lowercase ) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to(_lowercase ) else: UpperCamelCase = torch.tensor(_lowercase ,device=_lowercase ) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase ,requires_grad=old_value.requires_grad ) UpperCamelCase = new_value def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase ,nn.Linear ) or isinstance(_lowercase ,_lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase ,_lowercase ): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase ,_lowercase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase ,_lowercase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ,has_been_replaced=_lowercase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,_lowercase ,) return replace_with_bnb_linear(*_lowercase ,**_lowercase ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,_lowercase ,) return set_module_quantized_tensor_to_device(*_lowercase ,**_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase ,_lowercase ): UpperCamelCase = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(_lowercase ,[] ) UpperCamelCase = len(_lowercase ) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase ) - set(_lowercase ) UpperCamelCase = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase ,'''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names
34
1
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase ): """simple docstring""" def constraint_to_multiple_of(_lowercase ,_lowercase ,_lowercase=0 ,_lowercase=None ): UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: UpperCamelCase = math.ceil(val / multiple ) * multiple return x UpperCamelCase = (output_size, output_size) if isinstance(_lowercase ,_lowercase ) else output_size UpperCamelCase , UpperCamelCase = get_image_size(_lowercase ) UpperCamelCase , UpperCamelCase = output_size # determine new height and width UpperCamelCase = output_height / input_height UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width UpperCamelCase = scale_width else: # fit height UpperCamelCase = scale_height UpperCamelCase = constraint_to_multiple_of(scale_height * input_height ,multiple=_lowercase ) UpperCamelCase = constraint_to_multiple_of(scale_width * input_width ,multiple=_lowercase ) return (new_height, new_width) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ['''pixel_values'''] def __init__( self , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = PILImageResampling.BILINEAR , lowerCamelCase_ = False , lowerCamelCase_ = 1 , lowerCamelCase_ = True , lowerCamelCase_ = 1 / 2_5_5 , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = size if size is not None else {'''height''': 3_8_4, '''width''': 3_8_4} UpperCamelCase = get_size_dict(lowerCamelCase_) UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = keep_aspect_ratio UpperCamelCase = ensure_multiple_of UpperCamelCase = resample UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_normalize UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = 1 , lowerCamelCase_ = PILImageResampling.BICUBIC , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: UpperCamelCase = get_size_dict(lowerCamelCase_) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}') UpperCamelCase = get_resize_output_image_size( lowerCamelCase_ , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=lowerCamelCase_ , multiple=lowerCamelCase_ , ) return resize(lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> Any: return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = ChannelDimension.FIRST , **lowerCamelCase_ , ) -> PIL.Image.Image: UpperCamelCase = do_resize if do_resize is not None else self.do_resize UpperCamelCase = size if size is not None else self.size UpperCamelCase = get_size_dict(lowerCamelCase_) UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of UpperCamelCase = resample if resample is not None else self.resample UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase = image_mean if image_mean is not None else self.image_mean UpperCamelCase = image_std if image_std is not None else self.image_std UpperCamelCase = make_list_of_images(lowerCamelCase_) if not valid_images(lowerCamelCase_): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # All transformations expect numpy arrays. UpperCamelCase = [to_numpy_array(lowerCamelCase_) for image in images] if do_resize: UpperCamelCase = [self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_) for image in images] if do_rescale: UpperCamelCase = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_) for image in images] if do_normalize: UpperCamelCase = [self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_) for image in images] UpperCamelCase = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_) for image in images] UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Optional[int]: UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCamelCase_) != len(lowerCamelCase_): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''') if is_torch_tensor(lowerCamelCase_): UpperCamelCase = target_sizes.numpy() UpperCamelCase = [] for idx in range(len(lowerCamelCase_)): UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCamelCase_) UpperCamelCase = resized_logits[0].argmax(dim=0) semantic_segmentation.append(lowerCamelCase_) else: UpperCamelCase = logits.argmax(dim=1) UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
34
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase ) count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 ) count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase ) return count def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_lowercase ,_lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_ = TemporaryFile() SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_ = np.load(outfile) SCREAMING_SNAKE_CASE_ = len(M) - 1 SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
34
1
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class snake_case_ : """simple docstring""" @staticmethod def UpperCAmelCase__ ( *lowerCamelCase_ , **lowerCamelCase_) -> Optional[Any]: pass def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = np.array(_lowercase ) UpperCamelCase = npimg.shape return {"hash": hashimage(_lowercase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class snake_case_ ( unittest.TestCase ): """simple docstring""" A_ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) A_ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any: UpperCamelCase = MaskGenerationPipeline(model=lowerCamelCase_ , image_processor=lowerCamelCase_) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''') def UpperCAmelCase__ ( self) -> Optional[Any]: pass @slow @require_torch def UpperCAmelCase__ ( self) -> int: UpperCamelCase = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''') UpperCamelCase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=2_5_6) # Shortening by hashing UpperCamelCase = [] for i, o in enumerate(outputs['''masks''']): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase_), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8871} ] , ) # fmt: on @require_torch @slow def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = '''facebook/sam-vit-huge''' UpperCamelCase = pipeline('''mask-generation''' , model=lowerCamelCase_) UpperCamelCase = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=2_5_6) # Shortening by hashing UpperCamelCase = [] for i, o in enumerate(outputs['''masks''']): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase_), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0053}, ] , )
34
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE_ = os.path.join(git_repo_path, 'src', 'transformers') SCREAMING_SNAKE_CASE_ = '\n{0} = None\n' SCREAMING_SNAKE_CASE_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' SCREAMING_SNAKE_CASE_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowerCamelCase_) UpperCamelCase = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowerCamelCase_ , '''tokenizers''') UpperCamelCase = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowerCamelCase_ , '''tensorflow_text''') UpperCamelCase = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tensorflow_text''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers_and_vision''') def UpperCAmelCase__ ( self) -> int: UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCamelCase_) self.assertIn('''tensorflow_text''' , lowerCamelCase_) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCamelCase_) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , '''\nCONSTANT = None\n''') UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowerCamelCase_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowerCamelCase_)
34
1
"""simple docstring""" from __future__ import annotations from typing import Any class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_) -> None: UpperCamelCase = num_of_nodes UpperCamelCase = [] UpperCamelCase = {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> None: self.m_edges.append([u_node, v_node, weight]) def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def UpperCAmelCase__ ( self , lowerCamelCase_) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: UpperCamelCase = self.find_component(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> None: if component_size[u_node] <= component_size[v_node]: UpperCamelCase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCamelCase_) elif component_size[u_node] >= component_size[v_node]: UpperCamelCase = self.find_component(lowerCamelCase_) component_size[u_node] += component_size[v_node] self.set_component(lowerCamelCase_) def UpperCAmelCase__ ( self) -> None: UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) UpperCamelCase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: UpperCamelCase , UpperCamelCase , UpperCamelCase = edge UpperCamelCase = self.m_component[u] UpperCamelCase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): UpperCamelCase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase , UpperCamelCase , UpperCamelCase = edge UpperCamelCase = self.m_component[u] UpperCamelCase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) print(F'Added edge [{u} - {v}]\nAdded weight: {w}\n') num_of_components -= 1 UpperCamelCase = [-1] * self.m_num_of_nodes print(F'The total weight of the minimal spanning tree is: {mst_weight}') def __snake_case ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
34
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __snake_case ( _lowercase ): """simple docstring""" if "cls_token" in name: UpperCamelCase = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: UpperCamelCase = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: UpperCamelCase = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: UpperCamelCase = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: UpperCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: UpperCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: UpperCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: UpperCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: UpperCamelCase = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: UpperCamelCase = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: UpperCamelCase = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCamelCase = key.split('''.''' ) UpperCamelCase = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase = config.decoder_hidden_size UpperCamelCase = '''decoder.decoder_layers.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = config.hidden_size UpperCamelCase = '''vit.encoder.layer.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = val return orig_state_dict def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 elif "huge" in checkpoint_url: UpperCamelCase = 14 UpperCamelCase = 1280 UpperCamelCase = 5120 UpperCamelCase = 32 UpperCamelCase = 16 UpperCamelCase = ViTMAEForPreTraining(_lowercase ) UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' )['''model'''] UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = convert_state_dict(_lowercase ,_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCamelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = image_processor(images=_lowercase ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits if "large" in checkpoint_url: UpperCamelCase = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
34
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''mobilenet_v1''' def __init__( self , lowerCamelCase_=3 , lowerCamelCase_=2_2_4 , lowerCamelCase_=1.0 , lowerCamelCase_=8 , lowerCamelCase_="relu6" , lowerCamelCase_=True , lowerCamelCase_=0.999 , lowerCamelCase_=0.02 , lowerCamelCase_=0.001 , **lowerCamelCase_ , ) -> int: super().__init__(**lowerCamelCase_) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''') UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = depth_multiplier UpperCamelCase = min_depth UpperCamelCase = hidden_act UpperCamelCase = tf_padding UpperCamelCase = classifier_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('''pixel_values''', {0: '''batch'''})]) @property def UpperCAmelCase__ ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})]) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})]) @property def UpperCAmelCase__ ( self) -> float: return 1e-4
34
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Any: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase = mock_training_loop_function('''hello''') self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def UpperCAmelCase__ ( self) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(lowerCamelCase_): pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Dict: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): raise ValueError('''Oops, we had an error!''') with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase_) UpperCamelCase = release_memory(lowerCamelCase_) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase_)
34
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = '''huggingface/label-files''' UpperCamelCase = '''imagenet-1k-id2label.json''' UpperCamelCase = json.load(open(hf_hub_download(_lowercase ,_lowercase ,repo_type='''dataset''' ) ,'''r''' ) ) UpperCamelCase = {int(_lowercase ): v for k, v in idalabel.items()} UpperCamelCase = {v: k for k, v in idalabel.items()} UpperCamelCase = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" UpperCamelCase = BitConfig( conv_layer=_lowercase ,num_labels=1000 ,idalabel=_lowercase ,labelaid=_lowercase ,) return config def __snake_case ( _lowercase ): """simple docstring""" if "stem.conv" in name: UpperCamelCase = name.replace('''stem.conv''' ,'''bit.embedder.convolution''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''layers''' ) if "head.fc" in name: UpperCamelCase = name.replace('''head.fc''' ,'''classifier.1''' ) if name.startswith('''norm''' ): UpperCamelCase = '''bit.''' + name if "bit" not in name and "classifier" not in name: UpperCamelCase = '''bit.encoder.''' + name return name def __snake_case ( ): """simple docstring""" UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) return im @torch.no_grad() def __snake_case ( _lowercase ,_lowercase ,_lowercase=False ): """simple docstring""" UpperCamelCase = get_config(_lowercase ) # load original model from timm UpperCamelCase = create_model(_lowercase ,pretrained=_lowercase ) timm_model.eval() # load state_dict of original model UpperCamelCase = timm_model.state_dict() for key in state_dict.copy().keys(): UpperCamelCase = state_dict.pop(_lowercase ) UpperCamelCase = val.squeeze() if '''head''' in key else val # load HuggingFace model UpperCamelCase = BitForImageClassification(_lowercase ) model.eval() model.load_state_dict(_lowercase ) # create image processor UpperCamelCase = create_transform(**resolve_data_config({} ,model=_lowercase ) ) UpperCamelCase = transform.transforms UpperCamelCase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } UpperCamelCase = BitImageProcessor( do_resize=_lowercase ,size={'''shortest_edge''': timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=_lowercase ,crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} ,do_normalize=_lowercase ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) UpperCamelCase = prepare_img() UpperCamelCase = transform(_lowercase ).unsqueeze(0 ) UpperCamelCase = processor(_lowercase ,return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(_lowercase ,_lowercase ) # verify logits with torch.no_grad(): UpperCamelCase = model(_lowercase ) UpperCamelCase = outputs.logits print('''Logits:''' ,logits[0, :3] ) print('''Predicted class:''' ,model.config.idalabel[logits.argmax(-1 ).item()] ) UpperCamelCase = timm_model(_lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowercase ,outputs.logits ,atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
34
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ = 1_0_1) -> Tuple: UpperCamelCase = length def __len__( self) -> List[str]: return self.length def __getitem__( self , lowerCamelCase_) -> int: return i class snake_case_ : """simple docstring""" def __call__( self , lowerCamelCase_) -> str: return {"input_ids": torch.tensor(lowerCamelCase_), "labels": torch.tensor(lowerCamelCase_)} class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> List[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase = nn.Linear(1_2_0 , 8_0) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_neuroncore def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_multi_gpu def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE_ = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()[0] logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' f'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE_ = DummyDataset(dataset_length) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = list(range(len(_lowercase ) ) ) UpperCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} SCREAMING_SNAKE_CASE_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = None
34
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class snake_case_ : """simple docstring""" A_ = field( metadata={'''help''': '''The output directory where the model will be written.'''} , ) A_ = field( metadata={ '''help''': ( '''The encoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train an encoder model from scratch.''' ) } , ) A_ = field( metadata={ '''help''': ( '''The decoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train a decoder model from scratch.''' ) } , ) A_ = field( default=lowerCamelCase_ , metadata={'''help''': '''Pretrained encoder config name or path if not the same as encoder_model_name'''} ) A_ = field( default=lowerCamelCase_ , metadata={'''help''': '''Pretrained decoder config name or path if not the same as decoder_model_name'''} ) def __snake_case ( ): """simple docstring""" UpperCamelCase = HfArgumentParser((ModelArguments,) ) ((UpperCamelCase) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: UpperCamelCase = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: UpperCamelCase = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: UpperCamelCase = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: UpperCamelCase = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed UpperCamelCase = True UpperCamelCase = True UpperCamelCase = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path ,decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path ,encoder_config=_lowercase ,decoder_config=_lowercase ,) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens UpperCamelCase = decoder_config.decoder_start_token_id UpperCamelCase = decoder_config.pad_token_id if decoder_start_token_id is None: UpperCamelCase = decoder_config.bos_token_id if pad_token_id is None: UpperCamelCase = decoder_config.eos_token_id # This is necessary to make Flax's generate() work UpperCamelCase = decoder_config.eos_token_id UpperCamelCase = decoder_start_token_id UpperCamelCase = pad_token_id UpperCamelCase = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) UpperCamelCase = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) UpperCamelCase = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
