code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
def UpperCamelCase ( _A : str )-> List[Any]: """simple docstring""" A__ = [] A__ = [] A__ = { "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator A__ = len(_lowercase ) if (len(_lowercase ) > 7) else 7 # Print table header for output print( "Symbol".center(8 ) , "Stack".center(_lowercase ) , "Postfix".center(_lowercase ) , sep=" | " , ) print("-" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_lowercase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_lowercase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_lowercase ) == 0: stack.append(_lowercase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_lowercase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_lowercase ) # push x to stack print( x.center(8 ) , ("".join(_lowercase )).ljust(_lowercase ) , ("".join(_lowercase )).ljust(_lowercase ) , sep=" | " , ) # Output in tabular format while len(_lowercase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( " ".center(8 ) , ("".join(_lowercase )).ljust(_lowercase ) , ("".join(_lowercase )).ljust(_lowercase ) , sep=" | " , ) # Output in tabular format return "".join(_lowercase ) # return Postfix as str def UpperCamelCase ( _A : int )-> Union[str, Any]: """simple docstring""" A__ = list(infix[::-1] ) # reverse the infix equation for i in range(len(_lowercase ) ): if infix[i] == "(": A__ = ")" # change "(" to ")" elif infix[i] == ")": A__ = "(" # change ")" to "(" return (infix_2_postfix("".join(_lowercase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": UpperCAmelCase_ : Any = input("\nEnter an Infix Equation = ") # Input an Infix equation UpperCAmelCase_ : Optional[Any] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
491
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
34
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_: str = logging.get_logger(__name__) A_: List[str] = {'vocab_file': 'spiece.model'} A_: Optional[int] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } A_: List[str] = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } A_: Tuple = '▁' class _lowercase ( lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase="[CLS]" , UpperCAmelCase="[SEP]" , UpperCAmelCase="<unk>" , UpperCAmelCase="[SEP]" , UpperCAmelCase="<pad>" , UpperCAmelCase="[CLS]" , UpperCAmelCase="[MASK]" , UpperCAmelCase = None , **UpperCAmelCase , ): '''simple docstring''' _lowercase = ( AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ , normalized=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token ) _lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) _lowercase = do_lower_case _lowercase = remove_space _lowercase = keep_accents _lowercase = vocab_file _lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return len(self.sp_model ) def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' _lowercase = self.__dict__.copy() _lowercase = None return state def __setstate__( self , UpperCAmelCase ): '''simple docstring''' _lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowercase = {} _lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase ( self , UpperCAmelCase ): '''simple docstring''' if self.remove_space: _lowercase = """ """.join(inputs.strip().split() ) else: _lowercase = inputs _lowercase = outputs.replace("""``""" , """\"""" ).replace("""\'\'""" , """\"""" ) if not self.keep_accents: _lowercase = unicodedata.normalize("""NFKD""" , lowerCamelCase_ ) _lowercase = """""".join([c for c in outputs if not unicodedata.combining(lowerCamelCase_ )] ) if self.do_lower_case: _lowercase = outputs.lower() return outputs def _UpperCAmelCase ( self , UpperCAmelCase ): '''simple docstring''' _lowercase = self.preprocess_text(lowerCamelCase_ ) _lowercase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) _lowercase = [] for piece in pieces: if len(lowerCamelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _lowercase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowercase = cur_pieces[1:] else: _lowercase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCamelCase_ ) else: new_pieces.append(lowerCamelCase_ ) return new_pieces def _UpperCAmelCase ( self , UpperCAmelCase ): '''simple docstring''' return self.sp_model.PieceToId(lowerCamelCase_ ) def _UpperCAmelCase ( self , UpperCAmelCase ): '''simple docstring''' return self.sp_model.IdToPiece(lowerCamelCase_ ) def _UpperCAmelCase ( self , UpperCAmelCase ): '''simple docstring''' _lowercase = [] _lowercase = """""" _lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase_ ) + token _lowercase = True _lowercase = [] else: current_sub_tokens.append(lowerCamelCase_ ) _lowercase = False out_string += self.sp_model.decode(lowerCamelCase_ ) return out_string.strip() def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ): '''simple docstring''' _lowercase = [self.sep_token_id] _lowercase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1] def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ): '''simple docstring''' _lowercase = [self.sep_token_id] _lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_ , """wb""" ) as fi: _lowercase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (out_vocab_file,)
398
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
0
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup UpperCAmelCase__ :List[str] = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __lowercase (_lowercase = "mumbai" ) -> List[Any]: """simple docstring""" __lowerCamelCase : Any = BeautifulSoup(requests.get(url + location ).content, """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""", attrs={"""data-tn-component""": """organicJob"""} ): __lowerCamelCase : Dict = job.find("""a""", attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() __lowerCamelCase : Optional[int] = job.find("""span""", {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
150
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase = getattr(_lowercase ,_lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase ,_lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) UpperCamelCase = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCamelCase = torch.tensor(_lowercase ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_lowercase ) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to(_lowercase ) else: UpperCamelCase = torch.tensor(_lowercase ,device=_lowercase ) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase ,requires_grad=old_value.requires_grad ) UpperCamelCase = new_value def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase ,nn.Linear ) or isinstance(_lowercase ,_lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase ,_lowercase ): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase ,_lowercase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase ,_lowercase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ,has_been_replaced=_lowercase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,_lowercase ,) return replace_with_bnb_linear(*_lowercase ,**_lowercase ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,_lowercase ,) return set_module_quantized_tensor_to_device(*_lowercase ,**_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase ,_lowercase ): UpperCamelCase = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(_lowercase ,[] ) UpperCamelCase = len(_lowercase ) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase ) - set(_lowercase ) UpperCamelCase = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase ,'''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names
34
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] A = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] A = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): A = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase ) count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 ) count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase ) return count def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_lowercase ,_lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_ = TemporaryFile() SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_ = np.load(outfile) SCREAMING_SNAKE_CASE_ = len(M) - 1 SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
34
0
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict=False ): """simple docstring""" try: _lowerCamelCase : Any = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _lowerCamelCase : Optional[Any] = default else: # KEY is set, convert it to True or False. try: _lowerCamelCase : Tuple = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'If set, {key} must be yes or no.' ) return _value UpperCAmelCase_ : Optional[int] = parse_flag_from_env('RUN_SLOW', default=False) UpperCAmelCase_ : List[str] = parse_flag_from_env('RUN_REMOTE', default=False) UpperCAmelCase_ : Optional[int] = parse_flag_from_env('RUN_LOCAL', default=True) UpperCAmelCase_ : Dict = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression UpperCAmelCase_ : Tuple = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') UpperCAmelCase_ : Tuple = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') UpperCAmelCase_ : List[str] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio UpperCAmelCase_ : Tuple = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam UpperCAmelCase_ : Any = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility UpperCAmelCase_ : Dict = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows UpperCAmelCase_ : Union[str, Any] = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" try: import faiss # noqa except ImportError: _lowerCamelCase : Optional[Any] = unittest.skip("test requires faiss" )(_lowercase ) return test_case def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" try: import regex # noqa except ImportError: _lowerCamelCase : str = unittest.skip("test requires regex" )(_lowercase ) return test_case def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" try: import elasticsearch # noqa except ImportError: _lowerCamelCase : List[Any] = unittest.skip("test requires elasticsearch" )(_lowercase ) return test_case def A_ ( _lowerCAmelCase : int ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: _lowerCamelCase : Tuple = unittest.skip("test requires sqlalchemy" )(_lowercase ) return test_case def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" if not config.TORCH_AVAILABLE: _lowerCamelCase : Optional[int] = unittest.skip("test requires PyTorch" )(_lowercase ) return test_case def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" if not config.TF_AVAILABLE: _lowerCamelCase : int = unittest.skip("test requires TensorFlow" )(_lowercase ) return test_case def A_ ( _lowerCAmelCase : int ): """simple docstring""" if not config.JAX_AVAILABLE: _lowerCamelCase : List[str] = unittest.skip("test requires JAX" )(_lowercase ) return test_case def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" if not config.PIL_AVAILABLE: _lowerCamelCase : Union[str, Any] = unittest.skip("test requires Pillow" )(_lowercase ) return test_case def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(_lowercase ) else: return test_case def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(_lowercase ) else: return test_case def A_ ( _lowerCAmelCase : str ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(_lowercase ) else: return test_case def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" def _require_spacy_model(_lowerCAmelCase : int ): try: import spacy # noqa F401 spacy.load(_lowercase ) except ImportError: return unittest.skip("test requires spacy" )(_lowercase ) except OSError: return unittest.skip("test requires spacy model \'{}\'".format(_lowercase ) )(_lowercase ) else: return test_case return _require_spacy_model def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(_lowercase ) else: return test_case def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(_lowercase ) else: return test_case def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: _lowerCamelCase : int = unittest.skip("test is slow" )(_lowercase ) return test_case def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: _lowerCamelCase : Tuple = unittest.skip("test is local" )(_lowercase ) return test_case def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: _lowerCamelCase : Dict = unittest.skip("test is packaged" )(_lowercase ) return test_case def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: _lowerCamelCase : int = unittest.skip("test requires remote" )(_lowercase ) return test_case def A_ ( *_lowerCAmelCase : Dict ): """simple docstring""" def decorate(cls : Tuple ): for name, fn in cls.__dict__.items(): if callable(_lowercase ) and name.startswith("test" ): for decorator in decorators: _lowerCamelCase : Optional[int] = decorator(_lowercase ) setattr(cls , _lowercase , _lowercase ) return cls return decorate class UpperCAmelCase__ ( lowerCamelCase_ ): pass class UpperCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 @contextmanager def A_ ( _lowerCAmelCase : str=OfflineSimulationMode.CONNECTION_FAILS , _lowerCAmelCase : Optional[int]=1E-16 ): """simple docstring""" _lowerCamelCase : Optional[int] = requests.Session().request def timeout_request(_lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : str , **_lowerCAmelCase : Any ): # Change the url to an invalid url so that the connection hangs _lowerCamelCase : Any = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( F'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) _lowerCamelCase : Dict = timeout try: return online_request(_lowercase , _lowercase , **_lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier _lowerCamelCase : Tuple = url _lowerCamelCase : List[str] = e.args[0] _lowerCamelCase : Tuple = (max_retry_error.args[0].replace("10.255.255.1" , F'OfflineMock[{url}]' ),) _lowerCamelCase : Union[str, Any] = (max_retry_error,) raise def raise_connection_error(_lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Tuple ): raise requests.ConnectionError("Offline mode is enabled." , request=_lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , _lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , _lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , _lowercase ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def A_ ( *_lowerCAmelCase : int , **_lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowercase , **_lowercase ) as tmp_dir: try: os.chdir(_lowercase ) yield finally: os.chdir(_lowercase ) @contextmanager def A_ ( ): """simple docstring""" import gc gc.collect() _lowerCamelCase : str = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def A_ ( ): """simple docstring""" import gc gc.collect() _lowerCamelCase : str = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ): """simple docstring""" return deepcopy(_lowercase ).integers(0 , 100 , 10 ).tolist() == deepcopy(_lowercase ).integers(0 , 100 , 10 ).tolist() def A_ ( _lowerCAmelCase : str ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_lowerCAmelCase : Tuple , *_lowerCAmelCase : str , **_lowerCAmelCase : Dict ): try: return func(*_lowercase , **_lowercase ) except HTTPError as err: if str(_lowercase ).startswith("500" ) or str(_lowercase ).startswith("502" ): pytest.xfail(str(_lowercase ) ) raise err return decorator.decorator(_wrapper , _lowercase ) class UpperCAmelCase__ : def __init__( self : Any,__A : Optional[int],__A : List[str],__A : str ): _lowerCamelCase : Optional[int] = returncode _lowerCamelCase : str = stdout _lowerCamelCase : Tuple = stderr async def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict ): """simple docstring""" while True: _lowerCamelCase : Optional[Any] = await stream.readline() if line: callback(_lowercase ) else: break async def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Any=False ): """simple docstring""" if echo: print("\nRunning: " , " ".join(_lowercase ) ) _lowerCamelCase : Optional[int] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowercase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowercase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _lowerCamelCase : str = [] _lowerCamelCase : List[Any] = [] def tee(_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any]="" ): _lowerCamelCase : List[Any] = line.decode("utf-8" ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase , _lowercase , file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda _lowerCAmelCase : tee(_lowercase , _lowercase , sys.stdout , label="stdout:" ) ), _read_stream(p.stderr , lambda _lowerCAmelCase : tee(_lowercase , _lowercase , sys.stderr , label="stderr:" ) ), ] , timeout=_lowercase , ) return _RunOutput(await p.wait() , _lowercase , _lowercase ) def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : int=180 , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[Any]=True ): """simple docstring""" _lowerCamelCase : Tuple = asyncio.get_event_loop() _lowerCamelCase : Any = loop.run_until_complete( _stream_subprocess(_lowercase , env=_lowercase , stdin=_lowercase , timeout=_lowercase , quiet=_lowercase , echo=_lowercase ) ) _lowerCamelCase : str = " ".join(_lowercase ) if result.returncode > 0: _lowerCamelCase : int = "\n".join(result.stderr ) raise RuntimeError( F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' F'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F'\'{cmd_str}\' produced no output.' ) return result def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[Any] = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" ) _lowerCamelCase : Union[str, Any] = re.sub(r"^gw" , "" , _lowercase , 0 , re.M ) return int(_lowercase ) def A_ ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = 29500 _lowerCamelCase : str = pytest_xdist_worker_id() return port + uniq_delta
44
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE_ = os.path.join(git_repo_path, 'src', 'transformers') SCREAMING_SNAKE_CASE_ = '\n{0} = None\n' SCREAMING_SNAKE_CASE_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' SCREAMING_SNAKE_CASE_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowerCamelCase_) UpperCamelCase = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowerCamelCase_ , '''tokenizers''') UpperCamelCase = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowerCamelCase_ , '''tensorflow_text''') UpperCamelCase = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tensorflow_text''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers_and_vision''') def UpperCAmelCase__ ( self) -> int: UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCamelCase_) self.assertIn('''tensorflow_text''' , lowerCamelCase_) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCamelCase_) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , '''\nCONSTANT = None\n''') UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowerCamelCase_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowerCamelCase_)
34
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ : List[Any] = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys a_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
623
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __snake_case ( _lowercase ): """simple docstring""" if "cls_token" in name: UpperCamelCase = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: UpperCamelCase = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: UpperCamelCase = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: UpperCamelCase = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: UpperCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: UpperCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: UpperCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: UpperCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: UpperCamelCase = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: UpperCamelCase = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: UpperCamelCase = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCamelCase = key.split('''.''' ) UpperCamelCase = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase = config.decoder_hidden_size UpperCamelCase = '''decoder.decoder_layers.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = config.hidden_size UpperCamelCase = '''vit.encoder.layer.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = val return orig_state_dict def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 elif "huge" in checkpoint_url: UpperCamelCase = 14 UpperCamelCase = 1280 UpperCamelCase = 5120 UpperCamelCase = 32 UpperCamelCase = 16 UpperCamelCase = ViTMAEForPreTraining(_lowercase ) UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' )['''model'''] UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = convert_state_dict(_lowercase ,_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCamelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = image_processor(images=_lowercase ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits if "large" in checkpoint_url: UpperCamelCase = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
34
0
'''simple docstring''' def a ( lowerCamelCase__ = 1_00_00_00 ): '''simple docstring''' A_ : Optional[Any] = set(range(3 , _lowercase , 2 ) ) primes.add(2 ) for p in range(3 , _lowercase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _lowercase , _lowercase ) ) ) A_ : Dict = [float(_lowercase ) for n in range(limit + 1 )] for p in primes: for n in range(_lowercase , limit + 1 , _lowercase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"{solution() = }")
667
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Any: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase = mock_training_loop_function('''hello''') self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def UpperCAmelCase__ ( self) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(lowerCamelCase_): pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Dict: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): raise ValueError('''Oops, we had an error!''') with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase_) UpperCamelCase = release_memory(lowerCamelCase_) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase_)
34
0
'''simple docstring''' from __future__ import annotations def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =str(_lowercase ) return n == n[::-1] def _A ( _lowerCAmelCase = 1_000_000 ): """simple docstring""" __lowercase =0 for i in range(1 , _lowercase ): if is_palindrome(_lowercase ) and is_palindrome(bin(_lowercase ).split('b' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
474
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ = 1_0_1) -> Tuple: UpperCamelCase = length def __len__( self) -> List[str]: return self.length def __getitem__( self , lowerCamelCase_) -> int: return i class snake_case_ : """simple docstring""" def __call__( self , lowerCamelCase_) -> str: return {"input_ids": torch.tensor(lowerCamelCase_), "labels": torch.tensor(lowerCamelCase_)} class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> List[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase = nn.Linear(1_2_0 , 8_0) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_neuroncore def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_multi_gpu def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE_ = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()[0] logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' f'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE_ = DummyDataset(dataset_length) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = list(range(len(_lowercase ) ) ) UpperCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} SCREAMING_SNAKE_CASE_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = None
34
0
from math import pow def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> str: """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count A : Optional[Any] = int(pow(_lowercase , _lowercase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n A , A : Optional[Any] = backtrack( _lowercase , _lowercase , current_number + 1 , _lowercase , _lowercase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. A , A : List[Any] = backtrack( _lowercase , _lowercase , current_number + 1 , _lowercase , _lowercase ) return current_sum, solutions_count def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> int: """simple docstring""" if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(_lowercase , _lowercase , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
662
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for tf_name, hf_name in patterns: UpperCamelCase = k.replace(_lowercase ,_lowercase ) return k def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = BigBirdPegasusConfig(**_lowercase ) UpperCamelCase = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCamelCase = torch_model.state_dict() UpperCamelCase = {} # separating decoder weights UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = DECODER_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = REMAINING_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCamelCase = mapping['''model.embed_positions.weight'''] UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(_lowercase ,strict=_lowercase ) UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tf.train.list_variables(_lowercase ) UpperCamelCase = {} UpperCamelCase = ['''global_step'''] for name, shape in tqdm(_lowercase ,desc='''converting tf checkpoint to dict''' ): UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase = tf.train.load_variable(_lowercase ,_lowercase ) UpperCamelCase = array return tf_weights def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = get_tf_weights_as_numpy(_lowercase ) UpperCamelCase = convert_bigbird_pegasus(_lowercase ,_lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
34
0
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = 1 UpperCamelCase_ = 3 UpperCamelCase_ = (32, 32) UpperCamelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def _UpperCAmelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def _UpperCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def _UpperCAmelCase ( self ) -> Dict: torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(lowerCamelCase_ ) @property def _UpperCAmelCase ( self ) -> List[str]: def extract(*_UpperCAmelCase , **_UpperCAmelCase ): class _a : """simple docstring""" def __init__( self ) -> Tuple: UpperCamelCase_ = torch.ones([0] ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Optional[int]: self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.dummy_cond_unet UpperCamelCase_ = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCamelCase_ = self.dummy_vae UpperCamelCase_ = self.dummy_text_encoder UpperCamelCase_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) UpperCamelCase_ = 77 UpperCamelCase_ = self.dummy_image.to(lowerCamelCase_ ) UpperCamelCase_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk UpperCamelCase_ = AltDiffusionImgaImgPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCamelCase_ ) UpperCamelCase_ = alt_pipe.to(lowerCamelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase_ = 'A painting of a squirrel eating a burger' UpperCamelCase_ = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCamelCase_ = alt_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=lowerCamelCase_ , ) UpperCamelCase_ = output.images UpperCamelCase_ = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCamelCase_ = alt_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=lowerCamelCase_ , return_dict=lowerCamelCase_ , )[0] UpperCamelCase_ = image[0, -3:, -3:, -1] UpperCamelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase_ = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ = self.dummy_cond_unet UpperCamelCase_ = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCamelCase_ = self.dummy_vae UpperCamelCase_ = self.dummy_text_encoder UpperCamelCase_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) UpperCamelCase_ = 77 UpperCamelCase_ = self.dummy_image.to(lowerCamelCase_ ) # put models in fp16 UpperCamelCase_ = unet.half() UpperCamelCase_ = vae.half() UpperCamelCase_ = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase_ = AltDiffusionImgaImgPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCamelCase_ ) UpperCamelCase_ = alt_pipe.to(lowerCamelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase_ = 'A painting of a squirrel eating a burger' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe( [prompt] , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='np' , image=lowerCamelCase_ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 UpperCamelCase_ = init_image.resize((760, 504) ) UpperCamelCase_ = 'BAAI/AltDiffusion' UpperCamelCase_ = AltDiffusionImgaImgPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() UpperCamelCase_ = 'A fantasy landscape, trending on artstation' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCamelCase_ , output_type='np' , ) UpperCamelCase_ = output.images[0] UpperCamelCase_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) UpperCamelCase_ = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) UpperCamelCase_ = init_image.resize((768, 512) ) UpperCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) UpperCamelCase_ = 'BAAI/AltDiffusion' UpperCamelCase_ = AltDiffusionImgaImgPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() UpperCamelCase_ = 'A fantasy landscape, trending on artstation' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCamelCase_ , output_type='np' , ) UpperCamelCase_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
23
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
0
import random class lowerCamelCase__ : '''simple docstring''' @staticmethod def _lowerCamelCase ( a :int ) -> tuple[list[int], list[int]]: __UpperCamelCase : Optional[int] = [ord(lowerCamelCase_ ) for i in text] __UpperCamelCase : str = [] __UpperCamelCase : Optional[int] = [] for i in plain: __UpperCamelCase : Optional[Any] = random.randint(1 , 3_0_0 ) __UpperCamelCase : str = (i + k) * k cipher.append(lowerCamelCase_ ) key.append(lowerCamelCase_ ) return cipher, key @staticmethod def _lowerCamelCase ( a :Dict , a :Dict ) -> str: __UpperCamelCase : Dict = [] for i in range(len(lowerCamelCase_ ) ): __UpperCamelCase : Optional[Any] = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowerCamelCase_ ) ) return "".join(lowerCamelCase_ ) if __name__ == "__main__": lowercase , lowercase : Optional[int] = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
557
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> Any: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase_ , ) return config, input_ids, attention_mask def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = FlaxDistilBertModelTester(self) @slow def UpperCAmelCase__ ( self) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowerCamelCase_) @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)[0] UpperCamelCase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , lowerCamelCase_) UpperCamelCase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4))
34
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase ( lowerCamelCase_ ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=lowerCamelCase_ , speech_processor=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , ) def __A ( self , UpperCAmelCase__ = "auto" ): if slice_size == "auto": A__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase_ ) def __A ( self ): self.enable_attention_slicing(lowerCamelCase_ ) @torch.no_grad() def __call__( self , UpperCAmelCase__ , UpperCAmelCase__=16_000 , UpperCAmelCase__ = 512 , UpperCAmelCase__ = 512 , UpperCAmelCase__ = 50 , UpperCAmelCase__ = 7.5 , UpperCAmelCase__ = None , UpperCAmelCase__ = 1 , UpperCAmelCase__ = 0.0 , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = "pil" , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = 1 , **UpperCAmelCase__ , ): A__ = self.speech_processor.feature_extractor( lowerCamelCase_ , return_tensors="pt" , sampling_rate=lowerCamelCase_ ).input_features.to(self.device ) A__ = self.speech_model.generate(lowerCamelCase_ , max_length=480_000 ) A__ = self.speech_processor.tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , normalize=lowerCamelCase_ )[ 0 ] if isinstance(lowerCamelCase_ , lowerCamelCase_ ): A__ = 1 elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): A__ = len(lowerCamelCase_ ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase_ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowerCamelCase_ )}.""" ) # get prompt text embeddings A__ = self.tokenizer( lowerCamelCase_ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) A__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) A__ = text_input_ids[:, : self.tokenizer.model_max_length] A__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A__ , A__ , A__ = text_embeddings.shape A__ = text_embeddings.repeat(1 , lowerCamelCase_ , 1 ) A__ = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCamelCase_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A__ = 42 if negative_prompt is None: A__ = [""] * batch_size elif type(lowerCamelCase_ ) is not type(lowerCamelCase_ ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase_ )} !=""" F""" {type(lowerCamelCase_ )}.""" ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): A__ = [negative_prompt] elif batch_size != len(lowerCamelCase_ ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase_ )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" " the batch size of `prompt`." ) else: A__ = negative_prompt A__ = text_input_ids.shape[-1] A__ = self.tokenizer( lowerCamelCase_ , padding="max_length" , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ , return_tensors="pt" , ) A__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A__ = uncond_embeddings.shape[1] A__ = uncond_embeddings.repeat(1 , lowerCamelCase_ , 1 ) A__ = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCamelCase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A__ = torch.randn(lowerCamelCase_ , generator=lowerCamelCase_ , device="cpu" , dtype=lowerCamelCase_ ).to( self.device ) else: A__ = torch.randn(lowerCamelCase_ , generator=lowerCamelCase_ , device=self.device , dtype=lowerCamelCase_ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) A__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A__ = {} if accepts_eta: A__ = eta for i, t in enumerate(self.progress_bar(lowerCamelCase_ ) ): # expand the latents if we are doing classifier free guidance A__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ = self.scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) # predict the noise residual A__ = self.unet(lowerCamelCase_ , lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ ).sample # perform guidance if do_classifier_free_guidance: A__ , A__ = noise_pred.chunk(2 ) A__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A__ = self.scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) A__ = 1 / 0.18_215 * latents A__ = self.vae.decode(lowerCamelCase_ ).sample A__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A__ = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase_ , nsfw_content_detected=lowerCamelCase_ )
491
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
0
import argparse import struct import unittest class _lowercase : """simple docstring""" def __init__( self , UpperCAmelCase ): '''simple docstring''' _lowercase = data # Initialize hash values _lowercase = [ 0X6A09E667, 0XBB67AE85, 0X3C6EF372, 0XA54FF53A, 0X510E527F, 0X9B05688C, 0X1F83D9AB, 0X5BE0CD19, ] # Initialize round constants _lowercase = [ 0X428A2F98, 0X71374491, 0XB5C0FBCF, 0XE9B5DBA5, 0X3956C25B, 0X59F111F1, 0X923F82A4, 0XAB1C5ED5, 0XD807AA98, 0X12835B01, 0X243185BE, 0X550C7DC3, 0X72BE5D74, 0X80DEB1FE, 0X9BDC06A7, 0XC19BF174, 0XE49B69C1, 0XEFBE4786, 0X0FC19DC6, 0X240CA1CC, 0X2DE92C6F, 0X4A7484AA, 0X5CB0A9DC, 0X76F988DA, 0X983E5152, 0XA831C66D, 0XB00327C8, 0XBF597FC7, 0XC6E00BF3, 0XD5A79147, 0X06CA6351, 0X14292967, 0X27B70A85, 0X2E1B2138, 0X4D2C6DFC, 0X53380D13, 0X650A7354, 0X766A0ABB, 0X81C2C92E, 0X92722C85, 0XA2BFE8A1, 0XA81A664B, 0XC24B8B70, 0XC76C51A3, 0XD192E819, 0XD6990624, 0XF40E3585, 0X106AA070, 0X19A4C116, 0X1E376C08, 0X2748774C, 0X34B0BCB5, 0X391C0CB3, 0X4ED8AA4A, 0X5B9CCA4F, 0X682E6FF3, 0X748F82EE, 0X78A5636F, 0X84C87814, 0X8CC70208, 0X90BEFFFA, 0XA4506CEB, 0XBEF9A3F7, 0XC67178F2, ] _lowercase = self.preprocessing(self.data ) self.final_hash() @staticmethod def _UpperCAmelCase ( UpperCAmelCase ): '''simple docstring''' _lowercase = b"""\x80""" + (b"""\x00""" * (63 - (len(lowerCamelCase_ ) + 8) % 64)) _lowercase = struct.pack(""">Q""" , (len(lowerCamelCase_ ) * 8) ) return data + padding + big_endian_integer def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowercase = list(struct.unpack(""">16L""" , lowerCamelCase_ ) ) # add 48 0-ed integers words += [0] * 48 _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowercase = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) _lowercase = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) _lowercase = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100000000 # Compression _lowercase = self.ror(lowerCamelCase_ , 6 ) ^ self.ror(lowerCamelCase_ , 11 ) ^ self.ror(lowerCamelCase_ , 25 ) _lowercase = (e & f) ^ ((~e & 0XFFFFFFFF) & g) _lowercase = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100000000 _lowercase = self.ror(lowerCamelCase_ , 2 ) ^ self.ror(lowerCamelCase_ , 13 ) ^ self.ror(lowerCamelCase_ , 22 ) _lowercase = (a & b) ^ (a & c) ^ (b & c) _lowercase = (sa + maj) % 0X100000000 _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = ( g, f, e, ((d + tempa) % 0X100000000), c, b, a, ((tempa + tempa) % 0X100000000), ) _lowercase = [a, b, c, d, e, f, g, h] # Modify final values _lowercase = [ ((element + mutated_hash_values[index]) % 0X100000000) for index, element in enumerate(self.hashes ) ] _lowercase = """""".join([hex(lowerCamelCase_ )[2:].zfill(8 ) for value in self.hashes] ) def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' return 0XFFFFFFFF & (value << (32 - rotations)) | (value >> rotations) class _lowercase ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ): '''simple docstring''' import hashlib _lowercase = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(lowerCamelCase_ ).hash , hashlib.shaaaa(lowerCamelCase_ ).hexdigest() ) def __lowerCAmelCase ( ): """simple docstring""" import doctest doctest.testmod() _lowercase = argparse.ArgumentParser() parser.add_argument( """-s""" ,"""--string""" ,dest="""input_string""" ,default="""Hello World!! Welcome to Cryptography""" ,help="""Hash the string""" ,) parser.add_argument( """-f""" ,"""--file""" ,dest="""input_file""" ,help="""Hash contents of a file""" ) _lowercase = parser.parse_args() _lowercase = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file ,"""rb""" ) as f: _lowercase = f.read() else: _lowercase = bytes(_lowercase ,"""utf-8""" ) print(SHAaaa(_lowercase ).hash ) if __name__ == "__main__": main()
398
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __lowercase (_lowercase, _lowercase, _lowercase=None, _lowercase=None ) -> Dict: """simple docstring""" if attention_mask is None: __lowerCamelCase : int = tf.cast(tf.math.not_equal(_lowercase, config.pad_token_id ), tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class SCREAMING_SNAKE_CASE : snake_case__ : int = OPTConfig snake_case__ : List[Any] = {} snake_case__ : Optional[Any] = 'gelu' def __init__( self : List[str] , A__ : int , A__ : Optional[int]=13 , A__ : str=7 , A__ : Tuple=True , A__ : Tuple=False , A__ : str=99 , A__ : List[Any]=16 , A__ : List[Any]=2 , A__ : int=4 , A__ : Union[str, Any]=4 , A__ : int="gelu" , A__ : Optional[Any]=0.1 , A__ : List[str]=0.1 , A__ : Tuple=20 , A__ : int=2 , A__ : Dict=1 , A__ : Union[str, Any]=0 , A__ : int=16 , A__ : List[Any]=16 , ): """simple docstring""" __lowerCamelCase : str = parent __lowerCamelCase : Tuple = batch_size __lowerCamelCase : List[str] = seq_length __lowerCamelCase : List[Any] = is_training __lowerCamelCase : Optional[Any] = use_labels __lowerCamelCase : List[Any] = vocab_size __lowerCamelCase : Tuple = hidden_size __lowerCamelCase : List[str] = num_hidden_layers __lowerCamelCase : Tuple = num_attention_heads __lowerCamelCase : Optional[Any] = intermediate_size __lowerCamelCase : Any = hidden_act __lowerCamelCase : Optional[int] = hidden_dropout_prob __lowerCamelCase : str = attention_probs_dropout_prob __lowerCamelCase : Dict = max_position_embeddings __lowerCamelCase : Optional[Any] = eos_token_id __lowerCamelCase : Any = pad_token_id __lowerCamelCase : Optional[Any] = bos_token_id __lowerCamelCase : Optional[Any] = embed_dim __lowerCamelCase : int = word_embed_proj_dim __lowerCamelCase : List[str] = False def a_ ( self : str ): """simple docstring""" __lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCamelCase : str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCamelCase : Dict = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCamelCase : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCamelCase_ , **self.config_updates , ) __lowerCamelCase : int = prepare_opt_inputs_dict(lowerCamelCase_ , lowerCamelCase_ ) return config, inputs_dict def a_ ( self : Tuple , A__ : List[str] , A__ : Optional[Any] ): """simple docstring""" __lowerCamelCase : Dict = TFOPTModel(config=lowerCamelCase_ ) __lowerCamelCase : str = inputs_dict["""input_ids"""] __lowerCamelCase : Dict = input_ids[:1, :] __lowerCamelCase : int = inputs_dict["""attention_mask"""][:1, :] __lowerCamelCase : str = 1 # first forward pass __lowerCamelCase : List[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , use_cache=lowerCamelCase_ ) __lowerCamelCase , __lowerCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCamelCase : List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCamelCase : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCamelCase : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCamelCase : List[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ )[0] __lowerCamelCase : Optional[int] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCamelCase : List[str] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCamelCase : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] __lowerCamelCase : Tuple = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase_ , lowerCamelCase_ , rtol=1e-3 ) @require_tf class SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): snake_case__ : Tuple = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () snake_case__ : Any = (TFOPTForCausalLM,) if is_tf_available() else () snake_case__ : Union[str, Any] = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) snake_case__ : int = False snake_case__ : Optional[int] = False snake_case__ : Tuple = False snake_case__ : Optional[int] = 1_0 def a_ ( self : str ): """simple docstring""" __lowerCamelCase : Optional[int] = TFOPTModelTester(self ) __lowerCamelCase : Tuple = ConfigTester(self , config_class=lowerCamelCase_ ) def a_ ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def a_ ( self : int ): """simple docstring""" __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase_ ) def a_ ( self : str ): """simple docstring""" __lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(A__ : Union[str, Any] , A__ : List[str] ): if hasattr(lowerCamelCase_ , """weight""" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCamelCase_ , """weight""" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings __lowerCamelCase : Tuple = model_class(config=lowerCamelCase_ ) __lowerCamelCase : List[str] = _get_word_embedding_weight(lowerCamelCase_ , model.get_input_embeddings() ) __lowerCamelCase : List[str] = _get_word_embedding_weight(lowerCamelCase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowerCamelCase_ ) __lowerCamelCase : Optional[Any] = _get_word_embedding_weight(lowerCamelCase_ , model.get_input_embeddings() ) __lowerCamelCase : List[Any] = _get_word_embedding_weight(lowerCamelCase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. __lowerCamelCase : List[Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowerCamelCase_ ) # check that weights remain the same after resizing __lowerCamelCase : List[str] = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowerCamelCase : List[Any] = False self.assertTrue(lowerCamelCase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowerCamelCase_ ) __lowerCamelCase : Union[str, Any] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowerCamelCase : Optional[Any] = False self.assertTrue(lowerCamelCase_ ) def __lowercase (_lowercase ) -> Optional[Any]: """simple docstring""" return tf.constant(_lowercase, dtype=tf.intaa ) @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case__ : List[Any] = 9_9 def a_ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase : Optional[Any] = tf.ones((4, 1) , dtype=tf.intaa ) * 2 __lowerCamelCase : Union[str, Any] = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) __lowerCamelCase : List[Any] = input_ids.shape[0] __lowerCamelCase : Optional[Any] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def a_ ( self : str ): """simple docstring""" __lowerCamelCase : Dict = TFOPTModel.from_pretrained("""facebook/opt-350m""" ) __lowerCamelCase : Union[str, Any] = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) __lowerCamelCase : List[str] = tf.not_equal(lowerCamelCase_ , model.config.pad_token_id ) with tf.GradientTape(): __lowerCamelCase : Optional[int] = model(input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ ).last_hidden_state __lowerCamelCase : Tuple = (1, 11, 512) self.assertEqual(output.shape , lowerCamelCase_ ) __lowerCamelCase : Optional[Any] = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase_ , atol=4e-3 ) ) __lowerCamelCase : str = tf.function(lowerCamelCase_ , jit_compile=lowerCamelCase_ ) __lowerCamelCase : Any = xla_generate(lowerCamelCase_ , lowerCamelCase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase_ , atol=4e-2 ) ) @require_tf @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def a_ ( self : str ): """simple docstring""" super().setUp() __lowerCamelCase : int = """facebook/opt-350m""" def a_ ( self : Tuple ): """simple docstring""" __lowerCamelCase : Optional[int] = TFOPTForCausalLM.from_pretrained(self.path_model ) __lowerCamelCase : str = GPTaTokenizer.from_pretrained(self.path_model ) __lowerCamelCase : int = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __lowerCamelCase : Optional[Any] = tokenizer(lowerCamelCase_ , return_tensors="""tf""" , padding=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) __lowerCamelCase : Dict = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) __lowerCamelCase : Optional[int] = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-4 ) ) __lowerCamelCase : Dict = tf.function(lowerCamelCase_ , jit_compile=lowerCamelCase_ ) __lowerCamelCase : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-4 ) ) @require_tf @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @property def a_ ( self : Any ): """simple docstring""" return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def a_ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase : Tuple = """facebook/opt-125m""" __lowerCamelCase : Union[str, Any] = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] __lowerCamelCase : Union[str, Any] = [] __lowerCamelCase : str = GPTaTokenizer.from_pretrained(lowerCamelCase_ ) __lowerCamelCase : Dict = TFOPTForCausalLM.from_pretrained(lowerCamelCase_ ) for prompt in self.prompts: __lowerCamelCase : Dict = tokenizer(lowerCamelCase_ , return_tensors="""tf""" ).input_ids __lowerCamelCase : int = model.generate(lowerCamelCase_ , max_length=10 ) __lowerCamelCase : str = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def a_ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase : Any = """facebook/opt-350m""" __lowerCamelCase : List[Any] = GPTaTokenizer.from_pretrained(lowerCamelCase_ ) __lowerCamelCase : str = TFOPTForCausalLM.from_pretrained(lowerCamelCase_ ) __lowerCamelCase : List[str] = """left""" # use different length sentences to test batching __lowerCamelCase : Optional[Any] = [ """Hello, my dog is a little""", """Today, I""", ] __lowerCamelCase : Tuple = tokenizer(lowerCamelCase_ , return_tensors="""tf""" , padding=lowerCamelCase_ ) __lowerCamelCase : str = inputs["""input_ids"""] __lowerCamelCase : Optional[Any] = model.generate(input_ids=lowerCamelCase_ , attention_mask=inputs["""attention_mask"""] ) __lowerCamelCase : List[str] = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids __lowerCamelCase : List[str] = model.generate(input_ids=lowerCamelCase_ ) __lowerCamelCase : Optional[Any] = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) ) __lowerCamelCase : Tuple = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids __lowerCamelCase : List[str] = model.generate(input_ids=lowerCamelCase_ , max_length=model.config.max_length - num_paddings ) __lowerCamelCase : List[Any] = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) __lowerCamelCase : str = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCamelCase_ ) __lowerCamelCase : str = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCamelCase_ ) __lowerCamelCase : Any = [ """Hello, my dog is a little bit of a dork.\nI\'m a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , [non_padded_sentence, padded_sentence] ) def a_ ( self : Dict ): """simple docstring""" __lowerCamelCase : Tuple = """facebook/opt-350m""" __lowerCamelCase : List[str] = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] __lowerCamelCase : List[str] = [] __lowerCamelCase : List[str] = GPTaTokenizer.from_pretrained(lowerCamelCase_ ) __lowerCamelCase : List[str] = TFOPTForCausalLM.from_pretrained(lowerCamelCase_ ) for prompt in self.prompts: __lowerCamelCase : Dict = tokenizer(lowerCamelCase_ , return_tensors="""tf""" ).input_ids __lowerCamelCase : Union[str, Any] = model.generate(lowerCamelCase_ , max_length=10 ) __lowerCamelCase : str = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
