code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if num <= 0: snake_case_ = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(SCREAMING_SNAKE_CASE__ ) snake_case_ = [True] * (num + 1) snake_case_ = [] snake_case_ = 2 snake_case_ = int(math.sqrt(SCREAMING_SNAKE_CASE__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(SCREAMING_SNAKE_CASE__ ) # Set multiples of start be False for i in range(start * start , num + 1 , SCREAMING_SNAKE_CASE__ ): if sieve[i] is True: snake_case_ = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(SCREAMING_SNAKE_CASE__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
39
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not nums: raise ValueError('''List is empty''' ) return sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
39
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase_ = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' lowerCAmelCase_ = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' lowerCAmelCase_ = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): '''simple docstring''' def snake_case__( self : List[str] ) ->MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def snake_case__( self : Any , _UpperCamelCase : List[List[List[str]]] , _UpperCamelCase : List[List[str]] , _UpperCamelCase : int = 1 , _UpperCamelCase : int = 4 , ) ->Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_UpperCamelCase , hypotheses=_UpperCamelCase , min_len=_UpperCamelCase , max_len=_UpperCamelCase ) }
39
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : List[str] ) ->str: snake_case_ = inspect.getfile(accelerate.test_utils ) snake_case_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 snake_case_ = test_metrics @require_cpu def snake_case__( self : str ) ->int: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case__( self : Union[str, Any] ) ->Any: debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case__( self : List[Any] ) ->Tuple: self.test_metrics.main() @require_multi_gpu def snake_case__( self : Any ) ->Union[str, Any]: print(f'''Found {torch.cuda.device_count()} devices.''' ) snake_case_ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
39
1
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) while cur > 1: # Find the maximum number in arr snake_case_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi snake_case_ = arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE__ )] # Reverse whole list snake_case_ = arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE__ )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase_ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase_ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
39
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = "informer" SCREAMING_SNAKE_CASE : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Dict , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "student_t" , _UpperCamelCase : str = "nll" , _UpperCamelCase : int = 1 , _UpperCamelCase : List[int] = None , _UpperCamelCase : Optional[Union[str, bool]] = "mean" , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : int = 6_4 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.05 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : Dict=True , _UpperCamelCase : str = "prob" , _UpperCamelCase : int = 5 , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Optional[int]: # time series specific configuration snake_case_ = prediction_length snake_case_ = context_length or prediction_length snake_case_ = distribution_output snake_case_ = loss snake_case_ = input_size snake_case_ = num_time_features snake_case_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case_ = scaling snake_case_ = num_dynamic_real_features snake_case_ = num_static_real_features snake_case_ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = cardinality else: snake_case_ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = embedding_dimension else: snake_case_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ = num_parallel_samples # Transformer architecture configuration snake_case_ = input_size * len(self.lags_sequence ) + self._number_of_features snake_case_ = d_model snake_case_ = encoder_attention_heads snake_case_ = decoder_attention_heads snake_case_ = encoder_ffn_dim snake_case_ = decoder_ffn_dim snake_case_ = encoder_layers snake_case_ = decoder_layers snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = activation_function snake_case_ = init_std snake_case_ = use_cache # Informer snake_case_ = attention_type snake_case_ = sampling_factor snake_case_ = distil super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def snake_case__( self : Optional[Any] ) ->int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
39
1
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowerCAmelCase_ = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class snake_case_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : int = 1_4 ) ->None: if group not in primes: raise ValueError('''Unsupported Group''' ) snake_case_ = primes[group]['''prime'''] snake_case_ = primes[group]['''generator'''] snake_case_ = int(hexlify(urandom(3_2 ) ) , base=1_6 ) def snake_case__( self : List[Any] ) ->str: return hex(self.__private_key )[2:] def snake_case__( self : int ) ->str: snake_case_ = pow(self.generator , self.__private_key , self.prime ) return hex(_UpperCamelCase )[2:] def snake_case__( self : Dict , _UpperCamelCase : int ) ->bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_UpperCamelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def snake_case__( self : Any , _UpperCamelCase : str ) ->str: snake_case_ = int(_UpperCamelCase , base=1_6 ) if not self.is_valid_public_key(_UpperCamelCase ): raise ValueError('''Invalid public key''' ) snake_case_ = pow(_UpperCamelCase , self.__private_key , self.prime ) return shaaaa(str(_UpperCamelCase ).encode() ).hexdigest() @staticmethod def snake_case__( _UpperCamelCase : int , _UpperCamelCase : int ) ->bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_UpperCamelCase , (prime - 1) // 2 , _UpperCamelCase ) == 1 ) @staticmethod def snake_case__( _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : int = 1_4 ) ->str: snake_case_ = int(_UpperCamelCase , base=1_6 ) snake_case_ = int(_UpperCamelCase , base=1_6 ) snake_case_ = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(_UpperCamelCase , _UpperCamelCase ): raise ValueError('''Invalid public key''' ) snake_case_ = pow(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return shaaaa(str(_UpperCamelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
39
import cmath import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) # Convert voltage and current to rectangular form snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
39
1
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = ["input_values", "attention_mask"] def __init__( self : Union[str, Any] , _UpperCamelCase : int = 1 , _UpperCamelCase : int = 1_6_0_0_0 , _UpperCamelCase : float = 0.0 , _UpperCamelCase : bool = False , _UpperCamelCase : int = 8_0 , _UpperCamelCase : int = 1_6 , _UpperCamelCase : int = 6_4 , _UpperCamelCase : str = "hann_window" , _UpperCamelCase : float = 1.0 , _UpperCamelCase : float = 8_0 , _UpperCamelCase : float = 7_6_0_0 , _UpperCamelCase : float = 1e-10 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , **_UpperCamelCase : Dict , ) ->Any: super().__init__(feature_size=_UpperCamelCase , sampling_rate=_UpperCamelCase , padding_value=_UpperCamelCase , **_UpperCamelCase ) snake_case_ = do_normalize snake_case_ = return_attention_mask snake_case_ = num_mel_bins snake_case_ = hop_length snake_case_ = win_length snake_case_ = win_function snake_case_ = frame_signal_scale snake_case_ = fmin snake_case_ = fmax snake_case_ = mel_floor snake_case_ = reduction_factor snake_case_ = win_length * sampling_rate // 1_0_0_0 snake_case_ = hop_length * sampling_rate // 1_0_0_0 snake_case_ = optimal_fft_length(self.sample_size ) snake_case_ = (self.n_fft // 2) + 1 snake_case_ = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCamelCase ) snake_case_ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='''slaney''' , mel_scale='''slaney''' , ) if frame_signal_scale != 1.0: warnings.warn( '''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' , _UpperCamelCase , ) if reduction_factor != 2.0: warnings.warn( '''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' , _UpperCamelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def snake_case__( _UpperCamelCase : List[np.ndarray] , _UpperCamelCase : List[np.ndarray] , _UpperCamelCase : float = 0.0 ) ->List[np.ndarray]: if attention_mask is not None: snake_case_ = np.array(_UpperCamelCase , np.intaa ) snake_case_ = [] for vector, length in zip(_UpperCamelCase , attention_mask.sum(-1 ) ): snake_case_ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: snake_case_ = padding_value normed_input_values.append(_UpperCamelCase ) else: snake_case_ = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def snake_case__( self : str , _UpperCamelCase : np.ndarray , ) ->np.ndarray: snake_case_ = spectrogram( _UpperCamelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='''log10''' , ) return log_mel_spec.T def __call__( self : Any , _UpperCamelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCamelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCamelCase : Union[bool, str, PaddingStrategy] = False , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[bool] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : Optional[int] = None , **_UpperCamelCase : List[str] , ) ->BatchFeature: if audio is None and audio_target is None: raise ValueError('''You must provide either `audio` or `audio_target` values.''' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if audio is not None: snake_case_ = self._process_audio( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase , ) else: snake_case_ = None if audio_target is not None: snake_case_ = self._process_audio( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase , ) if inputs is None: return inputs_target else: snake_case_ = inputs_target['''input_values'''] snake_case_ = inputs_target.get('''attention_mask''' ) if decoder_attention_mask is not None: snake_case_ = decoder_attention_mask return inputs def snake_case__( self : Optional[int] , _UpperCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCamelCase : bool = False , _UpperCamelCase : Union[bool, str, PaddingStrategy] = False , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[bool] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , **_UpperCamelCase : int , ) ->BatchFeature: snake_case_ = isinstance(_UpperCamelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) snake_case_ = is_batched_numpy or ( isinstance(_UpperCamelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case_ = [np.asarray(_UpperCamelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_UpperCamelCase , np.ndarray ): snake_case_ = np.asarray(_UpperCamelCase , dtype=np.floataa ) elif isinstance(_UpperCamelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): snake_case_ = speech.astype(np.floataa ) # always return batch if not is_batched: snake_case_ = [speech] # needed to make pad() work on spectrogram inputs snake_case_ = self.feature_size # convert into correct format for padding if is_target: snake_case_ = [self._extract_mel_features(_UpperCamelCase ) for waveform in speech] snake_case_ = BatchFeature({'''input_values''': features} ) snake_case_ = self.num_mel_bins else: snake_case_ = BatchFeature({'''input_values''': speech} ) snake_case_ = self.pad( _UpperCamelCase , padding=_UpperCamelCase , max_length=_UpperCamelCase , truncation=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_attention_mask=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = feature_size_hack # convert input values to correct format snake_case_ = padded_inputs['''input_values'''] if not isinstance(input_values[0] , np.ndarray ): snake_case_ = [np.asarray(_UpperCamelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_UpperCamelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): snake_case_ = [array.astype(np.floataa ) for array in input_values] elif isinstance(_UpperCamelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): snake_case_ = input_values.astype(np.floataa ) # convert attention_mask to correct format snake_case_ = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: snake_case_ = [np.asarray(_UpperCamelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: snake_case_ = ( attention_mask if self._get_padding_strategies(_UpperCamelCase , max_length=_UpperCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) snake_case_ = self.zero_mean_unit_var_norm( padded_inputs['''input_values'''] , attention_mask=_UpperCamelCase , padding_value=self.padding_value ) if return_tensors is not None: snake_case_ = padded_inputs.convert_to_tensors(_UpperCamelCase ) return padded_inputs def snake_case__( self : Tuple ) ->Dict[str, Any]: snake_case_ = super().to_dict() # Don't serialize these as they are derived from the other properties. snake_case_ = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs'''] for name in names: if name in output: del output[name] return output
39
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=1_3 , _UpperCamelCase : str=7 , _UpperCamelCase : int=True , _UpperCamelCase : Dict=True , _UpperCamelCase : int=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : str=3_2 , _UpperCamelCase : str=5 , _UpperCamelCase : str=4 , _UpperCamelCase : int=3_7 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : str=5_1_2 , _UpperCamelCase : Optional[int]=1_6 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Any=0.02 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : str=None , ) ->Dict: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def snake_case__( self : str ) ->List[Any]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self : List[str] ) ->Tuple: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) ->Dict: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , ) ->Optional[int]: snake_case_ = BioGptForCausalLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , *_UpperCamelCase : List[Any] ) ->Union[str, Any]: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # create attention mask snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) snake_case_ = self.seq_length // 2 snake_case_ = 0 # first forward pass snake_case_, snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids snake_case_ = ids_tensor((1,) , _UpperCamelCase ).item() + 1 snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) snake_case_ = random_other_next_tokens # append to next input_ids and attn_mask snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCamelCase )] , dim=1 , ) # get two different outputs snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , past_key_values=_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , *_UpperCamelCase : List[Any] ) ->int: snake_case_ = BioGptModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval() snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) # first forward pass snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase ) snake_case_, snake_case_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[ '''last_hidden_state''' ] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , *_UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=False ) ->Dict: snake_case_ = BioGptForCausalLM(_UpperCamelCase ) model.to(_UpperCamelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def snake_case__( self : List[Any] , _UpperCamelCase : Optional[int] , *_UpperCamelCase : Dict ) ->Dict: snake_case_ = BioGptModel(_UpperCamelCase ) snake_case_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def snake_case__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , *_UpperCamelCase : List[str] ) ->int: snake_case_ = self.num_labels snake_case_ = BioGptForTokenClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = (BioGptForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Optional[Any] = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Tuple = False def snake_case__( self : List[str] ) ->Union[str, Any]: snake_case_ = BioGptModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : str ) ->int: self.config_tester.run_common_tests() def snake_case__( self : str ) ->Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_UpperCamelCase , gradient_checkpointing=_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCamelCase ) def snake_case__( self : List[Any] ) ->Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCamelCase ) @slow def snake_case__( self : int ) ->Optional[Any]: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = '''left''' # Define PAD Token = EOS Token = 50256 snake_case_ = tokenizer.eos_token snake_case_ = model.config.eos_token_id # use different length sentences to test batching snake_case_ = [ '''Hello, my dog is a little''', '''Today, I''', ] snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase ) snake_case_ = inputs['''input_ids'''].to(_UpperCamelCase ) snake_case_ = model.generate( input_ids=_UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(_UpperCamelCase ) , ) snake_case_ = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase ) snake_case_ = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() snake_case_ = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings ) snake_case_ = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] ) @slow def snake_case__( self : Optional[int] ) ->List[str]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = BioGptModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__( self : str ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = '''multi_label_classification''' snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__( self : int ) ->Any: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) snake_case_ = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) snake_case_ = model(_UpperCamelCase )[0] snake_case_ = 4_2_3_8_4 snake_case_ = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def snake_case__( self : List[str] ) ->Optional[int]: snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_UpperCamelCase ) snake_case_ = model.generate( **_UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=_UpperCamelCase , ) snake_case_ = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(_UpperCamelCase , _UpperCamelCase )
39
1
lowerCAmelCase_ = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def __SCREAMING_SNAKE_CASE (): snake_case_ = input('''Enter message: ''' ) snake_case_ = input('''Enter key [alphanumeric]: ''' ) snake_case_ = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): snake_case_ = '''encrypt''' snake_case_ = encrypt_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif mode.lower().startswith('''d''' ): snake_case_ = '''decrypt''' snake_case_ = decrypt_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''\n{mode.title()}ed message:''' ) print(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return translate_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''encrypt''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return translate_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''decrypt''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [] snake_case_ = 0 snake_case_ = key.upper() for symbol in message: snake_case_ = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(SCREAMING_SNAKE_CASE__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(SCREAMING_SNAKE_CASE__ ): snake_case_ = 0 else: translated.append(SCREAMING_SNAKE_CASE__ ) return "".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
39
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) snake_case_ = (boundary[1] - boundary[0]) / steps snake_case_ = boundary[0] snake_case_ = boundary[1] snake_case_ = make_points(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = 0.0 y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) for i in x_i: # print(i) y += h * f(SCREAMING_SNAKE_CASE__ ) y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) return y def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = a + h while x < (b - h): yield x snake_case_ = x + h def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # enter your function here snake_case_ = (x - 0) * (x - 0) return y def __SCREAMING_SNAKE_CASE (): snake_case_ = 0.0 # Lower bound of integration snake_case_ = 1.0 # Upper bound of integration snake_case_ = 10.0 # define number of steps or resolution snake_case_ = [a, b] # define boundary of integration snake_case_ = method_a(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
39
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = "data2vec-text" def __init__( self : Dict , _UpperCamelCase : int=3_0_5_2_2 , _UpperCamelCase : Dict=7_6_8 , _UpperCamelCase : Tuple=1_2 , _UpperCamelCase : List[Any]=1_2 , _UpperCamelCase : Tuple=3_0_7_2 , _UpperCamelCase : Union[str, Any]="gelu" , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Any=5_1_2 , _UpperCamelCase : str=2 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=1 , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : Optional[Any]=2 , _UpperCamelCase : Optional[Any]="absolute" , _UpperCamelCase : int=True , _UpperCamelCase : int=None , **_UpperCamelCase : Union[str, Any] , ) ->Dict: super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = position_embedding_type snake_case_ = use_cache snake_case_ = classifier_dropout class snake_case_ ( __A ): '''simple docstring''' @property def snake_case__( self : List[Any] ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
39