34
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for tf_name, hf_name in patterns: UpperCamelCase = k.replace(_lowercase ,_lowercase ) return k def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = BigBirdPegasusConfig(**_lowercase ) UpperCamelCase = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCamelCase = torch_model.state_dict() UpperCamelCase = {} # separating decoder weights UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = DECODER_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = REMAINING_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCamelCase = mapping['''model.embed_positions.weight'''] UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(_lowercase ,strict=_lowercase ) UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tf.train.list_variables(_lowercase ) UpperCamelCase = {} UpperCamelCase = ['''global_step'''] for name, shape in tqdm(_lowercase ,desc='''converting tf checkpoint to dict''' ): UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase = tf.train.load_variable(_lowercase ,_lowercase ) UpperCamelCase = array return tf_weights def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = get_tf_weights_as_numpy(_lowercase ) UpperCamelCase = convert_bigbird_pegasus(_lowercase ,_lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
34
1
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE_ = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def __snake_case ( _lowercase = "mumbai" ): """simple docstring""" UpperCamelCase = BeautifulSoup(requests.get(url + location ).content ,'''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' ,attrs={'''data-tn-component''': '''organicJob'''} ): UpperCamelCase = job.find('''a''' ,attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() UpperCamelCase = job.find('''span''' ,{'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'Job {i:>2} is {job[0]} at {job[1]}')
34
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
1
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __snake_case ( _lowercase=None ,_lowercase=None ): """simple docstring""" return field(default_factory=lambda: default ,metadata=_lowercase ) @dataclass class snake_case_ : """simple docstring""" A_ = field( metadata={'''help''': '''The csv file to plot.'''} , ) A_ = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to plot along batch size or sequence length. Defaults to sequence length.'''} , ) A_ = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether the csv file has time results or memory results. Defaults to memory results.'''} , ) A_ = field( default=lowerCamelCase_ , metadata={'''help''': '''Disable logarithmic scale when plotting'''} , ) A_ = field( default=lowerCamelCase_ , metadata={ '''help''': '''Whether the csv file has training results or inference results. Defaults to inference results.''' } , ) A_ = field( default=lowerCamelCase_ , metadata={'''help''': '''Filename under which the plot will be saved. If unused no plot is saved.'''} , ) A_ = list_field( default=lowerCamelCase_ , metadata={'''help''': '''List of model names that are used instead of the ones in the csv file.'''} ) def __snake_case ( _lowercase ): """simple docstring""" try: int(_lowercase ) return True except ValueError: return False def __snake_case ( _lowercase ): """simple docstring""" try: float(_lowercase ) return True except ValueError: return False class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = args UpperCamelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}}) with open(self.args.csv_file , newline='''''') as csv_file: UpperCamelCase = csv.DictReader(lowerCamelCase_) for row in reader: UpperCamelCase = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''])) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''])) if can_convert_to_int(row['''result''']): # value is not None UpperCamelCase = int(row['''result''']) elif can_convert_to_float(row['''result''']): # value is not None UpperCamelCase = float(row['''result''']) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase , UpperCamelCase = plt.subplots() UpperCamelCase = '''Time usage''' if self.args.is_time else '''Memory usage''' UpperCamelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''') ax.set_yscale('''log''') for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter()) for model_name_idx, model_name in enumerate(self.result_dict.keys()): UpperCamelCase = sorted(set(self.result_dict[model_name]['''bsz'''])) UpperCamelCase = sorted(set(self.result_dict[model_name]['''seq_len'''])) UpperCamelCase = self.result_dict[model_name]['''result'''] ((UpperCamelCase) , (UpperCamelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) UpperCamelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: UpperCamelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=lowerCamelCase_ , ) else: UpperCamelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((UpperCamelCase) , (UpperCamelCase)) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) UpperCamelCase = np.asarray(lowerCamelCase_ , lowerCamelCase_)[: len(lowerCamelCase_)] plt.scatter( lowerCamelCase_ , lowerCamelCase_ , label=F'{label_model_name} - {inner_loop_label}: {inner_loop_value}') plt.plot(lowerCamelCase_ , lowerCamelCase_ , '''--''') title_str += F' {label_model_name} vs.' UpperCamelCase = title_str[:-4] UpperCamelCase = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(lowerCamelCase_) plt.xlabel(lowerCamelCase_) plt.ylabel(lowerCamelCase_) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file) else: plt.show() def __snake_case ( ): """simple docstring""" UpperCamelCase = HfArgumentParser(_lowercase ) UpperCamelCase = parser.parse_args_into_dataclasses()[0] UpperCamelCase = Plot(args=_lowercase ) plot.plot() if __name__ == "__main__": main()
34
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> Any: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase_ , ) return config, input_ids, attention_mask def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = FlaxDistilBertModelTester(self) @slow def UpperCAmelCase__ ( self) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowerCamelCase_) @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)[0] UpperCamelCase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , lowerCamelCase_) UpperCamelCase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4))
34
1
"""simple docstring""" from functools import lru_cache @lru_cache def __snake_case ( _lowercase ): """simple docstring""" if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
34
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''pegasus''' A_ = ['''past_key_values'''] A_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCamelCase_=5_0_2_6_5 , lowerCamelCase_=1_0_2_4 , lowerCamelCase_=1_2 , lowerCamelCase_=4_0_9_6 , lowerCamelCase_=1_6 , lowerCamelCase_=1_2 , lowerCamelCase_=4_0_9_6 , lowerCamelCase_=1_6 , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_="gelu" , lowerCamelCase_=1_0_2_4 , lowerCamelCase_=0.1 , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=0.02 , lowerCamelCase_=0 , lowerCamelCase_=False , lowerCamelCase_=0 , lowerCamelCase_=1 , lowerCamelCase_=1 , **lowerCamelCase_ , ) -> Tuple: UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = d_model UpperCamelCase = encoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = use_cache UpperCamelCase = encoder_layers UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , forced_eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) @property def UpperCAmelCase__ ( self) -> int: return self.encoder_attention_heads @property def UpperCAmelCase__ ( self) -> int: return self.d_model
34
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
1
"""simple docstring""" import requests from bsa import BeautifulSoup def __snake_case ( _lowercase = "AAPL" ): """simple docstring""" UpperCamelCase = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' UpperCamelCase = BeautifulSoup(requests.get(_lowercase ).text ,'''html.parser''' ) UpperCamelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' ,class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
34
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __snake_case ( _lowercase ,_lowercase=False ): """simple docstring""" try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_REMOTE', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_LOCAL', default=True) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __snake_case ( _lowercase ): """simple docstring""" try: import faiss # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires faiss''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import regex # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires regex''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TORCH_AVAILABLE: UpperCamelCase = unittest.skip('''test requires PyTorch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TF_AVAILABLE: UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.JAX_AVAILABLE: UpperCamelCase = unittest.skip('''test requires JAX''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.PIL_AVAILABLE: UpperCamelCase = unittest.skip('''test requires Pillow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" def _require_spacy_model(_lowercase ): try: import spacy # noqa F401 spacy.load(_lowercase ) except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_lowercase ) )(_lowercase ) else: return test_case return _require_spacy_model def __snake_case ( _lowercase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase = unittest.skip('''test is slow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: UpperCamelCase = unittest.skip('''test is local''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase = unittest.skip('''test is packaged''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase = unittest.skip('''test requires remote''' )(_lowercase ) return test_case def __snake_case ( *_lowercase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_lowercase ) and name.startswith('''test''' ): for decorator in decorators: UpperCamelCase = decorator(_lowercase ) setattr(cls ,_lowercase ,_lowercase ) return cls return decorate class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 0 A_ = 1 A_ = 2 @contextmanager def __snake_case ( _lowercase=OfflineSimulationMode.CONNECTION_FAILS ,_lowercase=1e-16 ): """simple docstring""" UpperCamelCase = requests.Session().request def timeout_request(_lowercase ,_lowercase ,_lowercase ,**_lowercase ): # Change the url to an invalid url so that the connection hangs UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) UpperCamelCase = timeout try: return online_request(_lowercase ,_lowercase ,**_lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase = url UpperCamelCase = e.args[0] UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' ,f'OfflineMock[{url}]' ),) UpperCamelCase = (max_retry_error,) raise def raise_connection_error(_lowercase ,_lowercase ,**_lowercase ): raise requests.ConnectionError('''Offline mode is enabled.''' ,request=_lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' ,_lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' ,_lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' ,_lowercase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowercase ,**_lowercase ) as tmp_dir: try: os.chdir(_lowercase ) yield finally: os.chdir(_lowercase ) @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() def __snake_case ( _lowercase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_lowercase ,*_lowercase ,**_lowercase ): try: return func(*_lowercase ,**_lowercase ) except HTTPError as err: if str(_lowercase ).startswith('''500''' ) or str(_lowercase ).startswith('''502''' ): pytest.xfail(str(_lowercase ) ) raise err return decorator.decorator(_wrapper ,_lowercase ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" while True: UpperCamelCase = await stream.readline() if line: callback(_lowercase ) else: break async def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ,_lowercase=False ): """simple docstring""" if echo: print('''\nRunning: ''' ,''' '''.join(_lowercase ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=_lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=_lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(_lowercase ,_lowercase ,_lowercase ,_lowercase="" ): UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase ,_lowercase ,file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stdout ,label='''stdout:''' ) ), _read_stream(p.stderr ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stderr ,label='''stderr:''' ) ), ] ,timeout=_lowercase ,) return _RunOutput(await p.wait() ,_lowercase ,_lowercase ) def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=180 ,_lowercase=False ,_lowercase=True ): """simple docstring""" UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(_lowercase ,env=_lowercase ,stdin=_lowercase ,timeout=_lowercase ,quiet=_lowercase ,echo=_lowercase ) ) UpperCamelCase = ''' '''.join(_lowercase ) if result.returncode > 0: UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def __snake_case ( ): """simple docstring""" UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' ,'''gw0''' ) UpperCamelCase = re.sub(r'''^gw''' ,'''''' ,_lowercase ,0 ,re.M ) return int(_lowercase ) def __snake_case ( ): """simple docstring""" UpperCamelCase = 2_9500 UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
34
1
"""simple docstring""" SCREAMING_SNAKE_CASE_ = 9.80665 def __snake_case ( _lowercase ,_lowercase ,_lowercase = g ): """simple docstring""" if fluid_density <= 0: raise ValueError('''Impossible fluid density''' ) if volume < 0: raise ValueError('''Impossible Object volume''' ) if gravity <= 0: raise ValueError('''Impossible Gravity''' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
34
"""simple docstring""" import operator def __snake_case ( _lowercase ,_lowercase = False ,_lowercase = None ): """simple docstring""" UpperCamelCase = operator.lt if reverse else operator.gt UpperCamelCase = solution or [] if not arr: return solution UpperCamelCase = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase ,sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: UpperCamelCase = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase ,_lowercase ): solution.insert(_lowercase ,_lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase ,_lowercase ,_lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
34
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , ) -> List[Any]: UpperCamelCase = parent UpperCamelCase = 1_3 UpperCamelCase = 7 UpperCamelCase = True UpperCamelCase = True UpperCamelCase = True UpperCamelCase = True UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = 2 UpperCamelCase = 9_9 UpperCamelCase = 0 UpperCamelCase = 3_2 UpperCamelCase = 2 UpperCamelCase = 4 UpperCamelCase = 0.1 UpperCamelCase = 0.1 UpperCamelCase = 5_1_2 UpperCamelCase = 1_6 UpperCamelCase = 2 UpperCamelCase = 0.02 UpperCamelCase = 3 UpperCamelCase = 4 UpperCamelCase = '''last''' UpperCamelCase = True UpperCamelCase = None UpperCamelCase = 0 def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa) UpperCamelCase = None if self.use_input_lengths: UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCamelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) UpperCamelCase = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Optional[Any]: UpperCamelCase = TFFlaubertModel(config=lowerCamelCase_) UpperCamelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCamelCase = model(lowerCamelCase_) UpperCamelCase = [input_ids, input_mask] UpperCamelCase = model(lowerCamelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Tuple: UpperCamelCase = TFFlaubertWithLMHeadModel(lowerCamelCase_) UpperCamelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCamelCase = model(lowerCamelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Optional[Any]: UpperCamelCase = TFFlaubertForQuestionAnsweringSimple(lowerCamelCase_) UpperCamelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCamelCase = model(lowerCamelCase_) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> str: UpperCamelCase = TFFlaubertForSequenceClassification(lowerCamelCase_) UpperCamelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCamelCase = model(lowerCamelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Optional[Any]: UpperCamelCase = self.num_labels UpperCamelCase = TFFlaubertForTokenClassification(config=lowerCamelCase_) UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCamelCase = model(lowerCamelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Optional[Any]: UpperCamelCase = self.num_choices UpperCamelCase = TFFlaubertForMultipleChoice(config=lowerCamelCase_) UpperCamelCase = tf.tile(tf.expand_dims(lowerCamelCase_ , 1) , (1, self.num_choices, 1)) UpperCamelCase = tf.tile(tf.expand_dims(lowerCamelCase_ , 1) , (1, self.num_choices, 1)) UpperCamelCase = tf.tile(tf.expand_dims(lowerCamelCase_ , 1) , (1, self.num_choices, 1)) UpperCamelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCamelCase = model(lowerCamelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) A_ = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ = ( { '''feature-extraction''': TFFlaubertModel, '''fill-mask''': TFFlaubertWithLMHeadModel, '''question-answering''': TFFlaubertForQuestionAnsweringSimple, '''text-classification''': TFFlaubertForSequenceClassification, '''token-classification''': TFFlaubertForTokenClassification, '''zero-shot''': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) A_ = False A_ = False def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[str]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = TFFlaubertModelTester(self) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , emb_dim=3_7) def UpperCAmelCase__ ( self) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCamelCase_) def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCamelCase_) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCamelCase_) def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCamelCase_) def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCamelCase_) def UpperCAmelCase__ ( self) -> Dict: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCamelCase_) @slow def UpperCAmelCase__ ( self) -> List[Any]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = TFFlaubertModel.from_pretrained(lowerCamelCase_) self.assertIsNotNone(lowerCamelCase_) @require_tf @require_sentencepiece @require_tokenizers class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''') UpperCamelCase = tf.convert_to_tensor( [[0, 1_5_8, 7_3_5, 2_5_9_2, 1_4_2_4, 6_7_2_7, 8_2, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCamelCase = model(lowerCamelCase_)[0] UpperCamelCase = tf.TensorShape((1, 8, 5_1_2)) self.assertEqual(output.shape , lowerCamelCase_) # compare the actual values for a slice. UpperCamelCase = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4))
34
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' SCREAMING_SNAKE_CASE_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any: if return_pvalue: UpperCamelCase = pearsonr(lowerCamelCase_ , lowerCamelCase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_ , lowerCamelCase_)[0])}