150
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __snake_case ( _lowercase ,_lowercase=False ): """simple docstring""" try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_REMOTE', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_LOCAL', default=True) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __snake_case ( _lowercase ): """simple docstring""" try: import faiss # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires faiss''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import regex # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires regex''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TORCH_AVAILABLE: UpperCamelCase = unittest.skip('''test requires PyTorch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TF_AVAILABLE: UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.JAX_AVAILABLE: UpperCamelCase = unittest.skip('''test requires JAX''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.PIL_AVAILABLE: UpperCamelCase = unittest.skip('''test requires Pillow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" def _require_spacy_model(_lowercase ): try: import spacy # noqa F401 spacy.load(_lowercase ) except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_lowercase ) )(_lowercase ) else: return test_case return _require_spacy_model def __snake_case ( _lowercase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase = unittest.skip('''test is slow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: UpperCamelCase = unittest.skip('''test is local''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase = unittest.skip('''test is packaged''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase = unittest.skip('''test requires remote''' )(_lowercase ) return test_case def __snake_case ( *_lowercase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_lowercase ) and name.startswith('''test''' ): for decorator in decorators: UpperCamelCase = decorator(_lowercase ) setattr(cls ,_lowercase ,_lowercase ) return cls return decorate class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 0 A_ = 1 A_ = 2 @contextmanager def __snake_case ( _lowercase=OfflineSimulationMode.CONNECTION_FAILS ,_lowercase=1e-16 ): """simple docstring""" UpperCamelCase = requests.Session().request def timeout_request(_lowercase ,_lowercase ,_lowercase ,**_lowercase ): # Change the url to an invalid url so that the connection hangs UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) UpperCamelCase = timeout try: return online_request(_lowercase ,_lowercase ,**_lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase = url UpperCamelCase = e.args[0] UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' ,f'OfflineMock[{url}]' ),) UpperCamelCase = (max_retry_error,) raise def raise_connection_error(_lowercase ,_lowercase ,**_lowercase ): raise requests.ConnectionError('''Offline mode is enabled.''' ,request=_lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' ,_lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' ,_lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' ,_lowercase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowercase ,**_lowercase ) as tmp_dir: try: os.chdir(_lowercase ) yield finally: os.chdir(_lowercase ) @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() def __snake_case ( _lowercase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_lowercase ,*_lowercase ,**_lowercase ): try: return func(*_lowercase ,**_lowercase ) except HTTPError as err: if str(_lowercase ).startswith('''500''' ) or str(_lowercase ).startswith('''502''' ): pytest.xfail(str(_lowercase ) ) raise err return decorator.decorator(_wrapper ,_lowercase ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" while True: UpperCamelCase = await stream.readline() if line: callback(_lowercase ) else: break async def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ,_lowercase=False ): """simple docstring""" if echo: print('''\nRunning: ''' ,''' '''.join(_lowercase ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=_lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=_lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(_lowercase ,_lowercase ,_lowercase ,_lowercase="" ): UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase ,_lowercase ,file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stdout ,label='''stdout:''' ) ), _read_stream(p.stderr ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stderr ,label='''stderr:''' ) ), ] ,timeout=_lowercase ,) return _RunOutput(await p.wait() ,_lowercase ,_lowercase ) def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=180 ,_lowercase=False ,_lowercase=True ): """simple docstring""" UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(_lowercase ,env=_lowercase ,stdin=_lowercase ,timeout=_lowercase ,quiet=_lowercase ,echo=_lowercase ) ) UpperCamelCase = ''' '''.join(_lowercase ) if result.returncode > 0: UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def __snake_case ( ): """simple docstring""" UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' ,'''gw0''' ) UpperCamelCase = re.sub(r'''^gw''' ,'''''' ,_lowercase ,0 ,re.M ) return int(_lowercase ) def __snake_case ( ): """simple docstring""" UpperCamelCase = 2_9500 UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
34
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __snake_case ( lowerCamelCase_): _lowerCAmelCase = '''decision_transformer''' _lowerCAmelCase = ['''past_key_values'''] _lowerCAmelCase = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self, A=17, A=4, A=128, A=4096, A=True, A=1, A=1024, A=3, A=1, A=None, A="relu", A=0.1, A=0.1, A=0.1, A=1e-5, A=0.02, A=True, A=True, A=5_0256, A=5_0256, A=False, A=False, **A, ): """simple docstring""" lowerCamelCase : Dict = state_dim lowerCamelCase : Optional[Any] = act_dim lowerCamelCase : Optional[int] = hidden_size lowerCamelCase : Any = max_ep_len lowerCamelCase : Tuple = action_tanh lowerCamelCase : Optional[int] = vocab_size lowerCamelCase : Dict = n_positions lowerCamelCase : Optional[Any] = n_layer lowerCamelCase : int = n_head lowerCamelCase : Any = n_inner lowerCamelCase : int = activation_function lowerCamelCase : Any = resid_pdrop lowerCamelCase : Optional[int] = embd_pdrop lowerCamelCase : int = attn_pdrop lowerCamelCase : Dict = layer_norm_epsilon lowerCamelCase : Tuple = initializer_range lowerCamelCase : Union[str, Any] = scale_attn_weights lowerCamelCase : Tuple = use_cache lowerCamelCase : Tuple = scale_attn_by_inverse_layer_idx lowerCamelCase : Tuple = reorder_and_upcast_attn lowerCamelCase : Optional[Any] = bos_token_id lowerCamelCase : Optional[Any] = eos_token_id super().__init__(bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_ )
320
"""simple docstring""" import operator def __snake_case ( _lowercase ,_lowercase = False ,_lowercase = None ): """simple docstring""" UpperCamelCase = operator.lt if reverse else operator.gt UpperCamelCase = solution or [] if not arr: return solution UpperCamelCase = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase ,sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: UpperCamelCase = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase ,_lowercase ): solution.insert(_lowercase ,_lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase ,_lowercase ,_lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
34
0
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Any,__A : List[str],__A : int=1_3,__A : Union[str, Any]=7,__A : Optional[Any]=True,__A : Optional[int]=True,__A : Any=True,__A : Optional[Any]=True,__A : List[str]=9_9,__A : Dict=3_2,__A : Tuple=5,__A : List[str]=4,__A : Dict=3_7,__A : Any="gelu",__A : Optional[int]=0.1,__A : List[Any]=0.1,__A : int=5_1_2,__A : Optional[int]=1_6,__A : Union[str, Any]=2,__A : str=0.02,__A : List[str]=4,): _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Tuple = use_attention_mask _lowerCamelCase : List[Any] = use_token_type_ids _lowerCamelCase : Any = use_labels _lowerCamelCase : int = vocab_size _lowerCamelCase : int = hidden_size _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : str = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Tuple = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Optional[int] = num_choices def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : List[str] = None if self.use_attention_mask: _lowerCamelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Union[str, Any] = DistilBertConfig( vocab_size=self.vocab_size,dim=self.hidden_size,n_layers=self.num_hidden_layers,n_heads=self.num_attention_heads,hidden_dim=self.intermediate_size,hidden_act=self.hidden_act,dropout=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,tie_weights_=lowerCamelCase_,) return config, input_ids, attention_mask def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : List[str] = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase__ ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Dict = FlaxDistilBertModelTester(self ) @slow def lowerCamelCase_ ( self : Optional[int] ): for model_class_name in self.all_model_classes: _lowerCamelCase : int = model_class_name.from_pretrained("distilbert-base-uncased" ) _lowerCamelCase : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) _lowerCamelCase : int = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : Any = model(lowerCamelCase_,attention_mask=lowerCamelCase_ )[0] _lowerCamelCase : Optional[Any] = (1, 1_1, 7_6_8) self.assertEqual(output.shape,lowerCamelCase_ ) _lowerCamelCase : List[str] = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4],lowerCamelCase_,atol=1e-4 ) )
44
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' SCREAMING_SNAKE_CASE_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any: if return_pvalue: UpperCamelCase = pearsonr(lowerCamelCase_ , lowerCamelCase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_ , lowerCamelCase_)[0])}
34
0
def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer lowerCamelCase , lowerCamelCase = 0, 0 for i in range(1 , len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: lowerCamelCase = min(right_pointer - i + 1 , z_result[i - left_pointer] ) lowerCamelCase = min_edge while go_next(_lowercase , _lowercase , _lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: lowerCamelCase , lowerCamelCase = i, i + z_result[i] - 1 return z_result def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string lowerCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
623
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ComputeEnvironment.AMAZON_SAGEMAKER A_ = True A_ = '''ml.p3.2xlarge''' A_ = '''accelerate_sagemaker_execution_role''' A_ = '''hf-sm''' A_ = '''us-east-1''' A_ = 1 A_ = '''accelerate-sagemaker-1''' A_ = '''1.6''' A_ = '''4.4''' A_ = '''train.py''' A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args['''model_name_or_path'''] , lowerCamelCase_) assert isinstance(converted_args['''do_train'''] , lowerCamelCase_) assert isinstance(converted_args['''epochs'''] , lowerCamelCase_) assert isinstance(converted_args['''learning_rate'''] , lowerCamelCase_) assert isinstance(converted_args['''max_steps'''] , lowerCamelCase_) with pytest.raises(lowerCamelCase_): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
34
0
'''simple docstring''' from functools import lru_cache @lru_cache def a ( lowerCamelCase__ ): '''simple docstring''' if num < 0: raise ValueError("""Number should not be negative.""" ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
667
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class snake_case_ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCamelCase_ = " ") -> List[str]: UpperCamelCase = sentence_delimiter def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return list(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase_): chars.extend(self.process_string(lowerCamelCase_)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_) - 1: chars.append(self.sentence_delimiter) return chars SCREAMING_SNAKE_CASE_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = StableDiffusionInpaintPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) def __lowerCamelCase ( self : Dict): '''simple docstring''' torch.manual_seed(0) __lowercase =UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) __lowercase =PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) __lowercase =AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) __lowercase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) __lowercase =CLIPTextModel(lowerCamelCase_) __lowercase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') __lowercase ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=0): '''simple docstring''' __lowercase =floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) __lowercase =image.cpu().permute(0 , 2 , 3 , 1)[0] __lowercase =Image.fromarray(np.uinta(lowerCamelCase_)).convert('RGB').resize((6_4, 6_4)) __lowercase =Image.fromarray(np.uinta(image + 4)).convert('RGB').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('mps'): __lowercase =torch.manual_seed(lowerCamelCase_) else: __lowercase =torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) __lowercase ={ 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase ='cpu' # ensure determinism for the device-dependent torch.Generator __lowercase =self.get_dummy_components() __lowercase =StableDiffusionInpaintPipeline(**lowerCamelCase_) __lowercase =sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) __lowercase =self.get_dummy_inputs(lowerCamelCase_) __lowercase =sd_pipe(**lowerCamelCase_).images __lowercase =image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowercase =np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : int): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') __lowercase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') __lowercase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy') __lowercase ='stabilityai/stable-diffusion-2-inpainting' __lowercase =StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() __lowercase ='Face of a yellow cat, high resolution, sitting on a park bench' __lowercase =torch.manual_seed(0) __lowercase =pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='np' , ) __lowercase =output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') __lowercase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') __lowercase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy') __lowercase ='stabilityai/stable-diffusion-2-inpainting' __lowercase =StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() __lowercase ='Face of a yellow cat, high resolution, sitting on a park bench' __lowercase =torch.manual_seed(0) __lowercase =pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='np' , ) __lowercase =output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def __lowerCamelCase ( self : int): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') __lowercase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') __lowercase ='stabilityai/stable-diffusion-2-inpainting' __lowercase =PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='scheduler') __lowercase =StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() __lowercase ='Face of a yellow cat, high resolution, sitting on a park bench' __lowercase =torch.manual_seed(0) __lowercase =pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='np' , ) __lowercase =torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
474
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = '''left''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<eop>", "<eod>"] , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = 3 UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> List[str]: return len(self.sp_model) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> str: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: if self.remove_space: UpperCamelCase = ''' '''.join(inputs.strip().split()) else: UpperCamelCase = inputs UpperCamelCase = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCamelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase_) UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_)]) if self.do_lower_case: UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) UpperCamelCase = [] for piece in pieces: if len(lowerCamelCase_) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCamelCase = cur_pieces[1:] else: UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCamelCase_) else: new_pieces.append(lowerCamelCase_) return new_pieces def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.sp_model.IdToPiece(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: UpperCamelCase = ''''''.join(lowerCamelCase_).replace(lowerCamelCase_ , ''' ''').strip() return out_string def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> str: UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCamelCase_) UpperCamelCase = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) UpperCamelCase = [] sub_texts.append(lowerCamelCase_) else: current_sub_text.append(lowerCamelCase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(lowerCamelCase_) return clean_text else: return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) + [1, 1] return ([0] * len(lowerCamelCase_)) + [1, 1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,)
34
0
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = GPTaTokenizer __lowerCamelCase : List[str] = GPTaTokenizerFast __lowerCamelCase : List[Any] = True __lowerCamelCase : Tuple = {"add_prefix_space": True} __lowerCamelCase : str = False def _lowerCAmelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A : str = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] A : Any = dict(zip(lowerCamelCase_, range(len(lowerCamelCase_ ) ) ) ) A : List[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] A : List[Any] = {"""unk_token""": """<unk>"""} A : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) A : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + """\n""" ) with open(self.merges_file, """w""", encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase_ ) ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Tuple = """lower newer""" A : str = """lower newer""" return input_text, output_text def _lowerCAmelCase ( self ): A : Dict = GPTaTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) A : Optional[int] = """lower newer""" A : Optional[int] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] A : Dict = tokenizer.tokenize(lowerCamelCase_, add_prefix_space=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) A : Dict = tokens + [tokenizer.unk_token] A : Any = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ), lowerCamelCase_ ) def _lowerCAmelCase ( self ): if not self.test_rust_tokenizer: return A : List[Any] = self.get_tokenizer() A : int = self.get_rust_tokenizer(add_prefix_space=lowerCamelCase_ ) A : List[str] = """lower newer""" # Testing tokenization A : Union[str, Any] = tokenizer.tokenize(lowerCamelCase_, add_prefix_space=lowerCamelCase_ ) A : int = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) # Testing conversion to ids without special tokens A : str = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_, add_prefix_space=lowerCamelCase_ ) A : Any = rust_tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) # Testing conversion to ids with special tokens A : Union[str, Any] = self.get_rust_tokenizer(add_prefix_space=lowerCamelCase_ ) A : Any = tokenizer.encode(lowerCamelCase_, add_prefix_space=lowerCamelCase_ ) A : Optional[Any] = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ ) # Testing the unknown token A : Optional[Any] = tokens + [rust_tokenizer.unk_token] A : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCamelCase_ ), lowerCamelCase_ ) def _lowerCAmelCase ( self, *lowerCamelCase__, **lowerCamelCase__ ): # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def _lowerCAmelCase ( self, lowerCamelCase__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A : Tuple = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_, **lowerCamelCase_ ) # Simple input A : Optional[Any] = """This is a simple input""" A : List[Any] = ["""This is a simple input 1""", """This is a simple input 2"""] A : List[Any] = ("""This is a simple input""", """This is a pair""") A : Optional[int] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(lowerCamelCase_, tokenizer_r.encode, lowerCamelCase_, max_length=lowerCamelCase_, padding="""max_length""" ) # Simple input self.assertRaises(lowerCamelCase_, tokenizer_r.encode_plus, lowerCamelCase_, max_length=lowerCamelCase_, padding="""max_length""" ) # Simple input self.assertRaises( lowerCamelCase_, tokenizer_r.batch_encode_plus, lowerCamelCase_, max_length=lowerCamelCase_, padding="""max_length""", ) # Pair input self.assertRaises(lowerCamelCase_, tokenizer_r.encode, lowerCamelCase_, max_length=lowerCamelCase_, padding="""max_length""" ) # Pair input self.assertRaises(lowerCamelCase_, tokenizer_r.encode_plus, lowerCamelCase_, max_length=lowerCamelCase_, padding="""max_length""" ) # Pair input self.assertRaises( lowerCamelCase_, tokenizer_r.batch_encode_plus, lowerCamelCase_, max_length=lowerCamelCase_, padding="""max_length""", ) def _lowerCAmelCase ( self ): A : int = GPTaTokenizer.from_pretrained(self.tmpdirname, pad_token="""<pad>""" ) # Simple input A : Optional[Any] = """This is a simple input""" A : Optional[Any] = ["""This is a simple input looooooooong""", """This is a simple input"""] A : Optional[int] = ("""This is a simple input""", """This is a pair""") A : List[str] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] A : int = tokenizer.pad_token_id A : int = tokenizer(lowerCamelCase_, padding="""max_length""", max_length=30, return_tensors="""np""" ) A : int = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, truncate=lowerCamelCase_, return_tensors="""np""" ) A : List[str] = tokenizer(*lowerCamelCase_, padding="""max_length""", max_length=60, return_tensors="""np""" ) A : List[Any] = tokenizer(lowerCamelCase_, padding=lowerCamelCase_, truncate=lowerCamelCase_, return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1], 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1], 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1], 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1], 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def _lowerCAmelCase ( self ): A : Optional[int] = """$$$""" A : Any = GPTaTokenizer.from_pretrained(self.tmpdirname, bos_token=lowerCamelCase_, add_bos_token=lowerCamelCase_ ) A : Any = """This is a simple input""" A : List[str] = ["""This is a simple input 1""", """This is a simple input 2"""] A : Optional[Any] = tokenizer.bos_token_id A : str = tokenizer(lowerCamelCase_ ) A : Tuple = tokenizer(lowerCamelCase_ ) self.assertEqual(out_s.input_ids[0], lowerCamelCase_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) A : List[Any] = tokenizer.decode(out_s.input_ids ) A : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0], lowerCamelCase_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def _lowerCAmelCase ( self ): pass def _lowerCAmelCase ( self ): # TODO: change to self.get_tokenizers() when the fast version is implemented A : Dict = [self.get_tokenizer(do_lower_case=lowerCamelCase_, add_bos_token=lowerCamelCase_ )] for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): A : str = """Encode this.""" A : Dict = """This one too please.""" A : Union[str, Any] = tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) encoded_sequence += tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) A : int = tokenizer.encode_plus( lowerCamelCase_, lowerCamelCase_, add_special_tokens=lowerCamelCase_, return_special_tokens_mask=lowerCamelCase_, ) A : Optional[int] = encoded_sequence_dict["""input_ids"""] A : Optional[Any] = encoded_sequence_dict["""special_tokens_mask"""] self.assertEqual(len(lowerCamelCase_ ), len(lowerCamelCase_ ) ) A : Dict = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(lowerCamelCase_ ) ] A : Union[str, Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(lowerCamelCase_, lowerCamelCase_ ) @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 A : str = AutoTokenizer.from_pretrained("""facebook/opt-350m""", from_slow=lowerCamelCase_ ) A : Tuple = """A photo of a cat""" A : int = tokenizer.encode( lowerCamelCase_, ) self.assertEqual(lowerCamelCase_, [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("""test_opt""" ) A : List[Any] = AutoTokenizer.from_pretrained("""./test_opt""" ) A : int = tokenizer.encode( lowerCamelCase_, ) self.assertEqual(lowerCamelCase_, [2, 250, 1345, 9, 10, 4758] ) def _lowerCAmelCase ( self ): A : Optional[Any] = AutoTokenizer.from_pretrained("""facebook/opt-350m""", use_slow=lowerCamelCase_ ) A : Tuple = """A photo of a cat""" A : str = tokenizer.encode( lowerCamelCase_, ) # Same as above self.assertEqual(lowerCamelCase_, [2, 250, 1345, 9, 10, 4758] ) @unittest.skip("""This test is failing because of a bug in the fast tokenizer""" ) def _lowerCAmelCase ( self ): A : Dict = AutoTokenizer.from_pretrained("""facebook/opt-350m""", from_slow=lowerCamelCase_ ) A : Union[str, Any] = """bos""" A : Union[str, Any] = tokenizer.get_vocab()["""bos"""] A : Optional[int] = """A photo of a cat""" A : int = tokenizer.encode( lowerCamelCase_, ) # We changed the bos token self.assertEqual(lowerCamelCase_, [3_1957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("""./tok""" ) A : List[str] = AutoTokenizer.from_pretrained("""./tok""" ) self.assertTrue(tokenizer.is_fast ) A : Optional[Any] = tokenizer.encode( lowerCamelCase_, ) self.assertEqual(lowerCamelCase_, [3_1957, 250, 1345, 9, 10, 4758] )
662
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } SCREAMING_SNAKE_CASE_ = { 'openbmb/cpm-ant-10b': 1024, } def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = collections.OrderedDict() with open(_lowercase ,'''r''' ,encoding='''utf-8''' ) as reader: UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): UpperCamelCase = token.rstrip('''\n''' ) UpperCamelCase = index return vocab class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_=2_0_0) -> Any: UpperCamelCase = vocab UpperCamelCase = unk_token UpperCamelCase = max_input_chars_per_word def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = list(lowerCamelCase_) if len(lowerCamelCase_) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase = 0 UpperCamelCase = [] while start < len(lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = None while start < end: UpperCamelCase = ''''''.join(chars[start:end]) if substr in self.vocab: UpperCamelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(lowerCamelCase_) UpperCamelCase = end return sub_tokens class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] A_ = False def __init__( self , lowerCamelCase_ , lowerCamelCase_="<d>" , lowerCamelCase_="</d>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<unk>" , lowerCamelCase_="</n>" , lowerCamelCase_="</_>" , lowerCamelCase_="left" , **lowerCamelCase_ , ) -> List[str]: requires_backends(self , ['''jieba''']) super().__init__( bod_token=lowerCamelCase_ , eod_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , line_token=lowerCamelCase_ , space_token=lowerCamelCase_ , padding_side=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = bod_token UpperCamelCase = eod_token UpperCamelCase = load_vocab(lowerCamelCase_) UpperCamelCase = self.encoder[space_token] UpperCamelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def UpperCAmelCase__ ( self) -> Dict: return self.encoder[self.bod_token] @property def UpperCAmelCase__ ( self) -> str: return self.encoder[self.eod_token] @property def UpperCAmelCase__ ( self) -> List[Any]: return self.encoder["\n"] @property def UpperCAmelCase__ ( self) -> int: return len(self.encoder) def UpperCAmelCase__ ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = [] for x in jieba.cut(lowerCamelCase_ , cut_all=lowerCamelCase_): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase_)) return output_tokens def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> Tuple: UpperCamelCase = [i for i in token_ids if i >= 0] UpperCamelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return token in self.encoder def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return "".join(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token)) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return self.decoder.get(lowerCamelCase_ , self.unk_token) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if os.path.isdir(lowerCamelCase_): UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: UpperCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCamelCase = 0 if " " in self.encoder: UpperCamelCase = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase = self.encoder['''\n'''] del self.encoder["\n"] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''') UpperCamelCase = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) return [1] + ([0] * len(lowerCamelCase_))
34
0
import math from collections.abc import Iterator from itertools import takewhile def _snake_case (__lowercase): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowercase) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def _snake_case (): UpperCamelCase_ = 2 while True: if is_prime(_lowercase): yield num num += 1 def _snake_case (__lowercase = 2000000): return sum(takewhile(lambda __lowercase: x < n , prime_generator())) if __name__ == "__main__": print(f'{solution() = }')
23
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=0) -> int: UpperCamelCase = 1.0 if scale is None else scale UpperCamelCase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_)]) @property def UpperCAmelCase__ ( self) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase__ ( self) -> List[str]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase__ ( self) -> Any: return self.variance.sqrt() class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = args_dim UpperCamelCase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_) for dim in args_dim.values()]) UpperCamelCase = domain_map def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple[torch.Tensor]: UpperCamelCase = [proj(lowerCamelCase_) for proj in self.proj] return self.domain_map(*lowerCamelCase_) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__() UpperCamelCase = function def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_) -> Tuple: return self.function(lowerCamelCase_ , *lowerCamelCase_) class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , lowerCamelCase_ = 1) -> None: UpperCamelCase = dim UpperCamelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if self.dim == 1: return self.distribution_class(*lowerCamelCase_) else: return Independent(self.distribution_class(*lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Distribution: UpperCamelCase = self._base_distribution(lowerCamelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim) @property def UpperCAmelCase__ ( self) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase__ ( self) -> int: return len(self.event_shape) @property def UpperCAmelCase__ ( self) -> float: return 0.0 def UpperCAmelCase__ ( self , lowerCamelCase_) -> nn.Module: return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def UpperCAmelCase__ ( self , *lowerCamelCase_) -> List[str]: raise NotImplementedError() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCamelCase_) + 4.0)) / 2.0 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"df": 1, "loc": 1, "scale": 1} A_ = StudentT @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) UpperCamelCase = 2.0 + cls.squareplus(lowerCamelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"loc": 1, "scale": 1} A_ = Normal @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"total_count": 1, "logits": 1} A_ = NegativeBinomial @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = cls.squareplus(lowerCamelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
34
0
import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class lowerCamelCase__ ( lowerCamelCase_): '''simple docstring''' def __init__( self :Optional[int] , a :str ) -> Optional[int]: __UpperCamelCase : List[Any] = data def __iter__( self :Tuple ) -> Tuple: for element in self.data: yield element def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str=True) -> List[str]: '''simple docstring''' __UpperCamelCase : str = Accelerator(even_batches=_lowercase) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict = False) -> Optional[int]: '''simple docstring''' if iterable: __UpperCamelCase : int = DummyIterableDataset(torch.as_tensor(range(_lowercase))) else: __UpperCamelCase : Optional[int] = TensorDataset(torch.as_tensor(range(_lowercase))) __UpperCamelCase : Union[str, Any] = DataLoader(_lowercase , batch_size=_lowercase) __UpperCamelCase : List[Any] = accelerator.prepare(_lowercase) return dl def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] , ) -> List[str]: '''simple docstring''' __UpperCamelCase : List[str] = create_dataloader(accelerator=_lowercase , dataset_size=_lowercase , batch_size=_lowercase) __UpperCamelCase : Optional[Any] = [len(batch[0]) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def _SCREAMING_SNAKE_CASE ( ) -> Tuple: '''simple docstring''' __UpperCamelCase : str = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( _lowercase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( _lowercase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def _SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' __UpperCamelCase : Tuple = create_accelerator(even_batches=_lowercase) verify_dataloader_batch_sizes( _lowercase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( _lowercase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : str = create_accelerator(even_batches=_lowercase) __UpperCamelCase : str = torch.nn.Linear(1 , 1) __UpperCamelCase : Any = accelerator.prepare(_lowercase) __UpperCamelCase : Tuple = create_dataloader(_lowercase , dataset_size=3 , batch_size=1) __UpperCamelCase : Tuple = [] with accelerator.join_uneven_inputs([ddp_model]): for batch_idx, batch in enumerate(_lowercase): __UpperCamelCase : List[str] = ddp_model(batch[0].float()) __UpperCamelCase : str = output.sum() loss.backward() batch_idxs.append(_lowercase) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any]) -> Tuple: '''simple docstring''' with warnings.catch_warnings(record=_lowercase) as w: with accelerator.join_uneven_inputs([Mock()]): pass assert issubclass(w[-1].category , _lowercase) assert "only supported for multi-GPU" in str(w[-1].message) def _SCREAMING_SNAKE_CASE ( ) -> str: '''simple docstring''' __UpperCamelCase : Union[str, Any] = True __UpperCamelCase : Dict = False __UpperCamelCase : Any = create_accelerator(even_batches=_lowercase) __UpperCamelCase : Optional[Any] = torch.nn.Linear(1 , 1) __UpperCamelCase : List[str] = accelerator.prepare(_lowercase) __UpperCamelCase : Optional[Any] = create_dataloader(_lowercase , dataset_size=3 , batch_size=1) __UpperCamelCase : List[Any] = create_dataloader(_lowercase , dataset_size=3 , batch_size=1) with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowercase): __UpperCamelCase : Union[str, Any] = train_dl.batch_sampler.even_batches __UpperCamelCase : Optional[int] = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def _SCREAMING_SNAKE_CASE ( ) -> Tuple: '''simple docstring''' __UpperCamelCase : List[Any] = True __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : str = create_accelerator(even_batches=_lowercase) __UpperCamelCase : Optional[Any] = torch.nn.Linear(1 , 1) __UpperCamelCase : Union[str, Any] = accelerator.prepare(_lowercase) create_dataloader(_lowercase , dataset_size=3 , batch_size=1 , iterable=_lowercase) __UpperCamelCase : Dict = create_dataloader(_lowercase , dataset_size=3 , batch_size=1) with warnings.catch_warnings(): warnings.filterwarnings("ignore") try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowercase): __UpperCamelCase : Optional[int] = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def _SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' __UpperCamelCase : Optional[int] = create_accelerator() __UpperCamelCase : Optional[int] = torch.nn.Linear(1 , 1) __UpperCamelCase : Tuple = accelerator.prepare(_lowercase) create_dataloader(_lowercase , dataset_size=3 , batch_size=1 , iterable=_lowercase) with warnings.catch_warnings(record=_lowercase) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowercase): pass assert issubclass(w[-1].category , _lowercase) assert "only supported for map-style datasets" in str(w[-1].message) def _SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes") test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled") test_can_disable_even_batches() accelerator.print("Test joining uneven inputs") test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs") test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types") test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders") test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning") __UpperCamelCase : List[Any] = accelerator.state.distributed_type __UpperCamelCase : List[Any] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(_lowercase) __UpperCamelCase : str = original_state if __name__ == "__main__": main()
557
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowercase ,id=_lowercase )
34
0
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Any = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase_ : Dict = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", }, "tokenizer_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/tokenizer.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/tokenizer.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/tokenizer.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/tokenizer.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/tokenizer.json", }, } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ : Optional[int] = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } class UpperCamelCase ( lowerCamelCase_ ): lowerCAmelCase : str = VOCAB_FILES_NAMES lowerCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ["""input_ids""", """attention_mask"""] lowerCAmelCase : Optional[Any] = TaTokenizer lowerCAmelCase : Union[str, Any] = [] def __init__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__="</s>" , UpperCAmelCase__="<unk>" , UpperCAmelCase__="<pad>" , UpperCAmelCase__=100 , UpperCAmelCase__=None , **UpperCAmelCase__ , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: A__ = [F"""<extra_id_{i}>""" for i in range(lowerCamelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens A__ = len(set(filter(lambda UpperCAmelCase__ : bool("extra_id_" in str(lowerCamelCase_ ) ) , lowerCamelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , extra_ids=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) A__ = vocab_file A__ = False if not self.vocab_file else True A__ = extra_ids @staticmethod def __A ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: A__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , lowerCamelCase_ , ) return max_model_length def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCamelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ = os.path.join( lowerCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file , lowerCamelCase_ ) logger.info(F"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): A__ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: A__ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): A__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self ): return list( set(filter(lambda UpperCAmelCase__ : bool(re.search(R"<extra_id_\d+>" , lowerCamelCase_ ) ) is not None , self.additional_special_tokens ) ) ) def __A ( self ): return [self.convert_tokens_to_ids(lowerCamelCase_ ) for token in self.get_sentinel_tokens()]
491
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
34
0
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class _lowercase ( lowerCamelCase_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=0 ): '''simple docstring''' _lowercase = 1.0 if scale is None else scale _lowercase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_ )] ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def _UpperCAmelCase ( self ): '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def _UpperCAmelCase ( self ): '''simple docstring''' return self.variance.sqrt() class _lowercase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) _lowercase = args_dim _lowercase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) for dim in args_dim.values()] ) _lowercase = domain_map def _UpperCAmelCase ( self , UpperCAmelCase ): '''simple docstring''' _lowercase = [proj(lowerCamelCase_ ) for proj in self.proj] return self.domain_map(*lowerCamelCase_ ) class _lowercase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ): '''simple docstring''' super().__init__() _lowercase = function def _UpperCAmelCase ( self , UpperCAmelCase , *UpperCAmelCase ): '''simple docstring''' return self.function(lowerCamelCase_ , *lowerCamelCase_ ) class _lowercase : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , UpperCAmelCase = 1 ): '''simple docstring''' _lowercase = dim _lowercase = {k: dim * self.args_dim[k] for k in self.args_dim} def _UpperCAmelCase ( self , UpperCAmelCase ): '''simple docstring''' if self.dim == 1: return self.distribution_class(*lowerCamelCase_ ) else: return Independent(self.distribution_class(*lowerCamelCase_ ) , 1 ) def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , ): '''simple docstring''' _lowercase = self._base_distribution(lowerCamelCase_ ) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def _UpperCAmelCase ( self ): '''simple docstring''' return len(self.event_shape ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return 0.0 def _UpperCAmelCase ( self , UpperCAmelCase ): '''simple docstring''' return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _UpperCAmelCase ( self , *UpperCAmelCase ): '''simple docstring''' raise NotImplementedError() @staticmethod def _UpperCAmelCase ( UpperCAmelCase ): '''simple docstring''' return (x + torch.sqrt(torch.square(lowerCamelCase_ ) + 4.0 )) / 2.0 class _lowercase ( lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ = {'df': 1, 'loc': 1, 'scale': 1} lowerCAmelCase__ = StudentT @classmethod def _UpperCAmelCase ( cls , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' _lowercase = cls.squareplus(lowerCamelCase_ ).clamp_min(torch.finfo(scale.dtype ).eps ) _lowercase = 2.0 + cls.squareplus(lowerCamelCase_ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class _lowercase ( lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ = {'loc': 1, 'scale': 1} lowerCAmelCase__ = Normal @classmethod def _UpperCAmelCase ( cls , UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' _lowercase = cls.squareplus(lowerCamelCase_ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class _lowercase ( lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ = {'total_count': 1, 'logits': 1} lowerCAmelCase__ = NegativeBinomial @classmethod def _UpperCAmelCase ( cls , UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' _lowercase = cls.squareplus(lowerCamelCase_ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _UpperCAmelCase ( self , UpperCAmelCase ): '''simple docstring''' _lowercase , _lowercase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_ ) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_ ) , 1 ) def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ): '''simple docstring''' _lowercase , _lowercase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
398
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ :List[Any] = logging.get_logger(__name__) UpperCAmelCase__ :Any = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): snake_case__ : Union[str, Any] = 'xmod' def __init__( self : List[str] , A__ : List[Any]=30522 , A__ : str=768 , A__ : List[Any]=12 , A__ : Any=12 , A__ : Optional[int]=3072 , A__ : str="gelu" , A__ : int=0.1 , A__ : Optional[int]=0.1 , A__ : str=512 , A__ : str=2 , A__ : Optional[int]=0.02 , A__ : str=1e-1_2 , A__ : Optional[Any]=1 , A__ : List[str]=0 , A__ : List[Any]=2 , A__ : Union[str, Any]="absolute" , A__ : int=True , A__ : Union[str, Any]=None , A__ : Optional[int]=False , A__ : Tuple=2 , A__ : str=False , A__ : Optional[Any]=True , A__ : Optional[Any]=True , A__ : Dict=("en_XX",) , A__ : Dict=None , **A__ : List[Any] , ): """simple docstring""" super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) __lowerCamelCase : List[str] = vocab_size __lowerCamelCase : List[str] = hidden_size __lowerCamelCase : Optional[int] = num_hidden_layers __lowerCamelCase : Tuple = num_attention_heads __lowerCamelCase : str = hidden_act __lowerCamelCase : str = intermediate_size __lowerCamelCase : str = hidden_dropout_prob __lowerCamelCase : Any = attention_probs_dropout_prob __lowerCamelCase : str = max_position_embeddings __lowerCamelCase : Optional[int] = type_vocab_size __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : Union[str, Any] = layer_norm_eps __lowerCamelCase : Optional[Any] = position_embedding_type __lowerCamelCase : List[str] = use_cache __lowerCamelCase : Optional[Any] = classifier_dropout __lowerCamelCase : List[str] = pre_norm __lowerCamelCase : int = adapter_reduction_factor __lowerCamelCase : Tuple = adapter_layer_norm __lowerCamelCase : List[str] = adapter_reuse_layer_norm __lowerCamelCase : List[Any] = ln_before_adapter __lowerCamelCase : Union[str, Any] = list(lowerCamelCase_ ) __lowerCamelCase : str = default_language class SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): @property def a_ ( self : Tuple ): """simple docstring""" if self.task == "multiple-choice": __lowerCamelCase : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowerCamelCase : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
150
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase = getattr(_lowercase ,_lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase ,_lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) UpperCamelCase = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCamelCase = torch.tensor(_lowercase ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_lowercase ) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to(_lowercase ) else: UpperCamelCase = torch.tensor(_lowercase ,device=_lowercase ) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase ,requires_grad=old_value.requires_grad ) UpperCamelCase = new_value def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase ,nn.Linear ) or isinstance(_lowercase ,_lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase ,_lowercase ): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase ,_lowercase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase ,_lowercase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ,has_been_replaced=_lowercase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,_lowercase ,) return replace_with_bnb_linear(*_lowercase ,**_lowercase ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,_lowercase ,) return set_module_quantized_tensor_to_device(*_lowercase ,**_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase ,_lowercase ): UpperCamelCase = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(_lowercase ,[] ) UpperCamelCase = len(_lowercase ) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase ) - set(_lowercase ) UpperCamelCase = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase ,'''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names
34
0