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / '''model_card_template.md''' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None ): snake_case_ = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if token is None: snake_case_ = HfFolder.get_token() if organization is None: snake_case_ = whoami(SCREAMING_SNAKE_CASE__ )['''name'''] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(SCREAMING_SNAKE_CASE__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , '''hub_token''' ) else None snake_case_ = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) snake_case_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ = os.path.join(args.output_dir , '''README.md''' ) model_card.save(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) snake_case_ = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE__ ) if search is None: return None snake_case_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, '''diffusers''') def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if new_cache_dir is None: snake_case_ = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ = old_diffusers_cache snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ '''the directory exists and can be written to.''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if variant is not None: snake_case_ = weights_name.split('''.''' ) snake_case_ = splits[:-1] + [variant] + splits[-1:] snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ ) return weights_name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ): snake_case_ = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' '''this model name. Check the model page at ''' F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
39
1
from ... import PretrainedConfig lowerCAmelCase_ = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP SCREAMING_SNAKE_CASE : Optional[Any] = "nezha" def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=2_1_1_2_8 , _UpperCamelCase : List[str]=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : str=3_0_7_2 , _UpperCamelCase : Union[str, Any]="gelu" , _UpperCamelCase : Any=0.1 , _UpperCamelCase : str=0.1 , _UpperCamelCase : str=5_1_2 , _UpperCamelCase : Tuple=6_4 , _UpperCamelCase : Optional[Any]=2 , _UpperCamelCase : str=0.02 , _UpperCamelCase : Dict=1e-12 , _UpperCamelCase : Tuple=0.1 , _UpperCamelCase : Tuple=0 , _UpperCamelCase : int=2 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[str]=True , **_UpperCamelCase : str , ) ->List[Any]: super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = max_relative_position snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = classifier_dropout snake_case_ = use_cache
39
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt" def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) snake_case_ = backbone_featmap_shape snake_case_ = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: snake_case_ = None snake_case_ = None snake_case_ = [] snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) snake_case_ = readout_type snake_case_ = reassemble_factors snake_case_ = neck_hidden_sizes snake_case_ = fusion_hidden_size snake_case_ = head_in_index snake_case_ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = semantic_loss_ignore_index snake_case_ = semantic_classifier_dropout def snake_case__( self : List[str] ) ->List[Any]: snake_case_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
39
1
from typing import List from .keymap import KEYMAP, get_character def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): def decorator(SCREAMING_SNAKE_CASE__ ): snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''handle_key''' , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE__ , '''handle_key''' , SCREAMING_SNAKE_CASE__ ) return func return decorator def __SCREAMING_SNAKE_CASE (*SCREAMING_SNAKE_CASE__ ): def decorator(SCREAMING_SNAKE_CASE__ ): snake_case_ = getattr(SCREAMING_SNAKE_CASE__ , '''handle_key''' , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE__ , '''handle_key''' , SCREAMING_SNAKE_CASE__ ) return func return decorator class snake_case_ ( __A ): '''simple docstring''' def __new__( cls : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) ->Tuple: snake_case_ = super().__new__(cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not hasattr(_UpperCamelCase , '''key_handler''' ): setattr(_UpperCamelCase , '''key_handler''' , {} ) setattr(_UpperCamelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): snake_case_ = getattr(_UpperCamelCase , '''handle_key''' , [] ) for key in handled_keys: snake_case_ = value return new_cls @staticmethod def snake_case__( cls : int ) ->Dict: snake_case_ = get_character() if char != KEYMAP["undefined"]: snake_case_ = ord(_UpperCamelCase ) snake_case_ = cls.key_handler.get(_UpperCamelCase ) if handler: snake_case_ = char return handler(cls ) else: return None def __SCREAMING_SNAKE_CASE (cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
39
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = '''pytorch_model.bin''' @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "A csv or a json file containing the validation data."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "The name of the task to train on."} , ) SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field( default=__A , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=__A , metadata={"help": "Random seed for initialization."} , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case_ = dataset.filter(lambda SCREAMING_SNAKE_CASE__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case_ = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) ) print(SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = dataset.remove_columns(['''label''', '''probability'''] ) snake_case_ = dataset.rename_column('''prediction''' , '''label''' ) snake_case_ = dataset.map(lambda SCREAMING_SNAKE_CASE__ : {"label": idalabel[example["label"]]} ) snake_case_ = dataset.shuffle(seed=args.seed ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) else: dataset.to_json(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): snake_case_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case_ = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ ) snake_case_ = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ , infer_file=SCREAMING_SNAKE_CASE__ ) snake_case_ = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ ) snake_case_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(SCREAMING_SNAKE_CASE__ ).items(): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Sanity checks snake_case_ = {} snake_case_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case_ = args.train_file snake_case_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case_ = args.eval_file for key in data_files: snake_case_ = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: snake_case_ = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) snake_case_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format snake_case_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = None snake_case_ = None snake_case_ = 0 snake_case_ = False # Show the progress bar snake_case_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case_ = data_dir_format(SCREAMING_SNAKE_CASE__ ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-1''' ) snake_case_ = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): arguments_dict.update({key: value} ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-2''' ) # Update arguments_dict snake_case_ = model_path snake_case_ = data_files['''train'''] snake_case_ = current_output_dir snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = iteration snake_case_ = data_dir_format(iteration + 1 ) snake_case_ = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) ) snake_case_ = config.idalabel snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-checkpoint.json''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: snake_case_ = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Loading the dataset from local csv or json files. snake_case_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] snake_case_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case_ = eval_result if best_iteration is None: snake_case_ = new_iteration snake_case_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case_ = new_iteration snake_case_ = new_eval_result snake_case_ = 0 else: if new_eval_result == best_eval_result: snake_case_ = new_iteration snake_case_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE__ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , )
39
1
lowerCAmelCase_ = range(2, 20 + 1) lowerCAmelCase_ = [10**k for k in range(ks[-1] + 1)] lowerCAmelCase_ = {} def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = sum(a_i[j] for j in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) ) snake_case_ = sum(a_i[j] * base[j] for j in range(min(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) ) snake_case_, snake_case_ = 0, 0 snake_case_ = n - i snake_case_ = memo.get(SCREAMING_SNAKE_CASE__ ) if sub_memo is not None: snake_case_ = sub_memo.get(SCREAMING_SNAKE_CASE__ ) if jumps is not None and len(SCREAMING_SNAKE_CASE__ ) > 0: # find and make the largest jump without going over snake_case_ = -1 for _k in range(len(SCREAMING_SNAKE_CASE__ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: snake_case_ = _k break if max_jump >= 0: snake_case_, snake_case_, snake_case_ = jumps[max_jump] # since the difference between jumps is cached, add c snake_case_ = diff + c for j in range(min(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) ): snake_case_, snake_case_ = divmod(SCREAMING_SNAKE_CASE__ , 10 ) if new_c > 0: add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ = [] else: snake_case_ = {c: []} snake_case_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps snake_case_, snake_case_ = next_term(SCREAMING_SNAKE_CASE__ , k - 1 , i + dn , SCREAMING_SNAKE_CASE__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead snake_case_, snake_case_ = compute(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i + dn , SCREAMING_SNAKE_CASE__ ) diff += _diff dn += terms_jumped snake_case_ = sub_memo[c] # keep jumps sorted by # of terms skipped snake_case_ = 0 while j < len(SCREAMING_SNAKE_CASE__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(SCREAMING_SNAKE_CASE__ , (diff, dn, k) ) return (diff, dn) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if i >= n: return 0, i if k > len(SCREAMING_SNAKE_CASE__ ): a_i.extend([0 for _ in range(k - len(SCREAMING_SNAKE_CASE__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) snake_case_ = i snake_case_, snake_case_, snake_case_ = 0, 0, 0 for j in range(len(SCREAMING_SNAKE_CASE__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 snake_case_ = ds_c + ds_b diff += addend snake_case_ = 0 for j in range(SCREAMING_SNAKE_CASE__ ): snake_case_ = a_i[j] + addend snake_case_, snake_case_ = divmod(SCREAMING_SNAKE_CASE__ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return diff, i - start_i def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = digits[j] + addend if s >= 10: snake_case_, snake_case_ = divmod(SCREAMING_SNAKE_CASE__ , 10 ) snake_case_ = addend // 10 + quotient else: snake_case_ = s snake_case_ = addend // 10 if addend == 0: break while addend > 0: snake_case_, snake_case_ = divmod(SCREAMING_SNAKE_CASE__ , 10 ) digits.append(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 10**15 ): snake_case_ = [1] snake_case_ = 1 snake_case_ = 0 while True: snake_case_, snake_case_ = next_term(SCREAMING_SNAKE_CASE__ , 20 , i + dn , SCREAMING_SNAKE_CASE__ ) dn += terms_jumped if dn == n - i: break snake_case_ = 0 for j in range(len(SCREAMING_SNAKE_CASE__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
39
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AltDiffusionPipeline SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__( self : Dict ) ->int: torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) snake_case_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) snake_case_ = CLIPTextModel(_UpperCamelCase ) snake_case_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) snake_case_ = 7_7 snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__( self : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0 ) ->Any: if str(_UpperCamelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCamelCase ) else: snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case__( self : Dict ) ->List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def snake_case__( self : List[str] ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case__( self : Dict ) ->Any: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = '''A photo of an astronaut''' snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : Tuple ) ->Union[str, Any]: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : int ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self : List[str] ) ->Tuple: # make sure here that pndm scheduler skips prk snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='''np''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : List[str] ) ->Optional[Any]: snake_case_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , num_inference_steps=2 , output_type='''numpy''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
1
import collections import os import re from pathlib import Path lowerCAmelCase_ = '''src/transformers''' # Matches is_xxx_available() lowerCAmelCase_ = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} lowerCAmelCase_ = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase_ = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available lowerCAmelCase_ = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase_ = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase_ = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase_ = re.compile(R'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase_ = re.compile(R'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo lowerCAmelCase_ = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: lowerCAmelCase_ = re.compile(R'''^\s*try:''') # Catches a line with else: lowerCAmelCase_ = re.compile(R'''^\s*else:''') def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if _re_test_backend.search(SCREAMING_SNAKE_CASE__ ) is None: return None snake_case_ = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE__ )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case_ = f.readlines() snake_case_ = 0 while line_index < len(SCREAMING_SNAKE_CASE__ ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE__ ): return None # First grab the objects without a specific backend in _import_structure snake_case_ = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: snake_case_ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE__ ): snake_case_ = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE__ ).groups()[0] snake_case_ = re.findall(R'''\[([^\]]+)\]''' , SCREAMING_SNAKE_CASE__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue snake_case_ = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE__ ) if single_line_import_search is not None: snake_case_ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(SCREAMING_SNAKE_CASE__ ) > 0] objects.extend(SCREAMING_SNAKE_CASE__ ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 snake_case_ = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. snake_case_ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): snake_case_ = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE__ ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE__ ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE__ ) is not None: snake_case_ = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE__ ).groups()[0].split(''', ''' ) snake_case_ = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE__ ) > 0] objects.extend(SCREAMING_SNAKE_CASE__ ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE__ ) is not None: snake_case_ = _re_between_brackets.search(SCREAMING_SNAKE_CASE__ ).groups()[0].split(''', ''' ) snake_case_ = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE__ ) > 0] objects.extend(SCREAMING_SNAKE_CASE__ ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE__ ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE__ ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 snake_case_ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case_ = [] while ( line_index < len(SCREAMING_SNAKE_CASE__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): snake_case_ = lines[line_index] snake_case_ = _re_import.search(SCREAMING_SNAKE_CASE__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 snake_case_ = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE__ ): # If the line is an if is_backend_available, we grab all objects associated. snake_case_ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): snake_case_ = lines[line_index] snake_case_ = _re_import.search(SCREAMING_SNAKE_CASE__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 snake_case_ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): def find_duplicates(SCREAMING_SNAKE_CASE__ ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] snake_case_ = [] for key in import_dict_objects.keys(): snake_case_ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) snake_case_ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): snake_case_ = '''base imports''' if key == '''none''' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def __SCREAMING_SNAKE_CASE (): snake_case_ = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE__ ): if "__init__.py" in files: snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''__init__.py''' ) snake_case_ = parse_init(SCREAMING_SNAKE_CASE__ ) if objects is not None: snake_case_ = analyze_results(*SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: snake_case_ = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(SCREAMING_SNAKE_CASE__ ) ) if len(SCREAMING_SNAKE_CASE__ ) > 0: raise ValueError('''\n\n'''.join(SCREAMING_SNAKE_CASE__ ) ) def __SCREAMING_SNAKE_CASE (): snake_case_ = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE__ ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(SCREAMING_SNAKE_CASE__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE__ ) / folder).glob('''*.py''' ) ) ) == 0: continue snake_case_ = str((Path(SCREAMING_SNAKE_CASE__ ) / folder).relative_to(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = short_path.replace(os.path.sep , '''.''' ) submodules.append(SCREAMING_SNAKE_CASE__ ) for fname in files: if fname == "__init__.py": continue snake_case_ = str((Path(SCREAMING_SNAKE_CASE__ ) / fname).relative_to(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE__ ) return submodules lowerCAmelCase_ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def __SCREAMING_SNAKE_CASE (): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import snake_case_ = direct_transformers_import(SCREAMING_SNAKE_CASE__ ) snake_case_ = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(SCREAMING_SNAKE_CASE__ , '''__init__.py''' ) , '''r''' ) as f: snake_case_ = f.read() import_structure_keys.update(set(re.findall(R'''import_structure\[\"([^\"]*)\"\]''' , SCREAMING_SNAKE_CASE__ ) ) ) snake_case_ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(SCREAMING_SNAKE_CASE__ ) > 0: snake_case_ = '''\n'''.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
39
from math import factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( '''If a class of 40 students must be arranged into groups of''', f"""4 for group projects, there are {combinations(40, 4)} ways""", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f"""are {combinations(10, 3)} ways that first, second and""", '''third place can be awarded.''', )
39
1
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) != 2 or len(a[0] ) != 2 or len(SCREAMING_SNAKE_CASE__ ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) snake_case_ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(SCREAMING_SNAKE_CASE__ ) ) ] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(SCREAMING_SNAKE_CASE__ ) ) ] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) snake_case_ = len(SCREAMING_SNAKE_CASE__ ) snake_case_ = matrix_length // 2 snake_case_ = [[a[i][j] for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] for i in range(SCREAMING_SNAKE_CASE__ )] snake_case_ = [ [a[i][j] for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] for i in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ] snake_case_ = [[a[i][j] for j in range(SCREAMING_SNAKE_CASE__ )] for i in range(SCREAMING_SNAKE_CASE__ )] snake_case_ = [[a[i][j] for j in range(SCREAMING_SNAKE_CASE__ )] for i in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] return top_left, top_right, bot_left, bot_right def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return len(SCREAMING_SNAKE_CASE__ ), len(matrix[0] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): print('''\n'''.join(str(SCREAMING_SNAKE_CASE__ ) for line in matrix ) ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if matrix_dimensions(SCREAMING_SNAKE_CASE__ ) == (2, 2): return default_matrix_multiplication(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_, snake_case_, snake_case_, snake_case_ = split_matrix(SCREAMING_SNAKE_CASE__ ) snake_case_, snake_case_, snake_case_, snake_case_ = split_matrix(SCREAMING_SNAKE_CASE__ ) snake_case_ = actual_strassen(SCREAMING_SNAKE_CASE__ , matrix_subtraction(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) snake_case_ = actual_strassen(matrix_addition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) snake_case_ = actual_strassen(matrix_addition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) snake_case_ = actual_strassen(SCREAMING_SNAKE_CASE__ , matrix_subtraction(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) snake_case_ = actual_strassen(matrix_addition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , matrix_addition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) snake_case_ = actual_strassen(matrix_subtraction(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , matrix_addition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) snake_case_ = actual_strassen(matrix_subtraction(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , matrix_addition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) snake_case_ = matrix_addition(matrix_subtraction(matrix_addition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) snake_case_ = matrix_addition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = matrix_addition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = matrix_subtraction(matrix_subtraction(matrix_addition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) # construct the new matrix from our 4 quadrants snake_case_ = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if matrix_dimensions(SCREAMING_SNAKE_CASE__ )[1] != matrix_dimensions(SCREAMING_SNAKE_CASE__ )[0]: snake_case_ = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F'''Matrix A: {matrixa}\n''' F'''Matrix B: {matrixa}''' ) raise Exception(SCREAMING_SNAKE_CASE__ ) snake_case_ = matrix_dimensions(SCREAMING_SNAKE_CASE__ ) snake_case_ = matrix_dimensions(SCREAMING_SNAKE_CASE__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] snake_case_ = max(*SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) snake_case_ = int(math.pow(2 , math.ceil(math.loga(SCREAMING_SNAKE_CASE__ ) ) ) ) snake_case_ = matrixa snake_case_ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , SCREAMING_SNAKE_CASE__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , SCREAMING_SNAKE_CASE__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , SCREAMING_SNAKE_CASE__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) snake_case_ = actual_strassen(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Removing the additional zeros for i in range(0 , SCREAMING_SNAKE_CASE__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , SCREAMING_SNAKE_CASE__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowerCAmelCase_ = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowerCAmelCase_ = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