34
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: UpperCamelCase = tempfile.mkdtemp() # fmt: off UpperCamelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) UpperCamelCase = { '''do_resize''': True, '''size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } UpperCamelCase = os.path.join(self.tmpdirname , lowerCamelCase_) with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp: json.dump(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> int: return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> int: return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_) def UpperCAmelCase__ ( self) -> Dict: shutil.rmtree(self.tmpdirname) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta)] UpperCamelCase = [Image.fromarray(np.moveaxis(lowerCamelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_image_processor() UpperCamelCase = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_) processor.save_pretrained(self.tmpdirname) UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast)) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , lowerCamelCase_) def UpperCAmelCase__ ( self) -> str: UpperCamelCase = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') UpperCamelCase = self.get_image_processor(do_normalize=lowerCamelCase_ , padding_value=1.0) UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowerCamelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast)) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowerCamelCase_) def UpperCAmelCase__ ( self) -> Dict: UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_) UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = image_processor(lowerCamelCase_ , return_tensors='''np''') UpperCamelCase = processor(images=lowerCamelCase_ , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_) UpperCamelCase = '''lower newer''' UpperCamelCase = processor(text=lowerCamelCase_) UpperCamelCase = tokenizer(lowerCamelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def UpperCAmelCase__ ( self) -> Dict: UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_) UpperCamelCase = '''lower newer''' UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=lowerCamelCase_ , images=lowerCamelCase_) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values''']) # test if it raises when no input is passed with self.assertRaises(lowerCamelCase_): processor() def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_) UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase = processor.batch_decode(lowerCamelCase_) UpperCamelCase = tokenizer.batch_decode(lowerCamelCase_) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> Dict: UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_) UpperCamelCase = '''lower newer''' UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=lowerCamelCase_ , images=lowerCamelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
34
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ComputeEnvironment.AMAZON_SAGEMAKER A_ = True A_ = '''ml.p3.2xlarge''' A_ = '''accelerate_sagemaker_execution_role''' A_ = '''hf-sm''' A_ = '''us-east-1''' A_ = 1 A_ = '''accelerate-sagemaker-1''' A_ = '''1.6''' A_ = '''4.4''' A_ = '''train.py''' A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args['''model_name_or_path'''] , lowerCamelCase_) assert isinstance(converted_args['''do_train'''] , lowerCamelCase_) assert isinstance(converted_args['''epochs'''] , lowerCamelCase_) assert isinstance(converted_args['''learning_rate'''] , lowerCamelCase_) assert isinstance(converted_args['''max_steps'''] , lowerCamelCase_) with pytest.raises(lowerCamelCase_): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
34
1
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''detr''' A_ = ['''past_key_values'''] A_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowerCamelCase_=True , lowerCamelCase_=None , lowerCamelCase_=3 , lowerCamelCase_=1_0_0 , lowerCamelCase_=6 , lowerCamelCase_=2_0_4_8 , lowerCamelCase_=8 , lowerCamelCase_=6 , lowerCamelCase_=2_0_4_8 , lowerCamelCase_=8 , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=True , lowerCamelCase_="relu" , lowerCamelCase_=2_5_6 , lowerCamelCase_=0.1 , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=0.02 , lowerCamelCase_=1.0 , lowerCamelCase_=False , lowerCamelCase_="sine" , lowerCamelCase_="resnet50" , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=1 , lowerCamelCase_=5 , lowerCamelCase_=2 , lowerCamelCase_=1 , lowerCamelCase_=1 , lowerCamelCase_=5 , lowerCamelCase_=2 , lowerCamelCase_=0.1 , **lowerCamelCase_ , ) -> List[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = backbone_config.get('''model_type''') UpperCamelCase = CONFIG_MAPPING[backbone_model_type] UpperCamelCase = config_class.from_dict(lowerCamelCase_) # set timm attributes to None UpperCamelCase , UpperCamelCase , UpperCamelCase = None, None, None UpperCamelCase = use_timm_backbone UpperCamelCase = backbone_config UpperCamelCase = num_channels UpperCamelCase = num_queries UpperCamelCase = d_model UpperCamelCase = encoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = init_xavier_std UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = encoder_layers UpperCamelCase = auxiliary_loss UpperCamelCase = position_embedding_type UpperCamelCase = backbone UpperCamelCase = use_pretrained_backbone UpperCamelCase = dilation # Hungarian matcher UpperCamelCase = class_cost UpperCamelCase = bbox_cost UpperCamelCase = giou_cost # Loss coefficients UpperCamelCase = mask_loss_coefficient UpperCamelCase = dice_loss_coefficient UpperCamelCase = bbox_loss_coefficient UpperCamelCase = giou_loss_coefficient UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=lowerCamelCase_ , **lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> int: return self.encoder_attention_heads @property def UpperCAmelCase__ ( self) -> int: return self.d_model @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , **lowerCamelCase_) -> List[str]: return cls(backbone_config=lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self) -> Dict[str, any]: UpperCamelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: UpperCamelCase = self.backbone_config.to_dict() UpperCamelCase = self.__class__.model_type return output class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def UpperCAmelCase__ ( self) -> float: return 1e-5 @property def UpperCAmelCase__ ( self) -> int: return 1_2
34
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class snake_case_ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCamelCase_ = " ") -> List[str]: UpperCamelCase = sentence_delimiter def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return list(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase_): chars.extend(self.process_string(lowerCamelCase_)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_) - 1: chars.append(self.sentence_delimiter) return chars SCREAMING_SNAKE_CASE_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
1
"""simple docstring""" from __future__ import annotations from fractions import Fraction def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = 11 UpperCamelCase = int('''1''' + '''0''' * digit_len ) for num in range(_lowercase ,_lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowercase ,_lowercase ): solutions.append(f'{num}/{den}' ) den += 1 num += 1 UpperCamelCase = 10 return solutions def __snake_case ( _lowercase = 2 ): """simple docstring""" UpperCamelCase = 1.0 for fraction in fraction_list(_lowercase ): UpperCamelCase = Fraction(_lowercase ) result *= frac.denominator / frac.numerator return int(_lowercase ) if __name__ == "__main__": print(solution())
34
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = '''left''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<eop>", "<eod>"] , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = 3 UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> List[str]: return len(self.sp_model) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> str: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: if self.remove_space: UpperCamelCase = ''' '''.join(inputs.strip().split()) else: UpperCamelCase = inputs UpperCamelCase = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCamelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase_) UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_)]) if self.do_lower_case: UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) UpperCamelCase = [] for piece in pieces: if len(lowerCamelCase_) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCamelCase = cur_pieces[1:] else: UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCamelCase_) else: new_pieces.append(lowerCamelCase_) return new_pieces def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.sp_model.IdToPiece(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: UpperCamelCase = ''''''.join(lowerCamelCase_).replace(lowerCamelCase_ , ''' ''').strip() return out_string def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> str: UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCamelCase_) UpperCamelCase = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) UpperCamelCase = [] sub_texts.append(lowerCamelCase_) else: current_sub_text.append(lowerCamelCase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(lowerCamelCase_) return clean_text else: return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) + [1, 1] return ([0] * len(lowerCamelCase_)) + [1, 1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,)
34
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 42 class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_=3 , lowerCamelCase_=3 , lowerCamelCase_=("DownEncoderBlock2D",) , lowerCamelCase_=(6_4,) , lowerCamelCase_=2 , lowerCamelCase_=3_2 , lowerCamelCase_="silu" , lowerCamelCase_=True , ) -> Tuple: super().__init__() UpperCamelCase = layers_per_block UpperCamelCase = torch.nn.Convad( lowerCamelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCamelCase = None UpperCamelCase = nn.ModuleList([]) # down UpperCamelCase = block_out_channels[0] for i, down_block_type in enumerate(lowerCamelCase_): UpperCamelCase = output_channel UpperCamelCase = block_out_channels[i] UpperCamelCase = i == len(lowerCamelCase_) - 1 UpperCamelCase = get_down_block( lowerCamelCase_ , num_layers=self.layers_per_block , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) self.down_blocks.append(lowerCamelCase_) # mid UpperCamelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # out UpperCamelCase = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCamelCase_ , eps=1e-6) UpperCamelCase = nn.SiLU() UpperCamelCase = 2 * out_channels if double_z else out_channels UpperCamelCase = nn.Convad(block_out_channels[-1] , lowerCamelCase_ , 3 , padding=1) UpperCamelCase = False def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = x UpperCamelCase = self.conv_in(lowerCamelCase_) if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase_): def custom_forward(*lowerCamelCase_): return module(*lowerCamelCase_) return custom_forward # down if is_torch_version('''>=''' , '''1.11.0'''): for down_block in self.down_blocks: UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_) , lowerCamelCase_ , use_reentrant=lowerCamelCase_) # middle UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , lowerCamelCase_ , use_reentrant=lowerCamelCase_) else: for down_block in self.down_blocks: UpperCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_) , lowerCamelCase_) # middle UpperCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block) , lowerCamelCase_) else: # down for down_block in self.down_blocks: UpperCamelCase = down_block(lowerCamelCase_) # middle UpperCamelCase = self.mid_block(lowerCamelCase_) # post-process UpperCamelCase = self.conv_norm_out(lowerCamelCase_) UpperCamelCase = self.conv_act(lowerCamelCase_) UpperCamelCase = self.conv_out(lowerCamelCase_) return sample class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_=3 , lowerCamelCase_=3 , lowerCamelCase_=("UpDecoderBlock2D",) , lowerCamelCase_=(6_4,) , lowerCamelCase_=2 , lowerCamelCase_=3_2 , lowerCamelCase_="silu" , lowerCamelCase_="group" , ) -> Optional[int]: super().__init__() UpperCamelCase = layers_per_block UpperCamelCase = nn.Convad( lowerCamelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCamelCase = None UpperCamelCase = nn.ModuleList([]) UpperCamelCase = in_channels if norm_type == '''spatial''' else None # mid UpperCamelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # up UpperCamelCase = list(reversed(lowerCamelCase_)) UpperCamelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase_): UpperCamelCase = output_channel UpperCamelCase = reversed_block_out_channels[i] UpperCamelCase = i == len(lowerCamelCase_) - 1 UpperCamelCase = get_up_block( lowerCamelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , prev_output_channel=lowerCamelCase_ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , resnet_time_scale_shift=lowerCamelCase_ , ) self.up_blocks.append(lowerCamelCase_) UpperCamelCase = output_channel # out if norm_type == "spatial": UpperCamelCase = SpatialNorm(block_out_channels[0] , lowerCamelCase_) else: UpperCamelCase = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCamelCase_ , eps=1e-6) UpperCamelCase = nn.SiLU() UpperCamelCase = nn.Convad(block_out_channels[0] , lowerCamelCase_ , 3 , padding=1) UpperCamelCase = False def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> str: UpperCamelCase = z UpperCamelCase = self.conv_in(lowerCamelCase_) UpperCamelCase = next(iter(self.up_blocks.parameters())).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase_): def custom_forward(*lowerCamelCase_): return module(*lowerCamelCase_) return custom_forward if is_torch_version('''>=''' , '''1.11.0'''): # middle UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_) UpperCamelCase = sample.to(lowerCamelCase_) # up for up_block in self.up_blocks: UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_) else: # middle UpperCamelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block) , lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = sample.to(lowerCamelCase_) # up for up_block in self.up_blocks: UpperCamelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_) , lowerCamelCase_ , lowerCamelCase_) else: # middle UpperCamelCase = self.mid_block(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = sample.to(lowerCamelCase_) # up for up_block in self.up_blocks: UpperCamelCase = up_block(lowerCamelCase_ , lowerCamelCase_) # post-process if latent_embeds is None: UpperCamelCase = self.conv_norm_out(lowerCamelCase_) else: UpperCamelCase = self.conv_norm_out(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = self.conv_act(lowerCamelCase_) UpperCamelCase = self.conv_out(lowerCamelCase_) return sample class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="random" , lowerCamelCase_=False , lowerCamelCase_=True) -> Any: super().__init__() UpperCamelCase = n_e UpperCamelCase = vq_embed_dim UpperCamelCase = beta UpperCamelCase = legacy UpperCamelCase = nn.Embedding(self.n_e , self.vq_embed_dim) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e) UpperCamelCase = remap if self.remap is not None: self.register_buffer('''used''' , torch.tensor(np.load(self.remap))) UpperCamelCase = self.used.shape[0] UpperCamelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCamelCase = self.re_embed UpperCamelCase = self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.') else: UpperCamelCase = n_e UpperCamelCase = sane_index_shape def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: UpperCamelCase = inds.shape assert len(lowerCamelCase_) > 1 UpperCamelCase = inds.reshape(ishape[0] , -1) UpperCamelCase = self.used.to(lowerCamelCase_) UpperCamelCase = (inds[:, :, None] == used[None, None, ...]).long() UpperCamelCase = match.argmax(-1) UpperCamelCase = match.sum(2) < 1 if self.unknown_index == "random": UpperCamelCase = torch.randint(0 , self.re_embed , size=new[unknown].shape).to(device=new.device) else: UpperCamelCase = self.unknown_index return new.reshape(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: UpperCamelCase = inds.shape assert len(lowerCamelCase_) > 1 UpperCamelCase = inds.reshape(ishape[0] , -1) UpperCamelCase = self.used.to(lowerCamelCase_) if self.re_embed > self.used.shape[0]: # extra token UpperCamelCase = 0 # simply set to zero UpperCamelCase = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCamelCase_) return back.reshape(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: # reshape z -> (batch, height, width, channel) and flatten UpperCamelCase = z.permute(0 , 2 , 3 , 1).contiguous() UpperCamelCase = z.view(-1 , self.vq_embed_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCamelCase = torch.argmin(torch.cdist(lowerCamelCase_ , self.embedding.weight) , dim=1) UpperCamelCase = self.embedding(lowerCamelCase_).view(z.shape) UpperCamelCase = None UpperCamelCase = None # compute loss for embedding if not self.legacy: UpperCamelCase = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) else: UpperCamelCase = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) # preserve gradients UpperCamelCase = z + (z_q - z).detach() # reshape back to match original input shape UpperCamelCase = z_q.permute(0 , 3 , 1 , 2).contiguous() if self.remap is not None: UpperCamelCase = min_encoding_indices.reshape(z.shape[0] , -1) # add batch axis UpperCamelCase = self.remap_to_used(lowerCamelCase_) UpperCamelCase = min_encoding_indices.reshape(-1 , 1) # flatten if self.sane_index_shape: UpperCamelCase = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3]) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> List[str]: # shape specifying (batch, height, width, channel) if self.remap is not None: UpperCamelCase = indices.reshape(shape[0] , -1) # add batch axis UpperCamelCase = self.unmap_to_all(lowerCamelCase_) UpperCamelCase = indices.reshape(-1) # flatten again # get quantized latent vectors UpperCamelCase = self.embedding(lowerCamelCase_) if shape is not None: UpperCamelCase = z_q.view(lowerCamelCase_) # reshape back to match original input shape UpperCamelCase = z_q.permute(0 , 3 , 1 , 2).contiguous() return z_q class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=False) -> str: UpperCamelCase = parameters UpperCamelCase , UpperCamelCase = torch.chunk(lowerCamelCase_ , 2 , dim=1) UpperCamelCase = torch.clamp(self.logvar , -30.0 , 20.0) UpperCamelCase = deterministic UpperCamelCase = torch.exp(0.5 * self.logvar) UpperCamelCase = torch.exp(self.logvar) if self.deterministic: UpperCamelCase = UpperCamelCase = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype) def UpperCAmelCase__ ( self , lowerCamelCase_ = None) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype UpperCamelCase = randn_tensor( self.mean.shape , generator=lowerCamelCase_ , device=self.parameters.device , dtype=self.parameters.dtype) UpperCamelCase = self.mean + self.std * sample return x def UpperCAmelCase__ ( self , lowerCamelCase_=None) -> int: if self.deterministic: return torch.Tensor([0.0]) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2) + self.var - 1.0 - self.logvar , dim=[1, 2, 3]) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=[1, 2, 3]) -> Optional[int]: if self.deterministic: return torch.Tensor([0.0]) UpperCamelCase = np.log(2.0 * np.pi) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2) / self.var , dim=lowerCamelCase_) def UpperCAmelCase__ ( self) -> str: return self.mean