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __snake_case ( lowerCamelCase_ , lowerCamelCase_): _lowerCAmelCase = 1 @register_to_config def __init__( self, A = 1000, A = None ): """simple docstring""" self.set_timesteps(lowerCamelCase_ ) # standard deviation of the initial noise distribution lowerCamelCase : List[str] = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowerCamelCase : Optional[int] = 4 # running values lowerCamelCase : Optional[int] = [] def UpperCAmelCase_ ( self, A, A = None ): """simple docstring""" lowerCamelCase : str = num_inference_steps lowerCamelCase : int = torch.linspace(1, 0, num_inference_steps + 1 )[:-1] lowerCamelCase : List[Any] = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowerCamelCase : List[str] = torch.tensor(self.config.trained_betas, dtype=torch.floataa ) else: lowerCamelCase : List[Any] = torch.sin(steps * math.pi / 2 ) ** 2 lowerCamelCase : Any = (1.0 - self.betas**2) ** 0.5 lowerCamelCase : int = (torch.atana(self.betas, self.alphas ) / math.pi * 2)[:-1] lowerCamelCase : Optional[Any] = timesteps.to(lowerCamelCase_ ) lowerCamelCase : Optional[Any] = [] def UpperCAmelCase_ ( self, A, A, A, A = True, ): """simple docstring""" if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) lowerCamelCase : Dict = (self.timesteps == timestep).nonzero().item() lowerCamelCase : Tuple = timestep_index + 1 lowerCamelCase : Tuple = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(lowerCamelCase_ ) if len(self.ets ) == 1: lowerCamelCase : int = self.ets[-1] elif len(self.ets ) == 2: lowerCamelCase : List[str] = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowerCamelCase : List[str] = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowerCamelCase : int = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowerCamelCase : Optional[int] = self._get_prev_sample(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase_ ) def UpperCAmelCase_ ( self, A, *A, **A ): """simple docstring""" return sample def UpperCAmelCase_ ( self, A, A, A, A ): """simple docstring""" lowerCamelCase : Dict = self.alphas[timestep_index] lowerCamelCase : List[str] = self.betas[timestep_index] lowerCamelCase : Tuple = self.alphas[prev_timestep_index] lowerCamelCase : List[str] = self.betas[prev_timestep_index] lowerCamelCase : int = (sample - sigma * ets) / max(lowerCamelCase_, 1e-8 ) lowerCamelCase : Union[str, Any] = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
320
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase ) count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 ) count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase ) return count def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_lowercase ,_lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_ = TemporaryFile() SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_ = np.load(outfile) SCREAMING_SNAKE_CASE_ = len(M) - 1 SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
34
0
'''simple docstring''' import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters UpperCAmelCase_ : Tuple = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : List[str]=None ): """simple docstring""" if "." in tensor_name: _lowerCamelCase : Optional[int] = tensor_name.split("." ) for split in splits[:-1]: _lowerCamelCase : Tuple = getattr(_lowercase , _lowercase ) if new_module is None: raise ValueError(F'{module} has no attribute {split}.' ) _lowerCamelCase : Tuple = new_module _lowerCamelCase : str = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'{module} does not have a parameter or a buffer named {tensor_name}.' ) _lowerCamelCase : List[Any] = tensor_name in module._buffers _lowerCamelCase : Optional[int] = getattr(_lowercase , _lowercase ) if old_value.device == torch.device("meta" ) and device not in ["meta", torch.device("meta" )] and value is None: raise ValueError(F'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Tuple = False if is_buffer or not is_bitsandbytes_available(): _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Tuple = False else: _lowerCamelCase : List[Any] = hasattr(bnb.nn , "Params4bit" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) _lowerCamelCase : Dict = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: _lowerCamelCase : int = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: _lowerCamelCase : str = old_value.to(_lowercase ) elif isinstance(_lowercase , torch.Tensor ): _lowerCamelCase : Optional[int] = value.to("cpu" ) if value.dtype == torch.inta: _lowerCamelCase : Optional[Any] = version.parse(importlib.metadata.version("bitsandbytes" ) ) > version.parse( "0.37.2" ) if not is_abit_serializable: raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) else: _lowerCamelCase : Any = torch.tensor(_lowercase , device="cpu" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , _lowercase ) and fpaa_statistics is None: _lowerCamelCase : Optional[int] = new_value.T _lowerCamelCase : Dict = old_value.__dict__ if is_abit: _lowerCamelCase : Dict = bnb.nn.IntaParams(_lowercase , requires_grad=_lowercase , **_lowercase ).to(_lowercase ) elif is_abit: _lowerCamelCase : Any = bnb.nn.Paramsabit(_lowercase , requires_grad=_lowercase , **_lowercase ).to(_lowercase ) _lowerCamelCase : Dict = new_value if fpaa_statistics is not None: setattr(module.weight , "SCB" , fpaa_statistics.to(_lowercase ) ) else: if value is None: _lowerCamelCase : Dict = old_value.to(_lowercase ) elif isinstance(_lowercase , torch.Tensor ): _lowerCamelCase : Union[str, Any] = value.to(_lowercase ) else: _lowerCamelCase : List[str] = torch.tensor(_lowercase , device=_lowercase ) if is_buffer: _lowerCamelCase : List[Any] = new_value else: _lowerCamelCase : Any = nn.Parameter(_lowercase , requires_grad=old_value.requires_grad ) _lowerCamelCase : Dict = new_value def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : Dict=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: _lowerCamelCase : int = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase , nn.Linear ) or isinstance(_lowercase , _lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in ".".join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase , _lowercase ): _lowerCamelCase , _lowerCamelCase : List[str] = module.weight.shape else: _lowerCamelCase : Optional[int] = module.in_features _lowerCamelCase : Union[str, Any] = module.out_features if quantization_config.quantization_method() == "llm_int8": _lowerCamelCase : Optional[int] = bnb.nn.LinearabitLt( _lowercase , _lowercase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) _lowerCamelCase : str = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: _lowerCamelCase : Any = bnb.nn.Linearabit( _lowercase , _lowercase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) _lowerCamelCase : Optional[Any] = True # Store the module class in case we need to transpose the weight later _lowerCamelCase : Tuple = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: _lowerCamelCase , _lowerCamelCase : int = _replace_with_bnb_linear( _lowercase , _lowercase , _lowercase , _lowercase , has_been_replaced=_lowercase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : List[Any]=None ): """simple docstring""" _lowerCamelCase : List[str] = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert _lowerCamelCase , _lowerCamelCase : Optional[Any] = _replace_with_bnb_linear( _lowercase , _lowercase , _lowercase , _lowercase ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def A_ ( *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : List[str] ): """simple docstring""" warnings.warn( "`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead" , _lowercase , ) return replace_with_bnb_linear(*_lowercase , **_lowercase ) def A_ ( *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Tuple ): """simple docstring""" warnings.warn( "`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead" , _lowercase , ) return set_module_quantized_tensor_to_device(*_lowercase , **_lowercase ) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : List[Any] = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() _lowerCamelCase : Optional[Any] = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase , _lowercase ): _lowerCamelCase : Dict = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _lowerCamelCase : Any = sum(_lowercase , [] ) _lowerCamelCase : int = len(_lowercase ) > 0 # Check if it is a base model _lowerCamelCase : List[Any] = not hasattr(_lowercase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _lowerCamelCase : Union[str, Any] = list(model.named_children() ) _lowerCamelCase : str = [list_modules[-1][0]] # add last module together with tied weights _lowerCamelCase : Any = set(_lowercase ) - set(_lowercase ) _lowerCamelCase : Any = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys _lowerCamelCase : List[str] = [".weight", ".bias"] _lowerCamelCase : Any = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _lowerCamelCase : Optional[int] = name.replace(_lowercase , "" ) filtered_module_names.append(_lowercase ) return filtered_module_names
44
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE_ = os.path.join(git_repo_path, 'src', 'transformers') SCREAMING_SNAKE_CASE_ = '\n{0} = None\n' SCREAMING_SNAKE_CASE_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' SCREAMING_SNAKE_CASE_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowerCamelCase_) UpperCamelCase = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowerCamelCase_ , '''tokenizers''') UpperCamelCase = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowerCamelCase_ , '''tensorflow_text''') UpperCamelCase = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tensorflow_text''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers_and_vision''') def UpperCAmelCase__ ( self) -> int: UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCamelCase_) self.assertIn('''tensorflow_text''' , lowerCamelCase_) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCamelCase_) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , '''\nCONSTANT = None\n''') UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowerCamelCase_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowerCamelCase_)
34
0
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase__ : """simple docstring""" def __init__(self , __a , __a=13 , __a=30 , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=None , ): '''simple docstring''' lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = image_size lowerCamelCase = patch_size lowerCamelCase = num_channels lowerCamelCase = is_training lowerCamelCase = use_labels lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = type_sequence_label_size lowerCamelCase = initializer_range lowerCamelCase = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase = (image_size // patch_size) ** 2 lowerCamelCase = num_patches + 1 def _a (self ): '''simple docstring''' lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase = self.get_config() return config, pixel_values, labels def _a (self ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _a (self , __a , __a , __a ): '''simple docstring''' lowerCamelCase = ViTMSNModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a (self , __a , __a , __a ): '''simple docstring''' lowerCamelCase = self.type_sequence_label_size lowerCamelCase = ViTMSNForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase = 1 lowerCamelCase = ViTMSNForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a (self ): '''simple docstring''' lowerCamelCase = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase = config_and_inputs lowerCamelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase): """simple docstring""" _A = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () _A = ( {'feature-extraction': ViTMSNModel, 'image-classification': ViTMSNForImageClassification} if is_torch_available() else {} ) _A = False _A = False _A = False _A = False def _a (self ): '''simple docstring''' lowerCamelCase = ViTMSNModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def _a (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def _a (self ): '''simple docstring''' pass def _a (self ): '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , nn.Linear ) ) def _a (self ): '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = model_class(lowerCamelCase_ ) lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase = [*signature.parameters.keys()] lowerCamelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def _a (self ): '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def _a (self ): '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def _a (self ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = ViTMSNModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def __lowercase( ): """simple docstring""" lowerCamelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @cached_property def _a (self ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def _a (self ): '''simple docstring''' torch.manual_seed(2 ) lowerCamelCase = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(lowerCamelCase_ ) lowerCamelCase = self.default_image_processor lowerCamelCase = prepare_img() lowerCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="pt" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): lowerCamelCase = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) lowerCamelCase = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) )
623
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __snake_case ( _lowercase ): """simple docstring""" if "cls_token" in name: UpperCamelCase = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: UpperCamelCase = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: UpperCamelCase = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: UpperCamelCase = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: UpperCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: UpperCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: UpperCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: UpperCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: UpperCamelCase = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: UpperCamelCase = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: UpperCamelCase = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCamelCase = key.split('''.''' ) UpperCamelCase = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase = config.decoder_hidden_size UpperCamelCase = '''decoder.decoder_layers.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = config.hidden_size UpperCamelCase = '''vit.encoder.layer.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = val return orig_state_dict def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 elif "huge" in checkpoint_url: UpperCamelCase = 14 UpperCamelCase = 1280 UpperCamelCase = 5120 UpperCamelCase = 32 UpperCamelCase = 16 UpperCamelCase = ViTMAEForPreTraining(_lowercase ) UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' )['''model'''] UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = convert_state_dict(_lowercase ,_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCamelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = image_processor(images=_lowercase ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits if "large" in checkpoint_url: UpperCamelCase = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
34
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _lowerCAmelCase : __SCREAMING_SNAKE_CASE : Dict = 42 __SCREAMING_SNAKE_CASE : Union[str, Any] = 42 class _lowerCAmelCase : def __init__(self , lowercase ): A_ : Tuple = [[] for _ in range(lowerCamelCase_ )] A_ : Optional[int] = size def __getitem__(self , lowercase ): return iter(self._graph[vertex] ) @property def _a (self ): return self._size def _a (self , lowercase , lowercase , lowercase ): if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(lowerCamelCase_ , lowerCamelCase_ ) ) def _a (self , lowercase , lowercase ): A_ : str = deque([start_vertex] ) A_ : List[str] = [None] * self.size A_ : Optional[Any] = 0 while queue: A_ : List[str] = queue.popleft() A_ : Any = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: A_ : Union[str, Any] = current_distance + edge.weight A_ : Union[str, Any] = distances[edge.destination_vertex] if ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and new_distance >= dest_vertex_distance ): continue A_ : List[str] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
667
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Any: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase = mock_training_loop_function('''hello''') self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def UpperCAmelCase__ ( self) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(lowerCamelCase_): pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Dict: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): raise ValueError('''Oops, we had an error!''') with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase_) UpperCamelCase = release_memory(lowerCamelCase_) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase_)
34
0
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =len([g for position, g in enumerate(_lowercase ) if g == main_target[position]] ) return (item, float(_lowercase )) def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =random.randint(0 , len(_lowercase ) - 1 ) __lowercase =parent_a[:random_slice] + parent_a[random_slice:] __lowercase =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =list(_lowercase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __lowercase =random.choice(_lowercase ) return "".join(_lowercase ) def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): """simple docstring""" __lowercase =[] # Generate more children proportionally to the fitness score. __lowercase =int(parent_a[1] * 100 ) + 1 __lowercase =10 if child_n >= 10 else child_n for _ in range(_lowercase ): __lowercase =population_score[random.randint(0 , _lowercase )][0] __lowercase , __lowercase =crossover(parent_a[0] , _lowercase ) # Append new string to the population list. pop.append(mutate(_lowercase , _lowercase ) ) pop.append(mutate(_lowercase , _lowercase ) ) return pop def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True ): """simple docstring""" if N_POPULATION < N_SELECTED: __lowercase =f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(_lowercase ) # Verify that the target contains no genes besides the ones inside genes variable. __lowercase =sorted({c for c in target if c not in genes} ) if not_in_genes_list: __lowercase =f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(_lowercase ) # Generate random starting population. __lowercase =[] for _ in range(_lowercase ): population.append(''.join([random.choice(_lowercase ) for i in range(len(_lowercase ) )] ) ) # Just some logs to know what the algorithms is doing. __lowercase , __lowercase =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_lowercase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __lowercase =[evaluate(_lowercase , _lowercase ) for item in population] # Check if there is a matching evolution. __lowercase =sorted(_lowercase , key=lambda _lowerCAmelCase : x[1] , reverse=_lowercase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __lowercase =population[: int(N_POPULATION / 3 )] population.clear() population.extend(_lowercase ) # Normalize population score to be between 0 and 1. __lowercase =[ (item, score / len(_lowercase )) for item, score in population_score ] # This is selection for i in range(_lowercase ): population.extend(select(population_score[int(_lowercase )] , _lowercase , _lowercase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_lowercase ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase = ( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) lowerCamelCase = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\""" ) lowerCamelCase , lowerCamelCase , lowerCamelCase = basic(target_str, genes_list) print( f"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}" )
474
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ = 1_0_1) -> Tuple: UpperCamelCase = length def __len__( self) -> List[str]: return self.length def __getitem__( self , lowerCamelCase_) -> int: return i class snake_case_ : """simple docstring""" def __call__( self , lowerCamelCase_) -> str: return {"input_ids": torch.tensor(lowerCamelCase_), "labels": torch.tensor(lowerCamelCase_)} class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> List[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase = nn.Linear(1_2_0 , 8_0) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_neuroncore def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_multi_gpu def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE_ = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()[0] logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' f'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE_ = DummyDataset(dataset_length) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = list(range(len(_lowercase ) ) ) UpperCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} SCREAMING_SNAKE_CASE_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = None
34
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_:List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Optional[Any] = { """tiiuae/falcon-40b""": """https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json""", """tiiuae/falcon-7b""": """https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase_ ): '''simple docstring''' __lowerCamelCase : int = "falcon" __lowerCamelCase : int = ["past_key_values"] def __init__( self, lowerCamelCase__=6_5024, lowerCamelCase__=4544, lowerCamelCase__=32, lowerCamelCase__=71, lowerCamelCase__=1e-5, lowerCamelCase__=0.02, lowerCamelCase__=True, lowerCamelCase__=0.0, lowerCamelCase__=0.0, lowerCamelCase__=None, lowerCamelCase__=False, lowerCamelCase__=False, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=False, lowerCamelCase__=11, lowerCamelCase__=11, **lowerCamelCase__, ): A : List[str] = vocab_size # Backward compatibility with n_embed kwarg A : Optional[Any] = kwargs.pop("""n_embed""", lowerCamelCase_ ) A : Optional[Any] = hidden_size if n_embed is None else n_embed A : Optional[Any] = num_hidden_layers A : Optional[int] = num_attention_heads A : int = layer_norm_epsilon A : Dict = initializer_range A : Union[str, Any] = use_cache A : Any = hidden_dropout A : int = attention_dropout A : Optional[int] = bos_token_id A : Union[str, Any] = eos_token_id A : Optional[int] = num_attention_heads if num_kv_heads is None else num_kv_heads A : Any = alibi A : Dict = new_decoder_architecture A : Any = multi_query # Ignored when new_decoder_architecture is True A : Optional[int] = parallel_attn A : str = bias super().__init__(bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_ ) @property def _lowerCAmelCase ( self ): return self.hidden_size // self.num_attention_heads @property def _lowerCAmelCase ( self ): return not self.alibi
662
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for tf_name, hf_name in patterns: UpperCamelCase = k.replace(_lowercase ,_lowercase ) return k def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = BigBirdPegasusConfig(**_lowercase ) UpperCamelCase = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCamelCase = torch_model.state_dict() UpperCamelCase = {} # separating decoder weights UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = DECODER_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = REMAINING_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCamelCase = mapping['''model.embed_positions.weight'''] UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(_lowercase ,strict=_lowercase ) UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tf.train.list_variables(_lowercase ) UpperCamelCase = {} UpperCamelCase = ['''global_step'''] for name, shape in tqdm(_lowercase ,desc='''converting tf checkpoint to dict''' ): UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase = tf.train.load_variable(_lowercase ,_lowercase ) UpperCamelCase = array return tf_weights def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = get_tf_weights_as_numpy(_lowercase ) UpperCamelCase = convert_bigbird_pegasus(_lowercase ,_lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
34
0
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class _a ( lowerCamelCase_ ): """simple docstring""" A_ = ComputeEnvironment.AMAZON_SAGEMAKER A_ = True A_ = """ml.p3.2xlarge""" A_ = """accelerate_sagemaker_execution_role""" A_ = """hf-sm""" A_ = """us-east-1""" A_ = 1 A_ = """accelerate-sagemaker-1""" A_ = """1.6""" A_ = """4.4""" A_ = """train.py""" A_ = [ """--model_name_or_path""", """bert""", """--do_train""", """False""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] A_ = [ """--model_name_or_path""", """bert""", """--do_train""", """--do_test""", """False""", """--do_predict""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase_ = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['model_name_or_path'] , lowerCamelCase_ ) assert isinstance(converted_args['do_train'] , lowerCamelCase_ ) assert isinstance(converted_args['epochs'] , lowerCamelCase_ ) assert isinstance(converted_args['learning_rate'] , lowerCamelCase_ ) assert isinstance(converted_args['max_steps'] , lowerCamelCase_ ) with pytest.raises(lowerCamelCase_ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
23
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase : str = logging.get_logger(__name__) lowercase : Union[str, Any] = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class lowerCamelCase__ ( lowerCamelCase_): '''simple docstring''' _A = 'detr' _A = ['past_key_values'] _A = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self :Dict , a :Tuple=True , a :str=None , a :Optional[int]=3 , a :Union[str, Any]=1_0_0 , a :List[str]=6 , a :Dict=2_0_4_8 , a :Optional[int]=8 , a :str=6 , a :Optional[Any]=2_0_4_8 , a :List[Any]=8 , a :Any=0.0 , a :Optional[Any]=0.0 , a :Dict=True , a :str="relu" , a :str=2_5_6 , a :Optional[int]=0.1 , a :List[str]=0.0 , a :str=0.0 , a :List[str]=0.02 , a :Union[str, Any]=1.0 , a :Union[str, Any]=False , a :List[Any]="sine" , a :int="resnet50" , a :int=True , a :Union[str, Any]=False , a :Dict=1 , a :List[str]=5 , a :int=2 , a :Any=1 , a :Optional[Any]=1 , a :int=5 , a :List[Any]=2 , a :List[Any]=0.1 , **a :Optional[int] , ) -> List[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("You can\'t specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCamelCase : Any = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): __UpperCamelCase : Any = backbone_config.get("model_type" ) __UpperCamelCase : Any = CONFIG_MAPPING[backbone_model_type] __UpperCamelCase : Any = config_class.from_dict(lowerCamelCase_ ) # set timm attributes to None __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[str] = None, None, None __UpperCamelCase : Union[str, Any] = use_timm_backbone __UpperCamelCase : Optional[int] = backbone_config __UpperCamelCase : int = num_channels __UpperCamelCase : Dict = num_queries __UpperCamelCase : int = d_model __UpperCamelCase : Optional[int] = encoder_ffn_dim __UpperCamelCase : str = encoder_layers __UpperCamelCase : int = encoder_attention_heads __UpperCamelCase : List[Any] = decoder_ffn_dim __UpperCamelCase : int = decoder_layers __UpperCamelCase : Any = decoder_attention_heads __UpperCamelCase : Tuple = dropout __UpperCamelCase : List[Any] = attention_dropout __UpperCamelCase : str = activation_dropout __UpperCamelCase : Dict = activation_function __UpperCamelCase : str = init_std __UpperCamelCase : int = init_xavier_std __UpperCamelCase : Optional[int] = encoder_layerdrop __UpperCamelCase : Any = decoder_layerdrop __UpperCamelCase : Union[str, Any] = encoder_layers __UpperCamelCase : List[Any] = auxiliary_loss __UpperCamelCase : str = position_embedding_type __UpperCamelCase : str = backbone __UpperCamelCase : Any = use_pretrained_backbone __UpperCamelCase : List[str] = dilation # Hungarian matcher __UpperCamelCase : int = class_cost __UpperCamelCase : Optional[int] = bbox_cost __UpperCamelCase : Optional[int] = giou_cost # Loss coefficients __UpperCamelCase : List[Any] = mask_loss_coefficient __UpperCamelCase : Optional[int] = dice_loss_coefficient __UpperCamelCase : Tuple = bbox_loss_coefficient __UpperCamelCase : Optional[Any] = giou_loss_coefficient __UpperCamelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=lowerCamelCase_ , **lowerCamelCase_ ) @property def _lowerCamelCase ( self :List[Any] ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self :Union[str, Any] ) -> int: return self.d_model @classmethod def _lowerCamelCase ( cls :Union[str, Any] , a :int , **a :Dict ) -> List[str]: return cls(backbone_config=lowerCamelCase_ , **lowerCamelCase_ ) def _lowerCamelCase ( self :str ) -> Dict[str, any]: __UpperCamelCase : List[str] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCamelCase : Union[str, Any] = self.backbone_config.to_dict() __UpperCamelCase : Union[str, Any] = self.__class__.model_type return output class lowerCamelCase__ ( lowerCamelCase_): '''simple docstring''' _A = version.parse('1.11') @property def _lowerCamelCase ( self :Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCamelCase ( self :Optional[Any] ) -> float: return 1E-5 @property def _lowerCamelCase ( self :Optional[Any] ) -> int: return 1_2
557
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> Any: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase_ , ) return config, input_ids, attention_mask def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = FlaxDistilBertModelTester(self) @slow def UpperCAmelCase__ ( self) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowerCamelCase_) @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)[0] UpperCamelCase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , lowerCamelCase_) UpperCamelCase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4))
34
0
import copy import re class UpperCamelCase : lowerCAmelCase : int = """hp""" lowerCAmelCase : List[str] = {} lowerCAmelCase : Tuple = None @classmethod def __A ( cls , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = prefix A__ = defaults cls.build_naming_info() @staticmethod def __A ( UpperCAmelCase__ , UpperCAmelCase__ ): if len(lowerCamelCase_ ) == 0: return "" A__ = None if any(char.isdigit() for char in word ): raise Exception(F"""Parameters should not contain numbers: \'{word}\' contains a number""" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(lowerCamelCase_ ) + 1 ): A__ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: A__ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(UpperCAmelCase__ ): A__ = "" while integer != 0: A__ = chr(ord("A" ) + integer % 10 ) + s integer //= 10 return s A__ = 0 while True: A__ = word + "#" + int_to_alphabetic(lowerCamelCase_ ) if sword in info["reverse_short_word"]: continue else: A__ = sword break A__ = short_word A__ = word return short_word @staticmethod def __A ( UpperCAmelCase__ , UpperCAmelCase__ ): A__ = param_name.split("_" ) A__ = [TrialShortNamer.shortname_for_word(lowerCamelCase_ , lowerCamelCase_ ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name A__ = ["", "_"] for separator in separators: A__ = separator.join(lowerCamelCase_ ) if shortname not in info["reverse_short_param"]: A__ = shortname A__ = param_name return shortname return param_name @staticmethod def __A ( UpperCAmelCase__ , UpperCAmelCase__ ): A__ = TrialShortNamer.shortname_for_key(lowerCamelCase_ , lowerCamelCase_ ) A__ = short_name A__ = param_name @classmethod def __A ( cls ): if cls.NAMING_INFO is not None: return A__ = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } A__ = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(lowerCamelCase_ , lowerCamelCase_ ) A__ = info @classmethod def __A ( cls , UpperCAmelCase__ ): cls.build_naming_info() assert cls.PREFIX is not None A__ = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F"""You should provide a default value for the param name {k} with value {v}""" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue A__ = cls.NAMING_INFO["short_param"][k] if isinstance(lowerCamelCase_ , lowerCamelCase_ ): A__ = 1 if v else 0 A__ = "" if isinstance(lowerCamelCase_ , (int, float) ) else "-" A__ = F"""{key}{sep}{v}""" name.append(lowerCamelCase_ ) return "_".join(lowerCamelCase_ ) @classmethod def __A ( cls , UpperCAmelCase__ ): A__ = repr[len(cls.PREFIX ) + 1 :] if repr == "": A__ = [] else: A__ = repr.split("_" ) A__ = {} for value in values: if "-" in value: A__ , A__ = value.split("-" ) else: A__ = re.sub("[0-9.]" , "" , lowerCamelCase_ ) A__ = float(re.sub("[^0-9.]" , "" , lowerCamelCase_ ) ) A__ = cls.NAMING_INFO["reverse_short_param"][p_k] A__ = p_v for k in cls.DEFAULTS: if k not in parameters: A__ = cls.DEFAULTS[k] return parameters
491
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
0
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class _lowercase : """simple docstring""" lowerCAmelCase__ = None def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = self.feature_extraction_class(**self.feat_extract_dict ) _lowercase = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , lowerCamelCase_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowercase = os.path.join(lowerCamelCase_ , """feat_extract.json""" ) feat_extract_first.to_json_file(lowerCamelCase_ ) _lowercase = self.feature_extraction_class.from_json_file(lowerCamelCase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowercase = feat_extract_first.save_pretrained(lowerCamelCase_ )[0] check_json_file_has_correct_format(lowerCamelCase_ ) _lowercase = self.feature_extraction_class.from_pretrained(lowerCamelCase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = self.feature_extraction_class() self.assertIsNotNone(lowerCamelCase_ )
398
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
0
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 UpperCAmelCase__ :Optional[Any] = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 128, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @classmethod def a_ ( cls : Union[str, Any] ): """simple docstring""" __lowerCamelCase : Optional[Any] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a_ ( cls : Optional[int] ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-config-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-config""" ) except HTTPError: pass def a_ ( self : List[Any] ): """simple docstring""" __lowerCamelCase : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""test-config""" , use_auth_token=self._token ) __lowerCamelCase : Tuple = BertConfig.from_pretrained(f"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_ , repo_id="""test-config""" , push_to_hub=lowerCamelCase_ , use_auth_token=self._token ) __lowerCamelCase : List[str] = BertConfig.from_pretrained(f"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) def a_ ( self : int ): """simple docstring""" __lowerCamelCase : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""valid_org/test-config-org""" , use_auth_token=self._token ) __lowerCamelCase : Optional[Any] = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_ , repo_id="""valid_org/test-config-org""" , push_to_hub=lowerCamelCase_ , use_auth_token=self._token ) __lowerCamelCase : Union[str, Any] = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) def a_ ( self : Tuple ): """simple docstring""" CustomConfig.register_for_auto_class() __lowerCamelCase : Optional[Any] = CustomConfig(attribute=42 ) config.push_to_hub("""test-dynamic-config""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"""AutoConfig""": """custom_configuration.CustomConfig"""} ) __lowerCamelCase : Any = AutoConfig.from_pretrained(f"{USER}/test-dynamic-config" , trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , """CustomConfig""" ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def a_ ( self : List[str] ): """simple docstring""" __lowerCamelCase : Union[str, Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __lowerCamelCase : int = c.n_embd + 1 # int __lowerCamelCase : Union[str, Any] = c.resid_pdrop + 1.0 # float __lowerCamelCase : Optional[Any] = not c.scale_attn_weights # bool __lowerCamelCase : str = c.summary_type + """foo""" # str c.update_from_string( f"n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}" ) self.assertEqual(lowerCamelCase_ , c.n_embd , """mismatch for key: n_embd""" ) self.assertEqual(lowerCamelCase_ , c.resid_pdrop , """mismatch for key: resid_pdrop""" ) self.assertEqual(lowerCamelCase_ , c.scale_attn_weights , """mismatch for key: scale_attn_weights""" ) self.assertEqual(lowerCamelCase_ , c.summary_type , """mismatch for key: summary_type""" ) def a_ ( self : Dict ): """simple docstring""" __lowerCamelCase : Union[str, Any] = PretrainedConfig() __lowerCamelCase : Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_ , ["""is_encoder_decoder""", """_name_or_path""", """_commit_hash""", """transformers_version"""] ) __lowerCamelCase : Union[str, Any] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_ , lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( """The following keys are set with the default values in""" """ `test_configuration_common.config_common_kwargs` pick another value for them:""" f" {', '.join(lowerCamelCase_ )}." ) def a_ ( self : Dict ): """simple docstring""" with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder __lowerCamelCase : Tuple = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" ) __lowerCamelCase : Tuple = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" , subfolder="""bert""" ) self.assertIsNotNone(lowerCamelCase_ ) def a_ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase : str = mock.Mock() __lowerCamelCase : Tuple = 500 __lowerCamelCase : Optional[int] = {} __lowerCamelCase : Any = HTTPError __lowerCamelCase : Union[str, Any] = {} # Download this model to make sure it's in the cache. __lowerCamelCase : str = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=lowerCamelCase_ ) as mock_head: __lowerCamelCase : List[str] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() def a_ ( self : List[str] ): """simple docstring""" __lowerCamelCase : Any = BertConfig.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json""" ) def a_ ( self : List[str] ): """simple docstring""" __lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained("""bert-base-cased""" ) __lowerCamelCase : str = ["""config.4.0.0.json"""] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) __lowerCamelCase : Optional[Any] = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase_ , """config.4.0.0.json""" ) , """w""" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __lowerCamelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __lowerCamelCase : Tuple = ["""config.42.0.0.json"""] __lowerCamelCase : Any = 768 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_ , """config.4.0.0.json""" ) , os.path.join(lowerCamelCase_ , """config.42.0.0.json""" ) ) __lowerCamelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size , 768 ) def a_ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase : List[str] = """hf-internal-testing/test-two-configs""" import transformers as new_transformers __lowerCamelCase : Optional[int] = """v4.0.0""" __lowerCamelCase , __lowerCamelCase : int = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_ , return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __lowerCamelCase : str = """v3.0.0""" __lowerCamelCase : str = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size , 768 )
150
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __snake_case ( _lowercase ,_lowercase=False ): """simple docstring""" try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_REMOTE', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_LOCAL', default=True) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __snake_case ( _lowercase ): """simple docstring""" try: import faiss # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires faiss''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import regex # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires regex''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TORCH_AVAILABLE: UpperCamelCase = unittest.skip('''test requires PyTorch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TF_AVAILABLE: UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.JAX_AVAILABLE: UpperCamelCase = unittest.skip('''test requires JAX''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.PIL_AVAILABLE: UpperCamelCase = unittest.skip('''test requires Pillow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" def _require_spacy_model(_lowercase ): try: import spacy # noqa F401 spacy.load(_lowercase ) except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_lowercase ) )(_lowercase ) else: return test_case return _require_spacy_model def __snake_case ( _lowercase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase = unittest.skip('''test is slow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: UpperCamelCase = unittest.skip('''test is local''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase = unittest.skip('''test is packaged''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase = unittest.skip('''test requires remote''' )(_lowercase ) return test_case def __snake_case ( *_lowercase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_lowercase ) and name.startswith('''test''' ): for decorator in decorators: UpperCamelCase = decorator(_lowercase ) setattr(cls ,_lowercase ,_lowercase ) return cls return decorate class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 0 A_ = 1 A_ = 2 @contextmanager def __snake_case ( _lowercase=OfflineSimulationMode.CONNECTION_FAILS ,_lowercase=1e-16 ): """simple docstring""" UpperCamelCase = requests.Session().request def timeout_request(_lowercase ,_lowercase ,_lowercase ,**_lowercase ): # Change the url to an invalid url so that the connection hangs UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) UpperCamelCase = timeout try: return online_request(_lowercase ,_lowercase ,**_lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase = url UpperCamelCase = e.args[0] UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' ,f'OfflineMock[{url}]' ),) UpperCamelCase = (max_retry_error,) raise def raise_connection_error(_lowercase ,_lowercase ,**_lowercase ): raise requests.ConnectionError('''Offline mode is enabled.''' ,request=_lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' ,_lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' ,_lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' ,_lowercase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowercase ,**_lowercase ) as tmp_dir: try: os.chdir(_lowercase ) yield finally: os.chdir(_lowercase ) @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() def __snake_case ( _lowercase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_lowercase ,*_lowercase ,**_lowercase ): try: return func(*_lowercase ,**_lowercase ) except HTTPError as err: if str(_lowercase ).startswith('''500''' ) or str(_lowercase ).startswith('''502''' ): pytest.xfail(str(_lowercase ) ) raise err return decorator.decorator(_wrapper ,_lowercase ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" while True: UpperCamelCase = await stream.readline() if line: callback(_lowercase ) else: break async def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ,_lowercase=False ): """simple docstring""" if echo: print('''\nRunning: ''' ,''' '''.join(_lowercase ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=_lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=_lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(_lowercase ,_lowercase ,_lowercase ,_lowercase="" ): UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase ,_lowercase ,file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stdout ,label='''stdout:''' ) ), _read_stream(p.stderr ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stderr ,label='''stderr:''' ) ), ] ,timeout=_lowercase ,) return _RunOutput(await p.wait() ,_lowercase ,_lowercase ) def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=180 ,_lowercase=False ,_lowercase=True ): """simple docstring""" UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(_lowercase ,env=_lowercase ,stdin=_lowercase ,timeout=_lowercase ,quiet=_lowercase ,echo=_lowercase ) ) UpperCamelCase = ''' '''.join(_lowercase ) if result.returncode > 0: UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def __snake_case ( ): """simple docstring""" UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' ,'''gw0''' ) UpperCamelCase = re.sub(r'''^gw''' ,'''''' ,_lowercase ,0 ,re.M ) return int(_lowercase ) def __snake_case ( ): """simple docstring""" UpperCamelCase = 2_9500 UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
34
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class __snake_case ( lowerCamelCase_): _lowerCAmelCase = '''unispeech-sat''' def __init__( self, A=32, A=768, A=12, A=12, A=3072, A="gelu", A=0.1, A=0.1, A=0.1, A=0.0, A=0.0, A=0.1, A=0.1, A=0.02, A=1e-5, A="group", A="gelu", A=(512, 512, 512, 512, 512, 512, 512), A=(5, 2, 2, 2, 2, 2, 2), A=(10, 3, 3, 3, 3, 2, 2), A=False, A=128, A=16, A=False, A=True, A=0.05, A=10, A=2, A=0.0, A=10, A=0, A=320, A=2, A=0.1, A=100, A=256, A=256, A=0.1, A="mean", A=False, A=False, A=256, A=(512, 512, 512, 512, 1500), A=(5, 3, 3, 1, 1), A=(1, 2, 3, 1, 1), A=512, A=0, A=1, A=2, A=504, **A, ): """simple docstring""" super().__init__(**lowerCamelCase_, pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_ ) lowerCamelCase : List[str] = hidden_size lowerCamelCase : Union[str, Any] = feat_extract_norm lowerCamelCase : List[Any] = feat_extract_activation lowerCamelCase : Optional[int] = list(lowerCamelCase_ ) lowerCamelCase : List[str] = list(lowerCamelCase_ ) lowerCamelCase : str = list(lowerCamelCase_ ) lowerCamelCase : Tuple = conv_bias lowerCamelCase : str = num_conv_pos_embeddings lowerCamelCase : Union[str, Any] = num_conv_pos_embedding_groups lowerCamelCase : Tuple = len(self.conv_dim ) lowerCamelCase : Union[str, Any] = num_hidden_layers lowerCamelCase : List[Any] = intermediate_size lowerCamelCase : Optional[int] = hidden_act lowerCamelCase : List[Any] = num_attention_heads lowerCamelCase : Union[str, Any] = hidden_dropout lowerCamelCase : Optional[Any] = attention_dropout lowerCamelCase : List[Any] = activation_dropout lowerCamelCase : Union[str, Any] = feat_proj_dropout lowerCamelCase : Optional[int] = final_dropout lowerCamelCase : Any = layerdrop lowerCamelCase : str = layer_norm_eps lowerCamelCase : List[Any] = initializer_range lowerCamelCase : Tuple = vocab_size lowerCamelCase : Union[str, Any] = num_clusters lowerCamelCase : List[str] = do_stable_layer_norm lowerCamelCase : int = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase : Tuple = apply_spec_augment lowerCamelCase : Optional[int] = mask_time_prob lowerCamelCase : int = mask_time_length lowerCamelCase : List[str] = mask_time_min_masks lowerCamelCase : int = mask_feature_prob lowerCamelCase : Dict = mask_feature_length lowerCamelCase : str = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase : int = num_codevectors_per_group lowerCamelCase : int = num_codevector_groups lowerCamelCase : Optional[Any] = contrastive_logits_temperature lowerCamelCase : Optional[Any] = feat_quantizer_dropout lowerCamelCase : str = num_negatives lowerCamelCase : Tuple = codevector_dim lowerCamelCase : Optional[int] = proj_codevector_dim lowerCamelCase : Union[str, Any] = diversity_loss_weight # ctc loss lowerCamelCase : Any = ctc_loss_reduction lowerCamelCase : List[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCamelCase : List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCamelCase : Union[str, Any] = list(lowerCamelCase_ ) lowerCamelCase : Union[str, Any] = list(lowerCamelCase_ ) lowerCamelCase : List[Any] = list(lowerCamelCase_ ) lowerCamelCase : Tuple = xvector_output_dim @property def UpperCAmelCase_ ( self ): """simple docstring""" return functools.reduce(operator.mul, self.conv_stride, 1 )
320
"""simple docstring""" import operator def __snake_case ( _lowercase ,_lowercase = False ,_lowercase = None ): """simple docstring""" UpperCamelCase = operator.lt if reverse else operator.gt UpperCamelCase = solution or [] if not arr: return solution UpperCamelCase = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase ,sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: UpperCamelCase = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase ,_lowercase ): solution.insert(_lowercase ,_lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase ,_lowercase ,_lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
34
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCAmelCase_ : Tuple = logging.get_logger(__name__) class UpperCAmelCase__ ( lowerCamelCase_ ): def __init__( self : Optional[Any],*__A : Tuple,**__A : Tuple ): warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead.",lowerCamelCase_,) super().__init__(*lowerCamelCase_,**lowerCamelCase_ )
44
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' SCREAMING_SNAKE_CASE_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any: if return_pvalue: UpperCamelCase = pearsonr(lowerCamelCase_ , lowerCamelCase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_ , lowerCamelCase_)[0])}
34