39
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCAmelCase_ = sys.version_info >= (3, 10) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ): return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : bool @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int = 42 SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : Optional[bool] = None class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = "titi" SCREAMING_SNAKE_CASE : Any = "toto" class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = "titi" SCREAMING_SNAKE_CASE : Optional[Any] = "toto" SCREAMING_SNAKE_CASE : Any = 42 @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : BasicEnum = "toto" def snake_case__( self : Tuple ) ->List[str]: snake_case_ = BasicEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto" def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = MixedTypeEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[float] = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : Optional[str] = None SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] ) SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] ) SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] ) SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = field() SCREAMING_SNAKE_CASE : str = field() SCREAMING_SNAKE_CASE : BasicEnum = field() def snake_case__( self : Optional[Any] ) ->Tuple: snake_case_ = BasicEnum(self.required_enum ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : "BasicEnum" = field() SCREAMING_SNAKE_CASE : "Optional[bool]" = None SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : bool | None = None @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int | None = None SCREAMING_SNAKE_CASE : float | None = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : str | None = None SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] ) SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] ) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Dict , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser ) ->str: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _UpperCamelCase ) and yy.get('''choices''' , _UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_UpperCamelCase ) , yy['''type'''](_UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--bar''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--baz''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--flag''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((snake_case_), ) = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase ) self.assertFalse(example.flag ) def snake_case__( self : Tuple ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) snake_case_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case__( self : Tuple ) ->Union[str, Any]: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto" snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual( _UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def snake_case__( self : Optional[Any] ) ->List[Any]: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--bar''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) snake_case_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[] ) ) snake_case_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def snake_case__( self : Union[str, Any] ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--required_str''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Dict ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } snake_case_ = parser.parse_dict(_UpperCamelCase )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : int ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase ) def snake_case__( self : str ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_json''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_yaml''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Any ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase )
39
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase_ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Dict , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
39
1
from timeit import timeit lowerCAmelCase_ = { '''MALAYALAM''': True, '''String''': False, '''rotor''': True, '''level''': True, '''A''': True, '''BB''': True, '''ABC''': False, '''amanaplanacanalpanama''': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = 0 snake_case_ = len(SCREAMING_SNAKE_CASE__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) // 2 snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) <= 2: return True if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return s == s[::-1] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = F'''all({name}(key) is value for key, value in test_data.items())''' snake_case_ = F'''from __main__ import test_data, {name}''' snake_case_ = 500000 snake_case_ = timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ ) print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"""{key:21} {value}""") print('''a man a plan a canal panama''') # finished 500,000 runs in 0.46793 seconds benchmark_function('''is_palindrome_slice''') # finished 500,000 runs in 0.85234 seconds benchmark_function('''is_palindrome''') # finished 500,000 runs in 1.32028 seconds benchmark_function('''is_palindrome_recursive''') # finished 500,000 runs in 2.08679 seconds benchmark_function('''is_palindrome_traversal''')
39
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv" SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]: snake_case_ = vocab_size snake_case_ = context_length snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case_ = layer_norm_epsilon snake_case_ = rescale_every snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
39
1
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) SCREAMING_SNAKE_CASE : bool = field( default=__A , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) SCREAMING_SNAKE_CASE : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) SCREAMING_SNAKE_CASE : bool = field( default=__A , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[str] = field(default=__A , metadata={"help": "The input training data file (a text file)."} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) SCREAMING_SNAKE_CASE : bool = field( default=__A , metadata={"help": "Overwrite the cached training and evaluation sets"} ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=__A , metadata={"help": "The number of processes to use for the preprocessing."} , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=__A , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE : bool = field( default=__A , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=__A , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=__A , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def snake_case__( self : List[str] ) ->str: if self.train_file is not None: snake_case_ = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: snake_case_ = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : PreTrainedTokenizerBase SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = True SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[int] = None def __call__( self : Tuple , _UpperCamelCase : Union[str, Any] ) ->int: snake_case_ = '''label''' if '''label''' in features[0].keys() else '''labels''' snake_case_ = [feature.pop(_UpperCamelCase ) for feature in features] snake_case_ = len(_UpperCamelCase ) snake_case_ = len(features[0]['''input_ids'''] ) snake_case_ = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCamelCase )] for feature in features ] snake_case_ = list(chain(*_UpperCamelCase ) ) snake_case_ = self.tokenizer.pad( _UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten snake_case_ = {k: v.view(_UpperCamelCase , _UpperCamelCase , -1 ) for k, v in batch.items()} # Add back labels snake_case_ = torch.tensor(_UpperCamelCase , dtype=torch.intaa ) return batch def __SCREAMING_SNAKE_CASE (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_, snake_case_, snake_case_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_, snake_case_, snake_case_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE__ ) datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. snake_case_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: snake_case_ = {} if data_args.train_file is not None: snake_case_ = data_args.train_file if data_args.validation_file is not None: snake_case_ = data_args.validation_file snake_case_ = data_args.train_file.split('''.''' )[-1] snake_case_ = load_dataset( SCREAMING_SNAKE_CASE__ , data_files=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. snake_case_ = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. snake_case_ = [F'''ending{i}''' for i in range(4 )] snake_case_ = '''sent1''' snake_case_ = '''sent2''' if data_args.max_seq_length is None: snake_case_ = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) snake_case_ = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) snake_case_ = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(SCREAMING_SNAKE_CASE__ ): snake_case_ = [[context] * 4 for context in examples[context_name]] snake_case_ = examples[question_header_name] snake_case_ = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(SCREAMING_SNAKE_CASE__ ) ] # Flatten out snake_case_ = list(chain(*SCREAMING_SNAKE_CASE__ ) ) snake_case_ = list(chain(*SCREAMING_SNAKE_CASE__ ) ) # Tokenize snake_case_ = tokenizer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) snake_case_ = raw_datasets['''train'''] if data_args.max_train_samples is not None: snake_case_ = min(len(SCREAMING_SNAKE_CASE__ ) , data_args.max_train_samples ) snake_case_ = train_dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): snake_case_ = train_dataset.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) snake_case_ = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: snake_case_ = min(len(SCREAMING_SNAKE_CASE__ ) , data_args.max_eval_samples ) snake_case_ = eval_dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): snake_case_ = eval_dataset.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator snake_case_ = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(SCREAMING_SNAKE_CASE__ ): snake_case_, snake_case_ = eval_predictions snake_case_ = np.argmax(SCREAMING_SNAKE_CASE__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer snake_case_ = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , compute_metrics=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: snake_case_ = None if training_args.resume_from_checkpoint is not None: snake_case_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ = last_checkpoint snake_case_ = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() # Saves the tokenizer too for easy upload snake_case_ = train_result.metrics snake_case_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = min(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics('''train''' , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('''train''' , SCREAMING_SNAKE_CASE__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) snake_case_ = trainer.evaluate() snake_case_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE__ ) snake_case_ = min(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics('''eval''' , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('''eval''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE__ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
39
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) class snake_case_ : '''simple docstring''' def __init__( self : int , _UpperCamelCase : Optional[str] = None ) ->Tuple: snake_case_ = ( os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) snake_case_ = Extractor def snake_case__( self : Any , _UpperCamelCase : str ) ->str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" snake_case_ = os.path.abspath(_UpperCamelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) ) def snake_case__( self : int , _UpperCamelCase : str , _UpperCamelCase : bool ) ->bool: return force_extract or ( not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase )) ) def snake_case__( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : bool = False ) ->str: snake_case_ = self.extractor.infer_extractor_format(_UpperCamelCase ) if not extractor_format: return input_path snake_case_ = self._get_output_path(_UpperCamelCase ) if self._do_extract(_UpperCamelCase , _UpperCamelCase ): self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return output_path class snake_case_ ( __A ): '''simple docstring''' @classmethod @abstractmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : str ) ->bool: ... @staticmethod @abstractmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: ... class snake_case_ ( __A , __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[bytes] = [] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->List[Any]: with open(_UpperCamelCase , '''rb''' ) as f: return f.read(_UpperCamelCase ) @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if not magic_number: snake_case_ = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) try: snake_case_ = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase ) except OSError: return False return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) class snake_case_ ( __A ): '''simple docstring''' @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : Any ) ->bool: return tarfile.is_tarfile(_UpperCamelCase ) @staticmethod def snake_case__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) ->List[str]: def resolved(_UpperCamelCase : str ) -> str: return os.path.realpath(os.path.abspath(_UpperCamelCase ) ) def badpath(_UpperCamelCase : str , _UpperCamelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase ) def badlink(_UpperCamelCase : Tuple , _UpperCamelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link snake_case_ = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCamelCase ) snake_case_ = resolved(_UpperCamelCase ) for finfo in members: if badpath(finfo.name , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = tarfile.open(_UpperCamelCase ) tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) ) tar_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [b"\x1F\x8B"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with gzip.open(_UpperCamelCase , '''rb''' ) as gzip_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def snake_case__( cls : List[str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCamelCase , '''rb''' ) as fp: snake_case_ = _EndRecData(_UpperCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: snake_case_ = fp.read(_UpperCamelCase ) # CD is where we expect it to be if len(_UpperCamelCase ) == sizeCentralDir: snake_case_ = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with zipfile.ZipFile(_UpperCamelCase , '''r''' ) as zip_file: zip_file.extractall(_UpperCamelCase ) zip_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with lzma.open(_UpperCamelCase ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = rarfile.RarFile(_UpperCamelCase ) rf.extractall(_UpperCamelCase ) rf.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [b"\x28\xb5\x2F\xFD"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd snake_case_ = zstd.ZstdDecompressor() with open(_UpperCamelCase , '''rb''' ) as ifh, open(_UpperCamelCase , '''wb''' ) as ofh: dctx.copy_stream(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"\x42\x5A\x68"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with bza.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with pyazr.SevenZipFile(_UpperCamelCase , '''r''' ) as archive: archive.extractall(_UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x04\x22\x4D\x18"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def snake_case__( cls : List[Any] ) ->List[str]: return max( len(_UpperCamelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCamelCase , _UpperCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->Tuple: try: return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase ) except OSError: return b"" @classmethod def snake_case__( cls : Optional[Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bool = False ) ->bool: warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = cls.infer_extractor_format(_UpperCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def snake_case__( cls : int , _UpperCamelCase : Union[Path, str] ) ->str: # <Added version="2.4.0"/> snake_case_ = cls._get_magic_number_max_length() snake_case_ = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return extractor_format @classmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[BaseExtractor] = "deprecated" , ) ->None: os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase ) # Prevent parallel extractions snake_case_ = str(Path(_UpperCamelCase ).with_suffix('''.lock''' ) ) with FileLock(_UpperCamelCase ): shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = extractor if extractor != '''deprecated''' else extractor_format else: snake_case_ = cls.extractors[extractor_format] return extractor.extract(_UpperCamelCase , _UpperCamelCase ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=_UpperCamelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCamelCase ): return extractor.extract(_UpperCamelCase , _UpperCamelCase )
39
1
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = "linear" SCREAMING_SNAKE_CASE : Tuple = "cosine" SCREAMING_SNAKE_CASE : Optional[int] = "cosine_with_restarts" SCREAMING_SNAKE_CASE : Dict = "polynomial" SCREAMING_SNAKE_CASE : str = "constant" SCREAMING_SNAKE_CASE : int = "constant_with_warmup" SCREAMING_SNAKE_CASE : List[Any] = "piecewise_constant" def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 ): return LambdaLR(SCREAMING_SNAKE_CASE__ , lambda SCREAMING_SNAKE_CASE__ : 1 , last_epoch=SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 ): def lr_lambda(SCREAMING_SNAKE_CASE__ ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE__ ) / float(max(1.0 , SCREAMING_SNAKE_CASE__ ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , last_epoch=SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 ): snake_case_ = {} snake_case_ = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: snake_case_, snake_case_ = rule_str.split(''':''' ) snake_case_ = int(SCREAMING_SNAKE_CASE__ ) snake_case_ = float(SCREAMING_SNAKE_CASE__ ) snake_case_ = value snake_case_ = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): def rule_func(SCREAMING_SNAKE_CASE__ ) -> float: snake_case_ = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func snake_case_ = create_rules_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return LambdaLR(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , last_epoch=SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=-1 ): def lr_lambda(SCREAMING_SNAKE_CASE__ ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE__ ) / float(max(1 , SCREAMING_SNAKE_CASE__ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 0.5 , SCREAMING_SNAKE_CASE__ = -1 ): def lr_lambda(SCREAMING_SNAKE_CASE__ ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE__ ) / float(max(1 , SCREAMING_SNAKE_CASE__ ) ) snake_case_ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE__ ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1 , SCREAMING_SNAKE_CASE__ = -1 ): def lr_lambda(SCREAMING_SNAKE_CASE__ ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE__ ) / float(max(1 , SCREAMING_SNAKE_CASE__ ) ) snake_case_ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE__ ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=1E-7 , SCREAMING_SNAKE_CASE__=1.0 , SCREAMING_SNAKE_CASE__=-1 ): snake_case_ = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(SCREAMING_SNAKE_CASE__ ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE__ ) / float(max(1 , SCREAMING_SNAKE_CASE__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: snake_case_ = lr_init - lr_end snake_case_ = num_training_steps - num_warmup_steps snake_case_ = 1 - (current_step - num_warmup_steps) / decay_steps snake_case_ = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 1 , SCREAMING_SNAKE_CASE__ = 1.0 , SCREAMING_SNAKE_CASE__ = -1 , ): snake_case_ = SchedulerType(SCREAMING_SNAKE_CASE__ ) snake_case_ = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE__ , last_epoch=SCREAMING_SNAKE_CASE__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE__ , step_rules=SCREAMING_SNAKE_CASE__ , last_epoch=SCREAMING_SNAKE_CASE__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE__ , num_warmup_steps=SCREAMING_SNAKE_CASE__ , last_epoch=SCREAMING_SNAKE_CASE__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE__ , num_warmup_steps=SCREAMING_SNAKE_CASE__ , num_training_steps=SCREAMING_SNAKE_CASE__ , num_cycles=SCREAMING_SNAKE_CASE__ , last_epoch=SCREAMING_SNAKE_CASE__ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE__ , num_warmup_steps=SCREAMING_SNAKE_CASE__ , num_training_steps=SCREAMING_SNAKE_CASE__ , power=SCREAMING_SNAKE_CASE__ , last_epoch=SCREAMING_SNAKE_CASE__ , ) return schedule_func( SCREAMING_SNAKE_CASE__ , num_warmup_steps=SCREAMING_SNAKE_CASE__ , num_training_steps=SCREAMING_SNAKE_CASE__ , last_epoch=SCREAMING_SNAKE_CASE__ )