34
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } SCREAMING_SNAKE_CASE_ = { 'openbmb/cpm-ant-10b': 1024, } def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = collections.OrderedDict() with open(_lowercase ,'''r''' ,encoding='''utf-8''' ) as reader: UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): UpperCamelCase = token.rstrip('''\n''' ) UpperCamelCase = index return vocab class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_=2_0_0) -> Any: UpperCamelCase = vocab UpperCamelCase = unk_token UpperCamelCase = max_input_chars_per_word def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = list(lowerCamelCase_) if len(lowerCamelCase_) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase = 0 UpperCamelCase = [] while start < len(lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = None while start < end: UpperCamelCase = ''''''.join(chars[start:end]) if substr in self.vocab: UpperCamelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(lowerCamelCase_) UpperCamelCase = end return sub_tokens class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] A_ = False def __init__( self , lowerCamelCase_ , lowerCamelCase_="<d>" , lowerCamelCase_="</d>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<unk>" , lowerCamelCase_="</n>" , lowerCamelCase_="</_>" , lowerCamelCase_="left" , **lowerCamelCase_ , ) -> List[str]: requires_backends(self , ['''jieba''']) super().__init__( bod_token=lowerCamelCase_ , eod_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , line_token=lowerCamelCase_ , space_token=lowerCamelCase_ , padding_side=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = bod_token UpperCamelCase = eod_token UpperCamelCase = load_vocab(lowerCamelCase_) UpperCamelCase = self.encoder[space_token] UpperCamelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def UpperCAmelCase__ ( self) -> Dict: return self.encoder[self.bod_token] @property def UpperCAmelCase__ ( self) -> str: return self.encoder[self.eod_token] @property def UpperCAmelCase__ ( self) -> List[Any]: return self.encoder["\n"] @property def UpperCAmelCase__ ( self) -> int: return len(self.encoder) def UpperCAmelCase__ ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = [] for x in jieba.cut(lowerCamelCase_ , cut_all=lowerCamelCase_): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase_)) return output_tokens def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> Tuple: UpperCamelCase = [i for i in token_ids if i >= 0] UpperCamelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return token in self.encoder def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return "".join(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token)) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return self.decoder.get(lowerCamelCase_ , self.unk_token) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if os.path.isdir(lowerCamelCase_): UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: UpperCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCamelCase = 0 if " " in self.encoder: UpperCamelCase = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase = self.encoder['''\n'''] del self.encoder["\n"] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''') UpperCamelCase = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) return [1] + ([0] * len(lowerCamelCase_))
34
1
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowercase ,id=_lowercase )
34
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=0) -> int: UpperCamelCase = 1.0 if scale is None else scale UpperCamelCase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_)]) @property def UpperCAmelCase__ ( self) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase__ ( self) -> List[str]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase__ ( self) -> Any: return self.variance.sqrt() class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = args_dim UpperCamelCase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_) for dim in args_dim.values()]) UpperCamelCase = domain_map def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple[torch.Tensor]: UpperCamelCase = [proj(lowerCamelCase_) for proj in self.proj] return self.domain_map(*lowerCamelCase_) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__() UpperCamelCase = function def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_) -> Tuple: return self.function(lowerCamelCase_ , *lowerCamelCase_) class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , lowerCamelCase_ = 1) -> None: UpperCamelCase = dim UpperCamelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if self.dim == 1: return self.distribution_class(*lowerCamelCase_) else: return Independent(self.distribution_class(*lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Distribution: UpperCamelCase = self._base_distribution(lowerCamelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim) @property def UpperCAmelCase__ ( self) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase__ ( self) -> int: return len(self.event_shape) @property def UpperCAmelCase__ ( self) -> float: return 0.0 def UpperCAmelCase__ ( self , lowerCamelCase_) -> nn.Module: return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def UpperCAmelCase__ ( self , *lowerCamelCase_) -> List[str]: raise NotImplementedError() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCamelCase_) + 4.0)) / 2.0 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"df": 1, "loc": 1, "scale": 1} A_ = StudentT @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) UpperCamelCase = 2.0 + cls.squareplus(lowerCamelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"loc": 1, "scale": 1} A_ = Normal @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"total_count": 1, "logits": 1} A_ = NegativeBinomial @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = cls.squareplus(lowerCamelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
34
1
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator UpperCamelCase = len(_lowercase ) if (len(_lowercase ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) ,'''Stack'''.center(_lowercase ) ,'''Postfix'''.center(_lowercase ) ,sep=''' | ''' ,) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowercase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowercase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowercase ) == 0: stack.append(_lowercase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowercase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowercase ) # push x to stack print( x.center(8 ) ,(''''''.join(_lowercase )).ljust(_lowercase ) ,(''''''.join(_lowercase )).ljust(_lowercase ) ,sep=''' | ''' ,) # Output in tabular format while len(_lowercase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) ,(''''''.join(_lowercase )).ljust(_lowercase ) ,(''''''.join(_lowercase )).ljust(_lowercase ) ,sep=''' | ''' ,) # Output in tabular format return "".join(_lowercase ) # return Postfix as str def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowercase ) ): if infix[i] == "(": UpperCamelCase = ''')''' # change "(" to ")" elif infix[i] == ")": UpperCamelCase = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(_lowercase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input('\nEnter an Infix Equation = ') # Input an Infix equation SCREAMING_SNAKE_CASE_ = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
34
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowercase ,id=_lowercase )
34
1
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @staticmethod @abstractmethod def UpperCAmelCase__ ( lowerCamelCase_) -> Union[str, Any]: raise NotImplementedError() @abstractmethod def UpperCAmelCase__ ( self) -> Any: raise NotImplementedError()
34
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
34
1
"""simple docstring""" import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCamelCase = kwargs.get('''name_or_path''') if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''') UpperCamelCase = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing UpperCamelCase = '''<|endoftext|>''' if eos_token is None else eos_token UpperCamelCase = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: UpperCamelCase = unk_token if pad_token is None else pad_token UpperCamelCase = eos_token if bos_token is None else bos_token else: UpperCamelCase = '''<pad>''' if pad_token is None else pad_token UpperCamelCase = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) # Used for whitespace normalization in input texts # fmt : off UpperCamelCase = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing UpperCamelCase = re.compile( F'[{"".join(map(lowerCamelCase_ , list(range(0 , 9)) + list(range(1_1 , 3_2)) + list(range(1_2_7 , 1_6_0)) + [1_6_0, 1_7_3, 8_2_0_3]))}]') def __getstate__( self) -> Union[str, Any]: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> List[str]: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCAmelCase__ ( self) -> int: return len(self.sp_model) def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: UpperCamelCase = self.non_printing_characters_re.sub('''''' , lowerCamelCase_) # Normalize whitespaces UpperCamelCase = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text]) # NFC Unicode normalization UpperCamelCase = unicodedata.normalize('''NFC''' , lowerCamelCase_) return text def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) return self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return self.sp_model.IdToPiece(lowerCamelCase_) @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> str: return out_string def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: UpperCamelCase = [] UpperCamelCase = '''''' UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase_) + token UpperCamelCase = True UpperCamelCase = [] else: current_sub_tokens.append(lowerCamelCase_) UpperCamelCase = False out_string += self.sp_model.decode(lowerCamelCase_) return out_string def UpperCAmelCase__ ( self) -> Dict[str, int]: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False) -> Union[List[int], List[List[int]], "torch.Tensor"]: if isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_) else: UpperCamelCase = [self.preprocess_text(lowerCamelCase_) for t in text] UpperCamelCase = self.sp_model.encode(lowerCamelCase_) if return_tensors is True or return_tensors == "pt": UpperCamelCase = torch.tensor(lowerCamelCase_) return token_ids def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return self.sp_model.decode(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[int]: UpperCamelCase = [F'User: {text}' if is_user else F'Bot: {text}' for is_user, text in conversation.iter_texts()] UpperCamelCase = ( F'{self.eos_token}{self.bos_token}' + F'{self.bos_token}'.join(lowerCamelCase_) + F'{self.bos_token}Bot:' ) return self.encode(text=lowerCamelCase_)
34
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase = getattr(_lowercase ,_lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase ,_lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) UpperCamelCase = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCamelCase = torch.tensor(_lowercase ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_lowercase ) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to(_lowercase ) else: UpperCamelCase = torch.tensor(_lowercase ,device=_lowercase ) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase ,requires_grad=old_value.requires_grad ) UpperCamelCase = new_value def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase ,nn.Linear ) or isinstance(_lowercase ,_lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase ,_lowercase ): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase ,_lowercase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase ,_lowercase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ,has_been_replaced=_lowercase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,_lowercase ,) return replace_with_bnb_linear(*_lowercase ,**_lowercase ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,_lowercase ,) return set_module_quantized_tensor_to_device(*_lowercase ,**_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase ,_lowercase ): UpperCamelCase = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(_lowercase ,[] ) UpperCamelCase = len(_lowercase ) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase ) - set(_lowercase ) UpperCamelCase = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase ,'''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names
34
1
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } SCREAMING_SNAKE_CASE_ = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } @lru_cache() def __snake_case ( ): """simple docstring""" UpperCamelCase = ( list(range(ord('''!''' ) ,ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) ,ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) ,ord('''ÿ''' ) + 1 ) ) ) UpperCamelCase = bs[:] UpperCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowercase ) cs.append(2**8 + n ) n += 1 UpperCamelCase = [chr(_lowercase ) for n in cs] return dict(zip(_lowercase ,_lowercase ) ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = set() UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase = char return pairs class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="replace" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<mask>" , lowerCamelCase_=False , **lowerCamelCase_ , ) -> Dict: UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else bos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else eos_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else sep_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else cls_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else unk_token UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token super().__init__( errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , ) with open(lowerCamelCase_ , encoding='''utf-8''') as vocab_handle: UpperCamelCase = json.load(lowerCamelCase_) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = errors # how to handle errors in decoding UpperCamelCase = bytes_to_unicode() UpperCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ , encoding='''utf-8''') as merges_handle: UpperCamelCase = merges_handle.read().split('''\n''')[1:-1] UpperCamelCase = [tuple(merge.split()) for merge in bpe_merges] UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_)))) UpperCamelCase = {} UpperCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''') @property def UpperCAmelCase__ ( self) -> str: return len(self.encoder) def UpperCAmelCase__ ( self) -> Optional[Any]: return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if token in self.cache: return self.cache[token] UpperCamelCase = tuple(lowerCamelCase_) UpperCamelCase = get_pairs(lowerCamelCase_) if not pairs: return token while True: UpperCamelCase = min(lowerCamelCase_ , key=lambda lowerCamelCase_: self.bpe_ranks.get(lowerCamelCase_ , float('''inf'''))) if bigram not in self.bpe_ranks: break UpperCamelCase , UpperCamelCase = bigram UpperCamelCase = [] UpperCamelCase = 0 while i < len(lowerCamelCase_): try: UpperCamelCase = word.index(lowerCamelCase_ , lowerCamelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCamelCase = j if word[i] == first and i < len(lowerCamelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCamelCase = tuple(lowerCamelCase_) UpperCamelCase = new_word if len(lowerCamelCase_) == 1: break else: UpperCamelCase = get_pairs(lowerCamelCase_) UpperCamelCase = ''' '''.join(lowerCamelCase_) UpperCamelCase = word return word def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: UpperCamelCase = [] for token in re.findall(self.pat , lowerCamelCase_): UpperCamelCase = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_).split(''' ''')) return bpe_tokens def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token)) def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[Any]: return self.decoder.get(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = bytearray([self.byte_decoder[c] for c in text]).decode('''utf-8''' , errors=self.errors) return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file''']) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_) + '''\n''') UpperCamelCase = 0 with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer: writer.write('''#version: 0.2\n''') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''') UpperCamelCase = token_index writer.write(''' '''.join(lowerCamelCase_) + '''\n''') index += 1 return vocab_file, merge_file def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_)) + [1] return [1] + ([0] * len(lowerCamelCase_)) + [1, 1] + ([0] * len(lowerCamelCase_)) + [1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=False , **lowerCamelCase_) -> Dict: UpperCamelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_) > 0 and not text[0].isspace()): UpperCamelCase = ''' ''' + text return (text, kwargs)
34
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase ) count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 ) count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase ) return count def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_lowercase ,_lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_ = TemporaryFile() SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_ = np.load(outfile) SCREAMING_SNAKE_CASE_ = len(M) - 1 SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
34
1
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE_ = os.path.join(git_repo_path, 'src', 'transformers') SCREAMING_SNAKE_CASE_ = '\n{0} = None\n' SCREAMING_SNAKE_CASE_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' SCREAMING_SNAKE_CASE_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowerCamelCase_) UpperCamelCase = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowerCamelCase_ , '''tokenizers''') UpperCamelCase = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowerCamelCase_ , '''tensorflow_text''') UpperCamelCase = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tensorflow_text''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers_and_vision''') def UpperCAmelCase__ ( self) -> int: UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCamelCase_) self.assertIn('''tensorflow_text''' , lowerCamelCase_) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCamelCase_) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , '''\nCONSTANT = None\n''') UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowerCamelCase_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowerCamelCase_)
34
1
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' SCREAMING_SNAKE_CASE_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any: if return_pvalue: UpperCamelCase = pearsonr(lowerCamelCase_ , lowerCamelCase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_ , lowerCamelCase_)[0])}
34