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() a_ : List[str] = logging.get_logger(__name__) def __lowercase( UpperCAmelCase__ ): """simple docstring""" if "resnet-50" in model_name: lowerCamelCase = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: lowerCamelCase = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) lowerCamelCase = DetrConfig(use_timm_backbone=_lowercase , backbone_config=_lowercase ) # set label attributes lowerCamelCase = "panoptic" in model_name if is_panoptic: lowerCamelCase = 250 else: lowerCamelCase = 91 lowerCamelCase = "huggingface/label-files" lowerCamelCase = "coco-detection-id2label.json" lowerCamelCase = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="dataset" ) , "r" ) ) lowerCamelCase = {int(_lowercase ): v for k, v in idalabel.items()} lowerCamelCase = idalabel lowerCamelCase = {v: k for k, v in idalabel.items()} return config, is_panoptic def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = state_dict.pop(_lowercase ) lowerCamelCase = val def __lowercase( UpperCAmelCase__ , UpperCAmelCase__=False ): """simple docstring""" lowerCamelCase = "" if is_panoptic: lowerCamelCase = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) lowerCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase = in_proj_weight[:256, :] lowerCamelCase = in_proj_bias[:256] lowerCamelCase = in_proj_weight[256:512, :] lowerCamelCase = in_proj_bias[256:512] lowerCamelCase = in_proj_weight[-256:, :] lowerCamelCase = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowerCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) lowerCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase = in_proj_weight[:256, :] lowerCamelCase = in_proj_bias[:256] lowerCamelCase = in_proj_weight[256:512, :] lowerCamelCase = in_proj_bias[256:512] lowerCamelCase = in_proj_weight[-256:, :] lowerCamelCase = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention lowerCamelCase = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) lowerCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowerCamelCase = in_proj_weight_cross_attn[:256, :] lowerCamelCase = in_proj_bias_cross_attn[:256] lowerCamelCase = in_proj_weight_cross_attn[256:512, :] lowerCamelCase = in_proj_bias_cross_attn[256:512] lowerCamelCase = in_proj_weight_cross_attn[-256:, :] lowerCamelCase = in_proj_bias_cross_attn[-256:] def __lowercase( ): """simple docstring""" lowerCamelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowercase( UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=False ): """simple docstring""" lowerCamelCase , lowerCamelCase = get_detr_config(_lowercase ) # load original model from torch hub lowerCamelCase = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(F"""Converting model {model_name}...""" ) lowerCamelCase = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=_lowercase ).eval() lowerCamelCase = detr.state_dict() # rename keys for src, dest in create_rename_keys(_lowercase ): if is_panoptic: lowerCamelCase = "detr." + src rename_key(_lowercase , _lowercase , _lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCamelCase = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): lowerCamelCase = state_dict.pop(_lowercase ) lowerCamelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCamelCase = state_dict.pop(_lowercase ) lowerCamelCase = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: lowerCamelCase = state_dict.pop(_lowercase ) lowerCamelCase = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): lowerCamelCase = state_dict.pop(_lowercase ) lowerCamelCase = val # finally, create HuggingFace model and load state dict lowerCamelCase = DetrForSegmentation(_lowercase ) if is_panoptic else DetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() # verify our conversion on an image lowerCamelCase = "coco_panoptic" if is_panoptic else "coco_detection" lowerCamelCase = DetrImageProcessor(format=_lowercase ) lowerCamelCase = processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase = encoding["pixel_values"] lowerCamelCase = detr(_lowercase ) lowerCamelCase = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(F"""nielsr/{model_name}""" ) processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": a_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') a_ : Optional[int] = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
623
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ComputeEnvironment.AMAZON_SAGEMAKER A_ = True A_ = '''ml.p3.2xlarge''' A_ = '''accelerate_sagemaker_execution_role''' A_ = '''hf-sm''' A_ = '''us-east-1''' A_ = 1 A_ = '''accelerate-sagemaker-1''' A_ = '''1.6''' A_ = '''4.4''' A_ = '''train.py''' A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args['''model_name_or_path'''] , lowerCamelCase_) assert isinstance(converted_args['''do_train'''] , lowerCamelCase_) assert isinstance(converted_args['''epochs'''] , lowerCamelCase_) assert isinstance(converted_args['''learning_rate'''] , lowerCamelCase_) assert isinstance(converted_args['''max_steps'''] , lowerCamelCase_) with pytest.raises(lowerCamelCase_): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
34
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _lowerCAmelCase ( lowerCamelCase_ ): def __init__(self , lowercase , lowercase , lowercase ): A_ : Optional[Any] = dataset A_ : Dict = process A_ : Optional[int] = params def __len__(self ): return len(self.dataset ) def __getitem__(self , lowercase ): A_ : List[str] = self.dataset[i] A_ : Optional[int] = self.process(lowerCamelCase_ , **self.params ) return processed class _lowerCAmelCase ( lowerCamelCase_ ): def __init__(self , lowercase , lowercase , lowercase , lowercase=None ): A_ : Any = loader A_ : Optional[Any] = infer A_ : int = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether A_ : Optional[Any] = None A_ : Any = loader_batch_size # Internal bookkeeping A_ : str = None A_ : int = None def __len__(self ): return len(self.loader ) def __iter__(self ): A_ : Any = iter(self.loader ) return self def _a (self ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice A_ : List[Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) A_ : Optional[Any] = {} for k, element in self._loader_batch_data.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): # Convert ModelOutput to tuple first A_ : Optional[Any] = element.to_tuple() if isinstance(element[0] , torch.Tensor ): A_ : Union[str, Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): A_ : List[Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(lowerCamelCase_ , lowerCamelCase_ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): A_ : str = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): A_ : Any = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around A_ : int = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers A_ : Optional[int] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers A_ : Optional[Any] = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. A_ : Dict = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 A_ : int = self._loader_batch_data.__class__(lowerCamelCase_ ) self._loader_batch_index += 1 return result def _a (self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch A_ : Optional[Any] = next(self.iterator ) A_ : Dict = self.infer(lowerCamelCase_ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(lowerCamelCase_ , torch.Tensor ): A_ : Optional[Any] = processed else: A_ : Union[str, Any] = list(processed.keys() )[0] A_ : int = processed[key] if isinstance(lowerCamelCase_ , lowerCamelCase_ ): A_ : Dict = len(lowerCamelCase_ ) else: A_ : Tuple = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. A_ : str = observed_batch_size # Setting internal index to unwrap the batch A_ : Optional[int] = processed A_ : Optional[int] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _lowerCAmelCase ( lowerCamelCase_ ): def __init__(self , lowercase , lowercase , lowercase , lowercase=None ): super().__init__(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __iter__(self ): A_ : str = iter(self.loader ) A_ : Optional[Any] = None return self def _a (self ): if self.subiterator is None: A_ : Any = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item A_ : List[Any] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators A_ : Union[str, Any] = self.infer(next(self.iterator ) , **self.params ) A_ : int = next(self.subiterator ) return processed class _lowerCAmelCase ( lowerCamelCase_ ): def __iter__(self ): A_ : Dict = iter(self.loader ) return self def _a (self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. A_ : Tuple = False A_ : List[str] = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: A_ : Optional[Any] = self.loader_batch_item() A_ : List[Any] = item.pop("""is_last""" ) accumulator.append(lowerCamelCase_ ) if is_last: return accumulator while not is_last: A_ : Dict = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(lowerCamelCase_ , torch.Tensor ): A_ : Optional[int] = processed else: A_ : Any = list(processed.keys() )[0] A_ : str = processed[key] if isinstance(lowerCamelCase_ , lowerCamelCase_ ): A_ : Optional[Any] = len(lowerCamelCase_ ) else: A_ : Any = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. A_ : int = observed_batch_size A_ : Optional[int] = processed A_ : Any = 0 while self._loader_batch_index < self.loader_batch_size: A_ : int = self.loader_batch_item() A_ : Optional[Any] = item.pop("""is_last""" ) accumulator.append(lowerCamelCase_ ) if is_last: return accumulator else: A_ : Any = processed A_ : str = item.pop("""is_last""" ) accumulator.append(lowerCamelCase_ ) return accumulator class _lowerCAmelCase ( lowerCamelCase_ ): def __init__(self , lowercase , lowercase ): A_ : List[str] = dataset A_ : Dict = key def __len__(self ): return len(self.dataset ) def __getitem__(self , lowercase ): return self.dataset[i][self.key] class _lowerCAmelCase ( lowerCamelCase_ ): def __init__(self , lowercase , lowercase , lowercase ): A_ : int = dataset A_ : Dict = keya A_ : Dict = keya def __len__(self ): return len(self.dataset ) def __getitem__(self , lowercase ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
667
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class snake_case_ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCamelCase_ = " ") -> List[str]: UpperCamelCase = sentence_delimiter def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return list(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase_): chars.extend(self.process_string(lowerCamelCase_)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_) - 1: chars.append(self.sentence_delimiter) return chars SCREAMING_SNAKE_CASE_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class _UpperCamelCase ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = """mobilenet_v1""" def __init__( self : str , _lowerCAmelCase : Union[str, Any]=3 , _lowerCAmelCase : Optional[int]=2_2_4 , _lowerCAmelCase : Tuple=1.0 , _lowerCAmelCase : str=8 , _lowerCAmelCase : int="relu6" , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Union[str, Any]=0.999 , _lowerCAmelCase : Dict=0.02 , _lowerCAmelCase : str=0.001 , **_lowerCAmelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase_) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.') __lowercase =num_channels __lowercase =image_size __lowercase =depth_multiplier __lowercase =min_depth __lowercase =hidden_act __lowercase =tf_padding __lowercase =classifier_dropout_prob __lowercase =initializer_range __lowercase =layer_norm_eps class _UpperCamelCase ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = version.parse("""1.11""" ) @property def __lowerCamelCase ( self : str): '''simple docstring''' return OrderedDict([('pixel_values', {0: 'batch'})]) @property def __lowerCamelCase ( self : List[str]): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})]) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})]) @property def __lowerCamelCase ( self : Tuple): '''simple docstring''' return 1e-4
474
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = '''left''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<eop>", "<eod>"] , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = 3 UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> List[str]: return len(self.sp_model) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> str: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: if self.remove_space: UpperCamelCase = ''' '''.join(inputs.strip().split()) else: UpperCamelCase = inputs UpperCamelCase = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCamelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase_) UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_)]) if self.do_lower_case: UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) UpperCamelCase = [] for piece in pieces: if len(lowerCamelCase_) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCamelCase = cur_pieces[1:] else: UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCamelCase_) else: new_pieces.append(lowerCamelCase_) return new_pieces def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.sp_model.IdToPiece(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: UpperCamelCase = ''''''.join(lowerCamelCase_).replace(lowerCamelCase_ , ''' ''').strip() return out_string def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> str: UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCamelCase_) UpperCamelCase = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) UpperCamelCase = [] sub_texts.append(lowerCamelCase_) else: current_sub_text.append(lowerCamelCase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(lowerCamelCase_) return clean_text else: return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) + [1, 1] return ([0] * len(lowerCamelCase_)) + [1, 1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,)
34
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer SCREAMING_SNAKE_CASE_:Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Optional[int] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE_:Dict = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } SCREAMING_SNAKE_CASE_:Optional[int] = { """squeezebert/squeezebert-uncased""": 512, """squeezebert/squeezebert-mnli""": 512, """squeezebert/squeezebert-mnli-headless""": 512, } SCREAMING_SNAKE_CASE_:Union[str, Any] = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase_ ): '''simple docstring''' __lowerCamelCase : Dict = VOCAB_FILES_NAMES __lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Tuple = PRETRAINED_INIT_CONFIGURATION __lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : str = SqueezeBertTokenizer def __init__( self, lowerCamelCase__=None, lowerCamelCase__=None, lowerCamelCase__=True, lowerCamelCase__="[UNK]", lowerCamelCase__="[SEP]", lowerCamelCase__="[PAD]", lowerCamelCase__="[CLS]", lowerCamelCase__="[MASK]", lowerCamelCase__=True, lowerCamelCase__=None, **lowerCamelCase__, ): super().__init__( lowerCamelCase_, tokenizer_file=lowerCamelCase_, do_lower_case=lowerCamelCase_, unk_token=lowerCamelCase_, sep_token=lowerCamelCase_, pad_token=lowerCamelCase_, cls_token=lowerCamelCase_, mask_token=lowerCamelCase_, tokenize_chinese_chars=lowerCamelCase_, strip_accents=lowerCamelCase_, **lowerCamelCase_, ) A : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""", lowerCamelCase_ ) != do_lower_case or normalizer_state.get("""strip_accents""", lowerCamelCase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""", lowerCamelCase_ ) != tokenize_chinese_chars ): A : Optional[Any] = getattr(lowerCamelCase_, normalizer_state.pop("""type""" ) ) A : Dict = do_lower_case A : Any = strip_accents A : int = tokenize_chinese_chars A : Any = normalizer_class(**lowerCamelCase_ ) A : List[str] = do_lower_case def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__=None ): A : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): A : str = [self.sep_token_id] A : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): A : List[Any] = self._tokenizer.model.save(lowerCamelCase_, name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
662
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } SCREAMING_SNAKE_CASE_ = { 'openbmb/cpm-ant-10b': 1024, } def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = collections.OrderedDict() with open(_lowercase ,'''r''' ,encoding='''utf-8''' ) as reader: UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): UpperCamelCase = token.rstrip('''\n''' ) UpperCamelCase = index return vocab class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_=2_0_0) -> Any: UpperCamelCase = vocab UpperCamelCase = unk_token UpperCamelCase = max_input_chars_per_word def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = list(lowerCamelCase_) if len(lowerCamelCase_) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase = 0 UpperCamelCase = [] while start < len(lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = None while start < end: UpperCamelCase = ''''''.join(chars[start:end]) if substr in self.vocab: UpperCamelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(lowerCamelCase_) UpperCamelCase = end return sub_tokens class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] A_ = False def __init__( self , lowerCamelCase_ , lowerCamelCase_="<d>" , lowerCamelCase_="</d>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<unk>" , lowerCamelCase_="</n>" , lowerCamelCase_="</_>" , lowerCamelCase_="left" , **lowerCamelCase_ , ) -> List[str]: requires_backends(self , ['''jieba''']) super().__init__( bod_token=lowerCamelCase_ , eod_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , line_token=lowerCamelCase_ , space_token=lowerCamelCase_ , padding_side=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = bod_token UpperCamelCase = eod_token UpperCamelCase = load_vocab(lowerCamelCase_) UpperCamelCase = self.encoder[space_token] UpperCamelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def UpperCAmelCase__ ( self) -> Dict: return self.encoder[self.bod_token] @property def UpperCAmelCase__ ( self) -> str: return self.encoder[self.eod_token] @property def UpperCAmelCase__ ( self) -> List[Any]: return self.encoder["\n"] @property def UpperCAmelCase__ ( self) -> int: return len(self.encoder) def UpperCAmelCase__ ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = [] for x in jieba.cut(lowerCamelCase_ , cut_all=lowerCamelCase_): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase_)) return output_tokens def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> Tuple: UpperCamelCase = [i for i in token_ids if i >= 0] UpperCamelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return token in self.encoder def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return "".join(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token)) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return self.decoder.get(lowerCamelCase_ , self.unk_token) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if os.path.isdir(lowerCamelCase_): UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: UpperCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCamelCase = 0 if " " in self.encoder: UpperCamelCase = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase = self.encoder['''\n'''] del self.encoder["\n"] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''') UpperCamelCase = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) return [1] + ([0] * len(lowerCamelCase_))
34
0
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = AutoConfig.from_pretrained(_lowercase) UpperCamelCase_ = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowercase) UpperCamelCase_ = checkpoints.load_tax_checkpoint(_lowercase) UpperCamelCase_ = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": UpperCamelCase_ = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": UpperCamelCase_ = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase_ = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].') # Encoder for layer_index in range(config.num_layers): UpperCamelCase_ = f"""layers_{str(_lowercase)}""" # Self-Attention UpperCamelCase_ = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] UpperCamelCase_ = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] UpperCamelCase_ = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] UpperCamelCase_ = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase_ = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization UpperCamelCase_ = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: UpperCamelCase_ = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] UpperCamelCase_ = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: UpperCamelCase_ = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] UpperCamelCase_ = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization UpperCamelCase_ = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning UpperCamelCase_ = flax_model.params['encoder']['block'][str(_lowercase)]['layer'] UpperCamelCase_ = tax_attention_key UpperCamelCase_ = tax_attention_out UpperCamelCase_ = tax_attention_query UpperCamelCase_ = tax_attention_value UpperCamelCase_ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase_ = tax_global_layer_norm if split_mlp_wi: UpperCamelCase_ = tax_mlp_wi_a UpperCamelCase_ = tax_mlp_wi_a else: UpperCamelCase_ = tax_mlp_wi UpperCamelCase_ = tax_mlp_wo UpperCamelCase_ = tax_mlp_layer_norm UpperCamelCase_ = flax_model_encoder_layer_block # Only for layer 0: UpperCamelCase_ = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T UpperCamelCase_ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase_ = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T UpperCamelCase_ = tax_encoder_global_rel_embedding # Assigning UpperCamelCase_ = tax_model['target']['encoder']['encoder_norm']['scale'] UpperCamelCase_ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers): UpperCamelCase_ = f"""layers_{str(_lowercase)}""" # Self-Attention UpperCamelCase_ = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] UpperCamelCase_ = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] UpperCamelCase_ = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] UpperCamelCase_ = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization UpperCamelCase_ = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention UpperCamelCase_ = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] UpperCamelCase_ = tax_enc_dec_attention_module['key']['kernel'] UpperCamelCase_ = tax_enc_dec_attention_module['out']['kernel'] UpperCamelCase_ = tax_enc_dec_attention_module['query']['kernel'] UpperCamelCase_ = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization UpperCamelCase_ = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: UpperCamelCase_ = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] UpperCamelCase_ = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: UpperCamelCase_ = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] UpperCamelCase_ = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization UpperCamelCase_ = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning UpperCamelCase_ = flax_model.params['decoder']['block'][str(_lowercase)]['layer'] UpperCamelCase_ = tax_attention_key UpperCamelCase_ = tax_attention_out UpperCamelCase_ = tax_attention_query UpperCamelCase_ = tax_attention_value UpperCamelCase_ = tax_pre_attention_layer_norm UpperCamelCase_ = tax_enc_dec_attention_key UpperCamelCase_ = tax_enc_dec_attention_out UpperCamelCase_ = tax_enc_dec_attention_query UpperCamelCase_ = tax_enc_dec_attention_value UpperCamelCase_ = tax_cross_layer_norm if split_mlp_wi: UpperCamelCase_ = tax_mlp_wi_a UpperCamelCase_ = tax_mlp_wi_a else: UpperCamelCase_ = tax_mlp_wi UpperCamelCase_ = tax_mlp_wo UpperCamelCase_ = txa_mlp_layer_norm UpperCamelCase_ = flax_model_decoder_layer_block # Decoder Normalization UpperCamelCase_ = tax_model['target']['decoder']['decoder_norm']['scale'] UpperCamelCase_ = txa_decoder_norm # Only for layer 0: UpperCamelCase_ = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T UpperCamelCase_ = tax_decoder_rel_embedding # Token Embeddings UpperCamelCase_ = tax_model['target']['token_embedder']['embedding'] UpperCamelCase_ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: UpperCamelCase_ = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(_lowercase) print('T5X Model was sucessfully converted!') if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path the T5X checkpoint.""" ) parser.add_argument("""--config_name""", default=None, type=str, required=True, help="""Config name of LongT5/T5 model.""") parser.add_argument( """--flax_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output FLAX model.""" ) snake_case__ : List[Any] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
23
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=0) -> int: UpperCamelCase = 1.0 if scale is None else scale UpperCamelCase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_)]) @property def UpperCAmelCase__ ( self) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase__ ( self) -> List[str]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase__ ( self) -> Any: return self.variance.sqrt() class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = args_dim UpperCamelCase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_) for dim in args_dim.values()]) UpperCamelCase = domain_map def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple[torch.Tensor]: UpperCamelCase = [proj(lowerCamelCase_) for proj in self.proj] return self.domain_map(*lowerCamelCase_) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__() UpperCamelCase = function def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_) -> Tuple: return self.function(lowerCamelCase_ , *lowerCamelCase_) class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , lowerCamelCase_ = 1) -> None: UpperCamelCase = dim UpperCamelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if self.dim == 1: return self.distribution_class(*lowerCamelCase_) else: return Independent(self.distribution_class(*lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Distribution: UpperCamelCase = self._base_distribution(lowerCamelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim) @property def UpperCAmelCase__ ( self) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase__ ( self) -> int: return len(self.event_shape) @property def UpperCAmelCase__ ( self) -> float: return 0.0 def UpperCAmelCase__ ( self , lowerCamelCase_) -> nn.Module: return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def UpperCAmelCase__ ( self , *lowerCamelCase_) -> List[str]: raise NotImplementedError() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCamelCase_) + 4.0)) / 2.0 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"df": 1, "loc": 1, "scale": 1} A_ = StudentT @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) UpperCamelCase = 2.0 + cls.squareplus(lowerCamelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"loc": 1, "scale": 1} A_ = Normal @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"total_count": 1, "logits": 1} A_ = NegativeBinomial @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = cls.squareplus(lowerCamelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
34
0
import string def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> List[Any]: '''simple docstring''' for key in range(len(string.ascii_uppercase)): __UpperCamelCase : int = "" for symbol in message: if symbol in string.ascii_uppercase: __UpperCamelCase : List[Any] = string.ascii_uppercase.find(_lowercase) __UpperCamelCase : Optional[int] = num - key if num < 0: __UpperCamelCase : Union[str, Any] = num + len(string.ascii_uppercase) __UpperCamelCase : str = translated + string.ascii_uppercase[num] else: __UpperCamelCase : List[Any] = translated + symbol print(F'Decryption using Key #{key}: {translated}') def _SCREAMING_SNAKE_CASE ( ) -> Any: '''simple docstring''' __UpperCamelCase : Union[str, Any] = input("Encrypted message: ") __UpperCamelCase : List[Any] = message.upper() decrypt(_lowercase) if __name__ == "__main__": import doctest doctest.testmod() main()
557
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowercase ,id=_lowercase )
34
0
from __future__ import annotations UpperCAmelCase_ : List[str] = tuple[int, int, int] UpperCAmelCase_ : Union[str, Any] = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase UpperCAmelCase_ : List[Any] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # -------------------------- default selection -------------------------- # rotors -------------------------- UpperCAmelCase_ : List[Any] = "EGZWVONAHDCLFQMSIPJBYUKXTR" UpperCAmelCase_ : str = "FOBHMDKEXQNRAULPGSJVTYICZW" UpperCAmelCase_ : List[Any] = "ZJXESIUQLHAVRMDOYGTNFWPBKC" # reflector -------------------------- UpperCAmelCase_ : List[Any] = { "A": "N", "N": "A", "B": "O", "O": "B", "C": "P", "P": "C", "D": "Q", "Q": "D", "E": "R", "R": "E", "F": "S", "S": "F", "G": "T", "T": "G", "H": "U", "U": "H", "I": "V", "V": "I", "J": "W", "W": "J", "K": "X", "X": "K", "L": "Y", "Y": "L", "M": "Z", "Z": "M", } # -------------------------- extra rotors -------------------------- UpperCAmelCase_ : int = "RMDJXFUWGISLHVTCQNKYPBEZOA" UpperCAmelCase_ : Tuple = "SGLCPQWZHKXAREONTFBVIYJUDM" UpperCAmelCase_ : Optional[Any] = "HVSICLTYKQUBXDWAJZOMFGPREN" UpperCAmelCase_ : Union[str, Any] = "RZWQHFMVDBKICJLNTUXAGYPSOE" UpperCAmelCase_ : str = "LFKIJODBEGAMQPXVUHYSTCZRWN" UpperCAmelCase_ : List[Any] = "KOAEGVDHXPQZMLFTYWJNBRCIUS" def UpperCamelCase ( _A : int , _A : Dict , _A : int )-> Tuple: """simple docstring""" if (unique_rotsel := len(set(_lowercase ) )) < 3: A__ = f"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(_lowercase ) # Checks if rotor positions are valid A__ , A__ , A__ = rotpos if not 0 < rotorposa <= len(_lowercase ): A__ = f"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(_lowercase ) if not 0 < rotorposa <= len(_lowercase ): A__ = f"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(_lowercase ) if not 0 < rotorposa <= len(_lowercase ): A__ = f"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(_lowercase ) # Validates string and returns dict A__ = _plugboard(_lowercase ) return rotpos, rotsel, pbdict def UpperCamelCase ( _A : Dict )-> Optional[Any]: """simple docstring""" if not isinstance(_lowercase , _lowercase ): A__ = f"""Plugboard setting isn\'t type string ({type(_lowercase )})""" raise TypeError(_lowercase ) elif len(_lowercase ) % 2 != 0: A__ = f"""Odd number of symbols ({len(_lowercase )})""" raise Exception(_lowercase ) elif pbstring == "": return {} pbstring.replace(" " , "" ) # Checks if all characters are unique A__ = set() for i in pbstring: if i not in abc: A__ = f"""\'{i}\' not in list of symbols""" raise Exception(_lowercase ) elif i in tmppbl: A__ = f"""Duplicate symbol ({i})""" raise Exception(_lowercase ) else: tmppbl.add(_lowercase ) del tmppbl # Created the dictionary A__ = {} for j in range(0 , len(_lowercase ) - 1 , 2 ): A__ = pbstring[j + 1] A__ = pbstring[j] return pb def UpperCamelCase ( _A : Optional[Any] , _A : Any , _A : int = (rotora, rotora, rotora) , _A : Optional[int] = "" , )-> Union[str, Any]: """simple docstring""" A__ = text.upper() A__ , A__ , A__ = _validator( _lowercase , _lowercase , plugb.upper() ) A__ , A__ , A__ = rotor_position A__ , A__ , A__ = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 A__ = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: A__ = plugboard[symbol] # rotor ra -------------------------- A__ = abc.index(_lowercase ) + rotorposa A__ = rotora[index % len(_lowercase )] # rotor rb -------------------------- A__ = abc.index(_lowercase ) + rotorposa A__ = rotora[index % len(_lowercase )] # rotor rc -------------------------- A__ = abc.index(_lowercase ) + rotorposa A__ = rotora[index % len(_lowercase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher A__ = reflector[symbol] # 2nd rotors A__ = abc[rotora.index(_lowercase ) - rotorposa] A__ = abc[rotora.index(_lowercase ) - rotorposa] A__ = abc[rotora.index(_lowercase ) - rotorposa] # 2nd plugboard if symbol in plugboard: A__ = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_lowercase ): A__ = 0 rotorposa += 1 if rotorposa >= len(_lowercase ): A__ = 0 rotorposa += 1 if rotorposa >= len(_lowercase ): A__ = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": UpperCAmelCase_ : int = "This is my Python script that emulates the Enigma machine from WWII." UpperCAmelCase_ : List[str] = (1, 1, 1) UpperCAmelCase_ : int = "pictures" UpperCAmelCase_ : Union[str, Any] = (rotora, rotora, rotora) UpperCAmelCase_ : List[Any] = enigma(message, rotor_pos, rotor_sel, pb) print("Encrypted message:", en) print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
491
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
34
0
import random def __lowerCAmelCase ( _A ,_A ): """simple docstring""" _lowercase , _lowercase , _lowercase = [], [], [] for element in data: if element < pivot: less.append(_lowercase ) elif element > pivot: greater.append(_lowercase ) else: equal.append(_lowercase ) return less, equal, greater def __lowerCAmelCase ( _A ,_A ): """simple docstring""" if index >= len(_lowercase ) or index < 0: return None _lowercase = items[random.randint(0 ,len(_lowercase ) - 1 )] _lowercase = 0 _lowercase , _lowercase , _lowercase = _partition(_lowercase ,_lowercase ) _lowercase = len(_lowercase ) _lowercase = len(_lowercase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_lowercase ,_lowercase ) # must be in larger else: return quick_select(_lowercase ,index - (m + count) )
398
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
0
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC UpperCAmelCase__ :Union[str, Any] = parse(importlib.metadata.version("""torch""")) def __lowercase (_lowercase, _lowercase, _lowercase ) -> List[Any]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}" ) __lowerCamelCase : Dict = STR_OPERATION_TO_FUNC[operation] if isinstance(_lowercase, _lowercase ): __lowerCamelCase : str = parse(importlib.metadata.version(_lowercase ) ) return operation(_lowercase, parse(_lowercase ) ) def __lowercase (_lowercase, _lowercase ) -> List[Any]: """simple docstring""" return compare_versions(_lowercase, _lowercase, _lowercase )
150
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase = getattr(_lowercase ,_lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase ,_lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) UpperCamelCase = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCamelCase = torch.tensor(_lowercase ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_lowercase ) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to(_lowercase ) else: UpperCamelCase = torch.tensor(_lowercase ,device=_lowercase ) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase ,requires_grad=old_value.requires_grad ) UpperCamelCase = new_value def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase ,nn.Linear ) or isinstance(_lowercase ,_lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase ,_lowercase ): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase ,_lowercase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase ,_lowercase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ,has_been_replaced=_lowercase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,_lowercase ,) return replace_with_bnb_linear(*_lowercase ,**_lowercase ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,_lowercase ,) return set_module_quantized_tensor_to_device(*_lowercase ,**_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase ,_lowercase ): UpperCamelCase = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(_lowercase ,[] ) UpperCamelCase = len(_lowercase ) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase ) - set(_lowercase ) UpperCamelCase = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase ,'''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names
34
0
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __snake_case ( lowerCamelCase_): _lowerCAmelCase = 42 _lowerCAmelCase = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
320
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase ) count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 ) count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase ) return count def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_lowercase ,_lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_ = TemporaryFile() SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_ = np.load(outfile) SCREAMING_SNAKE_CASE_ = len(M) - 1 SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
34
0
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _lowerCamelCase : Dict = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe",safety_checker=lowerCamelCase_,cache_dir=lowerCamelCase_ ) _lowerCamelCase : Tuple = [t[-1] for t in os.walk(os.path.join(lowerCamelCase_,os.listdir(lowerCamelCase_ )[0],"snapshots" ) )] _lowerCamelCase : List[Any] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase , _lowerCamelCase : str = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe",safety_checker=lowerCamelCase_ ) _lowerCamelCase : List[Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) _lowerCamelCase : int = jax.random.PRNGKey(0 ) _lowerCamelCase : Optional[int] = 4 _lowerCamelCase : List[str] = jax.device_count() _lowerCamelCase : List[str] = num_samples * [prompt] _lowerCamelCase : Optional[Any] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng _lowerCamelCase : Optional[int] = replicate(lowerCamelCase_ ) _lowerCamelCase : Any = jax.random.split(lowerCamelCase_,lowerCamelCase_ ) _lowerCamelCase : Tuple = shard(lowerCamelCase_ ) _lowerCamelCase : Optional[Any] = pipeline(lowerCamelCase_,lowerCamelCase_,lowerCamelCase_,lowerCamelCase_,jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:],dtype=np.floataa ).sum() - 4.1514745 ) < 1e-3 assert np.abs(np.abs(lowerCamelCase_,dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 _lowerCamelCase : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase_ ) == num_samples def lowerCamelCase_ ( self : int ): _lowerCamelCase , _lowerCamelCase : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4",revision="flax",safety_checker=lowerCamelCase_ ) _lowerCamelCase : str = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) _lowerCamelCase : Optional[int] = jax.random.PRNGKey(0 ) _lowerCamelCase : Optional[int] = 5_0 _lowerCamelCase : Tuple = jax.device_count() _lowerCamelCase : str = num_samples * [prompt] _lowerCamelCase : Dict = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng _lowerCamelCase : Dict = replicate(lowerCamelCase_ ) _lowerCamelCase : str = jax.random.split(lowerCamelCase_,lowerCamelCase_ ) _lowerCamelCase : Union[str, Any] = shard(lowerCamelCase_ ) _lowerCamelCase : Any = pipeline(lowerCamelCase_,lowerCamelCase_,lowerCamelCase_,lowerCamelCase_,jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:],dtype=np.floataa ).sum() - 0.05652401) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_,dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase , _lowerCamelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4",revision="bf16",dtype=jnp.bfloataa,safety_checker=lowerCamelCase_ ) _lowerCamelCase : Tuple = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) _lowerCamelCase : Any = jax.random.PRNGKey(0 ) _lowerCamelCase : Optional[int] = 5_0 _lowerCamelCase : int = jax.device_count() _lowerCamelCase : Union[str, Any] = num_samples * [prompt] _lowerCamelCase : Tuple = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng _lowerCamelCase : List[str] = replicate(lowerCamelCase_ ) _lowerCamelCase : Union[str, Any] = jax.random.split(lowerCamelCase_,lowerCamelCase_ ) _lowerCamelCase : int = shard(lowerCamelCase_ ) _lowerCamelCase : Any = pipeline(lowerCamelCase_,lowerCamelCase_,lowerCamelCase_,lowerCamelCase_,jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:],dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_,dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def lowerCamelCase_ ( self : Any ): _lowerCamelCase , _lowerCamelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4",revision="bf16",dtype=jnp.bfloataa ) _lowerCamelCase : List[str] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) _lowerCamelCase : Dict = jax.random.PRNGKey(0 ) _lowerCamelCase : Optional[Any] = 5_0 _lowerCamelCase : Optional[Any] = jax.device_count() _lowerCamelCase : int = num_samples * [prompt] _lowerCamelCase : str = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng _lowerCamelCase : int = replicate(lowerCamelCase_ ) _lowerCamelCase : List[Any] = jax.random.split(lowerCamelCase_,lowerCamelCase_ ) _lowerCamelCase : List[str] = shard(lowerCamelCase_ ) _lowerCamelCase : Any = pipeline(lowerCamelCase_,lowerCamelCase_,lowerCamelCase_,lowerCamelCase_,jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:],dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_,dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = FlaxDDIMScheduler( beta_start=0.00085,beta_end=0.012,beta_schedule="scaled_linear",set_alpha_to_one=lowerCamelCase_,steps_offset=1,) _lowerCamelCase , _lowerCamelCase : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4",revision="bf16",dtype=jnp.bfloataa,scheduler=lowerCamelCase_,safety_checker=lowerCamelCase_,) _lowerCamelCase : Union[str, Any] = scheduler.create_state() _lowerCamelCase : Dict = scheduler_state _lowerCamelCase : Dict = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) _lowerCamelCase : Optional[int] = jax.random.PRNGKey(0 ) _lowerCamelCase : Dict = 5_0 _lowerCamelCase : int = jax.device_count() _lowerCamelCase : Optional[Any] = num_samples * [prompt] _lowerCamelCase : Optional[Any] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng _lowerCamelCase : List[str] = replicate(lowerCamelCase_ ) _lowerCamelCase : Tuple = jax.random.split(lowerCamelCase_,lowerCamelCase_ ) _lowerCamelCase : Dict = shard(lowerCamelCase_ ) _lowerCamelCase : Tuple = pipeline(lowerCamelCase_,lowerCamelCase_,lowerCamelCase_,lowerCamelCase_,jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:],dtype=np.floataa ).sum() - 0.045043945) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_,dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) _lowerCamelCase : Tuple = jax.device_count() _lowerCamelCase : Optional[Any] = num_samples * [prompt] _lowerCamelCase : Optional[int] = jax.random.split(jax.random.PRNGKey(0 ),lowerCamelCase_ ) _lowerCamelCase , _lowerCamelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4",revision="bf16",dtype=jnp.bfloataa,safety_checker=lowerCamelCase_,) _lowerCamelCase : Optional[int] = replicate(lowerCamelCase_ ) _lowerCamelCase : Union[str, Any] = pipeline.prepare_inputs(lowerCamelCase_ ) _lowerCamelCase : Dict = shard(lowerCamelCase_ ) _lowerCamelCase : Tuple = pipeline(lowerCamelCase_,lowerCamelCase_,lowerCamelCase_,jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Dict = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention _lowerCamelCase , _lowerCamelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4",revision="bf16",dtype=jnp.bfloataa,safety_checker=lowerCamelCase_,use_memory_efficient_attention=lowerCamelCase_,) _lowerCamelCase : Optional[Any] = replicate(lowerCamelCase_ ) _lowerCamelCase : Union[str, Any] = pipeline.prepare_inputs(lowerCamelCase_ ) _lowerCamelCase : Any = shard(lowerCamelCase_ ) _lowerCamelCase : Dict = pipeline(lowerCamelCase_,lowerCamelCase_,lowerCamelCase_,jit=lowerCamelCase_ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Optional[int] = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
44
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE_ = os.path.join(git_repo_path, 'src', 'transformers') SCREAMING_SNAKE_CASE_ = '\n{0} = None\n' SCREAMING_SNAKE_CASE_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' SCREAMING_SNAKE_CASE_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowerCamelCase_) UpperCamelCase = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowerCamelCase_ , '''tokenizers''') UpperCamelCase = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowerCamelCase_ , '''tensorflow_text''') UpperCamelCase = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tensorflow_text''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers_and_vision''') def UpperCAmelCase__ ( self) -> int: UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCamelCase_) self.assertIn('''tensorflow_text''' , lowerCamelCase_) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCamelCase_) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , '''\nCONSTANT = None\n''') UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowerCamelCase_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowerCamelCase_)
34
0
import os import sys import unittest a_ : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path a_ : Optional[Any] = os.path.join(git_repo_path, 'src', 'transformers') a_ : Optional[Any] = '\n{0} = None\n' a_ : Any = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' a_ : List[str] = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def _a (self ): '''simple docstring''' lowerCamelCase = find_backend(" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")" ) self.assertIsNone(lowerCamelCase_ ) lowerCamelCase = find_backend(" if not is_tokenizers_available():" ) self.assertEqual(lowerCamelCase_ , "tokenizers" ) lowerCamelCase = find_backend(" if not is_tensorflow_text_available():" ) self.assertEqual(lowerCamelCase_ , "tensorflow_text" ) lowerCamelCase = find_backend(" if not (is_sentencepiece_available() and is_tokenizers_available()):" ) self.assertEqual(lowerCamelCase_ , "sentencepiece_and_tokenizers" ) lowerCamelCase = find_backend( " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" ) self.assertEqual(lowerCamelCase_ , "sentencepiece_and_tensorflow_text" ) lowerCamelCase = find_backend( " if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):" ) self.assertEqual(lowerCamelCase_ , "sentencepiece_and_tokenizers_and_vision" ) def _a (self ): '''simple docstring''' lowerCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , lowerCamelCase_ ) self.assertIn("tensorflow_text" , lowerCamelCase_ ) self.assertIn("sentencepiece_and_tokenizers" , lowerCamelCase_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("BertModel" , objects["torch"] ) self.assertIn("TFBertModel" , objects["tf"] ) self.assertIn("FlaxBertModel" , objects["flax"] ) self.assertIn("BertModel" , objects["torch"] ) self.assertIn("TFBertTokenizer" , objects["tensorflow_text"] ) self.assertIn("convert_slow_tokenizer" , objects["sentencepiece_and_tokenizers"] ) def _a (self ): '''simple docstring''' lowerCamelCase = create_dummy_object("CONSTANT" , "\'torch\'" ) self.assertEqual(lowerCamelCase_ , "\nCONSTANT = None\n" ) lowerCamelCase = create_dummy_object("function" , "\'torch\'" ) self.assertEqual( lowerCamelCase_ , "\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n" ) lowerCamelCase = "\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n" lowerCamelCase = create_dummy_object("FakeClass" , "\'torch\'" ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def _a (self ): '''simple docstring''' lowerCamelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n" lowerCamelCase = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , lowerCamelCase_ )
623
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __snake_case ( _lowercase ): """simple docstring""" if "cls_token" in name: UpperCamelCase = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: UpperCamelCase = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: UpperCamelCase = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: UpperCamelCase = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: UpperCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: UpperCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: UpperCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: UpperCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: UpperCamelCase = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: UpperCamelCase = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: UpperCamelCase = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCamelCase = key.split('''.''' ) UpperCamelCase = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase = config.decoder_hidden_size UpperCamelCase = '''decoder.decoder_layers.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = config.hidden_size UpperCamelCase = '''vit.encoder.layer.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = val return orig_state_dict def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 elif "huge" in checkpoint_url: UpperCamelCase = 14 UpperCamelCase = 1280 UpperCamelCase = 5120 UpperCamelCase = 32 UpperCamelCase = 16 UpperCamelCase = ViTMAEForPreTraining(_lowercase ) UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' )['''model'''] UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = convert_state_dict(_lowercase ,_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCamelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = image_processor(images=_lowercase ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits if "large" in checkpoint_url: UpperCamelCase = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
34
0
'''simple docstring''' def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = int(_lowercase ) if n_element < 1: A_ : List[str] = ValueError("""a should be a positive number""" ) raise my_error A_ : List[str] = [1] A_, A_, A_ : str = (0, 0, 0) A_ : Tuple = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCamelCase :int = input('''Enter the last number (nth term) of the Hamming Number Series: ''') print('''Formula of Hamming Number Series => 2^i * 3^j * 5^k''') lowerCamelCase :Dict = hamming(int(n)) print('''-----------------------------------------------------''') print(F"The list with nth numbers is: {hamming_numbers}") print('''-----------------------------------------------------''')