39
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
39
1
import os def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = "input.txt" ): with open(os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) as input_file: snake_case_ = [ [int(SCREAMING_SNAKE_CASE__ ) for element in line.split(''',''' )] for line in input_file.readlines() ] snake_case_ = len(SCREAMING_SNAKE_CASE__ ) snake_case_ = len(matrix[0] ) snake_case_ = [[-1 for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ )] for i in range(SCREAMING_SNAKE_CASE__ ): snake_case_ = matrix[i][0] for j in range(1 , SCREAMING_SNAKE_CASE__ ): for i in range(SCREAMING_SNAKE_CASE__ ): snake_case_ = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): snake_case_ = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
39
import re from filelock import FileLock try: import nltk lowerCAmelCase_ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): re.sub('''<n>''' , '''''' , SCREAMING_SNAKE_CASE__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE__ ) )
39
1
from __future__ import annotations from collections.abc import MutableSequence class snake_case_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : MutableSequence[float] ) ->None: if len(_UpperCamelCase ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) snake_case_ = list(_UpperCamelCase ) snake_case_ = degree def __add__( self : Any , _UpperCamelCase : Polynomial ) ->Polynomial: if self.degree > polynomial_a.degree: snake_case_ = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _UpperCamelCase ) else: snake_case_ = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _UpperCamelCase ) def __sub__( self : Any , _UpperCamelCase : Polynomial ) ->Polynomial: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : List[Any] ) ->Polynomial: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : List[Any] , _UpperCamelCase : Polynomial ) ->Polynomial: snake_case_ = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _UpperCamelCase ) def snake_case__( self : Dict , _UpperCamelCase : int | float ) ->int | float: snake_case_ = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Tuple ) ->str: snake_case_ = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCamelCase ) return polynomial def __repr__( self : Union[str, Any] ) ->str: return self.__str__() def snake_case__( self : Any ) ->Polynomial: snake_case_ = [0] * self.degree for i in range(self.degree ): snake_case_ = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _UpperCamelCase ) def snake_case__( self : List[Any] , _UpperCamelCase : int | float = 0 ) ->Polynomial: snake_case_ = [0] * (self.degree + 2) snake_case_ = constant for i in range(self.degree + 1 ): snake_case_ = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _UpperCamelCase ) def __eq__( self : str , _UpperCamelCase : object ) ->bool: if not isinstance(_UpperCamelCase , _UpperCamelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : str , _UpperCamelCase : object ) ->bool: return not self.__eq__(_UpperCamelCase )
39
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [0 for i in range(r + 1 )] # nc0 = 1 snake_case_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case_ = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
39
1
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): while a != 0: snake_case_, snake_case_ = b % a, a return b def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if gcd(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) != 1: snake_case_ = F'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(SCREAMING_SNAKE_CASE__ ) snake_case_, snake_case_, snake_case_ = 1, 0, a snake_case_, snake_case_, snake_case_ = 0, 1, m while va != 0: snake_case_ = ua // va snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
39
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCAmelCase_ = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 13_10_72, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return torch.atana(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / math.pi * 2 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.sin(t * math.pi / 2 ) ** 2 snake_case_ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class snake_case_ ( __A ): '''simple docstring''' pass class snake_case_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : int ) ->Optional[int]: super().__init__() snake_case_ = DiffusionAttnUnetaD(_UpperCamelCase , n_attn_layers=4 ) snake_case_ = deepcopy(self.diffusion ) snake_case_ = torch.quasirandom.SobolEngine(1 , scramble=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = MODELS_MAP[model_name]['''url'''] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCAmelCase_ = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCAmelCase_ = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCAmelCase_ = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCAmelCase_ = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif name.startswith(SCREAMING_SNAKE_CASE__ ): return [name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 ): snake_case_ = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) snake_case_ = 0 if string.startswith('''net.3.''' ): depth += 1 snake_case_ = string[6:] elif string.startswith('''net.''' ): snake_case_ = string[4:] while string.startswith('''main.7.''' ): depth += 1 snake_case_ = string[7:] if string.startswith('''main.''' ): snake_case_ = string[5:] # mid block if string[:2].isdigit(): snake_case_ = string[:2] snake_case_ = string[2:] else: snake_case_ = string[0] snake_case_ = string[1:] if depth == max_depth: snake_case_ = MID_NUM_TO_LAYER[layer_num] snake_case_ = '''mid_block''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) < 7: snake_case_ = DOWN_NUM_TO_LAYER[layer_num] snake_case_ = F'''down_blocks.{depth}''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) > 7: snake_case_ = UP_NUM_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: snake_case_ = DEPTH_0_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - 1}''' if int(SCREAMING_SNAKE_CASE__ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) snake_case_ = string_left[1:] if "resnets" in new_layer: snake_case_ = convert_resconv_naming(SCREAMING_SNAKE_CASE__ ) elif "attentions" in new_layer: snake_case_ = convert_attn_naming(SCREAMING_SNAKE_CASE__ ) snake_case_ = new_string_left if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = prefix + '''.''' + new_layer + '''.''' + string_left else: snake_case_ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue snake_case_ = rename(SCREAMING_SNAKE_CASE__ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = transform_conv_attns(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ = v return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) == 1: if len(v.shape ) == 3: # weight snake_case_ = v[:, :, 0] else: # bias snake_case_ = v else: # qkv matrices snake_case_ = v.shape[0] snake_case_ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: snake_case_ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: snake_case_ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) snake_case_ = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' snake_case_ = download(SCREAMING_SNAKE_CASE__ ) snake_case_ = MODELS_MAP[model_name]['''sample_rate'''] snake_case_ = MODELS_MAP[model_name]['''sample_size'''] snake_case_ = Object() snake_case_ = sample_size snake_case_ = sample_rate snake_case_ = 0 snake_case_ = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE__ , sample_rate=SCREAMING_SNAKE_CASE__ ) snake_case_ = diffusers_model.state_dict() snake_case_ = DiffusionUncond(SCREAMING_SNAKE_CASE__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE__ )['''state_dict'''] ) snake_case_ = orig_model.diffusion_ema.eval() snake_case_ = orig_model.state_dict() snake_case_ = rename_orig_weights(SCREAMING_SNAKE_CASE__ ) snake_case_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) snake_case_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE__ ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith('''kernel''' ) for k in list(SCREAMING_SNAKE_CASE__ ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": snake_case_ = value.squeeze() snake_case_ = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = 100 snake_case_ = 33 snake_case_ = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE__ )[:-1] snake_case_ = get_crash_schedule(SCREAMING_SNAKE_CASE__ ) snake_case_ = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(33 ) snake_case_ = pipe(num_inference_steps=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).audios snake_case_ = sampling.iplms_sample(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {} ) snake_case_ = generated.clamp(-1 , 1 ) snake_case_ = (generated - audio).abs().sum() snake_case_ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , SCREAMING_SNAKE_CASE__ ) print('''Diff max''' , SCREAMING_SNAKE_CASE__ ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCAmelCase_ = parser.parse_args() main(args)
39
1
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1 / sqrt(2 ) ): snake_case_ = tau * frequency / samplerate snake_case_ = sin(SCREAMING_SNAKE_CASE__ ) snake_case_ = cos(SCREAMING_SNAKE_CASE__ ) snake_case_ = _sin / (2 * q_factor) snake_case_ = (1 - _cos) / 2 snake_case_ = 1 - _cos snake_case_ = 1 + alpha snake_case_ = -2 * _cos snake_case_ = 1 - alpha snake_case_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1 / sqrt(2 ) ): snake_case_ = tau * frequency / samplerate snake_case_ = sin(SCREAMING_SNAKE_CASE__ ) snake_case_ = cos(SCREAMING_SNAKE_CASE__ ) snake_case_ = _sin / (2 * q_factor) snake_case_ = (1 + _cos) / 2 snake_case_ = -1 - _cos snake_case_ = 1 + alpha snake_case_ = -2 * _cos snake_case_ = 1 - alpha snake_case_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1 / sqrt(2 ) ): snake_case_ = tau * frequency / samplerate snake_case_ = sin(SCREAMING_SNAKE_CASE__ ) snake_case_ = cos(SCREAMING_SNAKE_CASE__ ) snake_case_ = _sin / (2 * q_factor) snake_case_ = _sin / 2 snake_case_ = 0 snake_case_ = -ba snake_case_ = 1 + alpha snake_case_ = -2 * _cos snake_case_ = 1 - alpha snake_case_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1 / sqrt(2 ) ): snake_case_ = tau * frequency / samplerate snake_case_ = sin(SCREAMING_SNAKE_CASE__ ) snake_case_ = cos(SCREAMING_SNAKE_CASE__ ) snake_case_ = _sin / (2 * q_factor) snake_case_ = 1 - alpha snake_case_ = -2 * _cos snake_case_ = 1 + alpha snake_case_ = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1 / sqrt(2 ) , ): snake_case_ = tau * frequency / samplerate snake_case_ = sin(SCREAMING_SNAKE_CASE__ ) snake_case_ = cos(SCREAMING_SNAKE_CASE__ ) snake_case_ = _sin / (2 * q_factor) snake_case_ = 10 ** (gain_db / 40) snake_case_ = 1 + alpha * big_a snake_case_ = -2 * _cos snake_case_ = 1 - alpha * big_a snake_case_ = 1 + alpha / big_a snake_case_ = -2 * _cos snake_case_ = 1 - alpha / big_a snake_case_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1 / sqrt(2 ) , ): snake_case_ = tau * frequency / samplerate snake_case_ = sin(SCREAMING_SNAKE_CASE__ ) snake_case_ = cos(SCREAMING_SNAKE_CASE__ ) snake_case_ = _sin / (2 * q_factor) snake_case_ = 10 ** (gain_db / 40) snake_case_ = (big_a + 1) - (big_a - 1) * _cos snake_case_ = (big_a + 1) + (big_a - 1) * _cos snake_case_ = (big_a - 1) - (big_a + 1) * _cos snake_case_ = (big_a - 1) + (big_a + 1) * _cos snake_case_ = 2 * sqrt(SCREAMING_SNAKE_CASE__ ) * alpha snake_case_ = big_a * (pmc + aaa) snake_case_ = 2 * big_a * mpc snake_case_ = big_a * (pmc - aaa) snake_case_ = ppmc + aaa snake_case_ = -2 * pmpc snake_case_ = ppmc - aaa snake_case_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1 / sqrt(2 ) , ): snake_case_ = tau * frequency / samplerate snake_case_ = sin(SCREAMING_SNAKE_CASE__ ) snake_case_ = cos(SCREAMING_SNAKE_CASE__ ) snake_case_ = _sin / (2 * q_factor) snake_case_ = 10 ** (gain_db / 40) snake_case_ = (big_a + 1) - (big_a - 1) * _cos snake_case_ = (big_a + 1) + (big_a - 1) * _cos snake_case_ = (big_a - 1) - (big_a + 1) * _cos snake_case_ = (big_a - 1) + (big_a + 1) * _cos snake_case_ = 2 * sqrt(SCREAMING_SNAKE_CASE__ ) * alpha snake_case_ = big_a * (ppmc + aaa) snake_case_ = -2 * big_a * pmpc snake_case_ = big_a * (ppmc - aaa) snake_case_ = pmc + aaa snake_case_ = 2 * mpc snake_case_ = pmc - aaa snake_case_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
39
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
1
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = '''Hello world! cécé herlolip''' lowerCAmelCase_ = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = BertAbsConfig( temp_dir='''.''' , finetune_bert=SCREAMING_SNAKE_CASE__ , large=SCREAMING_SNAKE_CASE__ , share_emb=SCREAMING_SNAKE_CASE__ , use_bert_emb=SCREAMING_SNAKE_CASE__ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) snake_case_ = torch.load(SCREAMING_SNAKE_CASE__ , lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : storage ) snake_case_ = AbsSummarizer(SCREAMING_SNAKE_CASE__ , torch.device('''cpu''' ) , SCREAMING_SNAKE_CASE__ ) original.eval() snake_case_ = BertAbsSummarizer(SCREAMING_SNAKE_CASE__ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) snake_case_ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs snake_case_ = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(SCREAMING_SNAKE_CASE__ )) ) snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) snake_case_ = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(SCREAMING_SNAKE_CASE__ )) ) snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass snake_case_ = encoder_input_ids snake_case_ = decoder_input_ids snake_case_ = snake_case_ = None snake_case_ = None snake_case_ = snake_case_ = None snake_case_ = snake_case_ = None snake_case_ = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical snake_case_ = original(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] snake_case_ = original.generator(SCREAMING_SNAKE_CASE__ ) snake_case_ = new_model( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] snake_case_ = new_model.generator(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) lowerCAmelCase_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
39
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->Any: snake_case_ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case_ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case_ = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case_ = output[output != -float('''inf''' )] snake_case_ = tf.cast( tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-12 ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @require_tf class snake_case_ ( unittest.TestCase , __A ): '''simple docstring''' if is_tf_available(): SCREAMING_SNAKE_CASE : Optional[int] = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def snake_case__( self : List[Any] ) ->Optional[int]: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 2 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->List[Any]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) ->List[Any]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2, 0], [1_0_2, 1_0_3]] snake_case_ = [[1, 0], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for batch_size in range(1 , len(_UpperCamelCase ) + 1 ): snake_case_ = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow def snake_case__( self : List[str] ) ->int: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 1 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : Any ) ->List[str]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) ->Optional[int]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2], [1_0_2, 1_0_3]] snake_case_ = [[1], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for input_row in range(len(_UpperCamelCase ) ): snake_case_ = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow @require_tensorflow_text def snake_case__( self : Optional[Any] ) ->List[Any]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_UpperCamelCase ) class snake_case_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ) ->List[Any]: super().__init__() snake_case_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , '''spiece.model''' ) , '''rb''' ).read() ) snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->List[Any]: snake_case_ = self.tokenizer.tokenize(_UpperCamelCase ) snake_case_, snake_case_ = text.pad_model_inputs( _UpperCamelCase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) snake_case_ = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) return self.tokenizer.detokenize(_UpperCamelCase ) snake_case_ = CompleteSentenceTransformer() snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) snake_case_ = complete_model(_UpperCamelCase ) snake_case_ = tf.keras.Model(_UpperCamelCase , _UpperCamelCase ) keras_model.save(_UpperCamelCase ) def snake_case__( self : Any ) ->List[Any]: # Has PT equivalent: this test relies on random sampling snake_case_ = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 1_0, '''temperature''': 0.7, } snake_case_ = 1_4 snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = '''Hello, my dog is cute and''' snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''tf''' ) snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case_ = [6_3_8, 1_9_8] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def snake_case__( self : str ) ->Dict: # Has PT equivalent: ample use of framework-specific code snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = '''Hugging Face is a technology company based in New York and Paris.''' snake_case_ = bart_tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids snake_case_ = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Optional[int] ) ->List[str]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) ) class snake_case_ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , **_UpperCamelCase : Tuple ) ->Optional[Any]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() with self.assertRaises(_UpperCamelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_UpperCamelCase , foo='''bar''' )
39
1
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = '''pytorch_model.bin''' @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "A csv or a json file containing the validation data."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "The name of the task to train on."} , ) SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field( default=__A , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=__A , metadata={"help": "Random seed for initialization."} , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case_ = dataset.filter(lambda SCREAMING_SNAKE_CASE__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case_ = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) ) print(SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = dataset.remove_columns(['''label''', '''probability'''] ) snake_case_ = dataset.rename_column('''prediction''' , '''label''' ) snake_case_ = dataset.map(lambda SCREAMING_SNAKE_CASE__ : {"label": idalabel[example["label"]]} ) snake_case_ = dataset.shuffle(seed=args.seed ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) else: dataset.to_json(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): snake_case_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case_ = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ ) snake_case_ = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ , infer_file=SCREAMING_SNAKE_CASE__ ) snake_case_ = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ ) snake_case_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(SCREAMING_SNAKE_CASE__ ).items(): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Sanity checks snake_case_ = {} snake_case_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case_ = args.train_file snake_case_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case_ = args.eval_file for key in data_files: snake_case_ = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: snake_case_ = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) snake_case_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format snake_case_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = None snake_case_ = None snake_case_ = 0 snake_case_ = False # Show the progress bar snake_case_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case_ = data_dir_format(SCREAMING_SNAKE_CASE__ ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-1''' ) snake_case_ = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): arguments_dict.update({key: value} ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-2''' ) # Update arguments_dict snake_case_ = model_path snake_case_ = data_files['''train'''] snake_case_ = current_output_dir snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = iteration snake_case_ = data_dir_format(iteration + 1 ) snake_case_ = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) ) snake_case_ = config.idalabel snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-checkpoint.json''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: snake_case_ = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Loading the dataset from local csv or json files. snake_case_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] snake_case_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case_ = eval_result if best_iteration is None: snake_case_ = new_iteration snake_case_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case_ = new_iteration snake_case_ = new_eval_result snake_case_ = 0 else: if new_eval_result == best_eval_result: snake_case_ = new_iteration snake_case_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE__ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , )
39