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __snake_case ( _lowercase ): """simple docstring""" if "cls_token" in name: UpperCamelCase = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: UpperCamelCase = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: UpperCamelCase = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: UpperCamelCase = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: UpperCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: UpperCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: UpperCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: UpperCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: UpperCamelCase = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: UpperCamelCase = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: UpperCamelCase = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCamelCase = key.split('''.''' ) UpperCamelCase = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase = config.decoder_hidden_size UpperCamelCase = '''decoder.decoder_layers.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = config.hidden_size UpperCamelCase = '''vit.encoder.layer.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = val return orig_state_dict def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 elif "huge" in checkpoint_url: UpperCamelCase = 14 UpperCamelCase = 1280 UpperCamelCase = 5120 UpperCamelCase = 32 UpperCamelCase = 16 UpperCamelCase = ViTMAEForPreTraining(_lowercase ) UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' )['''model'''] UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = convert_state_dict(_lowercase ,_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCamelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = image_processor(images=_lowercase ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits if "large" in checkpoint_url: UpperCamelCase = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
34
1
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for tf_name, hf_name in patterns: UpperCamelCase = k.replace(_lowercase ,_lowercase ) return k def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = BigBirdPegasusConfig(**_lowercase ) UpperCamelCase = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCamelCase = torch_model.state_dict() UpperCamelCase = {} # separating decoder weights UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = DECODER_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = REMAINING_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCamelCase = mapping['''model.embed_positions.weight'''] UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(_lowercase ,strict=_lowercase ) UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tf.train.list_variables(_lowercase ) UpperCamelCase = {} UpperCamelCase = ['''global_step'''] for name, shape in tqdm(_lowercase ,desc='''converting tf checkpoint to dict''' ): UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase = tf.train.load_variable(_lowercase ,_lowercase ) UpperCamelCase = array return tf_weights def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = get_tf_weights_as_numpy(_lowercase ) UpperCamelCase = convert_bigbird_pegasus(_lowercase ,_lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
34
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Any: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase = mock_training_loop_function('''hello''') self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def UpperCAmelCase__ ( self) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(lowerCamelCase_): pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Dict: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): raise ValueError('''Oops, we had an error!''') with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase_) UpperCamelCase = release_memory(lowerCamelCase_) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase_)
34
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_ = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['MaskFormerFeatureExtractor'] SCREAMING_SNAKE_CASE_ = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] SCREAMING_SNAKE_CASE_ = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
34
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ = 1_0_1) -> Tuple: UpperCamelCase = length def __len__( self) -> List[str]: return self.length def __getitem__( self , lowerCamelCase_) -> int: return i class snake_case_ : """simple docstring""" def __call__( self , lowerCamelCase_) -> str: return {"input_ids": torch.tensor(lowerCamelCase_), "labels": torch.tensor(lowerCamelCase_)} class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> List[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase = nn.Linear(1_2_0 , 8_0) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_neuroncore def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_multi_gpu def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE_ = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()[0] logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' f'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE_ = DummyDataset(dataset_length) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = list(range(len(_lowercase ) ) ) UpperCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} SCREAMING_SNAKE_CASE_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = None
34
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''xmod''' def __init__( self , lowerCamelCase_=3_0_5_2_2 , lowerCamelCase_=7_6_8 , lowerCamelCase_=1_2 , lowerCamelCase_=1_2 , lowerCamelCase_=3_0_7_2 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-12 , lowerCamelCase_=1 , lowerCamelCase_=0 , lowerCamelCase_=2 , lowerCamelCase_="absolute" , lowerCamelCase_=True , lowerCamelCase_=None , lowerCamelCase_=False , lowerCamelCase_=2 , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=("en_XX",) , lowerCamelCase_=None , **lowerCamelCase_ , ) -> Dict: super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = use_cache UpperCamelCase = classifier_dropout UpperCamelCase = pre_norm UpperCamelCase = adapter_reduction_factor UpperCamelCase = adapter_layer_norm UpperCamelCase = adapter_reuse_layer_norm UpperCamelCase = ln_before_adapter UpperCamelCase = list(lowerCamelCase_) UpperCamelCase = default_language class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @property def UpperCAmelCase__ ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
34
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for tf_name, hf_name in patterns: UpperCamelCase = k.replace(_lowercase ,_lowercase ) return k def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = BigBirdPegasusConfig(**_lowercase ) UpperCamelCase = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCamelCase = torch_model.state_dict() UpperCamelCase = {} # separating decoder weights UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = DECODER_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = REMAINING_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCamelCase = mapping['''model.embed_positions.weight'''] UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(_lowercase ,strict=_lowercase ) UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tf.train.list_variables(_lowercase ) UpperCamelCase = {} UpperCamelCase = ['''global_step'''] for name, shape in tqdm(_lowercase ,desc='''converting tf checkpoint to dict''' ): UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase = tf.train.load_variable(_lowercase ,_lowercase ) UpperCamelCase = array return tf_weights def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = get_tf_weights_as_numpy(_lowercase ) UpperCamelCase = convert_bigbird_pegasus(_lowercase ,_lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
34
1
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = np.inf def set_batch_size(_lowercase ) -> None: nonlocal batch_size if isinstance(_lowercase ,_lowercase ): UpperCamelCase = min(_lowercase ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_lowercase ,_lowercase ): UpperCamelCase = min(_lowercase ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_lowercase ,_lowercase ) and feature.dtype == "binary": UpperCamelCase = min(_lowercase ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_lowercase ,_lowercase ) return None if batch_size is np.inf else batch_size class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = False , lowerCamelCase_ = False , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> List[str]: super().__init__( lowerCamelCase_ , split=lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ , streaming=lowerCamelCase_ , num_proc=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = path_or_paths if isinstance(lowerCamelCase_ , lowerCamelCase_) else {self.split: path_or_paths} UpperCamelCase = _PACKAGED_DATASETS_MODULES['''parquet'''][1] UpperCamelCase = Parquet( cache_dir=lowerCamelCase_ , data_files=lowerCamelCase_ , features=lowerCamelCase_ , hash=lowerCamelCase_ , **lowerCamelCase_ , ) def UpperCAmelCase__ ( self) -> Union[str, Any]: # Build iterable dataset if self.streaming: UpperCamelCase = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None self.builder.download_and_prepare( download_config=lowerCamelCase_ , download_mode=lowerCamelCase_ , verification_mode=lowerCamelCase_ , base_path=lowerCamelCase_ , num_proc=self.num_proc , ) UpperCamelCase = self.builder.as_dataset( split=self.split , verification_mode=lowerCamelCase_ , in_memory=self.keep_in_memory) return dataset class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> Optional[int]: UpperCamelCase = dataset UpperCamelCase = path_or_buf UpperCamelCase = batch_size or get_writer_batch_size(dataset.features) UpperCamelCase = parquet_writer_kwargs def UpperCAmelCase__ ( self) -> int: UpperCamelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with open(self.path_or_buf , '''wb+''') as buffer: UpperCamelCase = self._write(file_obj=lowerCamelCase_ , batch_size=lowerCamelCase_ , **self.parquet_writer_kwargs) else: UpperCamelCase = self._write(file_obj=self.path_or_buf , batch_size=lowerCamelCase_ , **self.parquet_writer_kwargs) return written def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> int: UpperCamelCase = 0 UpperCamelCase = parquet_writer_kwargs.pop('''path_or_buf''' , lowerCamelCase_) UpperCamelCase = self.dataset.features.arrow_schema UpperCamelCase = pq.ParquetWriter(lowerCamelCase_ , schema=lowerCamelCase_ , **lowerCamelCase_) for offset in logging.tqdm( range(0 , len(self.dataset) , lowerCamelCase_) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): UpperCamelCase = query_table( table=self.dataset._data , key=slice(lowerCamelCase_ , offset + batch_size) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(lowerCamelCase_) written += batch.nbytes writer.close() return written
34
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
1
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image SCREAMING_SNAKE_CASE_ = ['text', 'image', 'audio'] def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_lowercase ,_lowercase ): inputs.append(create_inputs(_lowercase ) ) else: raise ValueError(f'Invalid type requested: {input_type}' ) return inputs def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [] for output in outputs: if isinstance(_lowercase ,(str, AgentText) ): output_types.append('''text''' ) elif isinstance(_lowercase ,(Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(_lowercase ,(torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(f'Invalid output: {output}' ) return output_types @is_tool_test class snake_case_ : """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: self.assertTrue(hasattr(self.tool , '''inputs''')) self.assertTrue(hasattr(self.tool , '''outputs''')) UpperCamelCase = self.tool.inputs for _input in inputs: if isinstance(_input , lowerCamelCase_): for __input in _input: self.assertTrue(__input in authorized_types) else: self.assertTrue(_input in authorized_types) UpperCamelCase = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = create_inputs(self.tool.inputs) UpperCamelCase = self.tool(*lowerCamelCase_) # There is a single output if len(self.tool.outputs) == 1: UpperCamelCase = [outputs] self.assertListEqual(output_types(lowerCamelCase_) , self.tool.outputs) def UpperCAmelCase__ ( self) -> str: self.assertTrue(hasattr(self.tool , '''description''')) self.assertTrue(hasattr(self.tool , '''default_checkpoint''')) self.assertTrue(self.tool.description.startswith('''This is a tool that''')) def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = create_inputs(self.tool.inputs) UpperCamelCase = self.tool(*lowerCamelCase_) if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [outputs] self.assertEqual(len(lowerCamelCase_) , len(self.tool.outputs)) for output, output_type in zip(lowerCamelCase_ , self.tool.outputs): UpperCamelCase = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_)) def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = create_inputs(self.tool.inputs) UpperCamelCase = [] for _input, input_type in zip(lowerCamelCase_ , self.tool.inputs): if isinstance(lowerCamelCase_ , lowerCamelCase_): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) # Should not raise an error UpperCamelCase = self.tool(*lowerCamelCase_) if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [outputs] self.assertEqual(len(lowerCamelCase_) , len(self.tool.outputs))
34
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> Any: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase_ , ) return config, input_ids, attention_mask def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = FlaxDistilBertModelTester(self) @slow def UpperCAmelCase__ ( self) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowerCamelCase_) @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)[0] UpperCamelCase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , lowerCamelCase_) UpperCamelCase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4))
34
1
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE_ = parse(importlib.metadata.version('torch')) def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) UpperCamelCase = STR_OPERATION_TO_FUNC[operation] if isinstance(_lowercase ,_lowercase ): UpperCamelCase = parse(importlib.metadata.version(_lowercase ) ) return operation(_lowercase ,parse(_lowercase ) ) def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return compare_versions(_lowercase ,_lowercase ,_lowercase )
34
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[Any] = { """microsoft/unispeech-sat-base-100h-libri-ft""": ( """https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json""" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCamelCase_ ( lowerCamelCase ): a__ = '''unispeech-sat''' def __init__( self , __lowerCAmelCase=3_2 , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=1_2 , __lowerCAmelCase=1_2 , __lowerCAmelCase=3_0_7_2 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-5 , __lowerCAmelCase="group" , __lowerCAmelCase="gelu" , __lowerCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __lowerCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , __lowerCAmelCase=False , __lowerCAmelCase=1_2_8 , __lowerCAmelCase=1_6 , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=0.05 , __lowerCAmelCase=1_0 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0 , __lowerCAmelCase=1_0 , __lowerCAmelCase=0 , __lowerCAmelCase=3_2_0 , __lowerCAmelCase=2 , __lowerCAmelCase=0.1 , __lowerCAmelCase=1_0_0 , __lowerCAmelCase=2_5_6 , __lowerCAmelCase=2_5_6 , __lowerCAmelCase=0.1 , __lowerCAmelCase="mean" , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=2_5_6 , __lowerCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , __lowerCAmelCase=(5, 3, 3, 1, 1) , __lowerCAmelCase=(1, 2, 3, 1, 1) , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=0 , __lowerCAmelCase=1 , __lowerCAmelCase=2 , __lowerCAmelCase=5_0_4 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) __magic_name__ :Optional[int] = hidden_size __magic_name__ :Any = feat_extract_norm __magic_name__ :int = feat_extract_activation __magic_name__ :str = list(__lowerCAmelCase ) __magic_name__ :Dict = list(__lowerCAmelCase ) __magic_name__ :Tuple = list(__lowerCAmelCase ) __magic_name__ :Dict = conv_bias __magic_name__ :Dict = num_conv_pos_embeddings __magic_name__ :int = num_conv_pos_embedding_groups __magic_name__ :Any = len(self.conv_dim ) __magic_name__ :Optional[Any] = num_hidden_layers __magic_name__ :List[Any] = intermediate_size __magic_name__ :Union[str, Any] = hidden_act __magic_name__ :List[str] = num_attention_heads __magic_name__ :Tuple = hidden_dropout __magic_name__ :Tuple = attention_dropout __magic_name__ :List[str] = activation_dropout __magic_name__ :Any = feat_proj_dropout __magic_name__ :List[str] = final_dropout __magic_name__ :Tuple = layerdrop __magic_name__ :List[Any] = layer_norm_eps __magic_name__ :List[Any] = initializer_range __magic_name__ :Optional[Any] = vocab_size __magic_name__ :Tuple = num_clusters __magic_name__ :str = do_stable_layer_norm __magic_name__ :Dict = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __magic_name__ :Dict = apply_spec_augment __magic_name__ :List[Any] = mask_time_prob __magic_name__ :Tuple = mask_time_length __magic_name__ :Any = mask_time_min_masks __magic_name__ :Optional[Any] = mask_feature_prob __magic_name__ :int = mask_feature_length __magic_name__ :Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __magic_name__ :Any = num_codevectors_per_group __magic_name__ :Dict = num_codevector_groups __magic_name__ :List[str] = contrastive_logits_temperature __magic_name__ :List[Any] = feat_quantizer_dropout __magic_name__ :List[str] = num_negatives __magic_name__ :Union[str, Any] = codevector_dim __magic_name__ :Optional[int] = proj_codevector_dim __magic_name__ :Optional[Any] = diversity_loss_weight # ctc loss __magic_name__ :Tuple = ctc_loss_reduction __magic_name__ :Tuple = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __magic_name__ :Tuple = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __magic_name__ :Any = list(__lowerCAmelCase ) __magic_name__ :str = list(__lowerCAmelCase ) __magic_name__ :str = list(__lowerCAmelCase ) __magic_name__ :Union[str, Any] = xvector_output_dim @property def A ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
0
from __future__ import annotations import numpy as np def _A ( _lowercase ) -> int: """simple docstring""" return np.maximum(0 , _lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
1