667
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Any: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase = mock_training_loop_function('''hello''') self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def UpperCAmelCase__ ( self) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(lowerCamelCase_): pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Dict: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): raise ValueError('''Oops, we had an error!''') with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase_) UpperCamelCase = release_memory(lowerCamelCase_) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase_)
34
0
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowerCamelCase = ["""text""", """image""", """audio"""] def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =[] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3_000 ) ) elif isinstance(_lowercase , _lowercase ): inputs.append(create_inputs(_lowercase ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =[] for output in outputs: if isinstance(_lowercase , (str, AgentText) ): output_types.append('text' ) elif isinstance(_lowercase , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(_lowercase , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class _UpperCamelCase : '''simple docstring''' def __lowerCamelCase ( self : Any): '''simple docstring''' self.assertTrue(hasattr(self.tool , 'inputs')) self.assertTrue(hasattr(self.tool , 'outputs')) __lowercase =self.tool.inputs for _input in inputs: if isinstance(_input , lowerCamelCase_): for __input in _input: self.assertTrue(__input in authorized_types) else: self.assertTrue(_input in authorized_types) __lowercase =self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =create_inputs(self.tool.inputs) __lowercase =self.tool(*lowerCamelCase_) # There is a single output if len(self.tool.outputs) == 1: __lowercase =[outputs] self.assertListEqual(output_types(lowerCamelCase_) , self.tool.outputs) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' self.assertTrue(hasattr(self.tool , 'description')) self.assertTrue(hasattr(self.tool , 'default_checkpoint')) self.assertTrue(self.tool.description.startswith('This is a tool that')) def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =create_inputs(self.tool.inputs) __lowercase =self.tool(*lowerCamelCase_) if not isinstance(lowerCamelCase_ , lowerCamelCase_): __lowercase =[outputs] self.assertEqual(len(lowerCamelCase_) , len(self.tool.outputs)) for output, output_type in zip(lowerCamelCase_ , self.tool.outputs): __lowercase =AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_)) def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =create_inputs(self.tool.inputs) __lowercase =[] for _input, input_type in zip(lowerCamelCase_ , self.tool.inputs): if isinstance(lowerCamelCase_ , lowerCamelCase_): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) # Should not raise an error __lowercase =self.tool(*lowerCamelCase_) if not isinstance(lowerCamelCase_ , lowerCamelCase_): __lowercase =[outputs] self.assertEqual(len(lowerCamelCase_) , len(self.tool.outputs))
474
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ = 1_0_1) -> Tuple: UpperCamelCase = length def __len__( self) -> List[str]: return self.length def __getitem__( self , lowerCamelCase_) -> int: return i class snake_case_ : """simple docstring""" def __call__( self , lowerCamelCase_) -> str: return {"input_ids": torch.tensor(lowerCamelCase_), "labels": torch.tensor(lowerCamelCase_)} class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> List[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase = nn.Linear(1_2_0 , 8_0) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_neuroncore def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_multi_gpu def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE_ = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()[0] logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' f'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE_ = DummyDataset(dataset_length) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = list(range(len(_lowercase ) ) ) UpperCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} SCREAMING_SNAKE_CASE_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = None
34
0
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig SCREAMING_SNAKE_CASE_:Dict = [ """openmmlab/upernet-convnext-tiny""", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring SCREAMING_SNAKE_CASE_:Dict = """UperNetConfig""" class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = 0, lowerCamelCase__ = False, lowerCamelCase__ = 1, ): super().__init__() A : Optional[Any] = nn.Convad( in_channels=lowerCamelCase_, out_channels=lowerCamelCase_, kernel_size=lowerCamelCase_, padding=lowerCamelCase_, bias=lowerCamelCase_, dilation=lowerCamelCase_, ) A : List[str] = nn.BatchNormad(lowerCamelCase_ ) A : Optional[int] = nn.ReLU() def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Tuple = self.conv(lowerCamelCase_ ) A : str = self.batch_norm(lowerCamelCase_ ) A : Tuple = self.activation(lowerCamelCase_ ) return output class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): super().__init__() A : List[str] = [ nn.AdaptiveAvgPoolad(lowerCamelCase_ ), UperNetConvModule(lowerCamelCase_, lowerCamelCase_, kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(lowerCamelCase_ ), lowerCamelCase_ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : List[Any] = input for layer in self.layers: A : Tuple = layer(lowerCamelCase_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): super().__init__() A : Dict = pool_scales A : Dict = align_corners A : List[str] = in_channels A : Dict = channels A : int = [] for i, pool_scale in enumerate(lowerCamelCase_ ): A : Union[str, Any] = UperNetPyramidPoolingBlock(pool_scale=lowerCamelCase_, in_channels=lowerCamelCase_, channels=lowerCamelCase_ ) self.blocks.append(lowerCamelCase_ ) self.add_module(str(lowerCamelCase_ ), lowerCamelCase_ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Any = [] for ppm in self.blocks: A : List[str] = ppm(lowerCamelCase_ ) A : Dict = nn.functional.interpolate( lowerCamelCase_, size=x.size()[2:], mode="""bilinear""", align_corners=self.align_corners ) ppm_outs.append(lowerCamelCase_ ) return ppm_outs class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ ): super().__init__() A : Optional[Any] = config A : int = config.pool_scales # e.g. (1, 2, 3, 6) A : Optional[int] = in_channels A : Any = config.hidden_size A : int = False A : List[str] = nn.Convad(self.channels, config.num_labels, kernel_size=1 ) # PSP Module A : str = UperNetPyramidPoolingModule( self.pool_scales, self.in_channels[-1], self.channels, align_corners=self.align_corners, ) A : List[Any] = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels, self.channels, kernel_size=3, padding=1, ) # FPN Module A : List[str] = nn.ModuleList() A : str = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer A : Optional[int] = UperNetConvModule(lowerCamelCase_, self.channels, kernel_size=1 ) A : Any = UperNetConvModule(self.channels, self.channels, kernel_size=3, padding=1 ) self.lateral_convs.append(lowerCamelCase_ ) self.fpn_convs.append(lowerCamelCase_ ) A : Dict = UperNetConvModule( len(self.in_channels ) * self.channels, self.channels, kernel_size=3, padding=1, ) def _lowerCAmelCase ( self ): self.apply(self._init_weights ) def _lowerCAmelCase ( self, lowerCamelCase__ ): if isinstance(lowerCamelCase_, nn.Convad ): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Optional[int] = inputs[-1] A : List[Any] = [x] psp_outs.extend(self.psp_modules(lowerCamelCase_ ) ) A : str = torch.cat(lowerCamelCase_, dim=1 ) A : Tuple = self.bottleneck(lowerCamelCase_ ) return output def _lowerCAmelCase ( self, lowerCamelCase__ ): # build laterals A : Optional[Any] = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(lowerCamelCase_ ) ) # build top-down path A : List[str] = len(lowerCamelCase_ ) for i in range(used_backbone_levels - 1, 0, -1 ): A : int = laterals[i - 1].shape[2:] A : int = laterals[i - 1] + nn.functional.interpolate( laterals[i], size=lowerCamelCase_, mode="""bilinear""", align_corners=self.align_corners ) # build outputs A : Dict = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1, 0, -1 ): A : Optional[Any] = nn.functional.interpolate( fpn_outs[i], size=fpn_outs[0].shape[2:], mode="""bilinear""", align_corners=self.align_corners ) A : str = torch.cat(lowerCamelCase_, dim=1 ) A : List[str] = self.fpn_bottleneck(lowerCamelCase_ ) A : Optional[int] = self.classifier(lowerCamelCase_ ) return output class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__ = 2, lowerCamelCase__ = 3, lowerCamelCase__ = 1 ): super().__init__() A : Union[str, Any] = config A : Optional[int] = config.auxiliary_in_channels A : Any = config.auxiliary_channels A : int = config.auxiliary_num_convs A : List[str] = config.auxiliary_concat_input A : int = in_index A : List[str] = (kernel_size // 2) * dilation A : Optional[int] = [] convs.append( UperNetConvModule( self.in_channels, self.channels, kernel_size=lowerCamelCase_, padding=lowerCamelCase_, dilation=lowerCamelCase_ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels, self.channels, kernel_size=lowerCamelCase_, padding=lowerCamelCase_, dilation=lowerCamelCase_ ) ) if self.num_convs == 0: A : Dict = nn.Identity() else: A : Tuple = nn.Sequential(*lowerCamelCase_ ) if self.concat_input: A : List[Any] = UperNetConvModule( self.in_channels + self.channels, self.channels, kernel_size=lowerCamelCase_, padding=kernel_size // 2 ) A : Any = nn.Convad(self.channels, config.num_labels, kernel_size=1 ) def _lowerCAmelCase ( self ): self.apply(self._init_weights ) def _lowerCAmelCase ( self, lowerCamelCase__ ): if isinstance(lowerCamelCase_, nn.Convad ): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowerCAmelCase ( self, lowerCamelCase__ ): # just take the relevant feature maps A : Optional[int] = encoder_hidden_states[self.in_index] A : Union[str, Any] = self.convs(lowerCamelCase_ ) if self.concat_input: A : Any = self.conv_cat(torch.cat([hidden_states, output], dim=1 ) ) A : Optional[int] = self.classifier(lowerCamelCase_ ) return output class SCREAMING_SNAKE_CASE__ ( lowerCamelCase_ ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = UperNetConfig __lowerCamelCase : List[Any] = "pixel_values" __lowerCamelCase : Optional[Any] = True def _lowerCAmelCase ( self, lowerCamelCase__ ): if isinstance(lowerCamelCase_, lowerCamelCase_ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _lowerCAmelCase ( self ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__=False ): if isinstance(lowerCamelCase_, lowerCamelCase_ ): A : Optional[int] = value SCREAMING_SNAKE_CASE_:List[str] = R"""\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n""" SCREAMING_SNAKE_CASE_:Tuple = R"""\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n""" @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , lowerCamelCase_ , ) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self, lowerCamelCase__ ): super().__init__(lowerCamelCase_ ) A : List[Any] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) A : Union[str, Any] = UperNetHead(lowerCamelCase_, in_channels=self.backbone.channels ) A : Union[str, Any] = UperNetFCNHead(lowerCamelCase_ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=lowerCamelCase_, config_class=_CONFIG_FOR_DOC ) def _lowerCAmelCase ( self, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, ): A : Tuple = return_dict if return_dict is not None else self.config.use_return_dict A : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A : Optional[Any] = output_attentions if output_attentions is not None else self.config.output_attentions A : Any = self.backbone.forward_with_filtered_kwargs( lowerCamelCase_, output_hidden_states=lowerCamelCase_, output_attentions=lowerCamelCase_ ) A : Optional[int] = outputs.feature_maps A : Any = self.decode_head(lowerCamelCase_ ) A : Optional[Any] = nn.functional.interpolate(lowerCamelCase_, size=pixel_values.shape[2:], mode="""bilinear""", align_corners=lowerCamelCase_ ) A : List[Any] = None if self.auxiliary_head is not None: A : int = self.auxiliary_head(lowerCamelCase_ ) A : Tuple = nn.functional.interpolate( lowerCamelCase_, size=pixel_values.shape[2:], mode="""bilinear""", align_corners=lowerCamelCase_ ) A : Optional[int] = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss A : Any = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) A : Tuple = loss_fct(lowerCamelCase_, lowerCamelCase_ ) A : Union[str, Any] = loss_fct(lowerCamelCase_, lowerCamelCase_ ) A : List[str] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: A : Any = (logits,) + outputs[1:] else: A : Any = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=lowerCamelCase_, logits=lowerCamelCase_, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
662
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for tf_name, hf_name in patterns: UpperCamelCase = k.replace(_lowercase ,_lowercase ) return k def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = BigBirdPegasusConfig(**_lowercase ) UpperCamelCase = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCamelCase = torch_model.state_dict() UpperCamelCase = {} # separating decoder weights UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = DECODER_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = REMAINING_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCamelCase = mapping['''model.embed_positions.weight'''] UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(_lowercase ,strict=_lowercase ) UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tf.train.list_variables(_lowercase ) UpperCamelCase = {} UpperCamelCase = ['''global_step'''] for name, shape in tqdm(_lowercase ,desc='''converting tf checkpoint to dict''' ): UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase = tf.train.load_variable(_lowercase ,_lowercase ) UpperCamelCase = array return tf_weights def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = get_tf_weights_as_numpy(_lowercase ) UpperCamelCase = convert_bigbird_pegasus(_lowercase ,_lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
34
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class _a ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = BertJapaneseTokenizer A_ = False A_ = True def _UpperCAmelCase ( self ) -> Optional[Any]: super().setUp() UpperCamelCase_ = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = 'こんにちは、世界。 \nこんばんは、世界。' UpperCamelCase_ = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ , UpperCamelCase_ = self.get_input_output_texts(lowerCamelCase_ ) UpperCamelCase_ = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) UpperCamelCase_ = tokenizer.decode(lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ ) return text, ids def _UpperCAmelCase ( self ) -> str: pass # TODO add if relevant def _UpperCAmelCase ( self ) -> List[str]: pass # TODO add if relevant def _UpperCAmelCase ( self ) -> Optional[int]: pass # TODO add if relevant def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = self.tokenizer_class(self.vocab_file ) UpperCamelCase_ = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(lowerCamelCase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(lowerCamelCase_ ) UpperCamelCase_ = 'こんにちは、世界。\nこんばんは、世界。' UpperCamelCase_ = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) UpperCamelCase_ = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(lowerCamelCase_ , 'wb' ) as handle: pickle.dump(lowerCamelCase_ , lowerCamelCase_ ) with open(lowerCamelCase_ , 'rb' ) as handle: UpperCamelCase_ = pickle.load(lowerCamelCase_ ) UpperCamelCase_ = tokenizer_new.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def _UpperCAmelCase ( self ) -> int: try: UpperCamelCase_ = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def _UpperCAmelCase ( self ) -> Optional[Any]: try: UpperCamelCase_ = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = MecabTokenizer(do_lower_case=lowerCamelCase_ , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def _UpperCAmelCase ( self ) -> int: try: UpperCamelCase_ = MecabTokenizer( do_lower_case=lowerCamelCase_ , normalize_text=lowerCamelCase_ , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = MecabTokenizer(normalize_text=lowerCamelCase_ , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(lowerCamelCase_ ) UpperCamelCase_ = 'こんにちは、世界。\nこんばんは、世界。' UpperCamelCase_ = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) UpperCamelCase_ = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(lowerCamelCase_ , 'wb' ) as handle: pickle.dump(lowerCamelCase_ , lowerCamelCase_ ) with open(lowerCamelCase_ , 'rb' ) as handle: UpperCamelCase_ = pickle.load(lowerCamelCase_ ) UpperCamelCase_ = tokenizer_new.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @require_sudachi def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = SudachiTokenizer(do_lower_case=lowerCamelCase_ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = SudachiTokenizer(normalize_text=lowerCamelCase_ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = SudachiTokenizer(trim_whitespace=lowerCamelCase_ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(lowerCamelCase_ ) UpperCamelCase_ = 'こんにちは、世界。\nこんばんは、世界。' UpperCamelCase_ = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) UpperCamelCase_ = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(lowerCamelCase_ , 'wb' ) as handle: pickle.dump(lowerCamelCase_ , lowerCamelCase_ ) with open(lowerCamelCase_ , 'rb' ) as handle: UpperCamelCase_ = pickle.load(lowerCamelCase_ ) UpperCamelCase_ = tokenizer_new.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @require_jumanpp def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = JumanppTokenizer(do_lower_case=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = JumanppTokenizer(normalize_text=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = JumanppTokenizer(trim_whitespace=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] UpperCamelCase_ = {} for i, token in enumerate(lowerCamelCase_ ): UpperCamelCase_ = i UpperCamelCase_ = WordpieceTokenizer(vocab=lowerCamelCase_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) UpperCamelCase_ = tokenizer.subword_tokenizer UpperCamelCase_ = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(lowerCamelCase_ , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) UpperCamelCase_ = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(lowerCamelCase_ , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) UpperCamelCase_ = tokenizer.encode('ありがとう。' , add_special_tokens=lowerCamelCase_ ) UpperCamelCase_ = tokenizer.encode('どういたしまして。' , add_special_tokens=lowerCamelCase_ ) UpperCamelCase_ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) UpperCamelCase_ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _a ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = BertJapaneseTokenizer A_ = False def _UpperCAmelCase ( self ) -> str: super().setUp() UpperCamelCase_ = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> str: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **lowerCamelCase_ ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Optional[Any]: UpperCamelCase_ = 'こんにちは、世界。 \nこんばんは、世界。' UpperCamelCase_ = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def _UpperCAmelCase ( self ) -> Tuple: pass # TODO add if relevant def _UpperCAmelCase ( self ) -> Optional[Any]: pass # TODO add if relevant def _UpperCAmelCase ( self ) -> str: pass # TODO add if relevant def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) UpperCamelCase_ = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( lowerCamelCase_ , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] UpperCamelCase_ = {} for i, token in enumerate(lowerCamelCase_ ): UpperCamelCase_ = i UpperCamelCase_ = CharacterTokenizer(vocab=lowerCamelCase_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) UpperCamelCase_ = tokenizer.encode('ありがとう。' , add_special_tokens=lowerCamelCase_ ) UpperCamelCase_ = tokenizer.encode('どういたしまして。' , add_special_tokens=lowerCamelCase_ ) UpperCamelCase_ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) UpperCamelCase_ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = 'cl-tohoku/bert-base-japanese' UpperCamelCase_ = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(lowerCamelCase_ ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) UpperCamelCase_ = 'bert-base-cased' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(lowerCamelCase_ ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
23
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
0
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple) -> Union[str, Any]: '''simple docstring''' if not isinstance(_lowercase , _lowercase): raise ValueError("Input must be an integer") if input_num <= 0: raise ValueError("Input must be positive") return sum( divisor for divisor in range(1 , input_num // 2 + 1) if input_num % divisor == 0) if __name__ == "__main__": import doctest doctest.testmod()
557
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> Any: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase_ , ) return config, input_ids, attention_mask def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = FlaxDistilBertModelTester(self) @slow def UpperCAmelCase__ ( self) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowerCamelCase_) @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)[0] UpperCamelCase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , lowerCamelCase_) UpperCamelCase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4))
34
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class UpperCamelCase ( unittest.TestCase ): def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): return F"""gaussian_noise_s={seed}_shape={"_".join([str(lowerCamelCase_ ) for s in shape] )}.npy""" def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def __A ( self , UpperCAmelCase__=0 , UpperCAmelCase__=(4, 4, 64, 64) , UpperCAmelCase__=False ): A__ = jnp.bfloataa if fpaa else jnp.floataa A__ = jnp.array(load_hf_numpy(self.get_file_format(lowerCamelCase_ , lowerCamelCase_ ) ) , dtype=lowerCamelCase_ ) return image def __A ( self , UpperCAmelCase__=False , UpperCAmelCase__="CompVis/stable-diffusion-v1-4" ): A__ = jnp.bfloataa if fpaa else jnp.floataa A__ = "bf16" if fpaa else None A__ , A__ = FlaxUNetaDConditionModel.from_pretrained( lowerCamelCase_ , subfolder="unet" , dtype=lowerCamelCase_ , revision=lowerCamelCase_ ) return model, params def __A ( self , UpperCAmelCase__=0 , UpperCAmelCase__=(4, 77, 768) , UpperCAmelCase__=False ): A__ = jnp.bfloataa if fpaa else jnp.floataa A__ = jnp.array(load_hf_numpy(self.get_file_format(lowerCamelCase_ , lowerCamelCase_ ) ) , dtype=lowerCamelCase_ ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1_000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ] ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): A__ , A__ = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4" , fpaa=lowerCamelCase_ ) A__ = self.get_latents(lowerCamelCase_ , fpaa=lowerCamelCase_ ) A__ = self.get_encoder_hidden_states(lowerCamelCase_ , fpaa=lowerCamelCase_ ) A__ = model.apply( {"params": params} , lowerCamelCase_ , jnp.array(lowerCamelCase_ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCamelCase_ , ).sample assert sample.shape == latents.shape A__ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) A__ = jnp.array(lowerCamelCase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1_000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ] ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): A__ , A__ = self.get_unet_model(model_id="stabilityai/stable-diffusion-2" , fpaa=lowerCamelCase_ ) A__ = self.get_latents(lowerCamelCase_ , shape=(4, 4, 96, 96) , fpaa=lowerCamelCase_ ) A__ = self.get_encoder_hidden_states(lowerCamelCase_ , shape=(4, 77, 1_024) , fpaa=lowerCamelCase_ ) A__ = model.apply( {"params": params} , lowerCamelCase_ , jnp.array(lowerCamelCase_ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCamelCase_ , ).sample assert sample.shape == latents.shape A__ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) A__ = jnp.array(lowerCamelCase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-2 )
491
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowercase ( lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ = ['image_processor', 'tokenizer'] lowerCAmelCase__ = 'AutoImageProcessor' lowerCAmelCase__ = 'AutoTokenizer' def __init__( self , UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' super().__init__(lowerCamelCase_ , lowerCamelCase_ ) _lowercase = self.image_processor def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _lowercase = self.tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if images is not None: _lowercase = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if text is not None and images is not None: _lowercase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ) , tensor_type=lowerCamelCase_ ) def _UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def _UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
398
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
0
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __lowercase (_lowercase ) -> List[Any]: """simple docstring""" __lowerCamelCase : Tuple = [] __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : Union[str, Any] = [] for rt in rc.restypes: __lowerCamelCase : Tuple = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) __lowerCamelCase : List[str] = {name: i for i, name in enumerate(_lowercase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) __lowerCamelCase : Dict = torch.tensor( _lowercase, dtype=torch.intaa, device=protein["""aatype"""].device, ) __lowerCamelCase : Union[str, Any] = torch.tensor( _lowercase, dtype=torch.intaa, device=protein["""aatype"""].device, ) __lowerCamelCase : List[Any] = torch.tensor( _lowercase, dtype=torch.floataa, device=protein["""aatype"""].device, ) __lowerCamelCase : int = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein __lowerCamelCase : List[Any] = restype_atomaa_to_atomaa[protein_aatype] __lowerCamelCase : Any = restype_atomaa_mask[protein_aatype] __lowerCamelCase : List[str] = residx_atomaa_mask __lowerCamelCase : Any = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back __lowerCamelCase : Any = restype_atomaa_to_atomaa[protein_aatype] __lowerCamelCase : Optional[Any] = residx_atomaa_to_atomaa.long() # create the corresponding mask __lowerCamelCase : Union[str, Any] = torch.zeros([21, 37], dtype=torch.floataa, device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): __lowerCamelCase : Dict = rc.restype_atoa[restype_letter] __lowerCamelCase : int = rc.residue_atoms[restype_name] for atom_name in atom_names: __lowerCamelCase : int = rc.atom_order[atom_name] __lowerCamelCase : Tuple = 1 __lowerCamelCase : int = restype_atomaa_mask[protein_aatype] __lowerCamelCase : List[str] = residx_atomaa_mask return protein def __lowercase (_lowercase ) -> List[Any]: """simple docstring""" __lowerCamelCase : Optional[int] = tree_map(lambda _lowercase : torch.tensor(_lowercase, device=batch["""aatype"""].device ), _lowercase, np.ndarray ) __lowerCamelCase : int = tensor_tree_map(lambda _lowercase : np.array(_lowercase ), make_atomaa_masks(_lowercase ) ) return out
150
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __snake_case ( _lowercase ,_lowercase=False ): """simple docstring""" try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_REMOTE', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_LOCAL', default=True) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __snake_case ( _lowercase ): """simple docstring""" try: import faiss # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires faiss''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import regex # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires regex''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TORCH_AVAILABLE: UpperCamelCase = unittest.skip('''test requires PyTorch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TF_AVAILABLE: UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.JAX_AVAILABLE: UpperCamelCase = unittest.skip('''test requires JAX''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.PIL_AVAILABLE: UpperCamelCase = unittest.skip('''test requires Pillow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" def _require_spacy_model(_lowercase ): try: import spacy # noqa F401 spacy.load(_lowercase ) except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_lowercase ) )(_lowercase ) else: return test_case return _require_spacy_model def __snake_case ( _lowercase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase = unittest.skip('''test is slow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: UpperCamelCase = unittest.skip('''test is local''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase = unittest.skip('''test is packaged''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase = unittest.skip('''test requires remote''' )(_lowercase ) return test_case def __snake_case ( *_lowercase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_lowercase ) and name.startswith('''test''' ): for decorator in decorators: UpperCamelCase = decorator(_lowercase ) setattr(cls ,_lowercase ,_lowercase ) return cls return decorate class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 0 A_ = 1 A_ = 2 @contextmanager def __snake_case ( _lowercase=OfflineSimulationMode.CONNECTION_FAILS ,_lowercase=1e-16 ): """simple docstring""" UpperCamelCase = requests.Session().request def timeout_request(_lowercase ,_lowercase ,_lowercase ,**_lowercase ): # Change the url to an invalid url so that the connection hangs UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) UpperCamelCase = timeout try: return online_request(_lowercase ,_lowercase ,**_lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase = url UpperCamelCase = e.args[0] UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' ,f'OfflineMock[{url}]' ),) UpperCamelCase = (max_retry_error,) raise def raise_connection_error(_lowercase ,_lowercase ,**_lowercase ): raise requests.ConnectionError('''Offline mode is enabled.''' ,request=_lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' ,_lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' ,_lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' ,_lowercase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowercase ,**_lowercase ) as tmp_dir: try: os.chdir(_lowercase ) yield finally: os.chdir(_lowercase ) @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() def __snake_case ( _lowercase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_lowercase ,*_lowercase ,**_lowercase ): try: return func(*_lowercase ,**_lowercase ) except HTTPError as err: if str(_lowercase ).startswith('''500''' ) or str(_lowercase ).startswith('''502''' ): pytest.xfail(str(_lowercase ) ) raise err return decorator.decorator(_wrapper ,_lowercase ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" while True: UpperCamelCase = await stream.readline() if line: callback(_lowercase ) else: break async def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ,_lowercase=False ): """simple docstring""" if echo: print('''\nRunning: ''' ,''' '''.join(_lowercase ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=_lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=_lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(_lowercase ,_lowercase ,_lowercase ,_lowercase="" ): UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase ,_lowercase ,file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stdout ,label='''stdout:''' ) ), _read_stream(p.stderr ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stderr ,label='''stderr:''' ) ), ] ,timeout=_lowercase ,) return _RunOutput(await p.wait() ,_lowercase ,_lowercase ) def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=180 ,_lowercase=False ,_lowercase=True ): """simple docstring""" UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(_lowercase ,env=_lowercase ,stdin=_lowercase ,timeout=_lowercase ,quiet=_lowercase ,echo=_lowercase ) ) UpperCamelCase = ''' '''.join(_lowercase ) if result.returncode > 0: UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def __snake_case ( ): """simple docstring""" UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' ,'''gw0''' ) UpperCamelCase = re.sub(r'''^gw''' ,'''''' ,_lowercase ,0 ,re.M ) return int(_lowercase ) def __snake_case ( ): """simple docstring""" UpperCamelCase = 2_9500 UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
34
0
'''simple docstring''' import requests from bsa import BeautifulSoup def UpperCAmelCase ( UpperCAmelCase__ : Optional[Any] = "AAPL"): lowerCamelCase : str = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowerCamelCase : Tuple = BeautifulSoup(requests.get(_lowercase).text , 'html.parser') lowerCamelCase : str = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_).find('span').text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
320
"""simple docstring""" import operator def __snake_case ( _lowercase ,_lowercase = False ,_lowercase = None ): """simple docstring""" UpperCamelCase = operator.lt if reverse else operator.gt UpperCamelCase = solution or [] if not arr: return solution UpperCamelCase = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase ,sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: UpperCamelCase = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase ,_lowercase ): solution.insert(_lowercase ,_lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase ,_lowercase ,_lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
34
0
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = FunnelTokenizer lowerCAmelCase_ = FunnelTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True def lowerCamelCase_ ( self : List[Any] ): super().setUp() _lowerCamelCase : Dict = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _lowerCamelCase : Tuple = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowerCamelCase_ ( self : int,**__A : List[str] ): return FunnelTokenizer.from_pretrained(self.tmpdirname,**lowerCamelCase_ ) def lowerCamelCase_ ( self : Any,**__A : List[Any] ): return FunnelTokenizerFast.from_pretrained(self.tmpdirname,**lowerCamelCase_ ) def lowerCamelCase_ ( self : Any,__A : Union[str, Any] ): _lowerCamelCase : List[str] = "UNwant\u00E9d,running" _lowerCamelCase : int = "unwanted, running" return input_text, output_text def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file ) _lowerCamelCase : int = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCamelCase_,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ),[7, 4, 5, 1_0, 8, 9] ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Dict = self.get_tokenizers(do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: _lowerCamelCase : Any = tokenizer("UNwant\u00E9d,running" ) _lowerCamelCase : Tuple = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"],[2] + [0] * sentence_len ) _lowerCamelCase : Optional[int] = tokenizer("UNwant\u00E9d,running","UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"],[2] + [0] * sentence_len + [1] * sentence_len )
44
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' SCREAMING_SNAKE_CASE_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any: if return_pvalue: UpperCamelCase = pearsonr(lowerCamelCase_ , lowerCamelCase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_ , lowerCamelCase_)[0])}
34
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () a_ : List[str] = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). a_ : List[Any] = [0, 2_5, 5_0] a_ : Any = [2_5, 5_0, 7_5] a_ : str = fuzz.membership.trimf(X, abca) a_ : int = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. a_ : List[str] = np.ones(7_5) a_ : List[str] = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) a_ : Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) a_ : Optional[Any] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) a_ : int = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) a_ : Tuple = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] a_ : int = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) a_ : Optional[int] = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] a_ : Optional[int] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] a_ : Union[str, Any] = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
623
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ComputeEnvironment.AMAZON_SAGEMAKER A_ = True A_ = '''ml.p3.2xlarge''' A_ = '''accelerate_sagemaker_execution_role''' A_ = '''hf-sm''' A_ = '''us-east-1''' A_ = 1 A_ = '''accelerate-sagemaker-1''' A_ = '''1.6''' A_ = '''4.4''' A_ = '''train.py''' A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args['''model_name_or_path'''] , lowerCamelCase_) assert isinstance(converted_args['''do_train'''] , lowerCamelCase_) assert isinstance(converted_args['''epochs'''] , lowerCamelCase_) assert isinstance(converted_args['''learning_rate'''] , lowerCamelCase_) assert isinstance(converted_args['''max_steps'''] , lowerCamelCase_) with pytest.raises(lowerCamelCase_): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
34
0
'''simple docstring''' from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand lowerCamelCase :Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def a ( lowerCamelCase__ ): '''simple docstring''' if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(_lowercase ): return ext raise Exception( f'Unable to determine file format from file extension {path}. ' f'Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}' ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : int = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) A_ : Optional[int] = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format A_ : int = PipelineDataFormat.from_str( format=_lowercase , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(_lowercase , _lowercase ) class _lowerCAmelCase ( lowerCamelCase_ ): def __init__(self , lowercase , lowercase ): A_ : List[Any] = nlp A_ : Dict = reader @staticmethod def _a (lowercase ): A_ : int = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" ) run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" ) run_parser.add_argument("""--input""" , type=lowerCamelCase_ , help="""Path to the file to use for inference""" ) run_parser.add_argument("""--output""" , type=lowerCamelCase_ , help="""Path to the file that will be used post to write results.""" ) run_parser.add_argument("""--model""" , type=lowerCamelCase_ , help="""Name or path to the model to instantiate.""" ) run_parser.add_argument("""--config""" , type=lowerCamelCase_ , help="""Name or path to the model\'s config to instantiate.""" ) run_parser.add_argument( """--tokenizer""" , type=lowerCamelCase_ , help="""Name of the tokenizer to use. (default: same as the model name)""" ) run_parser.add_argument( """--column""" , type=lowerCamelCase_ , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=lowerCamelCase_ , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=lowerCamelCase_ , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" ) run_parser.set_defaults(func=lowerCamelCase_ ) def _a (self ): A_, A_ : Optional[Any] = self._nlp, [] for entry in self._reader: A_ : Tuple = nlp(**lowerCamelCase_ ) if self._reader.is_multi_columns else nlp(lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): outputs.append(lowerCamelCase_ ) else: outputs += output # Saving data if self._nlp.binary_output: A_ : int = self._reader.save_binary(lowerCamelCase_ ) logger.warning(F'Current pipeline requires output to be in binary format, saving at {binary_path}' ) else: self._reader.save(lowerCamelCase_ )
667
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class snake_case_ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCamelCase_ = " ") -> List[str]: UpperCamelCase = sentence_delimiter def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return list(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase_): chars.extend(self.process_string(lowerCamelCase_)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_) - 1: chars.append(self.sentence_delimiter) return chars SCREAMING_SNAKE_CASE_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) class _UpperCamelCase ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = """timm_backbone""" def __init__( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase_) __lowercase =backbone __lowercase =num_channels __lowercase =features_only __lowercase =use_pretrained_backbone __lowercase =True __lowercase =out_indices if out_indices is not None else (-1,)
474
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = '''left''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<eop>", "<eod>"] , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = 3 UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> List[str]: return len(self.sp_model) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> str: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: if self.remove_space: UpperCamelCase = ''' '''.join(inputs.strip().split()) else: UpperCamelCase = inputs UpperCamelCase = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCamelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase_) UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_)]) if self.do_lower_case: UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) UpperCamelCase = [] for piece in pieces: if len(lowerCamelCase_) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCamelCase = cur_pieces[1:] else: UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCamelCase_) else: new_pieces.append(lowerCamelCase_) return new_pieces def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.sp_model.IdToPiece(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: UpperCamelCase = ''''''.join(lowerCamelCase_).replace(lowerCamelCase_ , ''' ''').strip() return out_string def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> str: UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCamelCase_) UpperCamelCase = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) UpperCamelCase = [] sub_texts.append(lowerCamelCase_) else: current_sub_text.append(lowerCamelCase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(lowerCamelCase_) return clean_text else: return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) + [1, 1] return ([0] * len(lowerCamelCase_)) + [1, 1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,)
34
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__=13, lowerCamelCase__=7, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=99, lowerCamelCase__=24, lowerCamelCase__=2, lowerCamelCase__=6, lowerCamelCase__=37, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=512, lowerCamelCase__=16, lowerCamelCase__=2, lowerCamelCase__=0.02, lowerCamelCase__=3, lowerCamelCase__=None, lowerCamelCase__=1000, ): A : int = parent A : Union[str, Any] = batch_size A : Optional[Any] = seq_length A : Union[str, Any] = is_training A : List[Any] = use_input_mask A : Tuple = use_token_type_ids A : Union[str, Any] = use_labels A : int = vocab_size A : Any = hidden_size A : int = num_hidden_layers A : List[Any] = num_attention_heads A : Union[str, Any] = intermediate_size A : List[Any] = hidden_act A : int = hidden_dropout_prob A : List[str] = attention_probs_dropout_prob A : List[str] = max_position_embeddings A : Tuple = type_vocab_size A : List[Any] = type_sequence_label_size A : Optional[int] = initializer_range A : List[Any] = num_labels A : Optional[Any] = scope A : int = range_bbox def _lowerCAmelCase ( self ): A : Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) A : List[str] = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A : Tuple = bbox[i, j, 3] A : str = bbox[i, j, 1] A : Union[str, Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: A : List[Any] = bbox[i, j, 2] A : Union[str, Any] = bbox[i, j, 0] A : int = t A : Dict = None if self.use_input_mask: A : str = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) A : int = None if self.use_token_type_ids: A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) A : Union[str, Any] = None A : Optional[Any] = None if self.use_labels: A : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) A : Dict = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) A : Any = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def _lowerCAmelCase ( self ): return LiltConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, ): A : Optional[Any] = LiltModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() A : Union[str, Any] = model(lowerCamelCase_, bbox=lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_ ) A : List[str] = model(lowerCamelCase_, bbox=lowerCamelCase_, token_type_ids=lowerCamelCase_ ) A : Dict = model(lowerCamelCase_, bbox=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, ): A : Dict = self.num_labels A : List[str] = LiltForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() A : Optional[int] = model( lowerCamelCase_, bbox=lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, ): A : Tuple = LiltForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() A : int = model( lowerCamelCase_, bbox=lowerCamelCase_, attention_mask=lowerCamelCase_, token_type_ids=lowerCamelCase_, start_positions=lowerCamelCase_, end_positions=lowerCamelCase_, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self ): A : Any = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) : Union[str, Any] = config_and_inputs A : List[Any] = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __lowerCamelCase : int = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : List[str] = False __lowerCamelCase : int = False def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): return True def _lowerCAmelCase ( self ): A : List[Any] = LiltModelTester(self ) A : List[str] = ConfigTester(self, config_class=lowerCamelCase_, hidden_size=37 ) def _lowerCAmelCase ( self ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self ): A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def _lowerCAmelCase ( self ): A : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A : List[str] = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def _lowerCAmelCase ( self ): A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) def _lowerCAmelCase ( self ): A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) @slow def _lowerCAmelCase ( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : List[Any] = LiltModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): A : Union[str, Any] = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(lowerCamelCase_ ) A : Any = torch.tensor([[1, 2]], device=lowerCamelCase_ ) A : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]], device=lowerCamelCase_ ) # forward pass with torch.no_grad(): A : List[Any] = model(input_ids=lowerCamelCase_, bbox=lowerCamelCase_ ) A : List[str] = torch.Size([1, 2, 768] ) A : Optional[Any] = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]], device=lowerCamelCase_, ) self.assertTrue(outputs.last_hidden_state.shape, lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3], lowerCamelCase_, atol=1e-3 ) )
662
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } SCREAMING_SNAKE_CASE_ = { 'openbmb/cpm-ant-10b': 1024, } def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = collections.OrderedDict() with open(_lowercase ,'''r''' ,encoding='''utf-8''' ) as reader: UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): UpperCamelCase = token.rstrip('''\n''' ) UpperCamelCase = index return vocab class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_=2_0_0) -> Any: UpperCamelCase = vocab UpperCamelCase = unk_token UpperCamelCase = max_input_chars_per_word def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = list(lowerCamelCase_) if len(lowerCamelCase_) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase = 0 UpperCamelCase = [] while start < len(lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = None while start < end: UpperCamelCase = ''''''.join(chars[start:end]) if substr in self.vocab: UpperCamelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(lowerCamelCase_) UpperCamelCase = end return sub_tokens class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] A_ = False def __init__( self , lowerCamelCase_ , lowerCamelCase_="<d>" , lowerCamelCase_="</d>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<unk>" , lowerCamelCase_="</n>" , lowerCamelCase_="</_>" , lowerCamelCase_="left" , **lowerCamelCase_ , ) -> List[str]: requires_backends(self , ['''jieba''']) super().__init__( bod_token=lowerCamelCase_ , eod_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , line_token=lowerCamelCase_ , space_token=lowerCamelCase_ , padding_side=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = bod_token UpperCamelCase = eod_token UpperCamelCase = load_vocab(lowerCamelCase_) UpperCamelCase = self.encoder[space_token] UpperCamelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def UpperCAmelCase__ ( self) -> Dict: return self.encoder[self.bod_token] @property def UpperCAmelCase__ ( self) -> str: return self.encoder[self.eod_token] @property def UpperCAmelCase__ ( self) -> List[Any]: return self.encoder["\n"] @property def UpperCAmelCase__ ( self) -> int: return len(self.encoder) def UpperCAmelCase__ ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = [] for x in jieba.cut(lowerCamelCase_ , cut_all=lowerCamelCase_): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase_)) return output_tokens def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> Tuple: UpperCamelCase = [i for i in token_ids if i >= 0] UpperCamelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return token in self.encoder def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return "".join(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token)) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return self.decoder.get(lowerCamelCase_ , self.unk_token) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if os.path.isdir(lowerCamelCase_): UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: UpperCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCamelCase = 0 if " " in self.encoder: UpperCamelCase = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase = self.encoder['''\n'''] del self.encoder["\n"] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''') UpperCamelCase = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) return [1] + ([0] * len(lowerCamelCase_))