import unittest from transformers import DonutProcessor lowerCAmelCase_ = '''naver-clova-ix/donut-base''' class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = DonutProcessor.from_pretrained(_UpperCamelCase ) def snake_case__( self : Dict ) ->str: snake_case_ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } snake_case_ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) snake_case_ = self.processor.tokenajson(_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , _UpperCamelCase )
39
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] lowerCAmelCase_ = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] lowerCAmelCase_ = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) lowerCAmelCase_ = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) lowerCAmelCase_ = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for tf_name, hf_name in patterns: snake_case_ = k.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return k def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = BigBirdPegasusConfig(**SCREAMING_SNAKE_CASE__ ) snake_case_ = BigBirdPegasusForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch_model.state_dict() snake_case_ = {} # separating decoder weights snake_case_ = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} snake_case_ = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): snake_case_ = [k.endswith(SCREAMING_SNAKE_CASE__ ) for ending in KEYS_TO_IGNORE] if any(SCREAMING_SNAKE_CASE__ ): continue snake_case_ = DECODER_PATTERNS snake_case_ = rename_state_dict_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if new_k not in state_dict: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): snake_case_ = v.T snake_case_ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): snake_case_ = [k.endswith(SCREAMING_SNAKE_CASE__ ) for ending in KEYS_TO_IGNORE] if any(SCREAMING_SNAKE_CASE__ ): continue snake_case_ = REMAINING_PATTERNS snake_case_ = rename_state_dict_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): snake_case_ = v.T snake_case_ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' snake_case_ = mapping['''model.embed_positions.weight'''] snake_case_ = mapping.pop('''model.embed_positions.weight''' ) snake_case_, snake_case_ = torch_model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) snake_case_ = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = tf.train.list_variables(SCREAMING_SNAKE_CASE__ ) snake_case_ = {} snake_case_ = ['''global_step'''] for name, shape in tqdm(SCREAMING_SNAKE_CASE__ , desc='''converting tf checkpoint to dict''' ): snake_case_ = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case_ = tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = array return tf_weights def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = get_tf_weights_as_numpy(SCREAMING_SNAKE_CASE__ ) snake_case_ = convert_bigbird_pegasus(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) torch_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
39
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not nums: raise ValueError('''List is empty''' ) return sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
39
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = "gpt_neox_japanese" def __init__( self : Any , _UpperCamelCase : List[str]=3_2_0_0_0 , _UpperCamelCase : Union[str, Any]=2_5_6_0 , _UpperCamelCase : List[Any]=3_2 , _UpperCamelCase : int=3_2 , _UpperCamelCase : Optional[int]=4 , _UpperCamelCase : List[str]="gelu" , _UpperCamelCase : Union[str, Any]=1.00 , _UpperCamelCase : Dict=1_0_0_0_0 , _UpperCamelCase : List[str]=2_0_4_8 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : Dict=1e-5 , _UpperCamelCase : List[Any]=True , _UpperCamelCase : List[str]=3_1_9_9_6 , _UpperCamelCase : Optional[int]=3_1_9_9_9 , _UpperCamelCase : Any=0.1 , _UpperCamelCase : List[str]=0.0 , **_UpperCamelCase : Optional[Any] , ) ->Optional[Any]: super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_multiple_size snake_case_ = hidden_act snake_case_ = rotary_pct snake_case_ = rotary_emb_base snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = use_cache snake_case_ = attention_dropout snake_case_ = hidden_dropout
39
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : List[str] ) ->str: snake_case_ = inspect.getfile(accelerate.test_utils ) snake_case_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 snake_case_ = test_metrics @require_cpu def snake_case__( self : str ) ->int: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case__( self : Union[str, Any] ) ->Any: debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case__( self : List[Any] ) ->Tuple: self.test_metrics.main() @require_multi_gpu def snake_case__( self : Any ) ->Union[str, Any]: print(f'''Found {torch.cuda.device_count()} devices.''' ) snake_case_ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
39
1
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder lowerCAmelCase_ = '''__DUMMY_TRANSFORMERS_USER__''' lowerCAmelCase_ = '''Dummy User''' lowerCAmelCase_ = '''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''' lowerCAmelCase_ = '''https://hub-ci.huggingface.co''' lowerCAmelCase_ = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' lowerCAmelCase_ = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' lowerCAmelCase_ = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): monkeypatch.setattr( '''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''' , SCREAMING_SNAKE_CASE__ ) @pytest.fixture def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): monkeypatch.setattr('''datasets.config.HF_ENDPOINT''' , SCREAMING_SNAKE_CASE__ ) monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''' , SCREAMING_SNAKE_CASE__ ) @pytest.fixture def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''' , SCREAMING_SNAKE_CASE__ ) @pytest.fixture def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): HfFolder.save_token(SCREAMING_SNAKE_CASE__ ) yield HfFolder.delete_token() @pytest.fixture(scope='''session''' ) def __SCREAMING_SNAKE_CASE (): return HfApi(endpoint=SCREAMING_SNAKE_CASE__ ) @pytest.fixture(scope='''session''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = HfFolder.get_token() HfFolder.save_token(SCREAMING_SNAKE_CASE__ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(SCREAMING_SNAKE_CASE__ ) @pytest.fixture def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): def _cleanup_repo(SCREAMING_SNAKE_CASE__ ): hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) return _cleanup_repo @pytest.fixture def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): @contextmanager def _temporary_repo(SCREAMING_SNAKE_CASE__ ): try: yield repo_id finally: cleanup_repo(SCREAMING_SNAKE_CASE__ ) return _temporary_repo @pytest.fixture(scope='''session''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = F'''repo_txt_data-{int(time.time() * 10E3 )}''' snake_case_ = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' , private=SCREAMING_SNAKE_CASE__ ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE__ , path_or_fileobj=str(SCREAMING_SNAKE_CASE__ ) , path_in_repo='''data/text_data.txt''' , repo_id=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='''session''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = F'''repo_zipped_txt_data-{int(time.time() * 10E3 )}''' snake_case_ = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' , private=SCREAMING_SNAKE_CASE__ ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE__ , path_or_fileobj=str(SCREAMING_SNAKE_CASE__ ) , path_in_repo='''data.zip''' , repo_id=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='''session''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = F'''repo_zipped_img_data-{int(time.time() * 10E3 )}''' snake_case_ = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' , private=SCREAMING_SNAKE_CASE__ ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE__ , path_or_fileobj=str(SCREAMING_SNAKE_CASE__ ) , path_in_repo='''data.zip''' , repo_id=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return hf_private_dataset_repo_zipped_img_data_
39
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = "informer" SCREAMING_SNAKE_CASE : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Dict , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "student_t" , _UpperCamelCase : str = "nll" , _UpperCamelCase : int = 1 , _UpperCamelCase : List[int] = None , _UpperCamelCase : Optional[Union[str, bool]] = "mean" , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : int = 6_4 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.05 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : Dict=True , _UpperCamelCase : str = "prob" , _UpperCamelCase : int = 5 , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Optional[int]: # time series specific configuration snake_case_ = prediction_length snake_case_ = context_length or prediction_length snake_case_ = distribution_output snake_case_ = loss snake_case_ = input_size snake_case_ = num_time_features snake_case_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case_ = scaling snake_case_ = num_dynamic_real_features snake_case_ = num_static_real_features snake_case_ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = cardinality else: snake_case_ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = embedding_dimension else: snake_case_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ = num_parallel_samples # Transformer architecture configuration snake_case_ = input_size * len(self.lags_sequence ) + self._number_of_features snake_case_ = d_model snake_case_ = encoder_attention_heads snake_case_ = decoder_attention_heads snake_case_ = encoder_ffn_dim snake_case_ = decoder_ffn_dim snake_case_ = encoder_layers snake_case_ = decoder_layers snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = activation_function snake_case_ = init_std snake_case_ = use_cache # Informer snake_case_ = attention_type snake_case_ = sampling_factor snake_case_ = distil super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def snake_case__( self : Optional[Any] ) ->int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
39
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "data2vec-vision" def __init__( self : int , _UpperCamelCase : int=7_6_8 , _UpperCamelCase : str=1_2 , _UpperCamelCase : str=1_2 , _UpperCamelCase : int=3_0_7_2 , _UpperCamelCase : List[Any]="gelu" , _UpperCamelCase : List[str]=0.0 , _UpperCamelCase : str=0.0 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : Optional[int]=1e-12 , _UpperCamelCase : Optional[int]=2_2_4 , _UpperCamelCase : str=1_6 , _UpperCamelCase : Optional[int]=3 , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : List[Any]=False , _UpperCamelCase : List[Any]=False , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Tuple=True , _UpperCamelCase : Optional[int]=[3, 5, 7, 1_1] , _UpperCamelCase : Dict=[1, 2, 3, 6] , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Dict=0.4 , _UpperCamelCase : Any=2_5_6 , _UpperCamelCase : List[str]=1 , _UpperCamelCase : Dict=False , _UpperCamelCase : Union[str, Any]=2_5_5 , **_UpperCamelCase : Dict , ) ->List[Any]: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = use_mask_token snake_case_ = use_absolute_position_embeddings snake_case_ = use_relative_position_bias snake_case_ = use_shared_relative_position_bias snake_case_ = layer_scale_init_value snake_case_ = drop_path_rate snake_case_ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case_ = out_indices snake_case_ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = auxiliary_channels snake_case_ = auxiliary_num_convs snake_case_ = auxiliary_concat_input snake_case_ = semantic_loss_ignore_index class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = version.parse("1.11" ) @property def snake_case__( self : List[str] ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case__( self : Tuple ) ->float: return 1e-4
39
import cmath import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) # Convert voltage and current to rectangular form snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
39
1
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not numbers: return 0 if not isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) or not all( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) snake_case_ = snake_case_ = snake_case_ = numbers[0] for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # update the maximum and minimum subarray products snake_case_ = numbers[i] if number < 0: snake_case_, snake_case_ = min_till_now, max_till_now snake_case_ = max(SCREAMING_SNAKE_CASE__ , max_till_now * number ) snake_case_ = min(SCREAMING_SNAKE_CASE__ , min_till_now * number ) # update the maximum product found till now snake_case_ = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return max_prod
39
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=1_3 , _UpperCamelCase : str=7 , _UpperCamelCase : int=True , _UpperCamelCase : Dict=True , _UpperCamelCase : int=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : str=3_2 , _UpperCamelCase : str=5 , _UpperCamelCase : str=4 , _UpperCamelCase : int=3_7 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : str=5_1_2 , _UpperCamelCase : Optional[int]=1_6 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Any=0.02 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : str=None , ) ->Dict: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def snake_case__( self : str ) ->List[Any]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self : List[str] ) ->Tuple: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) ->Dict: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , ) ->Optional[int]: snake_case_ = BioGptForCausalLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , *_UpperCamelCase : List[Any] ) ->Union[str, Any]: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # create attention mask snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) snake_case_ = self.seq_length // 2 snake_case_ = 0 # first forward pass snake_case_, snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids snake_case_ = ids_tensor((1,) , _UpperCamelCase ).item() + 1 snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) snake_case_ = random_other_next_tokens # append to next input_ids and attn_mask snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCamelCase )] , dim=1 , ) # get two different outputs snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , past_key_values=_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , *_UpperCamelCase : List[Any] ) ->int: snake_case_ = BioGptModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval() snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) # first forward pass snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase ) snake_case_, snake_case_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[ '''last_hidden_state''' ] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , *_UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=False ) ->Dict: snake_case_ = BioGptForCausalLM(_UpperCamelCase ) model.to(_UpperCamelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def snake_case__( self : List[Any] , _UpperCamelCase : Optional[int] , *_UpperCamelCase : Dict ) ->Dict: snake_case_ = BioGptModel(_UpperCamelCase ) snake_case_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def snake_case__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , *_UpperCamelCase : List[str] ) ->int: snake_case_ = self.num_labels snake_case_ = BioGptForTokenClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = (BioGptForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Optional[Any] = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Tuple = False def snake_case__( self : List[str] ) ->Union[str, Any]: snake_case_ = BioGptModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : str ) ->int: self.config_tester.run_common_tests() def snake_case__( self : str ) ->Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_UpperCamelCase , gradient_checkpointing=_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCamelCase ) def snake_case__( self : List[Any] ) ->Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCamelCase ) @slow def snake_case__( self : int ) ->Optional[Any]: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = '''left''' # Define PAD Token = EOS Token = 50256 snake_case_ = tokenizer.eos_token snake_case_ = model.config.eos_token_id # use different length sentences to test batching snake_case_ = [ '''Hello, my dog is a little''', '''Today, I''', ] snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase ) snake_case_ = inputs['''input_ids'''].to(_UpperCamelCase ) snake_case_ = model.generate( input_ids=_UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(_UpperCamelCase ) , ) snake_case_ = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase ) snake_case_ = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() snake_case_ = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings ) snake_case_ = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] ) @slow def snake_case__( self : Optional[int] ) ->List[str]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = BioGptModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__( self : str ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = '''multi_label_classification''' snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__( self : int ) ->Any: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) snake_case_ = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) snake_case_ = model(_UpperCamelCase )[0] snake_case_ = 4_2_3_8_4 snake_case_ = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def snake_case__( self : List[str] ) ->Optional[int]: snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_UpperCamelCase ) snake_case_ = model.generate( **_UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=_UpperCamelCase , ) snake_case_ = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(_UpperCamelCase , _UpperCamelCase )
39
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = "facebook/bart-large-mnli" SCREAMING_SNAKE_CASE : Union[str, Any] = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) SCREAMING_SNAKE_CASE : List[str] = "text_classifier" SCREAMING_SNAKE_CASE : Dict = AutoTokenizer SCREAMING_SNAKE_CASE : int = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Any = ["text", ["text"]] SCREAMING_SNAKE_CASE : Tuple = ["text"] def snake_case__( self : Any ) ->Tuple: super().setup() snake_case_ = self.model.config snake_case_ = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): snake_case_ = int(_UpperCamelCase ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def snake_case__( self : int , _UpperCamelCase : Dict , _UpperCamelCase : str ) ->Union[str, Any]: snake_case_ = labels return self.pre_processor( [text] * len(_UpperCamelCase ) , [f'''This example is {label}''' for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def snake_case__( self : int , _UpperCamelCase : str ) ->Dict: snake_case_ = outputs.logits snake_case_ = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
39
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) snake_case_ = (boundary[1] - boundary[0]) / steps snake_case_ = boundary[0] snake_case_ = boundary[1] snake_case_ = make_points(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = 0.0 y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) for i in x_i: # print(i) y += h * f(SCREAMING_SNAKE_CASE__ ) y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) return y def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = a + h while x < (b - h): yield x snake_case_ = x + h def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # enter your function here snake_case_ = (x - 0) * (x - 0) return y def __SCREAMING_SNAKE_CASE (): snake_case_ = 0.0 # Lower bound of integration snake_case_ = 1.0 # Upper bound of integration snake_case_ = 10.0 # define number of steps or resolution snake_case_ = [a, b] # define boundary of integration snake_case_ = method_a(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
39
1
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def __SCREAMING_SNAKE_CASE (): assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def __SCREAMING_SNAKE_CASE (): snake_case_ = '''mock-s3-bucket''' snake_case_ = F'''s3://{mock_bucket}''' snake_case_ = extract_path_from_uri(SCREAMING_SNAKE_CASE__ ) assert dataset_path.startswith('''s3://''' ) is False snake_case_ = '''./local/path''' snake_case_ = extract_path_from_uri(SCREAMING_SNAKE_CASE__ ) assert dataset_path == new_dataset_path def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = is_remote_filesystem(SCREAMING_SNAKE_CASE__ ) assert is_remote is True snake_case_ = fsspec.filesystem('''file''' ) snake_case_ = is_remote_filesystem(SCREAMING_SNAKE_CASE__ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} snake_case_ = input_paths[compression_fs_class.protocol] if input_path is None: snake_case_ = F'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE__ ) snake_case_ = fsspec.filesystem(compression_fs_class.protocol , fo=SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = os.path.basename(SCREAMING_SNAKE_CASE__ ) snake_case_ = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(SCREAMING_SNAKE_CASE__ , '''r''' , encoding='''utf-8''' ) as f, open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} snake_case_ = compressed_file_paths[protocol] snake_case_ = '''dataset.jsonl''' snake_case_ = F'''{protocol}://{member_file_path}::{compressed_file_path}''' snake_case_, *snake_case_ = fsspec.get_fs_token_paths(SCREAMING_SNAKE_CASE__ ) assert fs.isfile(SCREAMING_SNAKE_CASE__ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = hf_api.dataset_info(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) snake_case_ = HfFileSystem(repo_info=SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(SCREAMING_SNAKE_CASE__ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def __SCREAMING_SNAKE_CASE (): snake_case_ = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , clobber=SCREAMING_SNAKE_CASE__ ) with pytest.warns(SCREAMING_SNAKE_CASE__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(SCREAMING_SNAKE_CASE__ ) == 1 assert ( str(warning_info[0].message ) == F'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