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __snake_case ( _lowercase ,_lowercase=False ): """simple docstring""" try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_REMOTE', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_LOCAL', default=True) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __snake_case ( _lowercase ): """simple docstring""" try: import faiss # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires faiss''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import regex # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires regex''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TORCH_AVAILABLE: UpperCamelCase = unittest.skip('''test requires PyTorch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TF_AVAILABLE: UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.JAX_AVAILABLE: UpperCamelCase = unittest.skip('''test requires JAX''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.PIL_AVAILABLE: UpperCamelCase = unittest.skip('''test requires Pillow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" def _require_spacy_model(_lowercase ): try: import spacy # noqa F401 spacy.load(_lowercase ) except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_lowercase ) )(_lowercase ) else: return test_case return _require_spacy_model def __snake_case ( _lowercase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase = unittest.skip('''test is slow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: UpperCamelCase = unittest.skip('''test is local''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase = unittest.skip('''test is packaged''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase = unittest.skip('''test requires remote''' )(_lowercase ) return test_case def __snake_case ( *_lowercase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_lowercase ) and name.startswith('''test''' ): for decorator in decorators: UpperCamelCase = decorator(_lowercase ) setattr(cls ,_lowercase ,_lowercase ) return cls return decorate class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 0 A_ = 1 A_ = 2 @contextmanager def __snake_case ( _lowercase=OfflineSimulationMode.CONNECTION_FAILS ,_lowercase=1e-16 ): """simple docstring""" UpperCamelCase = requests.Session().request def timeout_request(_lowercase ,_lowercase ,_lowercase ,**_lowercase ): # Change the url to an invalid url so that the connection hangs UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) UpperCamelCase = timeout try: return online_request(_lowercase ,_lowercase ,**_lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase = url UpperCamelCase = e.args[0] UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' ,f'OfflineMock[{url}]' ),) UpperCamelCase = (max_retry_error,) raise def raise_connection_error(_lowercase ,_lowercase ,**_lowercase ): raise requests.ConnectionError('''Offline mode is enabled.''' ,request=_lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' ,_lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' ,_lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' ,_lowercase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowercase ,**_lowercase ) as tmp_dir: try: os.chdir(_lowercase ) yield finally: os.chdir(_lowercase ) @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() def __snake_case ( _lowercase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_lowercase ,*_lowercase ,**_lowercase ): try: return func(*_lowercase ,**_lowercase ) except HTTPError as err: if str(_lowercase ).startswith('''500''' ) or str(_lowercase ).startswith('''502''' ): pytest.xfail(str(_lowercase ) ) raise err return decorator.decorator(_wrapper ,_lowercase ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" while True: UpperCamelCase = await stream.readline() if line: callback(_lowercase ) else: break async def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ,_lowercase=False ): """simple docstring""" if echo: print('''\nRunning: ''' ,''' '''.join(_lowercase ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=_lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=_lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(_lowercase ,_lowercase ,_lowercase ,_lowercase="" ): UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase ,_lowercase ,file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stdout ,label='''stdout:''' ) ), _read_stream(p.stderr ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stderr ,label='''stderr:''' ) ), ] ,timeout=_lowercase ,) return _RunOutput(await p.wait() ,_lowercase ,_lowercase ) def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=180 ,_lowercase=False ,_lowercase=True ): """simple docstring""" UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(_lowercase ,env=_lowercase ,stdin=_lowercase ,timeout=_lowercase ,quiet=_lowercase ,echo=_lowercase ) ) UpperCamelCase = ''' '''.join(_lowercase ) if result.returncode > 0: UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def __snake_case ( ): """simple docstring""" UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' ,'''gw0''' ) UpperCamelCase = re.sub(r'''^gw''' ,'''''' ,_lowercase ,0 ,re.M ) return int(_lowercase ) def __snake_case ( ): """simple docstring""" UpperCamelCase = 2_9500 UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
34
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_A) class lowerCamelCase__ ( _A): """simple docstring""" a__ : str = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True}) a__ : ClassVar[Features] = Features({"audio": Audio()}) a__ : ClassVar[Features] = Features({"transcription": Value("string")}) a__ : str = "audio" a__ : str = "transcription" def snake_case_ ( self : List[str] , __lowerCAmelCase : int ) -> Optional[int]: if self.audio_column not in features: raise ValueError(f'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , __lowerCAmelCase ): raise ValueError(f'''Column {self.audio_column} is not an Audio type.''' ) _A = copy.deepcopy(self ) _A = self.input_schema.copy() _A = features[self.audio_column] _A = input_schema return task_template @property def snake_case_ ( self : str ) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
2
"""simple docstring""" import operator def __snake_case ( _lowercase ,_lowercase = False ,_lowercase = None ): """simple docstring""" UpperCamelCase = operator.lt if reverse else operator.gt UpperCamelCase = solution or [] if not arr: return solution UpperCamelCase = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase ,sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: UpperCamelCase = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase ,_lowercase ): solution.insert(_lowercase ,_lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase ,_lowercase ,_lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
34
0
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def A_( A : Optional[Any]=32 , A : List[Any]=10 , A : Union[str, Any]=100 , A : List[str]=1026 , A : List[Any]=True , A : Dict="data/tokenized_stories_train_wikitext103.jbl" , A : Dict="igf_context_pairs.jbl" , ): set_seed(3) # generate train_data and objective_set UpperCamelCase , UpperCamelCase = generate_datasets( A , A , number=A , min_len=1026 , trim=A) # keeps model same across runs set_seed(4) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? UpperCamelCase = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # load pretrained model UpperCamelCase = load_gpta('gpt2').to(A) print('computing perplexity on objective set') UpperCamelCase = compute_perplexity(A , A , A).item() print('perplexity on objective set:' , A) # collect igf pairs and save to file demo.jbl collect_objective_set(A , A , A , A , A , A , A , A) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def A_( A : Union[str, Any] , A : Any=15 , A : List[str]=128 , A : List[str]=100 , A : Tuple="igf_model.pt" , ): set_seed(42) # Load pre-trained model UpperCamelCase = GPTaLMHeadModel.from_pretrained('gpt2') # Initialize secondary learner to use embedding weights of model UpperCamelCase = SecondaryLearner(A) # Train secondary learner UpperCamelCase = train_secondary_learner( A , A , max_epochs=A , batch_size=A , eval_freq=100 , igf_model_path=A , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def A_( A : Tuple , A : List[Any] , A : int , A : Optional[int]=32 , A : Any=1000 , A : List[str]=16 , A : List[str]=1.0 , A : Union[str, Any]=recopy_gpta , A : Any=None , A : Dict=10 , A : Any="gpt2_finetuned.pt" , ): UpperCamelCase = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') UpperCamelCase = RandomSampler(A) UpperCamelCase = DataLoader(A , sampler=A) UpperCamelCase = max_steps // (len(A)) + 1 UpperCamelCase = 0 UpperCamelCase = torch.zeros((1, context_len) , dtype=torch.long , device=A) UpperCamelCase , UpperCamelCase , UpperCamelCase = recopy_model(A , A , A) model.train() if secondary_learner is not None: secondary_learner.to(A) secondary_learner.eval() UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = [] UpperCamelCase = [] # Compute the performance of the transformer model at the beginning UpperCamelCase = compute_perplexity(A , A , A) test_perps.append(A) print('Test perplexity, step' , A , ':' , A) for epoch in range(int(A)): for step, example in enumerate(A): torch.cuda.empty_cache() UpperCamelCase = random.randint(0 , example.size(2) - context_len - 1) UpperCamelCase = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() UpperCamelCase = model(A , labels=A) UpperCamelCase = True if secondary_learner is not None: UpperCamelCase = secondary_learner.forward( torch.tensor(A , dtype=torch.long , device=A).unsqueeze(0))[0].item() observed_qs.append(float(A)) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: UpperCamelCase = -1 if predicted_q < threshold: UpperCamelCase = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu())) UpperCamelCase = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() UpperCamelCase = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: UpperCamelCase = compute_perplexity(A , A , A) test_perps.append(A) print('Test perplexity, step' , A , ':' , A) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , A) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def A_( ): UpperCamelCase = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task') # Required parameters parser.add_argument( '--data_dir' , default=A , type=A , required=A , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=A , type=A , required=A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=A , default=A , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=A , default=A , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=A , type=A , required=A , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=A , type=A , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=A , default=A , help='A seed for reproducible training.') parser.add_argument( '--context_len' , default=32 , type=A , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=A , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=A , help='secondary model evaluation is triggered at eval_freq') parser.add_argument('--max_steps' , default=1000 , type=A , help='To calculate training epochs') parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=A , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=A , help='batch size of training data of language model(gpt2) ') parser.add_argument( '--eval_interval' , default=10 , type=A , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=A , help='The number of examples split to be used as objective_set/test_data') parser.add_argument( '--min_len' , default=1026 , type=A , help='The minimum length of the article to be used as objective set') parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=A , help='number of epochs to train secondary learner') parser.add_argument('--trim' , default=A , type=A , help='truncate the example if it exceeds context length') parser.add_argument( '--threshold' , default=1.0 , type=A , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=A , help='finetuned_model_name') parser.add_argument( '--recopy_model' , default=A , type=A , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=A , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner UpperCamelCase = joblib.load('data/IGF_values.jbl') # Train secondary learner UpperCamelCase = training_secondary_learner( A , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model UpperCamelCase = GPTaLMHeadModel.from_pretrained('gpt2') set_seed(42) # Generate train and test data to train and evaluate gpt2 model UpperCamelCase , UpperCamelCase = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=A) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( A , A , A , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=A , secondary_learner=A , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
3
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' SCREAMING_SNAKE_CASE_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any: if return_pvalue: UpperCamelCase = pearsonr(lowerCamelCase_ , lowerCamelCase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_ , lowerCamelCase_)[0])}
34
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( a__ , unittest.TestCase ): snake_case__ = DanceDiffusionPipeline snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase = IPNDMScheduler() lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = DanceDiffusionPipeline(**_snake_case ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = pipe(**_snake_case ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
4
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ComputeEnvironment.AMAZON_SAGEMAKER A_ = True A_ = '''ml.p3.2xlarge''' A_ = '''accelerate_sagemaker_execution_role''' A_ = '''hf-sm''' A_ = '''us-east-1''' A_ = 1 A_ = '''accelerate-sagemaker-1''' A_ = '''1.6''' A_ = '''4.4''' A_ = '''train.py''' A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args['''model_name_or_path'''] , lowerCamelCase_) assert isinstance(converted_args['''do_train'''] , lowerCamelCase_) assert isinstance(converted_args['''epochs'''] , lowerCamelCase_) assert isinstance(converted_args['''learning_rate'''] , lowerCamelCase_) assert isinstance(converted_args['''max_steps'''] , lowerCamelCase_) with pytest.raises(lowerCamelCase_): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
34
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class snake_case_ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCamelCase_ = " ") -> List[str]: UpperCamelCase = sentence_delimiter def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return list(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase_): chars.extend(self.process_string(lowerCamelCase_)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_) - 1: chars.append(self.sentence_delimiter) return chars SCREAMING_SNAKE_CASE_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
0
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCamelCase_ : lowerCamelCase_ = 42 lowerCamelCase_ = None lowerCamelCase_ = None _lowerCamelCase = namedtuple('CoinsDistribResult', 'moves excess') def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: TreeNode | None ): if root is None: return 0 # Validation def count_nodes(UpperCamelCase__: TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(UpperCamelCase__: TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(UpperCamelCase__ ) != count_coins(UpperCamelCase__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(UpperCamelCase__: TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_distrib(node.left ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_distrib(node.right ) SCREAMING_SNAKE_CASE__ = 1 - left_distrib_excess SCREAMING_SNAKE_CASE__ = 1 - right_distrib_excess SCREAMING_SNAKE_CASE__ = ( left_distrib_moves + right_distrib_moves + abs(UpperCamelCase__ ) + abs(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE__ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(UpperCamelCase__ , UpperCamelCase__ ) return get_distrib(UpperCamelCase__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
6
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = '''left''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<eop>", "<eod>"] , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = 3 UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> List[str]: return len(self.sp_model) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> str: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: if self.remove_space: UpperCamelCase = ''' '''.join(inputs.strip().split()) else: UpperCamelCase = inputs UpperCamelCase = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCamelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase_) UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_)]) if self.do_lower_case: UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) UpperCamelCase = [] for piece in pieces: if len(lowerCamelCase_) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCamelCase = cur_pieces[1:] else: UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCamelCase_) else: new_pieces.append(lowerCamelCase_) return new_pieces def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.sp_model.IdToPiece(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: UpperCamelCase = ''''''.join(lowerCamelCase_).replace(lowerCamelCase_ , ''' ''').strip() return out_string def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> str: UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCamelCase_) UpperCamelCase = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) UpperCamelCase = [] sub_texts.append(lowerCamelCase_) else: current_sub_text.append(lowerCamelCase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(lowerCamelCase_) return clean_text else: return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) + [1, 1] return ([0] * len(lowerCamelCase_)) + [1, 1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,)
34
0
"""simple docstring""" import math import flax.linen as nn import jax.numpy as jnp def _snake_case ( _snake_case : jnp.ndarray , _snake_case : int , _snake_case : float = 1 , _snake_case : float = 1 , _snake_case : float = 1.0E4 , _snake_case : bool = False , _snake_case : float = 1.0 , ) -> jnp.ndarray: '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F'''Embedding dimension {embedding_dim} should be even''' _A = float(embedding_dim // 2 ) _A = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) _A = min_timescale * jnp.exp(jnp.arange(_snake_case , dtype=jnp.floataa ) * -log_timescale_increment ) _A = jnp.expand_dims(_snake_case , 1 ) * jnp.expand_dims(_snake_case , 0 ) # scale embeddings _A = scale * emb if flip_sin_to_cos: _A = jnp.concatenate([jnp.cos(_snake_case ), jnp.sin(_snake_case )] , axis=1 ) else: _A = jnp.concatenate([jnp.sin(_snake_case ), jnp.cos(_snake_case )] , axis=1 ) _A = jnp.reshape(_snake_case , [jnp.shape(_snake_case )[0], embedding_dim] ) return signal class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int = 32 UpperCAmelCase : jnp.dtype = jnp.floataa @nn.compact def __call__( self : Union[str, Any] , _UpperCAmelCase : str ): _A = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(_UpperCAmelCase ) _A = nn.silu(_UpperCAmelCase ) _A = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(_UpperCAmelCase ) return temb class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int = 32 UpperCAmelCase : bool = False UpperCAmelCase : float = 1 @nn.compact def __call__( self : Optional[Any] , _UpperCAmelCase : str ): return get_sinusoidal_embeddings( _UpperCAmelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
7
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } SCREAMING_SNAKE_CASE_ = { 'openbmb/cpm-ant-10b': 1024, } def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = collections.OrderedDict() with open(_lowercase ,'''r''' ,encoding='''utf-8''' ) as reader: UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): UpperCamelCase = token.rstrip('''\n''' ) UpperCamelCase = index return vocab class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_=2_0_0) -> Any: UpperCamelCase = vocab UpperCamelCase = unk_token UpperCamelCase = max_input_chars_per_word def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = list(lowerCamelCase_) if len(lowerCamelCase_) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase = 0 UpperCamelCase = [] while start < len(lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = None while start < end: UpperCamelCase = ''''''.join(chars[start:end]) if substr in self.vocab: UpperCamelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(lowerCamelCase_) UpperCamelCase = end return sub_tokens class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] A_ = False def __init__( self , lowerCamelCase_ , lowerCamelCase_="<d>" , lowerCamelCase_="</d>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<unk>" , lowerCamelCase_="</n>" , lowerCamelCase_="</_>" , lowerCamelCase_="left" , **lowerCamelCase_ , ) -> List[str]: requires_backends(self , ['''jieba''']) super().__init__( bod_token=lowerCamelCase_ , eod_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , line_token=lowerCamelCase_ , space_token=lowerCamelCase_ , padding_side=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = bod_token UpperCamelCase = eod_token UpperCamelCase = load_vocab(lowerCamelCase_) UpperCamelCase = self.encoder[space_token] UpperCamelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def UpperCAmelCase__ ( self) -> Dict: return self.encoder[self.bod_token] @property def UpperCAmelCase__ ( self) -> str: return self.encoder[self.eod_token] @property def UpperCAmelCase__ ( self) -> List[Any]: return self.encoder["\n"] @property def UpperCAmelCase__ ( self) -> int: return len(self.encoder) def UpperCAmelCase__ ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = [] for x in jieba.cut(lowerCamelCase_ , cut_all=lowerCamelCase_): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase_)) return output_tokens def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> Tuple: UpperCamelCase = [i for i in token_ids if i >= 0] UpperCamelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return token in self.encoder def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return "".join(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token)) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return self.decoder.get(lowerCamelCase_ , self.unk_token) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if os.path.isdir(lowerCamelCase_): UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: UpperCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCamelCase = 0 if " " in self.encoder: UpperCamelCase = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase = self.encoder['''\n'''] del self.encoder["\n"] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''') UpperCamelCase = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) return [1] + ([0] * len(lowerCamelCase_))