34
0
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib snake_case__ : int = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } snake_case__ : int = logging.WARNING def _snake_case (): UpperCamelCase_ = os.getenv('DATASETS_VERBOSITY' , _lowercase) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ", ".join(log_levels.keys()) }""") return _default_log_level def _snake_case (): return __name__.split('.')[0] def _snake_case (): return logging.getLogger(_get_library_name()) def _snake_case (): UpperCamelCase_ = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level()) def _snake_case (): UpperCamelCase_ = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET) def _snake_case (__lowercase = None): if name is None: UpperCamelCase_ = _get_library_name() return logging.getLogger(_lowercase) def _snake_case (): return _get_library_root_logger().getEffectiveLevel() def _snake_case (__lowercase): _get_library_root_logger().setLevel(_lowercase) def _snake_case (): return set_verbosity(_lowercase) def _snake_case (): return set_verbosity(_lowercase) def _snake_case (): return set_verbosity(_lowercase) def _snake_case (): return set_verbosity(_lowercase) def _snake_case (): UpperCamelCase_ = False def _snake_case (): UpperCamelCase_ = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _a : """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> int: # pylint: disable=unused-argument UpperCamelCase_ = args[0] if args else None def __iter__( self ) -> Optional[int]: return iter(self._iterator ) def __getattr__( self , _UpperCAmelCase ) -> Union[str, Any]: def empty_fn(*_UpperCAmelCase , **_UpperCAmelCase ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> Optional[Any]: return self def __exit__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str: return snake_case__ : Optional[int] = True class _a : """simple docstring""" def __call__( self , *_UpperCAmelCase , _UpperCAmelCase=False , **_UpperCAmelCase ) -> Union[str, Any]: if _tqdm_active and not disable: return tqdm_lib.tqdm(*lowerCamelCase_ , **lowerCamelCase_ ) else: return EmptyTqdm(*lowerCamelCase_ , **lowerCamelCase_ ) def _UpperCAmelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Tuple: UpperCamelCase_ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowerCamelCase_ , **lowerCamelCase_ ) def _UpperCAmelCase ( self ) -> Tuple: if _tqdm_active: return tqdm_lib.tqdm.get_lock() snake_case__ : List[Any] = _tqdm_cls() def _snake_case (): global _tqdm_active return bool(_tqdm_active) def _snake_case (): global _tqdm_active UpperCamelCase_ = True def _snake_case (): global _tqdm_active UpperCamelCase_ = False
23
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=0) -> int: UpperCamelCase = 1.0 if scale is None else scale UpperCamelCase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_)]) @property def UpperCAmelCase__ ( self) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase__ ( self) -> List[str]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase__ ( self) -> Any: return self.variance.sqrt() class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = args_dim UpperCamelCase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_) for dim in args_dim.values()]) UpperCamelCase = domain_map def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple[torch.Tensor]: UpperCamelCase = [proj(lowerCamelCase_) for proj in self.proj] return self.domain_map(*lowerCamelCase_) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__() UpperCamelCase = function def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_) -> Tuple: return self.function(lowerCamelCase_ , *lowerCamelCase_) class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , lowerCamelCase_ = 1) -> None: UpperCamelCase = dim UpperCamelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if self.dim == 1: return self.distribution_class(*lowerCamelCase_) else: return Independent(self.distribution_class(*lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Distribution: UpperCamelCase = self._base_distribution(lowerCamelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim) @property def UpperCAmelCase__ ( self) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase__ ( self) -> int: return len(self.event_shape) @property def UpperCAmelCase__ ( self) -> float: return 0.0 def UpperCAmelCase__ ( self , lowerCamelCase_) -> nn.Module: return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def UpperCAmelCase__ ( self , *lowerCamelCase_) -> List[str]: raise NotImplementedError() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCamelCase_) + 4.0)) / 2.0 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"df": 1, "loc": 1, "scale": 1} A_ = StudentT @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) UpperCamelCase = 2.0 + cls.squareplus(lowerCamelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"loc": 1, "scale": 1} A_ = Normal @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"total_count": 1, "logits": 1} A_ = NegativeBinomial @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = cls.squareplus(lowerCamelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
34
0
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any]) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : str = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', )) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', )) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', )) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', )) return embed def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Dict = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', )) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', )) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight')) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias')) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight')) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias')) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight')) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias')) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight')) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias')) return attention_weights def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : Optional[Any] = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', "stage2.cls_token")) return token def _SCREAMING_SNAKE_CASE ( ) -> Tuple: '''simple docstring''' __UpperCamelCase : int = [] head.append(("layernorm.weight", "norm.weight")) head.append(("layernorm.bias", "norm.bias")) head.append(("classifier.weight", "head.weight")) head.append(("classifier.bias", "head.bias")) return head def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Tuple) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : Dict = "imagenet-1k-id2label.json" __UpperCamelCase : Dict = 1_000 __UpperCamelCase : str = "huggingface/label-files" __UpperCamelCase : Tuple = num_labels __UpperCamelCase : int = json.load(open(cached_download(hf_hub_url(_lowercase , _lowercase , repo_type="dataset")) , "r")) __UpperCamelCase : Tuple = {int(_lowercase): v for k, v in idalabel.items()} __UpperCamelCase : Optional[int] = idalabel __UpperCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} __UpperCamelCase : int = CvtConfig(num_labels=_lowercase , idalabel=_lowercase , labelaid=_lowercase) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" , 1)[-1][4:6] == "13": __UpperCamelCase : Any = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" , 1)[-1][4:6] == "21": __UpperCamelCase : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __UpperCamelCase : str = [2, 2, 20] __UpperCamelCase : Dict = [3, 12, 16] __UpperCamelCase : List[Any] = [192, 768, 1_024] __UpperCamelCase : List[Any] = CvtForImageClassification(_lowercase) __UpperCamelCase : str = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k") __UpperCamelCase : Optional[int] = image_size __UpperCamelCase : List[Any] = torch.load(_lowercase , map_location=torch.device("cpu")) __UpperCamelCase : Union[str, Any] = OrderedDict() __UpperCamelCase : Dict = [] for idx in range(len(config.depth)): if config.cls_token[idx]: __UpperCamelCase : int = list_of_state_dict + cls_token(_lowercase) __UpperCamelCase : int = list_of_state_dict + embeddings(_lowercase) for cnt in range(config.depth[idx]): __UpperCamelCase : Tuple = list_of_state_dict + attention(_lowercase , _lowercase) __UpperCamelCase : Optional[int] = list_of_state_dict + final() for gg in list_of_state_dict: print(_lowercase) for i in range(len(_lowercase)): __UpperCamelCase : int = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_lowercase) model.save_pretrained(_lowercase) image_processor.save_pretrained(_lowercase) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowercase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowercase : Union[str, Any] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
557
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowercase ,id=_lowercase )
34
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class UpperCamelCase ( lowerCamelCase_ ): lowerCAmelCase : Union[str, Any] = """layoutlmv3""" def __init__( self , UpperCAmelCase__=50_265 , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=12 , UpperCAmelCase__=3_072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=512 , UpperCAmelCase__=2 , UpperCAmelCase__=0.02 , UpperCAmelCase__=1e-5 , UpperCAmelCase__=1 , UpperCAmelCase__=0 , UpperCAmelCase__=2 , UpperCAmelCase__=1_024 , UpperCAmelCase__=128 , UpperCAmelCase__=128 , UpperCAmelCase__=True , UpperCAmelCase__=32 , UpperCAmelCase__=128 , UpperCAmelCase__=64 , UpperCAmelCase__=256 , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=224 , UpperCAmelCase__=3 , UpperCAmelCase__=16 , UpperCAmelCase__=None , **UpperCAmelCase__ , ): super().__init__( vocab_size=lowerCamelCase_ , hidden_size=lowerCamelCase_ , num_hidden_layers=lowerCamelCase_ , num_attention_heads=lowerCamelCase_ , intermediate_size=lowerCamelCase_ , hidden_act=lowerCamelCase_ , hidden_dropout_prob=lowerCamelCase_ , attention_probs_dropout_prob=lowerCamelCase_ , max_position_embeddings=lowerCamelCase_ , type_vocab_size=lowerCamelCase_ , initializer_range=lowerCamelCase_ , layer_norm_eps=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) A__ = max_ad_position_embeddings A__ = coordinate_size A__ = shape_size A__ = has_relative_attention_bias A__ = rel_pos_bins A__ = max_rel_pos A__ = has_spatial_attention_bias A__ = rel_ad_pos_bins A__ = max_rel_ad_pos A__ = text_embed A__ = visual_embed A__ = input_size A__ = num_channels A__ = patch_size A__ = classifier_dropout class UpperCamelCase ( lowerCamelCase_ ): lowerCAmelCase : int = version.parse("""1.12""" ) @property def __A ( self ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) else: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels"}), ] ) @property def __A ( self ): return 1e-5 @property def __A ( self ): return 12 def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = -1 , UpperCAmelCase__ = -1 , UpperCAmelCase__ = False , UpperCAmelCase__ = None , UpperCAmelCase__ = 3 , UpperCAmelCase__ = 40 , UpperCAmelCase__ = 40 , ): setattr(processor.image_processor , "apply_ocr" , lowerCamelCase_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A__ = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A__ = processor.tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) A__ = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence A__ = [[" ".join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes A__ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) A__ = self._generate_dummy_images(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) A__ = dict( processor( lowerCamelCase_ , text=lowerCamelCase_ , boxes=lowerCamelCase_ , return_tensors=lowerCamelCase_ , ) ) return inputs
491
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
34
0
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _lowercase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = StableDiffusionControlNetImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'control_image'} ) lowerCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def _UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) _lowercase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) _lowercase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) torch.manual_seed(0 ) _lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _lowercase = CLIPTextModel(lowerCamelCase_ ) _lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowercase = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=0 ): '''simple docstring''' if str(lowerCamelCase_ ).startswith("""mps""" ): _lowercase = torch.manual_seed(lowerCamelCase_ ) else: _lowercase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) _lowercase = 2 _lowercase = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCamelCase_ , device=torch.device(lowerCamelCase_ ) , ) _lowercase = floats_tensor(control_image.shape , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) _lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowercase = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) _lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def _UpperCAmelCase ( self ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class _lowercase ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = StableDiffusionControlNetImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(UpperCAmelCase ): if isinstance(lowerCamelCase_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _lowercase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowerCamelCase_ ) torch.manual_seed(0 ) _lowercase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowerCamelCase_ ) torch.manual_seed(0 ) _lowercase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) torch.manual_seed(0 ) _lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _lowercase = CLIPTextModel(lowerCamelCase_ ) _lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowercase = MultiControlNetModel([controlneta, controlneta] ) _lowercase = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=0 ): '''simple docstring''' if str(lowerCamelCase_ ).startswith("""mps""" ): _lowercase = torch.manual_seed(lowerCamelCase_ ) else: _lowercase = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) _lowercase = 2 _lowercase = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCamelCase_ , device=torch.device(lowerCamelCase_ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCamelCase_ , device=torch.device(lowerCamelCase_ ) , ), ] _lowercase = floats_tensor(control_image[0].shape , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) _lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowercase = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) _lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = self.get_dummy_components() _lowercase = self.pipeline_class(**lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) _lowercase = 10.0 _lowercase = 4 _lowercase = self.get_dummy_inputs(lowerCamelCase_ ) _lowercase = steps _lowercase = scale _lowercase = pipe(**lowerCamelCase_ )[0] _lowercase = self.get_dummy_inputs(lowerCamelCase_ ) _lowercase = steps _lowercase = scale _lowercase = pipe(**lowerCamelCase_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] _lowercase = self.get_dummy_inputs(lowerCamelCase_ ) _lowercase = steps _lowercase = scale _lowercase = pipe(**lowerCamelCase_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] _lowercase = self.get_dummy_inputs(lowerCamelCase_ ) _lowercase = steps _lowercase = scale _lowercase = pipe(**lowerCamelCase_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def _UpperCAmelCase ( self ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = self.get_dummy_components() _lowercase = self.pipeline_class(**lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(lowerCamelCase_ ) except NotImplementedError: pass @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) _lowercase = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , safety_checker=lowerCamelCase_ , controlnet=lowerCamelCase_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowercase = """evil space-punk bird""" _lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((512, 512) ) _lowercase = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((512, 512) ) _lowercase = pipe( lowerCamelCase_ , lowerCamelCase_ , control_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type="""np""" , num_inference_steps=50 , strength=0.6 , ) _lowercase = output.images[0] assert image.shape == (512, 512, 3) _lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9e-2
398
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
0
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder UpperCAmelCase__ :List[str] = """base_with_context""" def __lowercase (_lowercase, _lowercase ) -> List[str]: """simple docstring""" __lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) __lowerCamelCase : str = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ), requires_grad=_lowercase ) for lyr_num, lyr in enumerate(model.encoders ): __lowerCamelCase : List[str] = weights[f"layers_{lyr_num}"] __lowerCamelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) __lowerCamelCase : Optional[Any] = ly_weight["""attention"""] __lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __lowerCamelCase : str = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __lowerCamelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def __lowercase (_lowercase, _lowercase ) -> Optional[int]: """simple docstring""" __lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) __lowerCamelCase : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ), requires_grad=_lowercase ) for lyr_num, lyr in enumerate(model.encoders ): __lowerCamelCase : int = weights[f"layers_{lyr_num}"] __lowerCamelCase : Optional[int] = ly_weight["""attention"""] __lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __lowerCamelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __lowerCamelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __lowerCamelCase : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) __lowerCamelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __lowerCamelCase : int = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def __lowercase (_lowercase, _lowercase ) -> Dict: """simple docstring""" __lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) __lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) __lowerCamelCase : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ), requires_grad=_lowercase ) __lowerCamelCase : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): __lowerCamelCase : List[str] = weights[f"layers_{lyr_num}"] __lowerCamelCase : Optional[int] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) __lowerCamelCase : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) __lowerCamelCase : List[str] = ly_weight["""self_attention"""] __lowerCamelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __lowerCamelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __lowerCamelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __lowerCamelCase : Optional[Any] = ly_weight["""MultiHeadDotProductAttention_0"""] __lowerCamelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __lowerCamelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __lowerCamelCase : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) __lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __lowerCamelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) __lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __lowerCamelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __lowerCamelCase : int = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) __lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def __lowercase (_lowercase ) -> Any: """simple docstring""" __lowerCamelCase : int = checkpoints.load_tax_checkpoint(args.checkpoint_path ) __lowerCamelCase : List[Any] = jnp.tree_util.tree_map(onp.array, _lowercase ) __lowerCamelCase : Any = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] __lowerCamelCase : Tuple = os.path.join(args.checkpoint_path, """..""", """config.gin""" ) __lowerCamelCase : Any = inference.parse_training_gin_file(_lowercase, _lowercase ) __lowerCamelCase : Union[str, Any] = inference.InferenceModel(args.checkpoint_path, _lowercase ) __lowerCamelCase : str = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""", variance_type="""fixed_large""" ) __lowerCamelCase : Union[str, Any] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""], vocab_size=synth_model.model.module.config.vocab_size, d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj="""gated-gelu""", ) __lowerCamelCase : Optional[int] = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims, targets_context_length=synth_model.sequence_length["""targets_context"""], d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj="""gated-gelu""", ) __lowerCamelCase : str = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims, targets_length=synth_model.sequence_length["""targets_context"""], max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time, d_model=synth_model.model.module.config.emb_dim, num_layers=synth_model.model.module.config.num_decoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, dropout_rate=synth_model.model.module.config.dropout_rate, ) __lowerCamelCase : List[Any] = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""], _lowercase ) __lowerCamelCase : Union[str, Any] = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""], _lowercase ) __lowerCamelCase : Union[str, Any] = load_decoder(ta_checkpoint["""target"""]["""decoder"""], _lowercase ) __lowerCamelCase : List[str] = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) __lowerCamelCase : Dict = SpectrogramDiffusionPipeline( notes_encoder=_lowercase, continuous_encoder=_lowercase, decoder=_lowercase, scheduler=_lowercase, melgan=_lowercase, ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": UpperCAmelCase__ :Optional[int] = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=f'''{MODEL}/checkpoint_500000''', type=str, required=False, help="""Path to the original jax model checkpoint.""", ) UpperCAmelCase__ :Optional[Any] = parser.parse_args() main(args)
150
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase = getattr(_lowercase ,_lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase ,_lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) UpperCamelCase = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCamelCase = torch.tensor(_lowercase ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_lowercase ) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to(_lowercase ) else: UpperCamelCase = torch.tensor(_lowercase ,device=_lowercase ) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase ,requires_grad=old_value.requires_grad ) UpperCamelCase = new_value def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase ,nn.Linear ) or isinstance(_lowercase ,_lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase ,_lowercase ): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase ,_lowercase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase ,_lowercase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ,has_been_replaced=_lowercase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,_lowercase ,) return replace_with_bnb_linear(*_lowercase ,**_lowercase ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,_lowercase ,) return set_module_quantized_tensor_to_device(*_lowercase ,**_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase ,_lowercase ): UpperCamelCase = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(_lowercase ,[] ) UpperCamelCase = len(_lowercase ) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase ) - set(_lowercase ) UpperCamelCase = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase ,'''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names
34
0
'''simple docstring''' import datasets from .evaluate import evaluate A = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' A = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' A = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __snake_case ( datasets.Metric): def UpperCAmelCase_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': {'id': datasets.Value('string' ), 'prediction_text': datasets.Value('string' )}, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ), codebase_urls=['https://rajpurkar.github.io/SQuAD-explorer/'], reference_urls=['https://rajpurkar.github.io/SQuAD-explorer/'], ) def UpperCAmelCase_ ( self, A, A ): """simple docstring""" lowerCamelCase : str = {prediction['id']: prediction['prediction_text'] for prediction in predictions} lowerCamelCase : int = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] lowerCamelCase : Any = evaluate(dataset=lowerCamelCase_, predictions=lowerCamelCase_ ) return score
320
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase ) count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 ) count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase ) return count def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_lowercase ,_lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_ = TemporaryFile() SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_ = np.load(outfile) SCREAMING_SNAKE_CASE_ = len(M) - 1 SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
34
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : int,*__A : List[Any],**__A : Tuple ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : List[Any],*__A : List[str],**__A : Optional[int] ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : str,*__A : Dict,**__A : Union[str, Any] ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : Any,*__A : Optional[int],**__A : int ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : int,*__A : Dict,**__A : Any ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : Tuple,*__A : Optional[Any],**__A : Dict ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : Tuple,*__A : List[Any],**__A : Optional[Any] ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : int,*__A : List[Any],**__A : int ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : Union[str, Any],*__A : str,**__A : int ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : Optional[Any],*__A : str,**__A : int ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : Dict,*__A : Optional[int],**__A : Optional[int] ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : int,*__A : str,**__A : int ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : Union[str, Any],*__A : List[Any],**__A : List[Any] ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : Tuple,*__A : Any,**__A : Optional[Any] ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : List[Any],*__A : Union[str, Any],**__A : str ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : Dict,*__A : int,**__A : Dict ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : int,*__A : Union[str, Any],**__A : Tuple ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : str,*__A : List[str],**__A : List[Any] ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : str,*__A : int,**__A : Any ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : Any,*__A : int,**__A : List[Any] ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : Tuple,*__A : Tuple,**__A : Optional[int] ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : int,*__A : Union[str, Any],**__A : Any ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : Any,*__A : Union[str, Any],**__A : List[Any] ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : int,*__A : List[str],**__A : int ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : List[str],*__A : Union[str, Any],**__A : List[str] ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : str,*__A : Union[str, Any],**__A : Dict ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : Optional[Any],*__A : List[str],**__A : Any ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : Any,*__A : Optional[int],**__A : str ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : List[Any],*__A : Dict,**__A : int ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : Any,*__A : str,**__A : List[str] ): requires_backends(self,["sentencepiece"] ) class UpperCAmelCase__ ( metaclass=lowerCamelCase_ ): lowerCAmelCase_ = ['sentencepiece'] def __init__( self : Union[str, Any],*__A : Optional[Any],**__A : Dict ): requires_backends(self,["sentencepiece"] )
44
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE_ = os.path.join(git_repo_path, 'src', 'transformers') SCREAMING_SNAKE_CASE_ = '\n{0} = None\n' SCREAMING_SNAKE_CASE_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' SCREAMING_SNAKE_CASE_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowerCamelCase_) UpperCamelCase = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowerCamelCase_ , '''tokenizers''') UpperCamelCase = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowerCamelCase_ , '''tensorflow_text''') UpperCamelCase = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tensorflow_text''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers_and_vision''') def UpperCAmelCase__ ( self) -> int: UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCamelCase_) self.assertIn('''tensorflow_text''' , lowerCamelCase_) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCamelCase_) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , '''\nCONSTANT = None\n''') UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowerCamelCase_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowerCamelCase_)
34
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ : Union[str, Any] = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ 'OPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OPTForCausalLM', 'OPTModel', 'OPTPreTrainedModel', 'OPTForSequenceClassification', 'OPTForQuestionAnswering', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : str = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = [ 'FlaxOPTForCausalLM', 'FlaxOPTModel', 'FlaxOPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys a_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
623
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __snake_case ( _lowercase ): """simple docstring""" if "cls_token" in name: UpperCamelCase = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: UpperCamelCase = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: UpperCamelCase = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: UpperCamelCase = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: UpperCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: UpperCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: UpperCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: UpperCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: UpperCamelCase = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: UpperCamelCase = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: UpperCamelCase = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCamelCase = key.split('''.''' ) UpperCamelCase = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase = config.decoder_hidden_size UpperCamelCase = '''decoder.decoder_layers.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = config.hidden_size UpperCamelCase = '''vit.encoder.layer.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = val return orig_state_dict def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 elif "huge" in checkpoint_url: UpperCamelCase = 14 UpperCamelCase = 1280 UpperCamelCase = 5120 UpperCamelCase = 32 UpperCamelCase = 16 UpperCamelCase = ViTMAEForPreTraining(_lowercase ) UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' )['''model'''] UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = convert_state_dict(_lowercase ,_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCamelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = image_processor(images=_lowercase ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits if "large" in checkpoint_url: UpperCamelCase = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
34
0
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset lowerCamelCase :List[str] = random.Random() def a ( lowerCamelCase__ , lowerCamelCase__=1.0 , lowerCamelCase__=None , lowerCamelCase__=None ): '''simple docstring''' if rng is None: A_ : Any = global_rng A_ : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _lowerCAmelCase ( unittest.TestCase ): def __init__(self , lowercase , lowercase=7 , lowercase=400 , lowercase=2000 , lowercase=2048 , lowercase=128 , lowercase=1 , lowercase=512 , lowercase=30 , lowercase=44100 , ): A_ : int = parent A_ : Tuple = batch_size A_ : Any = min_seq_length A_ : Optional[Any] = max_seq_length A_ : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A_ : Optional[Any] = spectrogram_length A_ : Optional[Any] = feature_size A_ : str = num_audio_channels A_ : int = hop_length A_ : Dict = chunk_length A_ : Dict = sampling_rate def _a (self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def _a (self , lowercase=False , lowercase=False ): def _flatten(lowercase ): return list(itertools.chain(*lowerCamelCase_ ) ) if equal_length: A_ : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A_ : Optional[int] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A_ : Tuple = [np.asarray(lowerCamelCase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = TvltFeatureExtractor def _a (self ): A_ : str = TvltFeatureExtractionTester(self ) def _a (self ): A_ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCamelCase_ , """spectrogram_length""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """feature_size""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """num_audio_channels""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """hop_length""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """chunk_length""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """sampling_rate""" ) ) def _a (self ): A_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : List[Any] = feat_extract_first.save_pretrained(lowerCamelCase_ )[0] check_json_file_has_correct_format(lowerCamelCase_ ) A_ : Optional[Any] = self.feature_extraction_class.from_pretrained(lowerCamelCase_ ) A_ : List[Any] = feat_extract_first.to_dict() A_ : List[str] = feat_extract_second.to_dict() A_ : List[Any] = dict_first.pop("""mel_filters""" ) A_ : str = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def _a (self ): A_ : int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ : Any = os.path.join(lowerCamelCase_ , """feat_extract.json""" ) feat_extract_first.to_json_file(lowerCamelCase_ ) A_ : Optional[Any] = self.feature_extraction_class.from_json_file(lowerCamelCase_ ) A_ : str = feat_extract_first.to_dict() A_ : Dict = feat_extract_second.to_dict() A_ : Union[str, Any] = dict_first.pop("""mel_filters""" ) A_ : Optional[int] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def _a (self ): # Initialize feature_extractor A_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 A_ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ : List[Any] = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs] # Test not batched input A_ : Any = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched A_ : Union[str, Any] = feature_extractor(lowerCamelCase_ , return_tensors="""np""" , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking A_ : int = feature_extractor( lowerCamelCase_ , return_tensors="""np""" , sampling_rate=44100 , mask_audio=lowerCamelCase_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. A_ : Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] A_ : Tuple = np.asarray(lowerCamelCase_ ) A_ : List[Any] = feature_extractor(lowerCamelCase_ , return_tensors="""np""" , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def _a (self , lowercase ): A_ : Dict = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech A_ : Tuple = ds.sort("""id""" ).select(range(lowerCamelCase_ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _a (self ): A_ : Optional[Any] = self._load_datasamples(1 ) A_ : Dict = TvltFeatureExtractor() A_ : List[str] = feature_extractor(lowerCamelCase_ , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) A_ : Tuple = torch.tensor([[-0.30_32, -0.27_08], [-0.44_34, -0.40_07]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , lowerCamelCase_ , atol=1E-4 ) )
667
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Any: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase = mock_training_loop_function('''hello''') self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def UpperCAmelCase__ ( self) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(lowerCamelCase_): pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Dict: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): raise ValueError('''Oops, we had an error!''') with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase_) UpperCamelCase = release_memory(lowerCamelCase_) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase_)
34
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = """▁""" lowerCamelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} lowerCamelCase = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } lowerCamelCase = {"""vinai/bartpho-syllable""": 1024} class _UpperCamelCase ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]="<s>" , _lowerCAmelCase : Optional[Any]="</s>" , _lowerCAmelCase : List[Any]="</s>" , _lowerCAmelCase : Any="<s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[Any]="<pad>" , _lowerCAmelCase : Optional[int]="<mask>" , _lowerCAmelCase : List[str] = None , **_lowerCAmelCase : Optional[Any] , ): '''simple docstring''' __lowercase =AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token __lowercase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) __lowercase =vocab_file __lowercase =monolingual_vocab_file __lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(lowerCamelCase_)) # Load the reduced vocab # Keep order of special tokens for backward compatibility __lowercase ={} __lowercase =0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase_) not in self.fairseq_tokens_to_ids: __lowercase =cnt cnt += 1 with open(lowerCamelCase_ , 'r' , encoding='utf-8') as f: for line in f.readlines(): __lowercase =line.strip().split()[0] __lowercase =len(self.fairseq_tokens_to_ids) if str(lowerCamelCase_) not in self.fairseq_tokens_to_ids: __lowercase =len(self.fairseq_tokens_to_ids) __lowercase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[str]): '''simple docstring''' __lowercase =self.__dict__.copy() __lowercase =None __lowercase =self.sp_model.serialized_model_proto() return state def __setstate__( self : str , _lowerCAmelCase : str): '''simple docstring''' __lowercase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): __lowercase ={} __lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def __lowerCamelCase ( self : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase =[self.cls_token_id] __lowercase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : List[str] = None , _lowerCAmelCase : List[str] = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_)) + [1] return [1] + ([0] * len(lowerCamelCase_)) + [1, 1] + ([0] * len(lowerCamelCase_)) + [1] def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] = None): '''simple docstring''' __lowercase =[self.sep_token_id] __lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def __lowerCamelCase ( self : Tuple): '''simple docstring''' return len(self.fairseq_ids_to_tokens) def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase ={self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : int): '''simple docstring''' return self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : Any): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : List[str]): '''simple docstring''' return self.fairseq_ids_to_tokens[index] def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : Tuple): '''simple docstring''' __lowercase =''.join(lowerCamelCase_).replace(lowerCamelCase_ , ' ').strip() return out_string def __lowerCamelCase ( self : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple = None): '''simple docstring''' if not os.path.isdir(lowerCamelCase_): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return __lowercase =os.path.join( lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) __lowercase =os.path.join( lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , ) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , 'wb') as fi: __lowercase =self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) if os.path.abspath(self.monolingual_vocab_file) != os.path.abspath( lowerCamelCase_) and os.path.isfile(self.monolingual_vocab_file): copyfile(self.monolingual_vocab_file , lowerCamelCase_) elif not os.path.isfile(self.monolingual_vocab_file): with open(lowerCamelCase_ , 'w' , encoding='utf-8') as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"""{str(lowerCamelCase_)} \n""") return out_vocab_file, out_monolingual_vocab_file
474
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ = 1_0_1) -> Tuple: UpperCamelCase = length def __len__( self) -> List[str]: return self.length def __getitem__( self , lowerCamelCase_) -> int: return i class snake_case_ : """simple docstring""" def __call__( self , lowerCamelCase_) -> str: return {"input_ids": torch.tensor(lowerCamelCase_), "labels": torch.tensor(lowerCamelCase_)} class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> List[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase = nn.Linear(1_2_0 , 8_0) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_neuroncore def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_multi_gpu def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE_ = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()[0] logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' f'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE_ = DummyDataset(dataset_length) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = list(range(len(_lowercase ) ) ) UpperCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} SCREAMING_SNAKE_CASE_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = None
34
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_:Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Any = {"""vocab_file""": """spiece.model"""} SCREAMING_SNAKE_CASE_:Optional[int] = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } SCREAMING_SNAKE_CASE_:Tuple = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_:Any = 0 SCREAMING_SNAKE_CASE_:Dict = 1 SCREAMING_SNAKE_CASE_:Optional[int] = 2 SCREAMING_SNAKE_CASE_:Any = 3 SCREAMING_SNAKE_CASE_:Tuple = 4 class SCREAMING_SNAKE_CASE__ ( lowerCamelCase_ ): '''simple docstring''' __lowerCamelCase : int = VOCAB_FILES_NAMES __lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[str] = "left" def __init__( self, lowerCamelCase__, lowerCamelCase__=False, lowerCamelCase__=True, lowerCamelCase__=False, lowerCamelCase__="<s>", lowerCamelCase__="</s>", lowerCamelCase__="<unk>", lowerCamelCase__="<sep>", lowerCamelCase__="<pad>", lowerCamelCase__="<cls>", lowerCamelCase__="<mask>", lowerCamelCase__=["<eop>", "<eod>"], lowerCamelCase__ = None, **lowerCamelCase__, ): # Mask token behave like a normal word, i.e. include the space before it A : Optional[int] = AddedToken(lowerCamelCase_, lstrip=lowerCamelCase_, rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_, lowerCamelCase_ ) else mask_token A : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_, remove_space=lowerCamelCase_, keep_accents=lowerCamelCase_, bos_token=lowerCamelCase_, eos_token=lowerCamelCase_, unk_token=lowerCamelCase_, sep_token=lowerCamelCase_, pad_token=lowerCamelCase_, cls_token=lowerCamelCase_, mask_token=lowerCamelCase_, additional_special_tokens=lowerCamelCase_, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase_, ) A : int = 3 A : Union[str, Any] = do_lower_case A : List[str] = remove_space A : Optional[int] = keep_accents A : str = vocab_file A : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase_ ) @property def _lowerCAmelCase ( self ): return len(self.sp_model ) def _lowerCAmelCase ( self ): A : int = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): A : Any = self.__dict__.copy() A : str = None return state def __setstate__( self, lowerCamelCase__ ): A : List[Any] = d # for backward compatibility if not hasattr(self, """sp_model_kwargs""" ): A : Union[str, Any] = {} A : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase ( self, lowerCamelCase__ ): if self.remove_space: A : Optional[Any] = """ """.join(inputs.strip().split() ) else: A : List[Any] = inputs A : Union[str, Any] = outputs.replace("""``""", """\"""" ).replace("""\'\'""", """\"""" ) if not self.keep_accents: A : int = unicodedata.normalize("""NFKD""", lowerCamelCase_ ) A : Dict = """""".join([c for c in outputs if not unicodedata.combining(lowerCamelCase_ )] ) if self.do_lower_case: A : Optional[Any] = outputs.lower() return outputs def _lowerCAmelCase ( self, lowerCamelCase__ ): A : List[Any] = self.preprocess_text(lowerCamelCase_ ) A : int = self.sp_model.encode(lowerCamelCase_, out_type=lowerCamelCase_ ) A : Dict = [] for piece in pieces: if len(lowerCamelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): A : Optional[int] = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_, """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A : Any = cur_pieces[1:] else: A : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCamelCase_ ) else: new_pieces.append(lowerCamelCase_ ) return new_pieces def _lowerCAmelCase ( self, lowerCamelCase__ ): return self.sp_model.PieceToId(lowerCamelCase_ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): return self.sp_model.IdToPiece(lowerCamelCase_ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : int = """""".join(lowerCamelCase_ ).replace(lowerCamelCase_, """ """ ).strip() return out_string def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = False, lowerCamelCase__ = None, lowerCamelCase__ = True, **lowerCamelCase__, ): A : List[str] = kwargs.pop("""use_source_tokenizer""", lowerCamelCase_ ) A : Dict = self.convert_ids_to_tokens(lowerCamelCase_, skip_special_tokens=lowerCamelCase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A : List[Any] = [] A : Optional[Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_ ) ) A : Optional[Any] = [] sub_texts.append(lowerCamelCase_ ) else: current_sub_text.append(lowerCamelCase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens A : List[str] = """""".join(lowerCamelCase_ ) A : List[str] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A : List[Any] = self.clean_up_tokenization(lowerCamelCase_ ) return clean_text else: return text def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): A : Optional[Any] = [self.sep_token_id] A : List[str] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_, token_ids_a=lowerCamelCase_, already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is not None: return ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] return ([0] * len(lowerCamelCase_ )) + [1, 1] def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): A : int = [self.sep_token_id] A : Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A : int = os.path.join( lowerCamelCase_, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_, """wb""" ) as fi: A : Tuple = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (out_vocab_file,)
662