39
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / '''model_card_template.md''' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None ): snake_case_ = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if token is None: snake_case_ = HfFolder.get_token() if organization is None: snake_case_ = whoami(SCREAMING_SNAKE_CASE__ )['''name'''] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(SCREAMING_SNAKE_CASE__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , '''hub_token''' ) else None snake_case_ = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) snake_case_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ = os.path.join(args.output_dir , '''README.md''' ) model_card.save(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) snake_case_ = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE__ ) if search is None: return None snake_case_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, '''diffusers''') def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if new_cache_dir is None: snake_case_ = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ = old_diffusers_cache snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ '''the directory exists and can be written to.''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if variant is not None: snake_case_ = weights_name.split('''.''' ) snake_case_ = splits[:-1] + [variant] + splits[-1:] snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ ) return weights_name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ): snake_case_ = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' '''this model name. Check the model page at ''' F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
39
1
from __future__ import annotations lowerCAmelCase_ = list[tuple[int, int]] lowerCAmelCase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCAmelCase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class snake_case_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : float , _UpperCamelCase : Node | None , ) ->List[str]: snake_case_ = pos_x snake_case_ = pos_y snake_case_ = (pos_y, pos_x) snake_case_ = goal_x snake_case_ = goal_y snake_case_ = g_cost snake_case_ = parent snake_case_ = self.calculate_heuristic() def snake_case__( self : Optional[Any] ) ->float: snake_case_ = abs(self.pos_x - self.goal_x ) snake_case_ = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : str , _UpperCamelCase : Tuple ) ->bool: return self.f_cost < other.f_cost class snake_case_ : '''simple docstring''' def __init__( self : int , _UpperCamelCase : tuple[int, int] , _UpperCamelCase : tuple[int, int] ) ->Optional[int]: snake_case_ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _UpperCamelCase ) snake_case_ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , _UpperCamelCase ) snake_case_ = [self.start] snake_case_ = [] snake_case_ = False def snake_case__( self : Tuple ) ->Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() snake_case_ = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: snake_case_ = True return self.retrace_path(_UpperCamelCase ) self.closed_nodes.append(_UpperCamelCase ) snake_case_ = self.get_successors(_UpperCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_UpperCamelCase ) else: # retrieve the best current path snake_case_ = self.open_nodes.pop(self.open_nodes.index(_UpperCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_UpperCamelCase ) else: self.open_nodes.append(_UpperCamelCase ) if not self.reached: return [self.start.pos] return None def snake_case__( self : Union[str, Any] , _UpperCamelCase : Node ) ->list[Node]: snake_case_ = [] for action in delta: snake_case_ = parent.pos_x + action[1] snake_case_ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_UpperCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _UpperCamelCase , _UpperCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _UpperCamelCase , ) ) return successors def snake_case__( self : Any , _UpperCamelCase : Node | None ) ->Path: snake_case_ = node snake_case_ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case_ = current_node.parent path.reverse() return path if __name__ == "__main__": lowerCAmelCase_ = (0, 0) lowerCAmelCase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') lowerCAmelCase_ = GreedyBestFirst(init, goal) lowerCAmelCase_ = greedy_bf.search() if path: for pos_x, pos_y in path: lowerCAmelCase_ = 2 for elem in grid: print(elem)
39
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt" def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) snake_case_ = backbone_featmap_shape snake_case_ = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: snake_case_ = None snake_case_ = None snake_case_ = [] snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) snake_case_ = readout_type snake_case_ = reassemble_factors snake_case_ = neck_hidden_sizes snake_case_ = fusion_hidden_size snake_case_ = head_in_index snake_case_ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = semantic_loss_ignore_index snake_case_ = semantic_classifier_dropout def snake_case__( self : List[str] ) ->List[Any]: snake_case_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
39
1
import os import sys import unittest lowerCAmelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCAmelCase_ = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') lowerCAmelCase_ = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : str ) ->Union[str, Any]: snake_case_ = get_test_to_tester_mapping(_UpperCamelCase ) snake_case_ = get_test_to_tester_mapping(_UpperCamelCase ) snake_case_ = {'''BertModelTest''': '''BertModelTester'''} snake_case_ = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(get_test_info.to_json(_UpperCamelCase ) , _UpperCamelCase ) def snake_case__( self : int ) ->Optional[int]: snake_case_ = get_model_to_test_mapping(_UpperCamelCase ) snake_case_ = get_model_to_test_mapping(_UpperCamelCase ) snake_case_ = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } snake_case_ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(get_test_info.to_json(_UpperCamelCase ) , _UpperCamelCase ) def snake_case__( self : Optional[int] ) ->Tuple: snake_case_ = get_model_to_tester_mapping(_UpperCamelCase ) snake_case_ = get_model_to_tester_mapping(_UpperCamelCase ) snake_case_ = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } snake_case_ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(get_test_info.to_json(_UpperCamelCase ) , _UpperCamelCase )
39
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = '''pytorch_model.bin''' @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "A csv or a json file containing the validation data."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "The name of the task to train on."} , ) SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field( default=__A , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=__A , metadata={"help": "Random seed for initialization."} , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case_ = dataset.filter(lambda SCREAMING_SNAKE_CASE__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case_ = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) ) print(SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = dataset.remove_columns(['''label''', '''probability'''] ) snake_case_ = dataset.rename_column('''prediction''' , '''label''' ) snake_case_ = dataset.map(lambda SCREAMING_SNAKE_CASE__ : {"label": idalabel[example["label"]]} ) snake_case_ = dataset.shuffle(seed=args.seed ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) else: dataset.to_json(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): snake_case_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case_ = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ ) snake_case_ = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ , infer_file=SCREAMING_SNAKE_CASE__ ) snake_case_ = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ ) snake_case_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(SCREAMING_SNAKE_CASE__ ).items(): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Sanity checks snake_case_ = {} snake_case_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case_ = args.train_file snake_case_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case_ = args.eval_file for key in data_files: snake_case_ = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: snake_case_ = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) snake_case_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format snake_case_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = None snake_case_ = None snake_case_ = 0 snake_case_ = False # Show the progress bar snake_case_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case_ = data_dir_format(SCREAMING_SNAKE_CASE__ ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-1''' ) snake_case_ = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): arguments_dict.update({key: value} ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-2''' ) # Update arguments_dict snake_case_ = model_path snake_case_ = data_files['''train'''] snake_case_ = current_output_dir snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = iteration snake_case_ = data_dir_format(iteration + 1 ) snake_case_ = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) ) snake_case_ = config.idalabel snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-checkpoint.json''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: snake_case_ = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Loading the dataset from local csv or json files. snake_case_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] snake_case_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case_ = eval_result if best_iteration is None: snake_case_ = new_iteration snake_case_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case_ = new_iteration snake_case_ = new_eval_result snake_case_ = 0 else: if new_eval_result == best_eval_result: snake_case_ = new_iteration snake_case_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE__ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , )
39
1
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / '''model_card_template.md''' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None ): snake_case_ = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if token is None: snake_case_ = HfFolder.get_token() if organization is None: snake_case_ = whoami(SCREAMING_SNAKE_CASE__ )['''name'''] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(SCREAMING_SNAKE_CASE__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , '''hub_token''' ) else None snake_case_ = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) snake_case_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ = os.path.join(args.output_dir , '''README.md''' ) model_card.save(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) snake_case_ = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE__ ) if search is None: return None snake_case_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, '''diffusers''') def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if new_cache_dir is None: snake_case_ = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ = old_diffusers_cache snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ '''the directory exists and can be written to.''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if variant is not None: snake_case_ = weights_name.split('''.''' ) snake_case_ = splits[:-1] + [variant] + splits[-1:] snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ ) return weights_name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ): snake_case_ = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' '''this model name. Check the model page at ''' F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
39
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AltDiffusionPipeline SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__( self : Dict ) ->int: torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) snake_case_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) snake_case_ = CLIPTextModel(_UpperCamelCase ) snake_case_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) snake_case_ = 7_7 snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__( self : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0 ) ->Any: if str(_UpperCamelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCamelCase ) else: snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case__( self : Dict ) ->List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def snake_case__( self : List[str] ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case__( self : Dict ) ->Any: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = '''A photo of an astronaut''' snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : Tuple ) ->Union[str, Any]: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : int ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self : List[str] ) ->Tuple: # make sure here that pndm scheduler skips prk snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='''np''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : List[str] ) ->Optional[Any]: snake_case_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , num_inference_steps=2 , output_type='''numpy''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
1
import cva import numpy as np class snake_case_ : '''simple docstring''' def __init__( self : int , _UpperCamelCase : float , _UpperCamelCase : int ) ->int: if k in (0.04, 0.06): snake_case_ = k snake_case_ = window_size else: raise ValueError('''invalid k value''' ) def __str__( self : Optional[Any] ) ->str: return str(self.k ) def snake_case__( self : Any , _UpperCamelCase : str ) ->tuple[cva.Mat, list[list[int]]]: snake_case_ = cva.imread(_UpperCamelCase , 0 ) snake_case_, snake_case_ = img.shape snake_case_ = [] snake_case_ = img.copy() snake_case_ = cva.cvtColor(_UpperCamelCase , cva.COLOR_GRAY2RGB ) snake_case_, snake_case_ = np.gradient(_UpperCamelCase ) snake_case_ = dx**2 snake_case_ = dy**2 snake_case_ = dx * dy snake_case_ = 0.04 snake_case_ = self.window_size // 2 for y in range(_UpperCamelCase , h - offset ): for x in range(_UpperCamelCase , w - offset ): snake_case_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() snake_case_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() snake_case_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() snake_case_ = (wxx * wyy) - (wxy**2) snake_case_ = wxx + wyy snake_case_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_5_5 ) return color_img, corner_list if __name__ == "__main__": lowerCAmelCase_ = HarrisCorner(0.04, 3) lowerCAmelCase_ , lowerCAmelCase_ = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
39
from math import factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( '''If a class of 40 students must be arranged into groups of''', f"""4 for group projects, there are {combinations(40, 4)} ways""", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f"""are {combinations(10, 3)} ways that first, second and""", '''third place can be awarded.''', )
39
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCAmelCase_ = sys.version_info >= (3, 10) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ): return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : bool @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int = 42 SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : Optional[bool] = None class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = "titi" SCREAMING_SNAKE_CASE : Any = "toto" class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = "titi" SCREAMING_SNAKE_CASE : Optional[Any] = "toto" SCREAMING_SNAKE_CASE : Any = 42 @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : BasicEnum = "toto" def snake_case__( self : Tuple ) ->List[str]: snake_case_ = BasicEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto" def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = MixedTypeEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[float] = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : Optional[str] = None SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] ) SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] ) SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] ) SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = field() SCREAMING_SNAKE_CASE : str = field() SCREAMING_SNAKE_CASE : BasicEnum = field() def snake_case__( self : Optional[Any] ) ->Tuple: snake_case_ = BasicEnum(self.required_enum ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : "BasicEnum" = field() SCREAMING_SNAKE_CASE : "Optional[bool]" = None SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : bool | None = None @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int | None = None SCREAMING_SNAKE_CASE : float | None = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : str | None = None SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] ) SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] ) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Dict , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser ) ->str: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _UpperCamelCase ) and yy.get('''choices''' , _UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_UpperCamelCase ) , yy['''type'''](_UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--bar''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--baz''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--flag''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((snake_case_), ) = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase ) self.assertFalse(example.flag ) def snake_case__( self : Tuple ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) snake_case_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case__( self : Tuple ) ->Union[str, Any]: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto" snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual( _UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def snake_case__( self : Optional[Any] ) ->List[Any]: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--bar''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) snake_case_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[] ) ) snake_case_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def snake_case__( self : Union[str, Any] ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--required_str''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Dict ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } snake_case_ = parser.parse_dict(_UpperCamelCase )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : int ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase ) def snake_case__( self : str ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_json''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_yaml''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Any ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase )
39
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] lowerCAmelCase_ = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Dict , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
39