34
0
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( 'kwargs, expected' , [ ({'num_shards': 0, 'max_num_jobs': 1}, []), ({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]), ({'num_shards': 10, 'max_num_jobs': 10}, [range(__snake_case , i + 1 ) for i in range(10 )]), ({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]), ({'num_shards': 10, 'max_num_jobs': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'num_shards': 3, 'max_num_jobs': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : Any ) -> Any: __A : Optional[int] = _distribute_shards(**__snake_case ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, max_num_jobs, expected' , [ ({'foo': 0}, 10, [{'foo': 0}]), ({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]), ({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]), ({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]), ({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]), ] , ) def _lowerCAmelCase ( __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Optional[int] ) -> List[str]: __A : List[str] = _split_gen_kwargs(__snake_case , __snake_case ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, expected' , [ ({'foo': 0}, 1), ({'shards': [0]}, 1), ({'shards': [0, 1, 2, 3]}, 4), ({'shards': [0, 1, 2, 3], 'foo': 0}, 4), ({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4), ({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError), ] , ) def _lowerCAmelCase ( __snake_case : Dict , __snake_case : List[Any] ) -> Optional[Any]: if expected is RuntimeError: with pytest.raises(__snake_case ): _number_of_shards_in_gen_kwargs(__snake_case ) else: __A : Optional[Any] = _number_of_shards_in_gen_kwargs(__snake_case ) assert out == expected
8
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=0) -> int: UpperCamelCase = 1.0 if scale is None else scale UpperCamelCase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_)]) @property def UpperCAmelCase__ ( self) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase__ ( self) -> List[str]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase__ ( self) -> Any: return self.variance.sqrt() class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = args_dim UpperCamelCase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_) for dim in args_dim.values()]) UpperCamelCase = domain_map def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple[torch.Tensor]: UpperCamelCase = [proj(lowerCamelCase_) for proj in self.proj] return self.domain_map(*lowerCamelCase_) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__() UpperCamelCase = function def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_) -> Tuple: return self.function(lowerCamelCase_ , *lowerCamelCase_) class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , lowerCamelCase_ = 1) -> None: UpperCamelCase = dim UpperCamelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if self.dim == 1: return self.distribution_class(*lowerCamelCase_) else: return Independent(self.distribution_class(*lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Distribution: UpperCamelCase = self._base_distribution(lowerCamelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim) @property def UpperCAmelCase__ ( self) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase__ ( self) -> int: return len(self.event_shape) @property def UpperCAmelCase__ ( self) -> float: return 0.0 def UpperCAmelCase__ ( self , lowerCamelCase_) -> nn.Module: return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def UpperCAmelCase__ ( self , *lowerCamelCase_) -> List[str]: raise NotImplementedError() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCamelCase_) + 4.0)) / 2.0 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"df": 1, "loc": 1, "scale": 1} A_ = StudentT @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) UpperCamelCase = 2.0 + cls.squareplus(lowerCamelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"loc": 1, "scale": 1} A_ = Normal @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"total_count": 1, "logits": 1} A_ = NegativeBinomial @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = cls.squareplus(lowerCamelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
34
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , _snake_case : Optional[Any] , _snake_case : Optional[int]=3 , _snake_case : Union[str, Any]=32 , _snake_case : Optional[int]=3 , _snake_case : List[Any]=10 , _snake_case : Union[str, Any]=[10, 20, 30, 40] , _snake_case : int=[1, 1, 2, 1] , _snake_case : Union[str, Any]=True , _snake_case : Union[str, Any]=True , _snake_case : Optional[Any]="relu" , _snake_case : Dict=3 , _snake_case : Optional[int]=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = embeddings_size A__ = hidden_sizes A__ = depths A__ = is_training A__ = use_labels A__ = hidden_act A__ = num_labels A__ = scope A__ = len(_snake_case ) def _a ( self : Union[str, Any] ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def _a ( self : str ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _a ( self : List[Any] , _snake_case : Tuple , _snake_case : str , _snake_case : str ): """simple docstring""" A__ = TFResNetModel(config=_snake_case ) A__ = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : List[str] , _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Dict ): """simple docstring""" A__ = self.num_labels A__ = TFResNetForImageClassification(_snake_case ) A__ = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : int ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Any = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () A__ : List[str] = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) A__ : List[str] = False A__ : str = False A__ : List[Any] = False A__ : Tuple = False A__ : str = False def _a ( self : List[Any] ): """simple docstring""" A__ = TFResNetModelTester(self ) A__ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case ) def _a ( self : Any ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : Dict ): """simple docstring""" return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def _a ( self : Tuple ): """simple docstring""" pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def _a ( self : str ): """simple docstring""" pass def _a ( self : Union[str, Any] ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_snake_case ) A__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def _a ( self : str ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : Dict ): """simple docstring""" def check_hidden_states_output(_snake_case : Dict , _snake_case : List[Any] , _snake_case : str ): A__ = model_class(_snake_case ) A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = self.model_tester.num_stages self.assertEqual(len(_snake_case ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: A__ = layer_type A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def _a ( self : Tuple ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def _a ( self : Optional[int] ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def A ( ) -> str: A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : List[str] ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : Optional[int] ): """simple docstring""" A__ = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='tf' ) # forward pass A__ = model(**_snake_case ) # verify the logits A__ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _snake_case , atol=1E-4 ) )
9
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowercase ,id=_lowercase )
34
0
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _lowerCAmelCase = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case=None ): # Initialise PyTorch model _UpperCamelCase = XLNetConfig.from_json_file(__snake_case ) _UpperCamelCase = finetuning_task.lower() if finetuning_task is not None else '''''' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) _UpperCamelCase = finetuning_task _UpperCamelCase = GLUE_TASKS_NUM_LABELS[finetuning_task] _UpperCamelCase = XLNetForSequenceClassification(__snake_case ) elif "squad" in finetuning_task: _UpperCamelCase = finetuning_task _UpperCamelCase = XLNetForQuestionAnswering(__snake_case ) else: _UpperCamelCase = XLNetLMHeadModel(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__snake_case , __snake_case , __snake_case ) # Save pytorch-model _UpperCamelCase = os.path.join(__snake_case , __snake_case ) _UpperCamelCase = os.path.join(__snake_case , __snake_case ) print(f"""Save PyTorch model to {os.path.abspath(__snake_case )}""" ) torch.save(model.state_dict() , __snake_case ) print(f"""Save configuration file to {os.path.abspath(__snake_case )}""" ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _lowerCAmelCase = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
10
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
34
0
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _a , _a = array[indexa], array[indexa] def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" if length > 1: _a = int(length / 2) for i in range(__A , low + middle): comp_and_swap(__A , __A , i + middle , __A) bitonic_merge(__A , __A , __A , __A) bitonic_merge(__A , low + middle , __A , __A) def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" if length > 1: _a = int(length / 2) bitonic_sort(__A , __A , __A , 1) bitonic_sort(__A , low + middle , __A , 0) bitonic_merge(__A , __A , __A , __A) if __name__ == "__main__": lowercase_ = input("Enter numbers separated by a comma:\n").strip() lowercase_ = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
11
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCamelCase ( lowercase_ ) -> Optional[Any]: '''simple docstring''' lowercase__ : Dict = FileLock(str(tmpdir / """foo.lock""" ) ) lowercase__ : Tuple = FileLock(str(tmpdir / """foo.lock""" ) ) lowercase__ : Optional[int] = 0.01 with locka.acquire(): with pytest.raises(lowercase_ ): lowercase__ : str = time.time() locka.acquire(lowercase_ ) assert time.time() - _start > timeout def UpperCamelCase ( lowercase_ ) -> List[Any]: '''simple docstring''' lowercase__ : Optional[int] = """a""" * 10_00 + """.lock""" lowercase__ : Optional[Any] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(lowercase_ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 lowercase__ : str = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(lowercase_ ): locka.acquire(0 )
12
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase = getattr(_lowercase ,_lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase ,_lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) UpperCamelCase = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCamelCase = torch.tensor(_lowercase ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_lowercase ) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to(_lowercase ) else: UpperCamelCase = torch.tensor(_lowercase ,device=_lowercase ) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase ,requires_grad=old_value.requires_grad ) UpperCamelCase = new_value def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase ,nn.Linear ) or isinstance(_lowercase ,_lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase ,_lowercase ): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase ,_lowercase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase ,_lowercase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ,has_been_replaced=_lowercase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,_lowercase ,) return replace_with_bnb_linear(*_lowercase ,**_lowercase ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,_lowercase ,) return set_module_quantized_tensor_to_device(*_lowercase ,**_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase ,_lowercase ): UpperCamelCase = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(_lowercase ,[] ) UpperCamelCase = len(_lowercase ) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase ) - set(_lowercase ) UpperCamelCase = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase ,'''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names
34
0
'''simple docstring''' from collections.abc import Sequence def UpperCAmelCase__ ( UpperCAmelCase_ : Sequence[float] , UpperCAmelCase_ : bool = False ) -> float: if not arr: return 0 __lowerCamelCase : str = 0 if allow_empty_subarrays else float('-inf' ) __lowerCamelCase : Optional[Any] = 0.0 for num in arr: __lowerCamelCase : Optional[Any] = max(0 if allow_empty_subarrays else num , curr_sum + num ) __lowerCamelCase : str = max(UpperCAmelCase_ , UpperCAmelCase_ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() A__ : Tuple = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f'''{max_subarray_sum(nums) = }''')
13
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase ) count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 ) count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase ) return count def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_lowercase ,_lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_ = TemporaryFile() SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_ = np.load(outfile) SCREAMING_SNAKE_CASE_ = len(M) - 1 SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
34
0
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __UpperCAmelCase ( __a : Any ,__a : str ,__a : List[Any]=1_024 ,__a : Optional[int]=1_024 ,__a : int=False ,**__a : str ) -> Optional[int]: """simple docstring""" _a : Tuple = AutoTokenizer.from_pretrained(__a ) _a : int = SeqaSeqDataset(__a ,__a ,__a ,__a ,type_path='''train''' ,**__a ) _a : List[str] = tok.pad_token_id def get_lens(__a : Any ): _a : List[Any] = tqdm( DataLoader(__a ,batch_size=512 ,num_workers=8 ,shuffle=__a ,collate_fn=ds.collate_fn ) ,desc=str(ds.len_file ) ,) _a : Optional[Any] = [] for batch in dl: _a : List[str] = batch['''input_ids'''].ne(__a ).sum(1 ).tolist() _a : Optional[Any] = batch['''labels'''].ne(__a ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__a ,__a ): max_lens.append(max(__a ,__a ) ) else: max_lens.extend(__a ) return max_lens _a : List[str] = get_lens(__a ) _a : Tuple = SeqaSeqDataset(__a ,__a ,__a ,__a ,type_path='''val''' ,**__a ) _a : Union[str, Any] = get_lens(__a ) pickle_save(__a ,train_ds.len_file ) pickle_save(__a ,val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
14
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE_ = os.path.join(git_repo_path, 'src', 'transformers') SCREAMING_SNAKE_CASE_ = '\n{0} = None\n' SCREAMING_SNAKE_CASE_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' SCREAMING_SNAKE_CASE_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowerCamelCase_) UpperCamelCase = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowerCamelCase_ , '''tokenizers''') UpperCamelCase = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowerCamelCase_ , '''tensorflow_text''') UpperCamelCase = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tensorflow_text''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers_and_vision''') def UpperCAmelCase__ ( self) -> int: UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCamelCase_) self.assertIn('''tensorflow_text''' , lowerCamelCase_) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCamelCase_) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , '''\nCONSTANT = None\n''') UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowerCamelCase_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowerCamelCase_)
34
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A : str = logging.get_logger(__name__) A : List[str] = '▁' A : int = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} A : str = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } A : Dict = {'vinai/bartpho-syllable': 1_0_2_4} class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ['''input_ids''', '''attention_mask'''] def __init__(self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]="<s>" , _UpperCAmelCase : Dict="</s>" , _UpperCAmelCase : str="</s>" , _UpperCAmelCase : Optional[Any]="<s>" , _UpperCAmelCase : List[Any]="<unk>" , _UpperCAmelCase : Optional[int]="<pad>" , _UpperCAmelCase : Dict="<mask>" , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : Any , ) -> None: """simple docstring""" lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) lowercase__ = vocab_file lowercase__ = monolingual_vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase__ = {} lowercase__ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(_UpperCAmelCase ) not in self.fairseq_tokens_to_ids: lowercase__ = cnt cnt += 1 with open(_UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): lowercase__ = line.strip().split()[0] lowercase__ = len(self.fairseq_tokens_to_ids ) if str(_UpperCAmelCase ) not in self.fairseq_tokens_to_ids: lowercase__ = len(self.fairseq_tokens_to_ids ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self : Dict ) -> List[Any]: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None lowercase__ = self.sp_model.serialized_model_proto() return state def __setstate__(self : Optional[int] , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def lowerCamelCase__ (self : str , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase__ (self : Dict ) -> str: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowerCamelCase__ (self : Dict ) -> Any: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Tuple ) -> str: """simple docstring""" lowercase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip() return out_string def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , """wb""" ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( _UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(_UpperCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
15