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for tf_name, hf_name in patterns: UpperCamelCase = k.replace(_lowercase ,_lowercase ) return k def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = BigBirdPegasusConfig(**_lowercase ) UpperCamelCase = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCamelCase = torch_model.state_dict() UpperCamelCase = {} # separating decoder weights UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = DECODER_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = REMAINING_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCamelCase = mapping['''model.embed_positions.weight'''] UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(_lowercase ,strict=_lowercase ) UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tf.train.list_variables(_lowercase ) UpperCamelCase = {} UpperCamelCase = ['''global_step'''] for name, shape in tqdm(_lowercase ,desc='''converting tf checkpoint to dict''' ): UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase = tf.train.load_variable(_lowercase ,_lowercase ) UpperCamelCase = array return tf_weights def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = get_tf_weights_as_numpy(_lowercase ) UpperCamelCase = convert_bigbird_pegasus(_lowercase ,_lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
34
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _a ( lowerCamelCase_ ): """simple docstring""" A_ = 42 class _a ( nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=3 , _UpperCAmelCase=("DownEncoderBlock2D",) , _UpperCAmelCase=(64,) , _UpperCAmelCase=2 , _UpperCAmelCase=32 , _UpperCAmelCase="silu" , _UpperCAmelCase=True , ) -> Tuple: super().__init__() UpperCamelCase_ = layers_per_block UpperCamelCase_ = torch.nn.Convad( lowerCamelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCamelCase_ = None UpperCamelCase_ = nn.ModuleList([] ) # down UpperCamelCase_ = block_out_channels[0] for i, down_block_type in enumerate(lowerCamelCase_ ): UpperCamelCase_ = output_channel UpperCamelCase_ = block_out_channels[i] UpperCamelCase_ = i == len(lowerCamelCase_ ) - 1 UpperCamelCase_ = get_down_block( lowerCamelCase_ , num_layers=self.layers_per_block , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) self.down_blocks.append(lowerCamelCase_ ) # mid UpperCamelCase_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # out UpperCamelCase_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCamelCase_ , eps=1e-6 ) UpperCamelCase_ = nn.SiLU() UpperCamelCase_ = 2 * out_channels if double_z else out_channels UpperCamelCase_ = nn.Convad(block_out_channels[-1] , lowerCamelCase_ , 3 , padding=1 ) UpperCamelCase_ = False def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Any: UpperCamelCase_ = x UpperCamelCase_ = self.conv_in(lowerCamelCase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(_UpperCAmelCase ): def custom_forward(*_UpperCAmelCase ): return module(*lowerCamelCase_ ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: UpperCamelCase_ = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) # middle UpperCamelCase_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) else: for down_block in self.down_blocks: UpperCamelCase_ = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ ) # middle UpperCamelCase_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCamelCase_ ) else: # down for down_block in self.down_blocks: UpperCamelCase_ = down_block(lowerCamelCase_ ) # middle UpperCamelCase_ = self.mid_block(lowerCamelCase_ ) # post-process UpperCamelCase_ = self.conv_norm_out(lowerCamelCase_ ) UpperCamelCase_ = self.conv_act(lowerCamelCase_ ) UpperCamelCase_ = self.conv_out(lowerCamelCase_ ) return sample class _a ( nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=3 , _UpperCAmelCase=("UpDecoderBlock2D",) , _UpperCAmelCase=(64,) , _UpperCAmelCase=2 , _UpperCAmelCase=32 , _UpperCAmelCase="silu" , _UpperCAmelCase="group" , ) -> Optional[int]: super().__init__() UpperCamelCase_ = layers_per_block UpperCamelCase_ = nn.Convad( lowerCamelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCamelCase_ = None UpperCamelCase_ = nn.ModuleList([] ) UpperCamelCase_ = in_channels if norm_type == 'spatial' else None # mid UpperCamelCase_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # up UpperCamelCase_ = list(reversed(lowerCamelCase_ ) ) UpperCamelCase_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase_ ): UpperCamelCase_ = output_channel UpperCamelCase_ = reversed_block_out_channels[i] UpperCamelCase_ = i == len(lowerCamelCase_ ) - 1 UpperCamelCase_ = get_up_block( lowerCamelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , prev_output_channel=lowerCamelCase_ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , resnet_time_scale_shift=lowerCamelCase_ , ) self.up_blocks.append(lowerCamelCase_ ) UpperCamelCase_ = output_channel # out if norm_type == "spatial": UpperCamelCase_ = SpatialNorm(block_out_channels[0] , lowerCamelCase_ ) else: UpperCamelCase_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCamelCase_ , eps=1e-6 ) UpperCamelCase_ = nn.SiLU() UpperCamelCase_ = nn.Convad(block_out_channels[0] , lowerCamelCase_ , 3 , padding=1 ) UpperCamelCase_ = False def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None ) -> str: UpperCamelCase_ = z UpperCamelCase_ = self.conv_in(lowerCamelCase_ ) UpperCamelCase_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(_UpperCAmelCase ): def custom_forward(*_UpperCAmelCase ): return module(*lowerCamelCase_ ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle UpperCamelCase_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) UpperCamelCase_ = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: UpperCamelCase_ = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) else: # middle UpperCamelCase_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase_ = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: UpperCamelCase_ = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ ) else: # middle UpperCamelCase_ = self.mid_block(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase_ = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: UpperCamelCase_ = up_block(lowerCamelCase_ , lowerCamelCase_ ) # post-process if latent_embeds is None: UpperCamelCase_ = self.conv_norm_out(lowerCamelCase_ ) else: UpperCamelCase_ = self.conv_norm_out(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase_ = self.conv_act(lowerCamelCase_ ) UpperCamelCase_ = self.conv_out(lowerCamelCase_ ) return sample class _a ( nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase="random" , _UpperCAmelCase=False , _UpperCAmelCase=True ) -> Any: super().__init__() UpperCamelCase_ = n_e UpperCamelCase_ = vq_embed_dim UpperCamelCase_ = beta UpperCamelCase_ = legacy UpperCamelCase_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) UpperCamelCase_ = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) UpperCamelCase_ = self.used.shape[0] UpperCamelCase_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCamelCase_ = self.re_embed UpperCamelCase_ = self.re_embed + 1 print( f"""Remapping {self.n_e} indices to {self.re_embed} indices. """ f"""Using {self.unknown_index} for unknown indices.""" ) else: UpperCamelCase_ = n_e UpperCamelCase_ = sane_index_shape def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = inds.shape assert len(lowerCamelCase_ ) > 1 UpperCamelCase_ = inds.reshape(ishape[0] , -1 ) UpperCamelCase_ = self.used.to(lowerCamelCase_ ) UpperCamelCase_ = (inds[:, :, None] == used[None, None, ...]).long() UpperCamelCase_ = match.argmax(-1 ) UpperCamelCase_ = match.sum(2 ) < 1 if self.unknown_index == "random": UpperCamelCase_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: UpperCamelCase_ = self.unknown_index return new.reshape(lowerCamelCase_ ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> int: UpperCamelCase_ = inds.shape assert len(lowerCamelCase_ ) > 1 UpperCamelCase_ = inds.reshape(ishape[0] , -1 ) UpperCamelCase_ = self.used.to(lowerCamelCase_ ) if self.re_embed > self.used.shape[0]: # extra token UpperCamelCase_ = 0 # simply set to zero UpperCamelCase_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCamelCase_ ) return back.reshape(lowerCamelCase_ ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[str]: # reshape z -> (batch, height, width, channel) and flatten UpperCamelCase_ = z.permute(0 , 2 , 3 , 1 ).contiguous() UpperCamelCase_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCamelCase_ = torch.argmin(torch.cdist(lowerCamelCase_ , self.embedding.weight ) , dim=1 ) UpperCamelCase_ = self.embedding(lowerCamelCase_ ).view(z.shape ) UpperCamelCase_ = None UpperCamelCase_ = None # compute loss for embedding if not self.legacy: UpperCamelCase_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: UpperCamelCase_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients UpperCamelCase_ = z + (z_q - z).detach() # reshape back to match original input shape UpperCamelCase_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: UpperCamelCase_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis UpperCamelCase_ = self.remap_to_used(lowerCamelCase_ ) UpperCamelCase_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: UpperCamelCase_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: # shape specifying (batch, height, width, channel) if self.remap is not None: UpperCamelCase_ = indices.reshape(shape[0] , -1 ) # add batch axis UpperCamelCase_ = self.unmap_to_all(lowerCamelCase_ ) UpperCamelCase_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors UpperCamelCase_ = self.embedding(lowerCamelCase_ ) if shape is not None: UpperCamelCase_ = z_q.view(lowerCamelCase_ ) # reshape back to match original input shape UpperCamelCase_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class _a ( lowerCamelCase_ ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=False ) -> str: UpperCamelCase_ = parameters UpperCamelCase_ , UpperCamelCase_ = torch.chunk(lowerCamelCase_ , 2 , dim=1 ) UpperCamelCase_ = torch.clamp(self.logvar , -3_0.0 , 2_0.0 ) UpperCamelCase_ = deterministic UpperCamelCase_ = torch.exp(0.5 * self.logvar ) UpperCamelCase_ = torch.exp(self.logvar ) if self.deterministic: UpperCamelCase_ = UpperCamelCase_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def _UpperCAmelCase ( self , _UpperCAmelCase = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype UpperCamelCase_ = randn_tensor( self.mean.shape , generator=lowerCamelCase_ , device=self.parameters.device , dtype=self.parameters.dtype ) UpperCamelCase_ = self.mean + self.std * sample return x def _UpperCAmelCase ( self , _UpperCAmelCase=None ) -> int: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=[1, 2, 3] ) -> Optional[int]: if self.deterministic: return torch.Tensor([0.0] ) UpperCamelCase_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCamelCase_ ) def _UpperCAmelCase ( self ) -> str: return self.mean
23
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
0
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline lowercase : Optional[Any] = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": lowercase : List[str] = 'hopper-medium-v2' lowercase : Dict = gym.make(env_name) lowercase : List[Any] = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) lowercase : int = env.reset() lowercase : Optional[Any] = 0 lowercase : int = 0 lowercase : str = 1000 lowercase : Tuple = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy lowercase : Tuple = pipeline(obs, planning_horizon=32) # execute action in environment lowercase , lowercase , lowercase , lowercase : List[Any] = env.step(denorm_actions) lowercase : List[Any] = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" f" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) lowercase : List[Any] = next_observation except KeyboardInterrupt: pass print(f"Total reward: {total_reward}")
557
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> Any: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase_ , ) return config, input_ids, attention_mask def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = FlaxDistilBertModelTester(self) @slow def UpperCAmelCase__ ( self) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowerCamelCase_) @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)[0] UpperCamelCase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , lowerCamelCase_) UpperCamelCase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4))
34
0
import operator def UpperCamelCase ( _A : str , _A : int = False , _A : Union[str, Any] = None )-> Union[str, Any]: """simple docstring""" A__ = operator.lt if reverse else operator.gt A__ = solution or [] if not arr: return solution A__ = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase , sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: A__ = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase , _lowercase ): solution.insert(_lowercase , _lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase , _lowercase , _lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
491
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
0
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() A_: Optional[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) A_: int = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def __lowerCAmelCase ( _A ,_A ,_A ): """simple docstring""" _lowercase = state_dict.pop(_lowercase ) _lowercase = val def __lowerCAmelCase ( _A ): """simple docstring""" _lowercase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _lowercase = key.replace("""backbone.0.body""" ,"""backbone.conv_encoder.model""" ) _lowercase = value else: _lowercase = value return new_state_dict def __lowerCAmelCase ( _A ): """simple docstring""" _lowercase = """""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _lowercase = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) _lowercase = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _lowercase = in_proj_weight[:256, :] _lowercase = in_proj_bias[:256] _lowercase = in_proj_weight[256:512, :] _lowercase = in_proj_bias[256:512] _lowercase = in_proj_weight[-256:, :] _lowercase = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _lowercase = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _lowercase = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _lowercase = in_proj_weight[:256, :] _lowercase = in_proj_bias[:256] _lowercase = in_proj_weight[256:512, :] _lowercase = in_proj_bias[256:512] _lowercase = in_proj_weight[-256:, :] _lowercase = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _lowercase = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) _lowercase = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict _lowercase = in_proj_weight_cross_attn[:256, :] _lowercase = in_proj_bias_cross_attn[:256] _lowercase = in_proj_weight_cross_attn[256:512, :] _lowercase = in_proj_bias_cross_attn[256:512] _lowercase = in_proj_weight_cross_attn[-256:, :] _lowercase = in_proj_bias_cross_attn[-256:] def __lowerCAmelCase ( _A ,_A ): """simple docstring""" _lowercase , _lowercase = image.size _lowercase = max(_lowercase ,_lowercase ) _lowercase = 800 if """detection""" in checkpoint_url else 1_000 _lowercase = target_max_size / current_max_size _lowercase = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __lowerCAmelCase ( _A ): """simple docstring""" _lowercase = F.to_tensor(_lowercase ) _lowercase = F.normalize(_lowercase ,mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] ,std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ) return image @torch.no_grad() def __lowerCAmelCase ( _A ,_A ,_A ): """simple docstring""" logger.info("""Converting model...""" ) # load original state dict _lowercase = torch.hub.load_state_dict_from_url(_lowercase ,map_location="""cpu""" ) # rename keys for src, dest in rename_keys: rename_key(_lowercase ,_lowercase ,_lowercase ) _lowercase = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _lowercase = """model.""" for key in state_dict.copy().keys(): if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): _lowercase = state_dict.pop(_lowercase ) _lowercase = val # create HuggingFace model and load state dict _lowercase = TableTransformerConfig( backbone="""resnet18""" ,mask_loss_coefficient=1 ,dice_loss_coefficient=1 ,ce_loss_coefficient=1 ,bbox_loss_coefficient=5 ,giou_loss_coefficient=2 ,eos_coefficient=0.4 ,class_cost=1 ,bbox_cost=5 ,giou_cost=2 ,) if "detection" in checkpoint_url: _lowercase = 15 _lowercase = 2 _lowercase = {0: """table""", 1: """table rotated"""} _lowercase = idalabel _lowercase = {v: k for k, v in idalabel.items()} else: _lowercase = 125 _lowercase = 6 _lowercase = { 0: """table""", 1: """table column""", 2: """table row""", 3: """table column header""", 4: """table projected row header""", 5: """table spanning cell""", } _lowercase = idalabel _lowercase = {v: k for k, v in idalabel.items()} _lowercase = DetrImageProcessor( format="""coco_detection""" ,max_size=800 if """detection""" in checkpoint_url else 1_000 ) _lowercase = TableTransformerForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() # verify our conversion _lowercase = """example_pdf.png""" if """detection""" in checkpoint_url else """example_table.png""" _lowercase = hf_hub_download(repo_id="""nielsr/example-pdf""" ,repo_type="""dataset""" ,filename=_lowercase ) _lowercase = Image.open(_lowercase ).convert("""RGB""" ) _lowercase = normalize(resize(_lowercase ,_lowercase ) ).unsqueeze(0 ) _lowercase = model(_lowercase ) if "detection" in checkpoint_url: _lowercase = (1, 15, 3) _lowercase = torch.tensor( [[-6.7_8_9_7, -1_6.9_9_8_5, 6.7_9_3_7], [-8.0_1_8_6, -2_2.2_1_9_2, 6.9_6_7_7], [-7.3_1_1_7, -2_1.0_7_0_8, 7.4_0_5_5]] ) _lowercase = torch.tensor([[0.4_8_6_7, 0.1_7_6_7, 0.6_7_3_2], [0.6_7_1_8, 0.4_4_7_9, 0.3_8_3_0], [0.4_7_1_6, 0.1_7_6_0, 0.6_3_6_4]] ) else: _lowercase = (1, 125, 7) _lowercase = torch.tensor( [[-1_8.1_4_3_0, -8.3_2_1_4, 4.8_2_7_4], [-1_8.4_6_8_5, -7.1_3_6_1, -4.2_6_6_7], [-2_6.3_6_9_3, -9.3_4_2_9, -4.9_9_6_2]] ) _lowercase = torch.tensor([[0.4_9_8_3, 0.5_5_9_5, 0.9_4_4_0], [0.4_9_1_6, 0.6_3_1_5, 0.5_9_5_4], [0.6_1_0_8, 0.8_6_3_7, 0.1_1_3_5]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] ,_lowercase ,atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] ,_lowercase ,atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if push_to_hub: # Push model to HF hub logger.info("""Pushing model to the hub...""" ) _lowercase = ( """microsoft/table-transformer-detection""" if """detection""" in checkpoint_url else """microsoft/table-transformer-structure-recognition""" ) model.push_to_hub(_lowercase ) image_processor.push_to_hub(_lowercase ) if __name__ == "__main__": A_: Any = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A_: Union[str, Any] = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
398
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def UpperCAmelCase__ ( self) -> List[Any]: torch.manual_seed(0) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase_ , ) UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_) torch.manual_seed(0) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(lowerCamelCase_) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Dict: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_)).to(lowerCamelCase_) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_)).convert('''RGB''').resize((6_4, 6_4)) UpperCamelCase = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((6_4, 6_4)) if str(lowerCamelCase_).startswith('''mps'''): UpperCamelCase = torch.manual_seed(lowerCamelCase_) else: UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionInpaintPipeline(**lowerCamelCase_) UpperCamelCase = sd_pipe.to(lowerCamelCase_) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_) UpperCamelCase = self.get_dummy_inputs(lowerCamelCase_) UpperCamelCase = sd_pipe(**lowerCamelCase_).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase_ , safety_checker=lowerCamelCase_) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 9e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase_ , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def UpperCAmelCase__ ( self) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') UpperCamelCase = '''stabilityai/stable-diffusion-2-inpainting''' UpperCamelCase = PNDMScheduler.from_pretrained(lowerCamelCase_ , subfolder='''scheduler''') UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase_ , safety_checker=lowerCamelCase_ , scheduler=lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_) pipe.set_progress_bar_config(disable=lowerCamelCase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() UpperCamelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCamelCase = torch.manual_seed(0) UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
34
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __lowercase () -> Optional[int]: """simple docstring""" __lowerCamelCase : Any = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""", type=_lowercase, default=1, help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""", type=_lowercase, help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ), ) # rest from the training program parser.add_argument("""training_script_args""", nargs=_lowercase ) return parser.parse_args() def __lowercase () -> int: """simple docstring""" __lowerCamelCase : str = parse_args() # Import training_script as a module. __lowerCamelCase : Union[str, Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCamelCase : int = script_fpath.stem __lowerCamelCase : List[Any] = importlib.import_module(_lowercase ) # Patch sys.argv __lowerCamelCase : Tuple = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
150
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __snake_case ( _lowercase ,_lowercase=False ): """simple docstring""" try: UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase = default else: # KEY is set, convert it to True or False. try: UpperCamelCase = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_REMOTE', default=False) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_LOCAL', default=True) SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') SCREAMING_SNAKE_CASE_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows SCREAMING_SNAKE_CASE_ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __snake_case ( _lowercase ): """simple docstring""" try: import faiss # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires faiss''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import regex # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires regex''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires elasticsearch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: UpperCamelCase = unittest.skip('''test requires sqlalchemy''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TORCH_AVAILABLE: UpperCamelCase = unittest.skip('''test requires PyTorch''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.TF_AVAILABLE: UpperCamelCase = unittest.skip('''test requires TensorFlow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.JAX_AVAILABLE: UpperCamelCase = unittest.skip('''test requires JAX''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not config.PIL_AVAILABLE: UpperCamelCase = unittest.skip('''test requires Pillow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" def _require_spacy_model(_lowercase ): try: import spacy # noqa F401 spacy.load(_lowercase ) except ImportError: return unittest.skip('''test requires spacy''' )(_lowercase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_lowercase ) )(_lowercase ) else: return test_case return _require_spacy_model def __snake_case ( _lowercase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_lowercase ) else: return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: UpperCamelCase = unittest.skip('''test is slow''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: UpperCamelCase = unittest.skip('''test is local''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: UpperCamelCase = unittest.skip('''test is packaged''' )(_lowercase ) return test_case def __snake_case ( _lowercase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: UpperCamelCase = unittest.skip('''test requires remote''' )(_lowercase ) return test_case def __snake_case ( *_lowercase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_lowercase ) and name.startswith('''test''' ): for decorator in decorators: UpperCamelCase = decorator(_lowercase ) setattr(cls ,_lowercase ,_lowercase ) return cls return decorate class snake_case_ ( lowerCamelCase_ ): """simple docstring""" pass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = 0 A_ = 1 A_ = 2 @contextmanager def __snake_case ( _lowercase=OfflineSimulationMode.CONNECTION_FAILS ,_lowercase=1e-16 ): """simple docstring""" UpperCamelCase = requests.Session().request def timeout_request(_lowercase ,_lowercase ,_lowercase ,**_lowercase ): # Change the url to an invalid url so that the connection hangs UpperCamelCase = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) UpperCamelCase = timeout try: return online_request(_lowercase ,_lowercase ,**_lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCamelCase = url UpperCamelCase = e.args[0] UpperCamelCase = (max_retry_error.args[0].replace('''10.255.255.1''' ,f'OfflineMock[{url}]' ),) UpperCamelCase = (max_retry_error,) raise def raise_connection_error(_lowercase ,_lowercase ,**_lowercase ): raise requests.ConnectionError('''Offline mode is enabled.''' ,request=_lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' ,_lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' ,_lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' ,_lowercase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowercase ,**_lowercase ) as tmp_dir: try: os.chdir(_lowercase ) yield finally: os.chdir(_lowercase ) @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __snake_case ( ): """simple docstring""" import gc gc.collect() UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(_lowercase ).integers(0 ,100 ,10 ).tolist() def __snake_case ( _lowercase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_lowercase ,*_lowercase ,**_lowercase ): try: return func(*_lowercase ,**_lowercase ) except HTTPError as err: if str(_lowercase ).startswith('''500''' ) or str(_lowercase ).startswith('''502''' ): pytest.xfail(str(_lowercase ) ) raise err return decorator.decorator(_wrapper ,_lowercase ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = returncode UpperCamelCase = stdout UpperCamelCase = stderr async def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" while True: UpperCamelCase = await stream.readline() if line: callback(_lowercase ) else: break async def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ,_lowercase=False ): """simple docstring""" if echo: print('''\nRunning: ''' ,''' '''.join(_lowercase ) ) UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=_lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=_lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase = [] UpperCamelCase = [] def tee(_lowercase ,_lowercase ,_lowercase ,_lowercase="" ): UpperCamelCase = line.decode('''utf-8''' ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase ,_lowercase ,file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stdout ,label='''stdout:''' ) ), _read_stream(p.stderr ,lambda _lowercase : tee(_lowercase ,_lowercase ,sys.stderr ,label='''stderr:''' ) ), ] ,timeout=_lowercase ,) return _RunOutput(await p.wait() ,_lowercase ,_lowercase ) def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=180 ,_lowercase=False ,_lowercase=True ): """simple docstring""" UpperCamelCase = asyncio.get_event_loop() UpperCamelCase = loop.run_until_complete( _stream_subprocess(_lowercase ,env=_lowercase ,stdin=_lowercase ,timeout=_lowercase ,quiet=_lowercase ,echo=_lowercase ) ) UpperCamelCase = ''' '''.join(_lowercase ) if result.returncode > 0: UpperCamelCase = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def __snake_case ( ): """simple docstring""" UpperCamelCase = os.environ.get('''PYTEST_XDIST_WORKER''' ,'''gw0''' ) UpperCamelCase = re.sub(r'''^gw''' ,'''''' ,_lowercase ,0 ,re.M ) return int(_lowercase ) def __snake_case ( ): """simple docstring""" UpperCamelCase = 2_9500 UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
34
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A = None A = logging.get_logger(__name__) A = '▁' A = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } A = { 'google/pegasus-xsum': 512, } class __snake_case ( lowerCamelCase_): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PegasusTokenizer _lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self, A=None, A=None, A="<pad>", A="</s>", A="<unk>", A="<mask_2>", A="<mask_1>", A=None, A=103, **A, ): """simple docstring""" lowerCamelCase : List[str] = offset if additional_special_tokens is not None: if not isinstance(lowerCamelCase_, lowerCamelCase_ ): raise TypeError( F'''additional_special_tokens should be of type {type(lowerCamelCase_ )}, but is''' F''' {type(lowerCamelCase_ )}''' ) lowerCamelCase : Optional[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(lowerCamelCase_ ), self.offset - 1 ) ] if len(set(lowerCamelCase_ ) ) != len(lowerCamelCase_ ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) lowerCamelCase : Dict = additional_special_tokens_extended else: lowerCamelCase : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2, self.offset )] super().__init__( lowerCamelCase_, tokenizer_file=lowerCamelCase_, pad_token=lowerCamelCase_, eos_token=lowerCamelCase_, unk_token=lowerCamelCase_, mask_token=lowerCamelCase_, mask_token_sent=lowerCamelCase_, offset=lowerCamelCase_, additional_special_tokens=lowerCamelCase_, **lowerCamelCase_, ) lowerCamelCase : int = vocab_file lowerCamelCase : int = False if not self.vocab_file else True def UpperCAmelCase_ ( self, A ): """simple docstring""" lowerCamelCase : Any = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( 'There should be 3 special tokens: mask_token, pad_token, and eos_token +' F''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def UpperCAmelCase_ ( self, A, A = None, A = False ): """simple docstring""" if already_has_special_tokens: return self._special_token_mask(lowerCamelCase_ ) elif token_ids_a is None: return self._special_token_mask(lowerCamelCase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def UpperCAmelCase_ ( self, A, A=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase_ ( self, A, A = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase : Tuple = os.path.join( lowerCamelCase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file, lowerCamelCase_ ) return (out_vocab_file,)
320
"""simple docstring""" import operator def __snake_case ( _lowercase ,_lowercase = False ,_lowercase = None ): """simple docstring""" UpperCamelCase = operator.lt if reverse else operator.gt UpperCamelCase = solution or [] if not arr: return solution UpperCamelCase = [arr.pop(0 )] for i, item in enumerate(_lowercase ): if _operator(_lowercase ,sublist[-1] ): sublist.append(_lowercase ) arr.pop(_lowercase ) # merging sublist into solution list if not solution: solution.extend(_lowercase ) else: while sublist: UpperCamelCase = sublist.pop(0 ) for i, xx in enumerate(_lowercase ): if not _operator(_lowercase ,_lowercase ): solution.insert(_lowercase ,_lowercase ) break else: solution.append(_lowercase ) strand_sort(_lowercase ,_lowercase ,_lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
34
0
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py UpperCAmelCase_ : int = 'src/transformers' UpperCAmelCase_ : List[str] = 'docs/source/en' UpperCAmelCase_ : Dict = '.' def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ): """simple docstring""" with open(_lowercase , "r" , encoding="utf-8" , newline="\n" ) as f: _lowerCamelCase : Optional[int] = f.readlines() # Find the start prompt. _lowerCamelCase : int = 0 while not lines[start_index].startswith(_lowercase ): start_index += 1 start_index += 1 _lowerCamelCase : List[str] = start_index while not lines[end_index].startswith(_lowercase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | UpperCAmelCase_ : int = 'Model|Encoder|Decoder|ForConditionalGeneration' # Regexes that match TF/Flax/PT model names. UpperCAmelCase_ : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') UpperCAmelCase_ : Optional[int] = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. UpperCAmelCase_ : Tuple = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase_ : Union[str, Any] = direct_transformers_import(TRANSFORMERS_PATH) def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[str] = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , _lowercase ) return [m.group(0 ) for m in matches] def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : int = 2 if text == "✅" or text == "❌" else len(_lowercase ) _lowerCamelCase : List[str] = (width - text_length) // 2 _lowerCamelCase : Any = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _lowerCamelCase : Optional[Any] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _lowerCamelCase : int = {name: config.replace("Config" , "" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _lowerCamelCase : Optional[int] = collections.defaultdict(_lowercase ) _lowerCamelCase : Union[str, Any] = collections.defaultdict(_lowercase ) _lowerCamelCase : Union[str, Any] = collections.defaultdict(_lowercase ) _lowerCamelCase : Optional[Any] = collections.defaultdict(_lowercase ) _lowerCamelCase : str = collections.defaultdict(_lowercase ) # Let's lookup through all transformers object (once). for attr_name in dir(_lowercase ): _lowerCamelCase : Any = None if attr_name.endswith("Tokenizer" ): _lowerCamelCase : Any = slow_tokenizers _lowerCamelCase : Optional[Any] = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): _lowerCamelCase : List[str] = fast_tokenizers _lowerCamelCase : Optional[Any] = attr_name[:-13] elif _re_tf_models.match(_lowercase ) is not None: _lowerCamelCase : Optional[Any] = tf_models _lowerCamelCase : List[str] = _re_tf_models.match(_lowercase ).groups()[0] elif _re_flax_models.match(_lowercase ) is not None: _lowerCamelCase : Dict = flax_models _lowerCamelCase : Union[str, Any] = _re_flax_models.match(_lowercase ).groups()[0] elif _re_pt_models.match(_lowercase ) is not None: _lowerCamelCase : Optional[Any] = pt_models _lowerCamelCase : List[Any] = _re_pt_models.match(_lowercase ).groups()[0] if lookup_dict is not None: while len(_lowercase ) > 0: if attr_name in model_name_to_prefix.values(): _lowerCamelCase : int = True break # Try again after removing the last word in the name _lowerCamelCase : int = "".join(camel_case_split(_lowercase )[:-1] ) # Let's build that table! _lowerCamelCase : Union[str, Any] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _lowerCamelCase : Optional[int] = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _lowerCamelCase : int = [len(_lowercase ) + 2 for c in columns] _lowerCamelCase : Optional[int] = max([len(_lowercase ) for name in model_names] ) + 2 # Build the table per se _lowerCamelCase : List[str] = "|" + "|".join([_center_text(_lowercase , _lowercase ) for c, w in zip(_lowercase , _lowercase )] ) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" _lowerCamelCase : int = {True: "✅", False: "❌"} for name in model_names: _lowerCamelCase : List[Any] = model_name_to_prefix[name] _lowerCamelCase : Union[str, Any] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(_lowercase , _lowercase ) for l, w in zip(_lowercase , _lowercase )] ) + "|\n" return table def A_ ( _lowerCAmelCase : int=False ): """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = _find_text_in_file( filename=os.path.join(_lowercase , "index.md" ) , start_prompt="<!--This table is updated automatically from the auto modules" , end_prompt="<!-- End table-->" , ) _lowerCamelCase : str = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(_lowercase , "index.md" ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCAmelCase_ : Union[str, Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
44
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' SCREAMING_SNAKE_CASE_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> Any: if return_pvalue: UpperCamelCase = pearsonr(lowerCamelCase_ , lowerCamelCase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCamelCase_ , lowerCamelCase_)[0])}
34
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys a_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
623
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ComputeEnvironment.AMAZON_SAGEMAKER A_ = True A_ = '''ml.p3.2xlarge''' A_ = '''accelerate_sagemaker_execution_role''' A_ = '''hf-sm''' A_ = '''us-east-1''' A_ = 1 A_ = '''accelerate-sagemaker-1''' A_ = '''1.6''' A_ = '''4.4''' A_ = '''train.py''' A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] A_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args['''model_name_or_path'''] , lowerCamelCase_) assert isinstance(converted_args['''do_train'''] , lowerCamelCase_) assert isinstance(converted_args['''epochs'''] , lowerCamelCase_) assert isinstance(converted_args['''learning_rate'''] , lowerCamelCase_) assert isinstance(converted_args['''max_steps'''] , lowerCamelCase_) with pytest.raises(lowerCamelCase_): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
34
0
'''simple docstring''' from __future__ import annotations lowerCamelCase :Tuple = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): '''simple docstring''' A_ : Any = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowercase ) ) ] # the reference grid A_ : Union[str, Any] = 1 A_ : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowercase ) ) ] # the action grid A_ : Optional[int] = init[0] A_ : Optional[Any] = init[1] A_ : List[str] = 0 A_ : Optional[Any] = g + heuristic[x][y] # cost from starting cell to destination cell A_ : List[Any] = [[f, g, x, y]] A_ : Tuple = False # flag that is set when search is complete A_ : str = False # flag set if we can't find expand while not found and not resign: if len(_lowercase ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() A_ : List[Any] = cell.pop() A_ : Optional[int] = next_cell[2] A_ : Tuple = next_cell[3] A_ : Union[str, Any] = next_cell[1] if x == goal[0] and y == goal[1]: A_ : int = True else: for i in range(len(_lowercase ) ): # to try out different valid actions A_ : int = x + DIRECTIONS[i][0] A_ : List[str] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_lowercase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: A_ : int = g + cost A_ : List[str] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) A_ : str = 1 A_ : Any = i A_ : Dict = [] A_ : Union[str, Any] = goal[0] A_ : List[str] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: A_ : Union[str, Any] = x - DIRECTIONS[action[x][y]][0] A_ : List[str] = y - DIRECTIONS[action[x][y]][1] A_ : Tuple = xa A_ : str = ya invpath.append([x, y] ) A_ : Any = [] for i in range(len(_lowercase ) ): path.append(invpath[len(_lowercase ) - 1 - i] ) return path, action if __name__ == "__main__": lowerCamelCase :str = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowerCamelCase :str = [0, 0] # all coordinates are given in format [y,x] lowerCamelCase :Dict = [len(grid) - 1, len(grid[0]) - 1] lowerCamelCase :Tuple = 1 # the cost map which pushes the path closer to the goal lowerCamelCase :Optional[Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowerCamelCase :int = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowerCamelCase :Tuple = 9_9 lowerCamelCase , lowerCamelCase :List[Any] = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
667
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class snake_case_ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCamelCase_ = " ") -> List[str]: UpperCamelCase = sentence_delimiter def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return list(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase_): chars.extend(self.process_string(lowerCamelCase_)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_) - 1: chars.append(self.sentence_delimiter) return chars SCREAMING_SNAKE_CASE_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = ["""note_seq"""] def __init__( self : List[Any] , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Optional[Any]): '''simple docstring''' requires_backends(self , ['note_seq']) @classmethod def __lowerCamelCase ( cls : Dict , *_lowerCAmelCase : str , **_lowerCAmelCase : Tuple): '''simple docstring''' requires_backends(cls , ['note_seq']) @classmethod def __lowerCamelCase ( cls : List[str] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : List[str]): '''simple docstring''' requires_backends(cls , ['note_seq'])
474
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = '''left''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<eop>", "<eod>"] , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = 3 UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> List[str]: return len(self.sp_model) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> str: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: if self.remove_space: UpperCamelCase = ''' '''.join(inputs.strip().split()) else: UpperCamelCase = inputs UpperCamelCase = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCamelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase_) UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_)]) if self.do_lower_case: UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) UpperCamelCase = [] for piece in pieces: if len(lowerCamelCase_) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCamelCase = cur_pieces[1:] else: UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCamelCase_) else: new_pieces.append(lowerCamelCase_) return new_pieces def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.sp_model.IdToPiece(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: UpperCamelCase = ''''''.join(lowerCamelCase_).replace(lowerCamelCase_ , ''' ''').strip() return out_string def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> str: UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCamelCase_) UpperCamelCase = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) UpperCamelCase = [] sub_texts.append(lowerCamelCase_) else: current_sub_text.append(lowerCamelCase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(lowerCamelCase_) return clean_text else: return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) + [1, 1] return ([0] * len(lowerCamelCase_)) + [1, 1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,)
34
0
import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union SCREAMING_SNAKE_CASE_:Union[str, Any] = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class SCREAMING_SNAKE_CASE__ : '''simple docstring''' __lowerCamelCase : List[Any] = 42 __lowerCamelCase : List[str] = None __lowerCamelCase : List[str] = None __lowerCamelCase : Optional[Any] = None __lowerCamelCase : str = None def _lowerCAmelCase ( self ): A , A , A : Dict = _str_to_version_tuple(self.version_str ) def __repr__( self ): return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def _lowerCAmelCase ( self ): return self.major, self.minor, self.patch def _lowerCAmelCase ( self, lowerCamelCase__ ): if isinstance(lowerCamelCase_, lowerCamelCase_ ): return Version(lowerCamelCase_ ) elif isinstance(lowerCamelCase_, lowerCamelCase_ ): return other raise TypeError(f'''{other} (type {type(lowerCamelCase_ )}) cannot be compared to version.''' ) def __eq__( self, lowerCamelCase__ ): try: A : Optional[Any] = self._validate_operand(lowerCamelCase_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self, lowerCamelCase__ ): A : Union[str, Any] = self._validate_operand(lowerCamelCase_ ) return self.tuple < other.tuple def __hash__( self ): return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def _lowerCAmelCase ( cls, lowerCamelCase__ ): A : Any = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def _lowerCAmelCase ( self ): return self.version_str def __UpperCamelCase ( _lowerCAmelCase ) -> List[Any]: """simple docstring""" A : List[str] = _VERSION_REG.match(_lowercase ) if not res: raise ValueError(f'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(_lowercase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def __UpperCamelCase ( _lowerCAmelCase ) -> List[Any]: """simple docstring""" return ".".join(str(_lowercase ) for v in version_tuple )
662
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } SCREAMING_SNAKE_CASE_ = { 'openbmb/cpm-ant-10b': 1024, } def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = collections.OrderedDict() with open(_lowercase ,'''r''' ,encoding='''utf-8''' ) as reader: UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): UpperCamelCase = token.rstrip('''\n''' ) UpperCamelCase = index return vocab class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_=2_0_0) -> Any: UpperCamelCase = vocab UpperCamelCase = unk_token UpperCamelCase = max_input_chars_per_word def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = list(lowerCamelCase_) if len(lowerCamelCase_) > self.max_input_chars_per_word: return [self.unk_token] UpperCamelCase = 0 UpperCamelCase = [] while start < len(lowerCamelCase_): UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = None while start < end: UpperCamelCase = ''''''.join(chars[start:end]) if substr in self.vocab: UpperCamelCase = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(lowerCamelCase_) UpperCamelCase = end return sub_tokens class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] A_ = False def __init__( self , lowerCamelCase_ , lowerCamelCase_="<d>" , lowerCamelCase_="</d>" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<unk>" , lowerCamelCase_="</n>" , lowerCamelCase_="</_>" , lowerCamelCase_="left" , **lowerCamelCase_ , ) -> List[str]: requires_backends(self , ['''jieba''']) super().__init__( bod_token=lowerCamelCase_ , eod_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , line_token=lowerCamelCase_ , space_token=lowerCamelCase_ , padding_side=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = bod_token UpperCamelCase = eod_token UpperCamelCase = load_vocab(lowerCamelCase_) UpperCamelCase = self.encoder[space_token] UpperCamelCase = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def UpperCAmelCase__ ( self) -> Dict: return self.encoder[self.bod_token] @property def UpperCAmelCase__ ( self) -> str: return self.encoder[self.eod_token] @property def UpperCAmelCase__ ( self) -> List[Any]: return self.encoder["\n"] @property def UpperCAmelCase__ ( self) -> int: return len(self.encoder) def UpperCAmelCase__ ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = [] for x in jieba.cut(lowerCamelCase_ , cut_all=lowerCamelCase_): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCamelCase_)) return output_tokens def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> Tuple: UpperCamelCase = [i for i in token_ids if i >= 0] UpperCamelCase = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return token in self.encoder def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return "".join(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token)) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: return self.decoder.get(lowerCamelCase_ , self.unk_token) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if os.path.isdir(lowerCamelCase_): UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: UpperCamelCase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCamelCase = 0 if " " in self.encoder: UpperCamelCase = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCamelCase = self.encoder['''\n'''] del self.encoder["\n"] UpperCamelCase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCamelCase_: x[1])) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''') UpperCamelCase = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return [1] + ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) return [1] + ([0] * len(lowerCamelCase_))
34
0
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging snake_case__ : Tuple = { """cola""": 2, """mnli""": 3, """mrpc""": 2, """sst-2""": 2, """sts-b""": 1, """qqp""": 2, """qnli""": 2, """rte""": 2, """wnli""": 2, } logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=None): UpperCamelCase_ = XLNetConfig.from_json_file(_lowercase) UpperCamelCase_ = finetuning_task.lower() if finetuning_task is not None else '' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""") UpperCamelCase_ = finetuning_task UpperCamelCase_ = GLUE_TASKS_NUM_LABELS[finetuning_task] UpperCamelCase_ = XLNetForSequenceClassification(_lowercase) elif "squad" in finetuning_task: UpperCamelCase_ = finetuning_task UpperCamelCase_ = XLNetForQuestionAnswering(_lowercase) else: UpperCamelCase_ = XLNetLMHeadModel(_lowercase) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowercase , _lowercase , _lowercase) # Save pytorch-model UpperCamelCase_ = os.path.join(_lowercase , _lowercase) UpperCamelCase_ = os.path.join(_lowercase , _lowercase) print(f"""Save PyTorch model to {os.path.abspath(_lowercase)}""") torch.save(model.state_dict() , _lowercase) print(f"""Save configuration file to {os.path.abspath(_lowercase)}""") with open(_lowercase , 'w' , encoding='utf-8') as f: f.write(config.to_json_string()) if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--xlnet_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained XLNet model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--finetuning_task""", default=None, type=str, help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""", ) snake_case__ : Dict = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