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__="pt" ): snake_case_ = {'''add_prefix_space''': True} if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not line.startswith(''' ''' ) else {} snake_case_ = padding_side return tokenizer( [line] , max_length=SCREAMING_SNAKE_CASE__ , padding='''max_length''' if pad_to_max_length else None , truncation=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ): snake_case_ = input_ids.ne(SCREAMING_SNAKE_CASE__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : int , _UpperCamelCase : Tuple , _UpperCamelCase : int , _UpperCamelCase : Tuple="train" , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : List[str]=None , _UpperCamelCase : int="" , ) ->Tuple: super().__init__() snake_case_ = Path(_UpperCamelCase ).joinpath(type_path + '''.source''' ) snake_case_ = Path(_UpperCamelCase ).joinpath(type_path + '''.target''' ) snake_case_ = self.get_char_lens(self.src_file ) snake_case_ = max_source_length snake_case_ = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' snake_case_ = tokenizer snake_case_ = prefix if n_obs is not None: snake_case_ = self.src_lens[:n_obs] snake_case_ = src_lang snake_case_ = tgt_lang def __len__( self : List[str] ) ->Dict: return len(self.src_lens ) def __getitem__( self : Tuple , _UpperCamelCase : Tuple ) ->Dict[str, torch.Tensor]: snake_case_ = index + 1 # linecache starts at 1 snake_case_ = self.prefix + linecache.getline(str(self.src_file ) , _UpperCamelCase ).rstrip('''\n''' ) snake_case_ = linecache.getline(str(self.tgt_file ) , _UpperCamelCase ).rstrip('''\n''' ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , _UpperCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right snake_case_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer ) snake_case_ = self.tokenizer.generator if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer snake_case_ = encode_line(_UpperCamelCase , _UpperCamelCase , self.max_source_length , '''right''' ) snake_case_ = encode_line(_UpperCamelCase , _UpperCamelCase , self.max_target_length , '''right''' ) snake_case_ = source_inputs['''input_ids'''].squeeze() snake_case_ = target_inputs['''input_ids'''].squeeze() snake_case_ = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case__( _UpperCamelCase : Tuple ) ->Any: return [len(_UpperCamelCase ) for x in Path(_UpperCamelCase ).open().readlines()] def snake_case__( self : Tuple , _UpperCamelCase : Optional[Any] ) ->Dict[str, torch.Tensor]: snake_case_ = torch.stack([x['''input_ids'''] for x in batch] ) snake_case_ = torch.stack([x['''attention_mask'''] for x in batch] ) snake_case_ = torch.stack([x['''decoder_input_ids'''] for x in batch] ) snake_case_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer.pad_token_id ) snake_case_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer.pad_token_id ) snake_case_ = trim_batch(_UpperCamelCase , _UpperCamelCase ) snake_case_, snake_case_ = trim_batch(_UpperCamelCase , _UpperCamelCase , attention_mask=_UpperCamelCase ) snake_case_ = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch lowerCAmelCase_ = getLogger(__name__) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return list(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE__ ) ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = get_git_info() save_json(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , '''git_log.json''' ) ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=4 , **SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (): snake_case_ = git.Repo(search_parent_directories=SCREAMING_SNAKE_CASE__ ) snake_case_ = { '''repo_id''': str(SCREAMING_SNAKE_CASE__ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return list(map(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ , '''wb''' ) as f: return pickle.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): def remove_articles(SCREAMING_SNAKE_CASE__ ): return re.sub(R'''\b(a|an|the)\b''' , ''' ''' , SCREAMING_SNAKE_CASE__ ) def white_space_fix(SCREAMING_SNAKE_CASE__ ): return " ".join(text.split() ) def remove_punc(SCREAMING_SNAKE_CASE__ ): snake_case_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(SCREAMING_SNAKE_CASE__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE__ ) ) ) ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = normalize_answer(SCREAMING_SNAKE_CASE__ ).split() snake_case_ = normalize_answer(SCREAMING_SNAKE_CASE__ ).split() snake_case_ = Counter(SCREAMING_SNAKE_CASE__ ) & Counter(SCREAMING_SNAKE_CASE__ ) snake_case_ = sum(common.values() ) if num_same == 0: return 0 snake_case_ = 1.0 * num_same / len(SCREAMING_SNAKE_CASE__ ) snake_case_ = 1.0 * num_same / len(SCREAMING_SNAKE_CASE__ ) snake_case_ = (2 * precision * recall) / (precision + recall) return fa def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return normalize_answer(SCREAMING_SNAKE_CASE__ ) == normalize_answer(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) snake_case_ = 0 for hypo, pred in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): em += exact_match_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: em /= len(SCREAMING_SNAKE_CASE__ ) return {"em": em} def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return model_prefix.startswith('''rag''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead snake_case_ = '''dropout_rate''' for p in extra_params: if getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not hasattr(SCREAMING_SNAKE_CASE__ , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(SCREAMING_SNAKE_CASE__ ) ) delattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue snake_case_ = p if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else equivalent_param[p] setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) delattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return hparams, config
39
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv" SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]: snake_case_ = vocab_size snake_case_ = context_length snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case_ = layer_norm_epsilon snake_case_ = rescale_every snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
39
1
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCAmelCase_ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} lowerCAmelCase_ = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", '''emoji''': True, }, } ] lowerCAmelCase_ = 0 for log in Path().glob('''*.log'''): lowerCAmelCase_ = 0 with open(log, '''r''') as f: for line in f: lowerCAmelCase_ = json.loads(line) if line.get('''nodeid''', '''''') != "": lowerCAmelCase_ = line['''nodeid'''] if line.get('''duration''', None) is not None: lowerCAmelCase_ = f"""{line["duration"]:.4f}""" if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCAmelCase_ = [] log.unlink() lowerCAmelCase_ = '''''' lowerCAmelCase_ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" lowerCAmelCase_ = [] lowerCAmelCase_ = {} for test in failed_tests: lowerCAmelCase_ = test[0].split('''::''') lowerCAmelCase_ = data[0].split('''/''')[-1] if data[0] not in filesafailed: lowerCAmelCase_ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCAmelCase_ = [test[0] for test in failed_table] lowerCAmelCase_ = list(set(files)) # Count number of instances in failed_tests lowerCAmelCase_ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCAmelCase_ = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: lowerCAmelCase_ = '''Too many failed tests, please see the full report in the Action results.''' lowerCAmelCase_ = len(err) + 10 lowerCAmelCase_ = message[: 30_00 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: lowerCAmelCase_ = '''No failed tests! 🤗''' print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient lowerCAmelCase_ = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": lowerCAmelCase_ = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) lowerCAmelCase_ = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) lowerCAmelCase_ = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) lowerCAmelCase_ = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) lowerCAmelCase_ = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCAmelCase_ = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: lowerCAmelCase_ = row[0] else: lowerCAmelCase_ = '''''' lowerCAmelCase_ = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
39
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) class snake_case_ : '''simple docstring''' def __init__( self : int , _UpperCamelCase : Optional[str] = None ) ->Tuple: snake_case_ = ( os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) snake_case_ = Extractor def snake_case__( self : Any , _UpperCamelCase : str ) ->str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" snake_case_ = os.path.abspath(_UpperCamelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) ) def snake_case__( self : int , _UpperCamelCase : str , _UpperCamelCase : bool ) ->bool: return force_extract or ( not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase )) ) def snake_case__( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : bool = False ) ->str: snake_case_ = self.extractor.infer_extractor_format(_UpperCamelCase ) if not extractor_format: return input_path snake_case_ = self._get_output_path(_UpperCamelCase ) if self._do_extract(_UpperCamelCase , _UpperCamelCase ): self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return output_path class snake_case_ ( __A ): '''simple docstring''' @classmethod @abstractmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : str ) ->bool: ... @staticmethod @abstractmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: ... class snake_case_ ( __A , __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[bytes] = [] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->List[Any]: with open(_UpperCamelCase , '''rb''' ) as f: return f.read(_UpperCamelCase ) @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if not magic_number: snake_case_ = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) try: snake_case_ = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase ) except OSError: return False return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) class snake_case_ ( __A ): '''simple docstring''' @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : Any ) ->bool: return tarfile.is_tarfile(_UpperCamelCase ) @staticmethod def snake_case__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) ->List[str]: def resolved(_UpperCamelCase : str ) -> str: return os.path.realpath(os.path.abspath(_UpperCamelCase ) ) def badpath(_UpperCamelCase : str , _UpperCamelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase ) def badlink(_UpperCamelCase : Tuple , _UpperCamelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link snake_case_ = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCamelCase ) snake_case_ = resolved(_UpperCamelCase ) for finfo in members: if badpath(finfo.name , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = tarfile.open(_UpperCamelCase ) tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) ) tar_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [b"\x1F\x8B"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with gzip.open(_UpperCamelCase , '''rb''' ) as gzip_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def snake_case__( cls : List[str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCamelCase , '''rb''' ) as fp: snake_case_ = _EndRecData(_UpperCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: snake_case_ = fp.read(_UpperCamelCase ) # CD is where we expect it to be if len(_UpperCamelCase ) == sizeCentralDir: snake_case_ = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with zipfile.ZipFile(_UpperCamelCase , '''r''' ) as zip_file: zip_file.extractall(_UpperCamelCase ) zip_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with lzma.open(_UpperCamelCase ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = rarfile.RarFile(_UpperCamelCase ) rf.extractall(_UpperCamelCase ) rf.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [b"\x28\xb5\x2F\xFD"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd snake_case_ = zstd.ZstdDecompressor() with open(_UpperCamelCase , '''rb''' ) as ifh, open(_UpperCamelCase , '''wb''' ) as ofh: dctx.copy_stream(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"\x42\x5A\x68"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with bza.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with pyazr.SevenZipFile(_UpperCamelCase , '''r''' ) as archive: archive.extractall(_UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x04\x22\x4D\x18"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def snake_case__( cls : List[Any] ) ->List[str]: return max( len(_UpperCamelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCamelCase , _UpperCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->Tuple: try: return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase ) except OSError: return b"" @classmethod def snake_case__( cls : Optional[Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bool = False ) ->bool: warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = cls.infer_extractor_format(_UpperCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def snake_case__( cls : int , _UpperCamelCase : Union[Path, str] ) ->str: # <Added version="2.4.0"/> snake_case_ = cls._get_magic_number_max_length() snake_case_ = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return extractor_format @classmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[BaseExtractor] = "deprecated" , ) ->None: os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase ) # Prevent parallel extractions snake_case_ = str(Path(_UpperCamelCase ).with_suffix('''.lock''' ) ) with FileLock(_UpperCamelCase ): shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = extractor if extractor != '''deprecated''' else extractor_format else: snake_case_ = cls.extractors[extractor_format] return extractor.extract(_UpperCamelCase , _UpperCamelCase ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=_UpperCamelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCamelCase ): return extractor.extract(_UpperCamelCase , _UpperCamelCase )
39
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
39
1
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [[] for _ in range(SCREAMING_SNAKE_CASE__ )] snake_case_ = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(SCREAMING_SNAKE_CASE__ ) <= key: return input_string for position, character in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case_ = position % (lowest * 2) # puts it in bounds snake_case_ = min(SCREAMING_SNAKE_CASE__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(SCREAMING_SNAKE_CASE__ ) snake_case_ = [''''''.join(SCREAMING_SNAKE_CASE__ ) for row in temp_grid] snake_case_ = ''''''.join(SCREAMING_SNAKE_CASE__ ) return output_string def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [] snake_case_ = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string snake_case_ = [[] for _ in range(SCREAMING_SNAKE_CASE__ )] # generates template for position in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = position % (lowest * 2) # puts it in bounds snake_case_ = min(SCREAMING_SNAKE_CASE__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) snake_case_ = 0 for row in temp_grid: # fills in the characters snake_case_ = input_string[counter : counter + len(SCREAMING_SNAKE_CASE__ )] grid.append(list(SCREAMING_SNAKE_CASE__ ) ) counter += len(SCREAMING_SNAKE_CASE__ ) snake_case_ = '''''' # reads as zigzag for position in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = position % (lowest * 2) # puts it in bounds snake_case_ = min(SCREAMING_SNAKE_CASE__ , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} for key_guess in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # tries every key snake_case_ = decrypt(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return results if __name__ == "__main__": import doctest doctest.testmod()
39
import re from filelock import FileLock try: import nltk lowerCAmelCase_ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): re.sub('''<n>''' , '''''' , SCREAMING_SNAKE_CASE__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE__ ) )
39
1
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class snake_case_ ( __A , __A , __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [R"h\.\d+\.attn\.bias", R"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : str , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : int = 5_0_2_5_7 , _UpperCamelCase : int = 1_0_2_4 , _UpperCamelCase : int = 7_6_8 , _UpperCamelCase : int = 1_2 , _UpperCamelCase : int = 1_2 , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "gelu_new" , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 1e-5 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : bool = True , _UpperCamelCase : bool = True , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , ) ->Tuple: super().__init__() snake_case_ = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) snake_case_ = prefix_inner_dim snake_case_ = prefix_hidden_dim snake_case_ = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case_ = ( nn.Linear(self.prefix_hidden_dim , _UpperCamelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case_ = GPTaConfig( vocab_size=_UpperCamelCase , n_positions=_UpperCamelCase , n_embd=_UpperCamelCase , n_layer=_UpperCamelCase , n_head=_UpperCamelCase , n_inner=_UpperCamelCase , activation_function=_UpperCamelCase , resid_pdrop=_UpperCamelCase , embd_pdrop=_UpperCamelCase , attn_pdrop=_UpperCamelCase , layer_norm_epsilon=_UpperCamelCase , initializer_range=_UpperCamelCase , scale_attn_weights=_UpperCamelCase , use_cache=_UpperCamelCase , scale_attn_by_inverse_layer_idx=_UpperCamelCase , reorder_and_upcast_attn=_UpperCamelCase , ) snake_case_ = GPTaLMHeadModel(_UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : torch.Tensor , _UpperCamelCase : torch.Tensor , _UpperCamelCase : Optional[torch.Tensor] = None , _UpperCamelCase : Optional[torch.Tensor] = None , ) ->Any: snake_case_ = self.transformer.transformer.wte(_UpperCamelCase ) snake_case_ = self.encode_prefix(_UpperCamelCase ) snake_case_ = self.decode_prefix(_UpperCamelCase ) snake_case_ = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: snake_case_ = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) snake_case_ = torch.cat((dummy_token, input_ids) , dim=1 ) snake_case_ = self.transformer(inputs_embeds=_UpperCamelCase , labels=_UpperCamelCase , attention_mask=_UpperCamelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def snake_case__( self : Any , _UpperCamelCase : int , _UpperCamelCase : torch.device ) ->torch.Tensor: return torch.zeros(_UpperCamelCase , self.prefix_length , dtype=torch.intaa , device=_UpperCamelCase ) def snake_case__( self : int , _UpperCamelCase : List[str] ) ->List[Any]: return self.encode_prefix(_UpperCamelCase ) @torch.no_grad() def snake_case__( self : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Tuple , _UpperCamelCase : str ) ->Tuple: snake_case_ = torch.split(_UpperCamelCase , 1 , dim=0 ) snake_case_ = [] snake_case_ = [] for feature in features: snake_case_ = self.decode_prefix(feature.to(_UpperCamelCase ) ) # back to the clip feature # Only support beam search for now snake_case_, snake_case_ = self.generate_beam( input_embeds=_UpperCamelCase , device=_UpperCamelCase , eos_token_id=_UpperCamelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) snake_case_ = torch.stack(_UpperCamelCase ) snake_case_ = torch.stack(_UpperCamelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def snake_case__( self : Any , _UpperCamelCase : List[Any]=None , _UpperCamelCase : int=None , _UpperCamelCase : List[str]=None , _UpperCamelCase : int = 5 , _UpperCamelCase : int = 6_7 , _UpperCamelCase : float = 1.0 , _UpperCamelCase : Optional[int] = None , ) ->List[str]: snake_case_ = eos_token_id snake_case_ = None snake_case_ = None snake_case_ = torch.ones(_UpperCamelCase , device=_UpperCamelCase , dtype=torch.int ) snake_case_ = torch.zeros(_UpperCamelCase , device=_UpperCamelCase , dtype=torch.bool ) if input_embeds is not None: snake_case_ = input_embeds else: snake_case_ = self.transformer.transformer.wte(_UpperCamelCase ) for i in range(_UpperCamelCase ): snake_case_ = self.transformer(inputs_embeds=_UpperCamelCase ) snake_case_ = outputs.logits snake_case_ = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) snake_case_ = logits.softmax(-1 ).log() if scores is None: snake_case_, snake_case_ = logits.topk(_UpperCamelCase , -1 ) snake_case_ = generated.expand(_UpperCamelCase , *generated.shape[1:] ) snake_case_, snake_case_ = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: snake_case_ = next_tokens else: snake_case_ = tokens.expand(_UpperCamelCase , *tokens.shape[1:] ) snake_case_ = torch.cat((tokens, next_tokens) , dim=1 ) else: snake_case_ = -float(np.inf ) snake_case_ = 0 snake_case_ = scores[:, None] + logits seq_lengths[~is_stopped] += 1 snake_case_ = scores_sum / seq_lengths[:, None] snake_case_, snake_case_ = scores_sum_average.view(-1 ).topk(_UpperCamelCase , -1 ) snake_case_ = next_tokens // scores_sum.shape[1] snake_case_ = seq_lengths[next_tokens_source] snake_case_ = next_tokens % scores_sum.shape[1] snake_case_ = next_tokens.unsqueeze(1 ) snake_case_ = tokens[next_tokens_source] snake_case_ = torch.cat((tokens, next_tokens) , dim=1 ) snake_case_ = generated[next_tokens_source] snake_case_ = scores_sum_average * seq_lengths snake_case_ = is_stopped[next_tokens_source] snake_case_ = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) snake_case_ = torch.cat((generated, next_token_embed) , dim=1 ) snake_case_ = is_stopped + next_tokens.eq(_UpperCamelCase ).squeeze() if is_stopped.all(): break snake_case_ = scores / seq_lengths snake_case_ = scores.argsort(descending=_UpperCamelCase ) # tokens tensors are already padded to max_seq_length snake_case_ = [tokens[i] for i in order] snake_case_ = torch.stack(_UpperCamelCase , dim=0 ) snake_case_ = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
39
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [0 for i in range(r + 1 )] # nc0 = 1 snake_case_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case_ = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
39
1
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class snake_case_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : int , ) ->Tuple: snake_case_ = parent snake_case_ = 1_3 snake_case_ = 7 snake_case_ = True snake_case_ = True snake_case_ = False snake_case_ = True snake_case_ = 9_9 snake_case_ = 3_2 snake_case_ = 2 snake_case_ = 4 snake_case_ = 3_7 snake_case_ = '''gelu''' snake_case_ = 0.1 snake_case_ = 0.1 snake_case_ = 5_1_2 snake_case_ = 1_6 snake_case_ = 2 snake_case_ = 0.02 snake_case_ = 3 snake_case_ = 4 snake_case_ = None def snake_case__( self : Optional[Any] ) ->Any: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Any ) ->List[str]: snake_case_ = TFDistilBertModel(config=_UpperCamelCase ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} snake_case_ = model(_UpperCamelCase ) snake_case_ = [input_ids, input_mask] snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str ) ->str: snake_case_ = TFDistilBertForMaskedLM(config=_UpperCamelCase ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple ) ->Optional[int]: snake_case_ = TFDistilBertForQuestionAnswering(config=_UpperCamelCase ) snake_case_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__( self : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple ) ->str: snake_case_ = self.num_labels snake_case_ = TFDistilBertForSequenceClassification(_UpperCamelCase ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] ) ->Optional[Any]: snake_case_ = self.num_choices snake_case_ = TFDistilBertForMultipleChoice(_UpperCamelCase ) snake_case_ = tf.tile(tf.expand_dims(_UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case_ = tf.tile(tf.expand_dims(_UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case_ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__( self : Tuple , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) ->Optional[Any]: snake_case_ = self.num_labels snake_case_ = TFDistilBertForTokenClassification(_UpperCamelCase ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__( self : Union[str, Any] ) ->int: snake_case_ = self.prepare_config_and_inputs() ((snake_case_), (snake_case_), (snake_case_), (snake_case_), (snake_case_), (snake_case_)) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class snake_case_ ( __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) SCREAMING_SNAKE_CASE : List[Any] = ( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Optional[Any] = False def snake_case__( self : Optional[int] ) ->Dict: snake_case_ = TFDistilBertModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , dim=3_7 ) def snake_case__( self : str ) ->Union[str, Any]: self.config_tester.run_common_tests() def snake_case__( self : Tuple ) ->Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_UpperCamelCase ) def snake_case__( self : str ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->Optional[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->List[str]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_UpperCamelCase ) @slow def snake_case__( self : List[str] ) ->Union[str, Any]: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): snake_case_ = TFDistilBertModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__( self : Dict ) ->Optional[int]: snake_case_ = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) snake_case_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case_ = model(_UpperCamelCase )[0] snake_case_ = [1, 6, 7_6_8] self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 )