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __snake_case ( _lowercase ): """simple docstring""" if "cls_token" in name: UpperCamelCase = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: UpperCamelCase = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: UpperCamelCase = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: UpperCamelCase = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: UpperCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: UpperCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: UpperCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: UpperCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: UpperCamelCase = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: UpperCamelCase = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: UpperCamelCase = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCamelCase = key.split('''.''' ) UpperCamelCase = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase = config.decoder_hidden_size UpperCamelCase = '''decoder.decoder_layers.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = config.hidden_size UpperCamelCase = '''vit.encoder.layer.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = val return orig_state_dict def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 elif "huge" in checkpoint_url: UpperCamelCase = 14 UpperCamelCase = 1280 UpperCamelCase = 5120 UpperCamelCase = 32 UpperCamelCase = 16 UpperCamelCase = ViTMAEForPreTraining(_lowercase ) UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' )['''model'''] UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = convert_state_dict(_lowercase ,_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCamelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = image_processor(images=_lowercase ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits if "large" in checkpoint_url: UpperCamelCase = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
34
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __A : Tuple = logging.get_logger(__name__) def __a ( A__ : Optional[int] ): SCREAMING_SNAKE_CASE = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["stage2", "stage3", "stage4"] , ) SCREAMING_SNAKE_CASE = DetaConfig( backbone_config=A__ , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=A__ , with_box_refine=A__ , two_stage=A__ , ) # set labels SCREAMING_SNAKE_CASE = "huggingface/label-files" if "o365" in model_name: SCREAMING_SNAKE_CASE = 366 SCREAMING_SNAKE_CASE = "object365-id2label.json" else: SCREAMING_SNAKE_CASE = 91 SCREAMING_SNAKE_CASE = "coco-detection-id2label.json" SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = json.load(open(cached_download(hf_hub_url(A__ , A__ , repo_type="dataset" ) ) , "r" ) ) SCREAMING_SNAKE_CASE = {int(A__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def __a ( A__ : Any ): SCREAMING_SNAKE_CASE = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight") ) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.0.body.layers.{i}.downsample.reduction.weight", F"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.weight", F"model.backbone.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.bias", F"model.backbone.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight") ) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias") ) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight") ) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias") ) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight") ) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", F"model.encoder.layers.{i}.self_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", F"model.encoder.layers.{i}.self_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", F"model.encoder.layers.{i}.self_attn.attention_weights.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", F"model.encoder.layers.{i}.self_attn.attention_weights.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.weight", F"model.encoder.layers.{i}.self_attn.value_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.bias", F"model.encoder.layers.{i}.self_attn.value_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.weight", F"model.encoder.layers.{i}.self_attn.output_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.bias", F"model.encoder.layers.{i}.self_attn.output_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.weight", F"model.encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"model.encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"model.encoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"model.encoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"model.encoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"model.encoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"model.encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"model.encoder.layers.{i}.final_layer_norm.bias") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", F"model.decoder.layers.{i}.encoder_attn.attention_weights.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", F"model.decoder.layers.{i}.encoder_attn.attention_weights.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", F"model.decoder.layers.{i}.encoder_attn.value_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", F"model.decoder.layers.{i}.encoder_attn.value_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", F"model.decoder.layers.{i}.encoder_attn.output_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", F"model.decoder.layers.{i}.encoder_attn.output_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.weight", F"model.decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"model.decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"model.decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"model.decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.weight", F"model.decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.bias", F"model.decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"model.decoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"model.decoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"model.decoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"model.decoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"model.decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"model.decoder.layers.{i}.final_layer_norm.bias") ) # fmt: on return rename_keys def __a ( A__ : Optional[Any] , A__ : Union[str, Any] , A__ : Any ): SCREAMING_SNAKE_CASE = dct.pop(A__ ) SCREAMING_SNAKE_CASE = val def __a ( A__ : str , A__ : int ): SCREAMING_SNAKE_CASE = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE = in_proj_bias[: dim] SCREAMING_SNAKE_CASE = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE = in_proj_bias[-dim :] # fmt: on def __a ( A__ : Any , A__ : Tuple ): # transformer decoder self-attention layers SCREAMING_SNAKE_CASE = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention SCREAMING_SNAKE_CASE = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[:hidden_size, :] SCREAMING_SNAKE_CASE = in_proj_bias[:hidden_size] SCREAMING_SNAKE_CASE = in_proj_weight[ hidden_size : hidden_size * 2, : ] SCREAMING_SNAKE_CASE = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE = in_proj_weight[-hidden_size:, :] SCREAMING_SNAKE_CASE = in_proj_bias[-hidden_size:] def __a ( ): SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def __a ( A__ : List[str] , A__ : Union[str, Any] , A__ : str ): SCREAMING_SNAKE_CASE = get_deta_config(A__ ) # load original state dict if model_name == "deta-swin-large": SCREAMING_SNAKE_CASE = hf_hub_download(repo_id="nielsr/deta-checkpoints" , filename="adet_swin_ft.pth" ) elif model_name == "deta-swin-large-o365": SCREAMING_SNAKE_CASE = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365" , filename="deta_swin_pt_o365.pth" ) else: raise ValueError(F"Model name {model_name} not supported" ) SCREAMING_SNAKE_CASE = torch.load(A__ , map_location="cpu" )["model"] # original state dict for name, param in state_dict.items(): print(A__ , param.shape ) # rename keys SCREAMING_SNAKE_CASE = create_rename_keys(A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) read_in_swin_q_k_v(A__ , config.backbone_config ) read_in_decoder_q_k_v(A__ , A__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val if "input_proj" in key: SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE = DetaForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() SCREAMING_SNAKE_CASE = "cuda" if torch.cuda.is_available() else "cpu" model.to(A__ ) # load image processor SCREAMING_SNAKE_CASE = DetaImageProcessor(format="coco_detection" ) # verify our conversion on image SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = processor(images=A__ , return_tensors="pt" ) SCREAMING_SNAKE_CASE = encoding["pixel_values"] SCREAMING_SNAKE_CASE = model(pixel_values.to(A__ ) ) # verify logits print("Logits:" , outputs.logits[0, :3, :3] ) print("Boxes:" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": SCREAMING_SNAKE_CASE = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) SCREAMING_SNAKE_CASE = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": SCREAMING_SNAKE_CASE = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) SCREAMING_SNAKE_CASE = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(A__ ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(A__ ) , atol=1E-4 ) print("Everything ok!" ) if pytorch_dump_folder_path: # Save model and processor logger.info(F"Saving PyTorch model and processor to {pytorch_dump_folder_path}..." ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) processor.save_pretrained(A__ ) # Push to hub if push_to_hub: print("Pushing model and processor to hub..." ) model.push_to_hub(F"jozhang97/{model_name}" ) processor.push_to_hub(F"jozhang97/{model_name}" ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __A : str = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
16
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Any: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase = mock_training_loop_function('''hello''') self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def UpperCAmelCase__ ( self) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(lowerCamelCase_): pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Dict: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): raise ValueError('''Oops, we had an error!''') with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase_) UpperCamelCase = release_memory(lowerCamelCase_) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase_)
34
0
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( a__ : list ,a__ : int | None = None ,a__ : int | None = None ) -> None: if start is None: __A : int = 0 if end is None: __A : Union[str, Any] = len(a__ ) - 1 if start >= end: return __A : Optional[int] = (start + end) // 2 slowsort(a__ ,a__ ,a__ ) slowsort(a__ ,mid + 1 ,a__ ) if sequence[end] < sequence[mid]: __A , __A : Dict = sequence[mid], sequence[end] slowsort(a__ ,a__ ,end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
17
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ = 1_0_1) -> Tuple: UpperCamelCase = length def __len__( self) -> List[str]: return self.length def __getitem__( self , lowerCamelCase_) -> int: return i class snake_case_ : """simple docstring""" def __call__( self , lowerCamelCase_) -> str: return {"input_ids": torch.tensor(lowerCamelCase_), "labels": torch.tensor(lowerCamelCase_)} class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> List[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase = nn.Linear(1_2_0 , 8_0) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_neuroncore def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_multi_gpu def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE_ = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()[0] logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' f'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE_ = DummyDataset(dataset_length) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = list(range(len(_lowercase ) ) ) UpperCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} SCREAMING_SNAKE_CASE_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = None
34
0
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(__magic_name__ ) class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , **_lowerCAmelCase ) -> List[Any]: super().__init__(**_lowerCAmelCase ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self , _lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , **_lowerCAmelCase ) -> Any: _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs["hypothesis_template"] return preprocess_params, {}, {} def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="This is a sound of {}." ) -> List[str]: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): if audio.startswith("http://" ) or audio.startswith("https://" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowerCAmelCase = requests.get(_lowerCAmelCase ).content else: with open(_lowerCAmelCase , "rb" ) as f: _lowerCAmelCase = f.read() if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = ffmpeg_read(_lowerCAmelCase , self.feature_extractor.sampling_rate ) if not isinstance(_lowerCAmelCase , np.ndarray ): raise ValueError("We expect a numpy ndarray as input" ) if len(audio.shape ) != 1: raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline" ) _lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="pt" ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(_lowerCAmelCase ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework , padding=_lowerCAmelCase ) _lowerCAmelCase = [text_inputs] return inputs def _snake_case ( self , _lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = model_inputs.pop("candidate_labels" ) _lowerCAmelCase = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , _lowerCAmelCase ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_audio, } return model_outputs def _snake_case ( self , _lowerCAmelCase ) -> str: _lowerCAmelCase = model_outputs.pop("candidate_labels" ) _lowerCAmelCase = model_outputs["logits"][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=0 ) _lowerCAmelCase = probs.tolist() else: raise ValueError("`tf` framework not supported." ) _lowerCAmelCase = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(_lowerCAmelCase , _lowerCAmelCase ) , key=lambda _lowerCAmelCase : -x[0] ) ] return result
18
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for tf_name, hf_name in patterns: UpperCamelCase = k.replace(_lowercase ,_lowercase ) return k def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = BigBirdPegasusConfig(**_lowercase ) UpperCamelCase = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCamelCase = torch_model.state_dict() UpperCamelCase = {} # separating decoder weights UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = DECODER_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = REMAINING_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCamelCase = mapping['''model.embed_positions.weight'''] UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(_lowercase ,strict=_lowercase ) UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tf.train.list_variables(_lowercase ) UpperCamelCase = {} UpperCamelCase = ['''global_step'''] for name, shape in tqdm(_lowercase ,desc='''converting tf checkpoint to dict''' ): UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase = tf.train.load_variable(_lowercase ,_lowercase ) UpperCamelCase = array return tf_weights def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = get_tf_weights_as_numpy(_lowercase ) UpperCamelCase = convert_bigbird_pegasus(_lowercase ,_lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
34
0
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _a = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=None ) -> List[str]: """simple docstring""" if rng is None: _UpperCamelCase = random.Random() _UpperCamelCase = 1 for dim in shape: total_dims *= dim _UpperCamelCase = [] for _ in range(__snake_case ): values.append(rng.randint(0, vocab_size - 1 ) ) _UpperCamelCase = np.array(__snake_case, dtype=jnp.intaa ).reshape(__snake_case ) return output def lowerCamelCase__ ( __snake_case, __snake_case=None ) -> Tuple: """simple docstring""" _UpperCamelCase = ids_tensor(__snake_case, vocab_size=2, rng=__snake_case ) # make sure that at least one token is attended to for each batch _UpperCamelCase = 1 return attn_mask @require_flax class _UpperCAmelCase: lowercase__ = None lowercase__ = () def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _UpperCamelCase = 2 _UpperCamelCase = inputs['''input_ids'''].shape[-1] // 2 _UpperCamelCase = inputs['''input_ids'''][:max_batch_size, :sequence_length] _UpperCamelCase = jnp.ones_like(__a) _UpperCamelCase = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _UpperCamelCase = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _UpperCamelCase = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = False _UpperCamelCase = max_length _UpperCamelCase = 0 for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning _UpperCamelCase = getattr(__a , __a) _UpperCamelCase = pt_model_class(__a).eval() _UpperCamelCase = load_flax_weights_in_pytorch_model(__a , flax_model.params) _UpperCamelCase = flax_model.generate(__a).sequences _UpperCamelCase = pt_model.generate(torch.tensor(__a , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _UpperCamelCase = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = False _UpperCamelCase = max_length for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = True _UpperCamelCase = max_length for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = False _UpperCamelCase = max_length _UpperCamelCase = 2 for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = False _UpperCamelCase = max_length _UpperCamelCase = 2 _UpperCamelCase = 2 for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = True _UpperCamelCase = max_length _UpperCamelCase = 0.8 _UpperCamelCase = 10 _UpperCamelCase = 0.3 _UpperCamelCase = 1 _UpperCamelCase = 8 _UpperCamelCase = 9 for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = max_length _UpperCamelCase = 1 _UpperCamelCase = 8 _UpperCamelCase = 9 for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = max_length _UpperCamelCase = 2 _UpperCamelCase = 1 _UpperCamelCase = 8 _UpperCamelCase = 9 for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() # pad attention mask on the left _UpperCamelCase = attention_mask.at[(0, 0)].set(0) _UpperCamelCase = False _UpperCamelCase = max_length for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a , attention_mask=__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a , attention_mask=__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() # pad attention mask on the left _UpperCamelCase = attention_mask.at[(0, 0)].set(0) _UpperCamelCase = True _UpperCamelCase = max_length for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a , attention_mask=__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a , attention_mask=__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() # pad attention mask on the left _UpperCamelCase = attention_mask.at[(0, 0)].set(0) _UpperCamelCase = 2 _UpperCamelCase = max_length for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a , attention_mask=__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a , attention_mask=__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''') _UpperCamelCase = FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''') _UpperCamelCase = '''Hello world''' _UpperCamelCase = tokenizer(__a , return_tensors='''np''').input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__a , '''do_samples'''): model.generate(__a , do_samples=__a) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__a , '''foo'''): _UpperCamelCase = {'''foo''': '''bar'''} model.generate(__a , **__a)
19
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
0