23
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=0) -> int: UpperCamelCase = 1.0 if scale is None else scale UpperCamelCase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_)]) @property def UpperCAmelCase__ ( self) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase__ ( self) -> List[str]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase__ ( self) -> Any: return self.variance.sqrt() class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = args_dim UpperCamelCase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_) for dim in args_dim.values()]) UpperCamelCase = domain_map def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple[torch.Tensor]: UpperCamelCase = [proj(lowerCamelCase_) for proj in self.proj] return self.domain_map(*lowerCamelCase_) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__() UpperCamelCase = function def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_) -> Tuple: return self.function(lowerCamelCase_ , *lowerCamelCase_) class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , lowerCamelCase_ = 1) -> None: UpperCamelCase = dim UpperCamelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if self.dim == 1: return self.distribution_class(*lowerCamelCase_) else: return Independent(self.distribution_class(*lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Distribution: UpperCamelCase = self._base_distribution(lowerCamelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim) @property def UpperCAmelCase__ ( self) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase__ ( self) -> int: return len(self.event_shape) @property def UpperCAmelCase__ ( self) -> float: return 0.0 def UpperCAmelCase__ ( self , lowerCamelCase_) -> nn.Module: return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def UpperCAmelCase__ ( self , *lowerCamelCase_) -> List[str]: raise NotImplementedError() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCamelCase_) + 4.0)) / 2.0 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"df": 1, "loc": 1, "scale": 1} A_ = StudentT @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) UpperCamelCase = 2.0 + cls.squareplus(lowerCamelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"loc": 1, "scale": 1} A_ = Normal @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"total_count": 1, "logits": 1} A_ = NegativeBinomial @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = cls.squareplus(lowerCamelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
34
0
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowercase : Any = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] , _lowerCamelCase : Any , _lowerCamelCase : Tuple , _lowerCamelCase : Any) -> Tuple: '''simple docstring''' def constraint_to_multiple_of(_lowerCamelCase : List[str] , _lowerCamelCase : str , _lowerCamelCase : Optional[int]=0 , _lowerCamelCase : Any=None): __UpperCamelCase : Union[str, Any] = round(val / multiple) * multiple if max_val is not None and x > max_val: __UpperCamelCase : Any = math.floor(val / multiple) * multiple if x < min_val: __UpperCamelCase : List[str] = math.ceil(val / multiple) * multiple return x __UpperCamelCase : Optional[int] = (output_size, output_size) if isinstance(_lowercase , _lowercase) else output_size __UpperCamelCase , __UpperCamelCase : Optional[int] = get_image_size(_lowercase) __UpperCamelCase , __UpperCamelCase : List[Any] = output_size # determine new height and width __UpperCamelCase : List[str] = output_height / input_height __UpperCamelCase : Any = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width) < abs(1 - scale_height): # fit width __UpperCamelCase : Any = scale_width else: # fit height __UpperCamelCase : Union[str, Any] = scale_height __UpperCamelCase : str = constraint_to_multiple_of(scale_height * input_height , multiple=_lowercase) __UpperCamelCase : int = constraint_to_multiple_of(scale_width * input_width , multiple=_lowercase) return (new_height, new_width) class lowerCamelCase__ ( lowerCamelCase_): '''simple docstring''' _A = ['pixel_values'] def __init__( self :List[Any] , a :Optional[Any] = True , a :Optional[Any] = None , a :int = PILImageResampling.BILINEAR , a :List[str] = False , a :Union[str, Any] = 1 , a :Optional[Any] = True , a :str = 1 / 2_5_5 , a :str = True , a :Tuple = None , a :Any = None , **a :List[str] , ) -> None: super().__init__(**lowerCamelCase_ ) __UpperCamelCase : Tuple = size if size is not None else {"height": 3_8_4, "width": 3_8_4} __UpperCamelCase : Optional[int] = get_size_dict(lowerCamelCase_ ) __UpperCamelCase : Tuple = do_resize __UpperCamelCase : List[str] = size __UpperCamelCase : Optional[Any] = keep_aspect_ratio __UpperCamelCase : int = ensure_multiple_of __UpperCamelCase : Any = resample __UpperCamelCase : List[str] = do_rescale __UpperCamelCase : List[Any] = rescale_factor __UpperCamelCase : Any = do_normalize __UpperCamelCase : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCamelCase : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self :Optional[int] , a :Any , a :Union[str, Any] , a :Tuple = False , a :Any = 1 , a :Dict = PILImageResampling.BICUBIC , a :str = None , **a :Optional[int] , ) -> np.ndarray: __UpperCamelCase : Any = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) __UpperCamelCase : List[str] = get_resize_output_image_size( lowerCamelCase_ , output_size=(size["height"], size["width"]) , keep_aspect_ratio=lowerCamelCase_ , multiple=lowerCamelCase_ , ) return resize(lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def _lowerCamelCase ( self :Any , a :Union[str, Any] , a :Any , a :Any = None , **a :List[Any] , ) -> Any: return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def _lowerCamelCase ( self :Optional[int] , a :Dict , a :Optional[Any] , a :Tuple , a :List[str] = None , **a :Optional[Any] , ) -> np.ndarray: return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def _lowerCamelCase ( self :List[Any] , a :Optional[Any] , a :Optional[Any] = None , a :Optional[int] = None , a :Optional[int] = None , a :Tuple = None , a :Optional[int] = None , a :Optional[int] = None , a :List[Any] = None , a :Optional[Any] = None , a :List[str] = None , a :str = None , a :Union[str, Any] = None , a :Union[str, Any] = ChannelDimension.FIRST , **a :List[Any] , ) -> PIL.Image.Image: __UpperCamelCase : List[str] = do_resize if do_resize is not None else self.do_resize __UpperCamelCase : List[str] = size if size is not None else self.size __UpperCamelCase : Optional[int] = get_size_dict(lowerCamelCase_ ) __UpperCamelCase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio __UpperCamelCase : Optional[Any] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of __UpperCamelCase : str = resample if resample is not None else self.resample __UpperCamelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase : Any = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase : str = image_mean if image_mean is not None else self.image_mean __UpperCamelCase : int = image_std if image_std is not None else self.image_std __UpperCamelCase : List[str] = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __UpperCamelCase : str = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: __UpperCamelCase : Optional[int] = [self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_rescale: __UpperCamelCase : str = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: __UpperCamelCase : Optional[int] = [self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] __UpperCamelCase : Dict = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] __UpperCamelCase : Dict = {"pixel_values": images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ ) def _lowerCamelCase ( self :List[Any] , a :Any , a :str = None ) -> Optional[int]: __UpperCamelCase : int = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(lowerCamelCase_ ): __UpperCamelCase : Optional[Any] = target_sizes.numpy() __UpperCamelCase : List[str] = [] for idx in range(len(lowerCamelCase_ ) ): __UpperCamelCase : str = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=lowerCamelCase_ ) __UpperCamelCase : int = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCamelCase_ ) else: __UpperCamelCase : str = logits.argmax(dim=1 ) __UpperCamelCase : Union[str, Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
557
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowercase ,id=_lowercase )
34
0
from __future__ import annotations class UpperCamelCase : def __init__( self , UpperCAmelCase__ ): A__ = data A__ = None A__ = None def UpperCamelCase ( _A : List[Any] )-> int: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def UpperCamelCase ( _A : Dict )-> Any: """simple docstring""" return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def UpperCamelCase ( _A : str )-> str: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def UpperCamelCase ( )-> Union[str, Any]: # Main function for testing. """simple docstring""" A__ = Node(1 ) A__ = Node(2 ) A__ = Node(3 ) A__ = Node(4 ) A__ = Node(5 ) A__ = Node(6 ) A__ = Node(7 ) A__ = Node(8 ) A__ = Node(9 ) print(is_full_binary_tree(_lowercase ) ) print(depth_of_tree(_lowercase ) ) print("Tree is: " ) display(_lowercase ) if __name__ == "__main__": main()
491
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
34
0
from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter A_: List[Any] = logging.get_logger(__name__) A_: Optional[int] = {} A_: Tuple = {} A_: Dict = {} def __lowerCAmelCase ( _A ,_A ,_A = None ,): """simple docstring""" _lowercase = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) _lowercase = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) _lowercase = format_type def __lowerCAmelCase ( _A ,_A ,_A = None ): """simple docstring""" _lowercase = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): _lowercase = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: A_: Any = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: A_: Optional[Any] = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: A_: Optional[int] = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def __lowerCAmelCase ( _A ): """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __lowerCAmelCase ( _A ,**_A ): """simple docstring""" _lowercase = get_format_type_from_alias(_lowercase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**_lowercase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
398
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
0
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE : @staticmethod def a_ ( *A__ : List[str] , **A__ : Optional[int] ): """simple docstring""" pass def __lowercase (_lowercase ) -> Optional[Any]: """simple docstring""" __lowerCamelCase : Optional[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __lowercase (_lowercase ) -> Tuple: """simple docstring""" __lowerCamelCase : List[Any] = np.array(_lowercase ) __lowerCamelCase : str = npimg.shape return {"hash": hashimage(_lowercase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case__ : Optional[Any] = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) snake_case__ : Any = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def a_ ( self : Tuple , A__ : int , A__ : Tuple , A__ : List[str] ): """simple docstring""" __lowerCamelCase : Tuple = MaskGenerationPipeline(model=lowerCamelCase_ , image_processor=lowerCamelCase_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def a_ ( self : int , A__ : Tuple , A__ : Any ): """simple docstring""" pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def a_ ( self : List[str] ): """simple docstring""" pass @slow @require_torch def a_ ( self : Tuple ): """simple docstring""" __lowerCamelCase : Union[str, Any] = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) __lowerCamelCase : Union[str, Any] = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 ) # Shortening by hashing __lowerCamelCase : List[str] = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871} ] , ) # fmt: on @require_torch @slow def a_ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase : List[str] = """facebook/sam-vit-huge""" __lowerCamelCase : Optional[int] = pipeline("""mask-generation""" , model=lowerCamelCase_ ) __lowerCamelCase : str = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __lowerCamelCase : Optional[Any] = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, ] , )
150
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase=None ,_lowercase=None ): """simple docstring""" if "." in tensor_name: UpperCamelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase = getattr(_lowercase ,_lowercase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) UpperCamelCase = tensor_name in module._buffers UpperCamelCase = getattr(_lowercase ,_lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) UpperCamelCase = False UpperCamelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase = False UpperCamelCase = False else: UpperCamelCase = hasattr(bnb.nn ,'''Params4bit''' ) and isinstance(module._parameters[tensor_name] ,bnb.nn.Paramsabit ) UpperCamelCase = isinstance(module._parameters[tensor_name] ,bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCamelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCamelCase = torch.tensor(_lowercase ,device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls ,_lowercase ) and fpaa_statistics is None: UpperCamelCase = new_value.T UpperCamelCase = old_value.__dict__ if is_abit: UpperCamelCase = bnb.nn.IntaParams(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) elif is_abit: UpperCamelCase = bnb.nn.Paramsabit(_lowercase ,requires_grad=_lowercase ,**_lowercase ).to(_lowercase ) UpperCamelCase = new_value if fpaa_statistics is not None: setattr(module.weight ,'''SCB''' ,fpaa_statistics.to(_lowercase ) ) else: if value is None: UpperCamelCase = old_value.to(_lowercase ) elif isinstance(_lowercase ,torch.Tensor ): UpperCamelCase = value.to(_lowercase ) else: UpperCamelCase = torch.tensor(_lowercase ,device=_lowercase ) if is_buffer: UpperCamelCase = new_value else: UpperCamelCase = nn.Parameter(_lowercase ,requires_grad=old_value.requires_grad ) UpperCamelCase = new_value def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ,_lowercase=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(_lowercase ) if (isinstance(_lowercase ,nn.Linear ) or isinstance(_lowercase ,_lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowercase ,_lowercase ): UpperCamelCase , UpperCamelCase = module.weight.shape else: UpperCamelCase = module.in_features UpperCamelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase = bnb.nn.LinearabitLt( _lowercase ,_lowercase ,module.bias is not None ,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight ,threshold=quantization_config.llm_inta_threshold ,) UpperCamelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase = bnb.nn.Linearabit( _lowercase ,_lowercase ,module.bias is not None ,quantization_config.bnb_abit_compute_dtype ,compress_statistics=quantization_config.bnb_abit_use_double_quant ,quant_type=quantization_config.bnb_abit_quant_type ,) UpperCamelCase = True # Store the module class in case we need to transpose the weight later UpperCamelCase = type(_lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowercase ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ,has_been_replaced=_lowercase ,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=None ,_lowercase=None ): """simple docstring""" UpperCamelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase = _replace_with_bnb_linear( _lowercase ,_lowercase ,_lowercase ,_lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' ,_lowercase ,) return replace_with_bnb_linear(*_lowercase ,**_lowercase ) def __snake_case ( *_lowercase ,**_lowercase ): """simple docstring""" warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' ,_lowercase ,) return set_module_quantized_tensor_to_device(*_lowercase ,**_lowercase ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase ,_lowercase ): UpperCamelCase = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(_lowercase ,[] ) UpperCamelCase = len(_lowercase ) > 0 # Check if it is a base model UpperCamelCase = not hasattr(_lowercase ,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(_lowercase ) - set(_lowercase ) UpperCamelCase = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys UpperCamelCase = ['''.weight''', '''.bias'''] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(_lowercase ,'''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names
34
0
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def UpperCAmelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] = "cpu" , UpperCAmelCase__ : Dict = None): lowerCamelCase : List[Any] = torch.load(_lowercase , map_location=_lowercase) for k, v in tqdm(state_dict.items()): if not isinstance(_lowercase , torch.Tensor): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin') lowerCamelCase : List[Any] = v.half() if save_path is None: # overwrite src_path lowerCamelCase : Tuple = src_path torch.save(_lowercase , _lowercase) if __name__ == "__main__": fire.Fire(convert)
320
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase ) count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 ) count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase ) return count def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_lowercase ,_lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_ = TemporaryFile() SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_ = np.load(outfile) SCREAMING_SNAKE_CASE_ = len(M) - 1 SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
34
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : str = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Optional[int] = "huggingface/label-files" _lowerCamelCase : Optional[int] = "imagenet-1k-id2label.json" _lowerCamelCase : List[str] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowercase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[int] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" _lowerCamelCase : Optional[int] = BitConfig( conv_layer=_lowercase , num_labels=1000 , idalabel=_lowercase , labelaid=_lowercase , ) return config def A_ ( _lowerCAmelCase : str ): """simple docstring""" if "stem.conv" in name: _lowerCamelCase : List[Any] = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: _lowerCamelCase : List[str] = name.replace("blocks" , "layers" ) if "head.fc" in name: _lowerCamelCase : Tuple = name.replace("head.fc" , "classifier.1" ) if name.startswith("norm" ): _lowerCamelCase : str = "bit." + name if "bit" not in name and "classifier" not in name: _lowerCamelCase : Optional[Any] = "bit.encoder." + name return name def A_ ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Union[str, Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any]=False ): """simple docstring""" _lowerCamelCase : int = get_config(_lowercase ) # load original model from timm _lowerCamelCase : Tuple = create_model(_lowercase , pretrained=_lowercase ) timm_model.eval() # load state_dict of original model _lowerCamelCase : Optional[Any] = timm_model.state_dict() for key in state_dict.copy().keys(): _lowerCamelCase : Optional[Any] = state_dict.pop(_lowercase ) _lowerCamelCase : Dict = val.squeeze() if "head" in key else val # load HuggingFace model _lowerCamelCase : Optional[Any] = BitForImageClassification(_lowercase ) model.eval() model.load_state_dict(_lowercase ) # create image processor _lowerCamelCase : Optional[int] = create_transform(**resolve_data_config({} , model=_lowercase ) ) _lowerCamelCase : Optional[int] = transform.transforms _lowerCamelCase : Optional[Any] = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } _lowerCamelCase : str = BitImageProcessor( do_resize=_lowercase , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowercase , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_lowercase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) _lowerCamelCase : List[Any] = prepare_img() _lowerCamelCase : Dict = transform(_lowercase ).unsqueeze(0 ) _lowerCamelCase : str = processor(_lowercase , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(_lowercase , _lowercase ) # verify logits with torch.no_grad(): _lowerCamelCase : Union[str, Any] = model(_lowercase ) _lowerCamelCase : str = outputs.logits print("Logits:" , logits[0, :3] ) print("Predicted class:" , model.config.idalabel[logits.argmax(-1 ).item()] ) _lowerCamelCase : Dict = timm_model(_lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowercase , outputs.logits , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) if push_to_hub: print(F'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(F'ybelkada/{model_name}' ) processor.push_to_hub(F'ybelkada/{model_name}' ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) UpperCAmelCase_ : Dict = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
44
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE_ = os.path.join(git_repo_path, 'src', 'transformers') SCREAMING_SNAKE_CASE_ = '\n{0} = None\n' SCREAMING_SNAKE_CASE_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' SCREAMING_SNAKE_CASE_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''') self.assertIsNone(lowerCamelCase_) UpperCamelCase = find_backend(''' if not is_tokenizers_available():''') self.assertEqual(lowerCamelCase_ , '''tokenizers''') UpperCamelCase = find_backend(''' if not is_tensorflow_text_available():''') self.assertEqual(lowerCamelCase_ , '''tensorflow_text''') UpperCamelCase = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tensorflow_text''') UpperCamelCase = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''') self.assertEqual(lowerCamelCase_ , '''sentencepiece_and_tokenizers_and_vision''') def UpperCAmelCase__ ( self) -> int: UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCamelCase_) self.assertIn('''tensorflow_text''' , lowerCamelCase_) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCamelCase_) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertModel''' , objects['''tf''']) self.assertIn('''FlaxBertModel''' , objects['''flax''']) self.assertIn('''BertModel''' , objects['''torch''']) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text''']) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers''']) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , '''\nCONSTANT = None\n''') UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( lowerCamelCase_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , lowerCamelCase_)
34
0
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = np.inf def set_batch_size(UpperCAmelCase__ ) -> None: nonlocal batch_size if isinstance(_lowercase , _lowercase ): lowerCamelCase = min(_lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_lowercase , _lowercase ): lowerCamelCase = min(_lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_lowercase , _lowercase ) and feature.dtype == "binary": lowerCamelCase = min(_lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_lowercase , _lowercase ) return None if batch_size is np.inf else batch_size class lowerCamelCase__ ( lowerCamelCase_): """simple docstring""" def __init__(self , __a , __a = None , __a = None , __a = None , __a = False , __a = False , __a = None , **__a , ): '''simple docstring''' super().__init__( lowerCamelCase_ , split=lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ , streaming=lowerCamelCase_ , num_proc=lowerCamelCase_ , **lowerCamelCase_ , ) lowerCamelCase = path_or_paths if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else {self.split: path_or_paths} lowerCamelCase = _PACKAGED_DATASETS_MODULES["parquet"][1] lowerCamelCase = Parquet( cache_dir=lowerCamelCase_ , data_files=lowerCamelCase_ , features=lowerCamelCase_ , hash=lowerCamelCase_ , **lowerCamelCase_ , ) def _a (self ): '''simple docstring''' if self.streaming: lowerCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None self.builder.download_and_prepare( download_config=lowerCamelCase_ , download_mode=lowerCamelCase_ , verification_mode=lowerCamelCase_ , base_path=lowerCamelCase_ , num_proc=self.num_proc , ) lowerCamelCase = self.builder.as_dataset( split=self.split , verification_mode=lowerCamelCase_ , in_memory=self.keep_in_memory ) return dataset class lowerCamelCase__ : """simple docstring""" def __init__(self , __a , __a , __a = None , **__a , ): '''simple docstring''' lowerCamelCase = dataset lowerCamelCase = path_or_buf lowerCamelCase = batch_size or get_writer_batch_size(dataset.features ) lowerCamelCase = parquet_writer_kwargs def _a (self ): '''simple docstring''' lowerCamelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: lowerCamelCase = self._write(file_obj=lowerCamelCase_ , batch_size=lowerCamelCase_ , **self.parquet_writer_kwargs ) else: lowerCamelCase = self._write(file_obj=self.path_or_buf , batch_size=lowerCamelCase_ , **self.parquet_writer_kwargs ) return written def _a (self , __a , __a , **__a ): '''simple docstring''' lowerCamelCase = 0 lowerCamelCase = parquet_writer_kwargs.pop("path_or_buf" , lowerCamelCase_ ) lowerCamelCase = self.dataset.features.arrow_schema lowerCamelCase = pq.ParquetWriter(lowerCamelCase_ , schema=lowerCamelCase_ , **lowerCamelCase_ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , lowerCamelCase_ ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): lowerCamelCase = query_table( table=self.dataset._data , key=slice(lowerCamelCase_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(lowerCamelCase_ ) written += batch.nbytes writer.close() return written
623
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __snake_case ( _lowercase ): """simple docstring""" if "cls_token" in name: UpperCamelCase = name.replace('''cls_token''' ,'''vit.embeddings.cls_token''' ) if "mask_token" in name: UpperCamelCase = name.replace('''mask_token''' ,'''decoder.mask_token''' ) if "decoder_pos_embed" in name: UpperCamelCase = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase = name.replace('''pos_embed''' ,'''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase = name.replace('''patch_embed.proj''' ,'''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase = name.replace('''patch_embed.norm''' ,'''vit.embeddings.norm''' ) if "decoder_blocks" in name: UpperCamelCase = name.replace('''decoder_blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: UpperCamelCase = name.replace('''blocks''' ,'''vit.encoder.layer''' ) if "attn.proj" in name: UpperCamelCase = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name: UpperCamelCase = name.replace('''attn''' ,'''attention.self''' ) if "norm1" in name: UpperCamelCase = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: UpperCamelCase = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: UpperCamelCase = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: UpperCamelCase = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: UpperCamelCase = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.weight''' ,'''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase = name.replace('''norm.bias''' ,'''vit.layernorm.bias''' ) return name def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_lowercase ) if "qkv" in key: UpperCamelCase = key.split('''.''' ) UpperCamelCase = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase = config.decoder_hidden_size UpperCamelCase = '''decoder.decoder_layers.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = config.hidden_size UpperCamelCase = '''vit.encoder.layer.''' if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] elif "bias" in key: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = val return orig_state_dict def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 elif "huge" in checkpoint_url: UpperCamelCase = 14 UpperCamelCase = 1280 UpperCamelCase = 5120 UpperCamelCase = 32 UpperCamelCase = 16 UpperCamelCase = ViTMAEForPreTraining(_lowercase ) UpperCamelCase = torch.hub.load_state_dict_from_url(_lowercase ,map_location='''cpu''' )['''model'''] UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = convert_state_dict(_lowercase ,_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCamelCase = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' UpperCamelCase = Image.open(requests.get(_lowercase ,stream=_lowercase ).raw ) UpperCamelCase = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase = image_processor(images=_lowercase ,return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase = model(**_lowercase ) UpperCamelCase = outputs.logits if "large" in checkpoint_url: UpperCamelCase = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] ,_lowercase ,atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
34
0
'''simple docstring''' from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata lowerCamelCase :List[Any] = '''''' if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class _lowerCAmelCase ( tr.AbstractTransform ): def __init__(self , lowercase = " " ): A_ : Dict = sentence_delimiter def _a (self , lowercase ): return list(lowerCamelCase_ ) def _a (self , lowercase ): A_ : Any = [] for sent_idx, sentence in enumerate(lowerCamelCase_ ): chars.extend(self.process_string(lowerCamelCase_ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_ ) - 1: chars.append(self.sentence_delimiter ) return chars lowerCamelCase :str = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowerCamelCase :List[Any] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowerCamelCase :Optional[int] = '''\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n''' lowerCamelCase :str = '''\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n''' lowerCamelCase :Optional[int] = '''\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def _a (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", """https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates""", ] , ) def _a (self , lowercase , lowercase , lowercase=False ): if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] A_ : Any = 0 A_ : Optional[Any] = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_ ): A_ : Dict = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
667
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> Any: super().__init__() UpperCamelCase = nn.Linear(3 , 4) UpperCamelCase = nn.BatchNormad(4) UpperCamelCase = nn.Linear(4 , 5) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(lowerCamelCase_))) class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_): nonlocal batch_sizes batch_sizes.append(lowerCamelCase_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCamelCase , UpperCamelCase = mock_training_loop_function('''hello''') self.assertListEqual(lowerCamelCase_ , [1_2_8, 6_4, 3_2, 1_6, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def UpperCAmelCase__ ( self) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(lowerCamelCase_): pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> List[Any]: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Union[str, Any]: @find_executable_batch_size(starting_batch_size=1_2_8) def mock_training_loop_function(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function(1_2_8 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def UpperCAmelCase__ ( self) -> Dict: @find_executable_batch_size(starting_batch_size=1_6) def mock_training_loop_function(lowerCamelCase_): raise ValueError('''Oops, we had an error!''') with self.assertRaises(lowerCamelCase_) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCamelCase_) UpperCamelCase = release_memory(lowerCamelCase_) self.assertEqual(torch.cuda.memory_allocated() , lowerCamelCase_)
34
0
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class _UpperCamelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Optional[Any] , **_lowerCAmelCase : Optional[Any]): '''simple docstring''' super().__init__(**lowerCamelCase_) requires_backends(self , 'vision') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self : Tuple , _lowerCAmelCase : List[Any] , **_lowerCAmelCase : List[Any]): '''simple docstring''' return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def __lowerCamelCase ( self : Tuple , **_lowerCAmelCase : Optional[int]): '''simple docstring''' __lowercase ={} if "candidate_labels" in kwargs: __lowercase =kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __lowercase =kwargs['hypothesis_template'] return preprocess_params, {}, {} def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Union[str, Any]="This is a photo of {}."): '''simple docstring''' __lowercase =load_image(lowerCamelCase_) __lowercase =self.image_processor(images=[image] , return_tensors=self.framework) __lowercase =candidate_labels __lowercase =[hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] __lowercase =self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) __lowercase =[text_inputs] return inputs def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : List[Any]): '''simple docstring''' __lowercase =model_inputs.pop('candidate_labels') __lowercase =model_inputs.pop('text_inputs') if isinstance(text_inputs[0] , lowerCamelCase_): __lowercase =text_inputs[0] else: # Batching case. __lowercase =text_inputs[0][0] __lowercase =self.model(**lowerCamelCase_ , **lowerCamelCase_) __lowercase ={ 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : Dict): '''simple docstring''' __lowercase =model_outputs.pop('candidate_labels') __lowercase =model_outputs['logits'][0] if self.framework == "pt": __lowercase =logits.softmax(dim=-1).squeeze(-1) __lowercase =probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): __lowercase =[scores] elif self.framework == "tf": __lowercase =stable_softmax(lowerCamelCase_ , axis=-1) __lowercase =probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""") __lowercase =[ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda _lowerCAmelCase: -x[0]) ] return result
474
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ = 1_0_1) -> Tuple: UpperCamelCase = length def __len__( self) -> List[str]: return self.length def __getitem__( self , lowerCamelCase_) -> int: return i class snake_case_ : """simple docstring""" def __call__( self , lowerCamelCase_) -> str: return {"input_ids": torch.tensor(lowerCamelCase_), "labels": torch.tensor(lowerCamelCase_)} class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> List[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase = nn.Linear(1_2_0 , 8_0) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_neuroncore def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_multi_gpu def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE_ = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()[0] logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' f'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE_ = DummyDataset(dataset_length) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = list(range(len(_lowercase ) ) ) UpperCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} SCREAMING_SNAKE_CASE_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = None
34
0
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE_:Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:List[str] = {"""vocab_file""": """spiece.model"""} SCREAMING_SNAKE_CASE_:Optional[Any] = { """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } SCREAMING_SNAKE_CASE_:Union[str, Any] = { """AI-Sweden/gpt-sw3-126m""": 2_048, """AI-Sweden/gpt-sw3-350m""": 2_048, """AI-Sweden/gpt-sw3-1.6b""": 2_048, """AI-Sweden/gpt-sw3-6.7b""": 2_048, """AI-Sweden/gpt-sw3-20b""": 2_048, } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase_ ): '''simple docstring''' __lowerCamelCase : Any = VOCAB_FILES_NAMES __lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[str] = ["input_ids", "attention_mask"] def __init__( self, lowerCamelCase__, lowerCamelCase__=False, lowerCamelCase__=False, lowerCamelCase__=False, lowerCamelCase__=None, lowerCamelCase__=None, lowerCamelCase__=None, lowerCamelCase__=None, lowerCamelCase__ = None, **lowerCamelCase__, ): A : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs A : Optional[Any] = kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) A : Dict = """None""" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing A : List[Any] = """<|endoftext|>""" if eos_token is None else eos_token A : List[Any] = """<unk>""" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: A : Union[str, Any] = unk_token if pad_token is None else pad_token A : List[Any] = eos_token if bos_token is None else bos_token else: A : List[str] = """<pad>""" if pad_token is None else pad_token A : Dict = """<s>""" if bos_token is None else bos_token super().__init__( do_lower_case=lowerCamelCase_, remove_space=lowerCamelCase_, keep_accents=lowerCamelCase_, bos_token=lowerCamelCase_, eos_token=lowerCamelCase_, unk_token=lowerCamelCase_, pad_token=lowerCamelCase_, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase_, ) A : str = do_lower_case A : Optional[Any] = remove_space A : Any = keep_accents A : Optional[int] = vocab_file A : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase_ ) # Used for whitespace normalization in input texts # fmt : off A : Optional[Any] = {""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """„"""} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing A : Union[str, Any] = re.compile( f'''[{"".join(map(lowerCamelCase_, list(range(0, 9 ) ) + list(range(11, 32 ) ) + list(range(127, 160 ) ) + [160, 173, 8203] ) )}]''' ) def __getstate__( self ): A : Any = self.__dict__.copy() A : str = None return state def __setstate__( self, lowerCamelCase__ ): A : Optional[int] = d # for backward compatibility if not hasattr(self, """sp_model_kwargs""" ): A : Optional[int] = {} A : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _lowerCAmelCase ( self ): return len(self.sp_model ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : List[str] = self.non_printing_characters_re.sub("""""", lowerCamelCase_ ) # Normalize whitespaces A : str = """""".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization A : Union[str, Any] = unicodedata.normalize("""NFC""", lowerCamelCase_ ) return text def _lowerCAmelCase ( self, lowerCamelCase__, **lowerCamelCase__ ): A : str = self.preprocess_text(lowerCamelCase_ ) return self.sp_model.encode(lowerCamelCase_, out_type=lowerCamelCase_ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): return self.sp_model.PieceToId(lowerCamelCase_ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): return self.sp_model.IdToPiece(lowerCamelCase_ ) @staticmethod def _lowerCAmelCase ( lowerCamelCase__ ): return out_string def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Optional[Any] = [] A : Dict = """""" A : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase_ ) + token A : List[str] = True A : List[str] = [] else: current_sub_tokens.append(lowerCamelCase_ ) A : Any = False out_string += self.sp_model.decode(lowerCamelCase_ ) return out_string def _lowerCAmelCase ( self ): A : str = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A : List[Any] = os.path.join( lowerCamelCase_, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_, """wb""" ) as fi: A : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (out_vocab_file,) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = False ): if isinstance(lowerCamelCase_, lowerCamelCase_ ): A : str = self.preprocess_text(lowerCamelCase_ ) A : Optional[Any] = self.sp_model.encode(lowerCamelCase_ ) else: A : int = [self.preprocess_text(lowerCamelCase_ ) for t in text] A : List[Any] = self.sp_model.encode(lowerCamelCase_ ) if return_tensors is True or return_tensors == "pt": A : Union[str, Any] = torch.tensor(lowerCamelCase_ ) return token_ids def _lowerCAmelCase ( self, lowerCamelCase__ ): return self.sp_model.decode(lowerCamelCase_ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : List[str] = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()] A : Optional[Any] = ( f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(lowerCamelCase_ ) + f'''{self.bos_token}Bot:''' ) return self.encode(text=lowerCamelCase_ )
662
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE_ = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] SCREAMING_SNAKE_CASE_ = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) SCREAMING_SNAKE_CASE_ = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" for tf_name, hf_name in patterns: UpperCamelCase = k.replace(_lowercase ,_lowercase ) return k def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = BigBirdPegasusConfig(**_lowercase ) UpperCamelCase = BigBirdPegasusForConditionalGeneration(_lowercase ) UpperCamelCase = torch_model.state_dict() UpperCamelCase = {} # separating decoder weights UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = DECODER_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): UpperCamelCase = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue UpperCamelCase = REMAINING_PATTERNS UpperCamelCase = rename_state_dict_key(_lowercase ,_lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCamelCase = v.T UpperCamelCase = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCamelCase = mapping['''model.embed_positions.weight'''] UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCamelCase , UpperCamelCase = torch_model.load_state_dict(_lowercase ,strict=_lowercase ) UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = tf.train.list_variables(_lowercase ) UpperCamelCase = {} UpperCamelCase = ['''global_step'''] for name, shape in tqdm(_lowercase ,desc='''converting tf checkpoint to dict''' ): UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase = tf.train.load_variable(_lowercase ,_lowercase ) UpperCamelCase = array return tf_weights def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = get_tf_weights_as_numpy(_lowercase ) UpperCamelCase = convert_bigbird_pegasus(_lowercase ,_lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
34
0
import inspect import unittest class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def _UpperCAmelCase ( self ) -> Union[str, Any]: import diffusers from diffusers.dependency_versions_table import deps UpperCamelCase_ = inspect.getmembers(lowerCamelCase_ , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": UpperCamelCase_ = 'k-diffusion' elif backend == "invisible_watermark": UpperCamelCase_ = 'invisible-watermark' assert backend in deps, f"""{backend} is not in the deps table!"""
23
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase , UpperCamelCase = analyze_text(_lowercase ) UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCamelCase = sum(single_char_strings.values() ) # one length string UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCamelCase = single_char_strings[ch] UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'{round(-1 * my_fir_sum ):.1f}' ) # two len string UpperCamelCase = sum(two_char_strings.values() ) UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCamelCase = cha + cha if sequence in two_char_strings: UpperCamelCase = two_char_strings[sequence] UpperCamelCase = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(f'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = Counter() # type: ignore UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 ,len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
0
import re import string import numpy as np import datasets lowercase : Dict = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' lowercase : List[Any] = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' lowercase : Any = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): '''simple docstring''' def _lowerCamelCase ( self :Dict ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def _lowerCamelCase ( self :List[str] , a :Optional[Any] , a :Optional[int] , a :List[str]=None , a :Dict=False , a :Dict=False , a :List[Any]=False , ) -> Any: if regexes_to_ignore is not None: for s in regexes_to_ignore: __UpperCamelCase : Any = np.array([re.sub(lowerCamelCase_ , "" , lowerCamelCase_ ) for x in predictions] ) __UpperCamelCase : Optional[int] = np.array([re.sub(lowerCamelCase_ , "" , lowerCamelCase_ ) for x in references] ) else: __UpperCamelCase : str = np.asarray(lowerCamelCase_ ) __UpperCamelCase : int = np.asarray(lowerCamelCase_ ) if ignore_case: __UpperCamelCase : Dict = np.char.lower(lowerCamelCase_ ) __UpperCamelCase : Optional[Any] = np.char.lower(lowerCamelCase_ ) if ignore_punctuation: __UpperCamelCase : List[str] = string.punctuation.maketrans("" , "" , string.punctuation ) __UpperCamelCase : List[str] = np.char.translate(lowerCamelCase_ , table=lowerCamelCase_ ) __UpperCamelCase : List[Any] = np.char.translate(lowerCamelCase_ , table=lowerCamelCase_ ) if ignore_numbers: __UpperCamelCase : Union[str, Any] = string.digits.maketrans("" , "" , string.digits ) __UpperCamelCase : Union[str, Any] = np.char.translate(lowerCamelCase_ , table=lowerCamelCase_ ) __UpperCamelCase : Any = np.char.translate(lowerCamelCase_ , table=lowerCamelCase_ ) __UpperCamelCase : str = predictions == references return {"exact_match": np.mean(lowerCamelCase_ ) * 1_0_0}
557
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> Any: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase_ , ) return config, input_ids, attention_mask def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" A_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = FlaxDistilBertModelTester(self) @slow def UpperCAmelCase__ ( self) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = model(np.ones((1, 1))) self.assertIsNotNone(lowerCamelCase_) @require_flax class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''') UpperCamelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_)[0] UpperCamelCase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , lowerCamelCase_) UpperCamelCase = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4))
34
0
import sys from pathlib import Path UpperCAmelCase_ : Optional[int] = Path(__file__).resolve().parents[3] / "src" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) UpperCAmelCase_ : Union[str, Any] = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} UpperCAmelCase_ : int = "zero2" UpperCAmelCase_ : List[Any] = "zero3" UpperCAmelCase_ : Union[str, Any] = [ZEROa, ZEROa] def UpperCamelCase ( _A : str , _A : Tuple , _A : str )-> str: """simple docstring""" A__ = parameterized.to_safe_name("_".join(str(_lowercase ) for x in param.args ) ) return f"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test UpperCAmelCase_ : Any = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class UpperCamelCase ( lowerCamelCase_ ): @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) def __A ( self , UpperCAmelCase__ ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 10 , UpperCAmelCase__ = True , UpperCAmelCase__ = True , UpperCAmelCase__ = True , ): A__ = models[model] A__ = self.run_trainer( stage=lowerCamelCase_ , model_name=lowerCamelCase_ , eval_steps=lowerCamelCase_ , num_train_epochs=1 , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) self.do_checks(lowerCamelCase_ ) return output_dir def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 10 , UpperCAmelCase__ = 1 , UpperCAmelCase__ = True , UpperCAmelCase__ = True , ): A__ = self.get_auto_remove_tmp_dir("./xxx" , after=lowerCamelCase_ ) A__ = F"""\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(lowerCamelCase_ )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n """.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files A__ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() A__ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] A__ = self.get_launcher(lowerCamelCase_ ) A__ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowerCamelCase_ , env=self.get_env() ) return output_dir def __A ( self , UpperCAmelCase__=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) A__ = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
491
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , **lowerCamelCase_) -> Tuple: super().__init__(**lowerCamelCase_) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: return super().__call__(lowerCamelCase_ , **lowerCamelCase_) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> Any: UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a photo of {}.") -> Union[str, Any]: UpperCamelCase = load_image(lowerCamelCase_) UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(lowerCamelCase_) for x in candidate_labels] UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_) UpperCamelCase = [text_inputs] return inputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_inputs.pop('''candidate_labels''') UpperCamelCase = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , lowerCamelCase_): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any: UpperCamelCase = model_outputs.pop('''candidate_labels''') UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase = probs.tolist() if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [scores] elif self.framework == "tf": UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1) UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_) , key=lambda lowerCamelCase_: -x[0]) ] return result
34
0