39
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCAmelCase_ = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 13_10_72, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return torch.atana(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / math.pi * 2 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.sin(t * math.pi / 2 ) ** 2 snake_case_ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class snake_case_ ( __A ): '''simple docstring''' pass class snake_case_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : int ) ->Optional[int]: super().__init__() snake_case_ = DiffusionAttnUnetaD(_UpperCamelCase , n_attn_layers=4 ) snake_case_ = deepcopy(self.diffusion ) snake_case_ = torch.quasirandom.SobolEngine(1 , scramble=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = MODELS_MAP[model_name]['''url'''] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCAmelCase_ = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCAmelCase_ = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCAmelCase_ = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCAmelCase_ = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif name.startswith(SCREAMING_SNAKE_CASE__ ): return [name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 ): snake_case_ = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) snake_case_ = 0 if string.startswith('''net.3.''' ): depth += 1 snake_case_ = string[6:] elif string.startswith('''net.''' ): snake_case_ = string[4:] while string.startswith('''main.7.''' ): depth += 1 snake_case_ = string[7:] if string.startswith('''main.''' ): snake_case_ = string[5:] # mid block if string[:2].isdigit(): snake_case_ = string[:2] snake_case_ = string[2:] else: snake_case_ = string[0] snake_case_ = string[1:] if depth == max_depth: snake_case_ = MID_NUM_TO_LAYER[layer_num] snake_case_ = '''mid_block''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) < 7: snake_case_ = DOWN_NUM_TO_LAYER[layer_num] snake_case_ = F'''down_blocks.{depth}''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) > 7: snake_case_ = UP_NUM_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: snake_case_ = DEPTH_0_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - 1}''' if int(SCREAMING_SNAKE_CASE__ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) snake_case_ = string_left[1:] if "resnets" in new_layer: snake_case_ = convert_resconv_naming(SCREAMING_SNAKE_CASE__ ) elif "attentions" in new_layer: snake_case_ = convert_attn_naming(SCREAMING_SNAKE_CASE__ ) snake_case_ = new_string_left if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = prefix + '''.''' + new_layer + '''.''' + string_left else: snake_case_ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue snake_case_ = rename(SCREAMING_SNAKE_CASE__ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = transform_conv_attns(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ = v return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) == 1: if len(v.shape ) == 3: # weight snake_case_ = v[:, :, 0] else: # bias snake_case_ = v else: # qkv matrices snake_case_ = v.shape[0] snake_case_ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: snake_case_ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: snake_case_ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) snake_case_ = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' snake_case_ = download(SCREAMING_SNAKE_CASE__ ) snake_case_ = MODELS_MAP[model_name]['''sample_rate'''] snake_case_ = MODELS_MAP[model_name]['''sample_size'''] snake_case_ = Object() snake_case_ = sample_size snake_case_ = sample_rate snake_case_ = 0 snake_case_ = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE__ , sample_rate=SCREAMING_SNAKE_CASE__ ) snake_case_ = diffusers_model.state_dict() snake_case_ = DiffusionUncond(SCREAMING_SNAKE_CASE__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE__ )['''state_dict'''] ) snake_case_ = orig_model.diffusion_ema.eval() snake_case_ = orig_model.state_dict() snake_case_ = rename_orig_weights(SCREAMING_SNAKE_CASE__ ) snake_case_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) snake_case_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE__ ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith('''kernel''' ) for k in list(SCREAMING_SNAKE_CASE__ ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": snake_case_ = value.squeeze() snake_case_ = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = 100 snake_case_ = 33 snake_case_ = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE__ )[:-1] snake_case_ = get_crash_schedule(SCREAMING_SNAKE_CASE__ ) snake_case_ = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(33 ) snake_case_ = pipe(num_inference_steps=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).audios snake_case_ = sampling.iplms_sample(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {} ) snake_case_ = generated.clamp(-1 , 1 ) snake_case_ = (generated - audio).abs().sum() snake_case_ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , SCREAMING_SNAKE_CASE__ ) print('''Diff max''' , SCREAMING_SNAKE_CASE__ ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCAmelCase_ = parser.parse_args() main(args)
39
1
import random from typing import Any def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = random.randint(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ) snake_case_ = random.randint(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ) snake_case_, snake_case_ = data[b], data[a] return data if __name__ == "__main__": lowerCAmelCase_ = [0, 1, 2, 3, 4, 5, 6, 7] lowerCAmelCase_ = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
39
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
1
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class snake_case_ : '''simple docstring''' def __init__( self : str , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any]=9_9 , _UpperCamelCase : Tuple=1_3 , _UpperCamelCase : str=7 , _UpperCamelCase : int=9 , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Optional[Any]=True , _UpperCamelCase : List[Any]=False , _UpperCamelCase : int=3_2 , _UpperCamelCase : List[Any]=5 , _UpperCamelCase : str=4 , _UpperCamelCase : str=3_7 , _UpperCamelCase : Optional[Any]=8 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Dict=0.002 , _UpperCamelCase : Tuple=1 , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , ) ->Union[str, Any]: snake_case_ = parent snake_case_ = batch_size snake_case_ = encoder_seq_length snake_case_ = decoder_seq_length # For common tests snake_case_ = self.decoder_seq_length snake_case_ = is_training snake_case_ = use_attention_mask snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = d_ff snake_case_ = relative_attention_num_buckets snake_case_ = dropout_rate snake_case_ = initializer_factor snake_case_ = eos_token_id snake_case_ = pad_token_id snake_case_ = decoder_start_token_id snake_case_ = None snake_case_ = decoder_layers def snake_case__( self : Tuple ) ->int: return TaConfig.from_pretrained('''google/umt5-base''' ) def snake_case__( self : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any , _UpperCamelCase : int=None , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[str]=None , _UpperCamelCase : Optional[Any]=None , ) ->Optional[Any]: if attention_mask is None: snake_case_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case_ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_UpperCamelCase ) if decoder_head_mask is None: snake_case_ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_UpperCamelCase ) if cross_attn_head_mask is None: snake_case_ = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_UpperCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def snake_case__( self : Optional[Any] ) ->Optional[int]: snake_case_ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) snake_case_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case_ = input_ids.clamp(self.pad_token_id + 1 ) snake_case_ = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case_ = self.get_config() snake_case_ = config.num_attention_heads snake_case_ = self.prepare_inputs_dict(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return config, input_dict def snake_case__( self : str ) ->Optional[int]: snake_case_, snake_case_ = self.prepare_config_and_inputs() return config, inputs_dict def snake_case__( self : Optional[int] ) ->int: return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def snake_case__( self : Union[str, Any] ) ->Any: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def snake_case__( self : str , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , ) ->Union[str, Any]: snake_case_ = UMTaModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model( input_ids=_UpperCamelCase , decoder_input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , decoder_attention_mask=_UpperCamelCase , ) snake_case_ = model(input_ids=_UpperCamelCase , decoder_input_ids=_UpperCamelCase ) snake_case_ = result.last_hidden_state snake_case_ = result.past_key_values snake_case_ = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_UpperCamelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def snake_case__( self : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : Any , ) ->str: snake_case_ = UMTaModel(config=_UpperCamelCase ).get_decoder().to(_UpperCamelCase ).eval() # first forward pass snake_case_ = model(_UpperCamelCase , use_cache=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase ) snake_case_ = model(_UpperCamelCase , use_cache=_UpperCamelCase ) self.parent.assertTrue(len(_UpperCamelCase ) == len(_UpperCamelCase ) ) self.parent.assertTrue(len(_UpperCamelCase ) == len(_UpperCamelCase ) + 1 ) snake_case_, snake_case_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = model(_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , past_key_values=_UpperCamelCase )['''last_hidden_state'''] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] , ) ->Dict: snake_case_ = UMTaModel(config=_UpperCamelCase ).to(_UpperCamelCase ).half().eval() snake_case_ = model(**_UpperCamelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(_UpperCamelCase ).any().item() ) @require_torch class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : int = (UMTaForConditionalGeneration,) if is_torch_available() else () SCREAMING_SNAKE_CASE : List[Any] = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Optional[Any] = True # The small UMT5 model needs higher percentages for CPU/MP tests SCREAMING_SNAKE_CASE : Optional[Any] = [0.8, 0.9] def snake_case__( self : Union[str, Any] ) ->List[str]: snake_case_ = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def snake_case__( self : Dict ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() snake_case_ = UMTaModel(config_and_inputs[0] ).to(_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _UpperCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=_UpperCamelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def snake_case__( self : Tuple ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_UpperCamelCase ) def snake_case__( self : int ) ->str: snake_case_ = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] snake_case_ = self.model_tester.prepare_config_and_inputs() snake_case_ = config_and_inputs[0] snake_case_ = UMTaForConditionalGeneration(_UpperCamelCase ).eval() model.to(_UpperCamelCase ) snake_case_ = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=_UpperCamelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=_UpperCamelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=_UpperCamelCase ), } for attn_name, (name, mask) in zip(_UpperCamelCase , head_masking.items() ): snake_case_ = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": snake_case_ = torch.ones( config.num_decoder_layers , config.num_heads , device=_UpperCamelCase ) snake_case_ = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , **_UpperCamelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step snake_case_ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def snake_case__( self : List[str] ) ->Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def snake_case__( self : List[str] ) ->Optional[int]: snake_case_ = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=_UpperCamelCase ).to(_UpperCamelCase ) snake_case_ = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=_UpperCamelCase , legacy=_UpperCamelCase ) snake_case_ = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase ).input_ids # fmt: off snake_case_ = torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ] ) # fmt: on torch.testing.assert_allclose(_UpperCamelCase , _UpperCamelCase ) snake_case_ = model.generate(input_ids.to(_UpperCamelCase ) ) snake_case_ = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] snake_case_ = tokenizer.batch_decode(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase )
39
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->Any: snake_case_ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case_ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case_ = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case_ = output[output != -float('''inf''' )] snake_case_ = tf.cast( tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-12 ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @require_tf class snake_case_ ( unittest.TestCase , __A ): '''simple docstring''' if is_tf_available(): SCREAMING_SNAKE_CASE : Optional[int] = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def snake_case__( self : List[Any] ) ->Optional[int]: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 2 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->List[Any]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) ->List[Any]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2, 0], [1_0_2, 1_0_3]] snake_case_ = [[1, 0], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for batch_size in range(1 , len(_UpperCamelCase ) + 1 ): snake_case_ = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow def snake_case__( self : List[str] ) ->int: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 1 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : Any ) ->List[str]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) ->Optional[int]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2], [1_0_2, 1_0_3]] snake_case_ = [[1], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for input_row in range(len(_UpperCamelCase ) ): snake_case_ = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow @require_tensorflow_text def snake_case__( self : Optional[Any] ) ->List[Any]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_UpperCamelCase ) class snake_case_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ) ->List[Any]: super().__init__() snake_case_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , '''spiece.model''' ) , '''rb''' ).read() ) snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->List[Any]: snake_case_ = self.tokenizer.tokenize(_UpperCamelCase ) snake_case_, snake_case_ = text.pad_model_inputs( _UpperCamelCase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) snake_case_ = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) return self.tokenizer.detokenize(_UpperCamelCase ) snake_case_ = CompleteSentenceTransformer() snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) snake_case_ = complete_model(_UpperCamelCase ) snake_case_ = tf.keras.Model(_UpperCamelCase , _UpperCamelCase ) keras_model.save(_UpperCamelCase ) def snake_case__( self : Any ) ->List[Any]: # Has PT equivalent: this test relies on random sampling snake_case_ = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 1_0, '''temperature''': 0.7, } snake_case_ = 1_4 snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = '''Hello, my dog is cute and''' snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''tf''' ) snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case_ = [6_3_8, 1_9_8] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def snake_case__( self : str ) ->Dict: # Has PT equivalent: ample use of framework-specific code snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = '''Hugging Face is a technology company based in New York and Paris.''' snake_case_ = bart_tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids snake_case_ = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Optional[int] ) ->List[str]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) ) class snake_case_ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , **_UpperCamelCase : Tuple ) ->Optional[Any]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() with self.assertRaises(_UpperCamelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_UpperCamelCase , foo='''bar''' )
39
1
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = (CMStochasticIterativeScheduler,) SCREAMING_SNAKE_CASE : int = 10 def snake_case__( self : Any , **_UpperCamelCase : str ) ->List[str]: snake_case_ = { '''num_train_timesteps''': 2_0_1, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**_UpperCamelCase ) return config def snake_case__( self : Optional[Any] ) ->List[str]: snake_case_ = 1_0 snake_case_ = self.get_scheduler_config() snake_case_ = self.scheduler_classes[0](**_UpperCamelCase ) scheduler.set_timesteps(_UpperCamelCase ) snake_case_ = scheduler.timesteps[0] snake_case_ = scheduler.timesteps[1] snake_case_ = self.dummy_sample snake_case_ = 0.1 * sample snake_case_ = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample snake_case_ = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case__( self : Optional[Any] ) ->int: for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->List[str]: for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_UpperCamelCase ) def snake_case__( self : int ) ->Optional[int]: snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**_UpperCamelCase ) snake_case_ = 1 scheduler.set_timesteps(_UpperCamelCase ) snake_case_ = scheduler.timesteps snake_case_ = torch.manual_seed(0 ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_UpperCamelCase ): # 1. scale model input snake_case_ = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) # 2. predict noise residual snake_case_ = model(_UpperCamelCase , _UpperCamelCase ) # 3. predict previous sample x_t-1 snake_case_ = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ).prev_sample snake_case_ = pred_prev_sample snake_case_ = torch.sum(torch.abs(_UpperCamelCase ) ) snake_case_ = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def snake_case__( self : List[str] ) ->Optional[int]: snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**_UpperCamelCase ) snake_case_ = [1_0_6, 0] scheduler.set_timesteps(timesteps=_UpperCamelCase ) snake_case_ = scheduler.timesteps snake_case_ = torch.manual_seed(0 ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case_ = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) # 2. predict noise residual snake_case_ = model(_UpperCamelCase , _UpperCamelCase ) # 3. predict previous sample x_t-1 snake_case_ = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ).prev_sample snake_case_ = pred_prev_sample snake_case_ = torch.sum(torch.abs(_UpperCamelCase ) ) snake_case_ = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def snake_case__( self : Dict ) ->Optional[Any]: snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**_UpperCamelCase ) snake_case_ = [3_9, 3_0, 1_2, 1_5, 0] with self.assertRaises(_UpperCamelCase , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_UpperCamelCase ) def snake_case__( self : List[str] ) ->Dict: snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**_UpperCamelCase ) snake_case_ = [3_9, 3_0, 1_2, 1, 0] snake_case_ = len(_UpperCamelCase ) with self.assertRaises(_UpperCamelCase , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_UpperCamelCase , timesteps=_UpperCamelCase ) def snake_case__( self : int ) ->Dict: snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**_UpperCamelCase ) snake_case_ = [scheduler.config.num_train_timesteps] with self.assertRaises( _UpperCamelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_UpperCamelCase )
39
import unittest from transformers import DonutProcessor lowerCAmelCase_ = '''naver-clova-ix/donut-base''' class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = DonutProcessor.from_pretrained(_UpperCamelCase ) def snake_case__( self : Dict ) ->str: snake_case_ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } snake_case_ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) snake_case_ = self.processor.tokenajson(_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , _UpperCamelCase )
39
1
import logging from transformers.configuration_utils import PretrainedConfig lowerCAmelCase_ = logging.getLogger(__name__) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = "masked_bert" def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=3_0_5_2_2 , _UpperCamelCase : str=7_6_8 , _UpperCamelCase : Tuple=1_2 , _UpperCamelCase : List[Any]=1_2 , _UpperCamelCase : Union[str, Any]=3_0_7_2 , _UpperCamelCase : Optional[int]="gelu" , _UpperCamelCase : int=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Optional[int]=5_1_2 , _UpperCamelCase : int=2 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : int=1e-12 , _UpperCamelCase : List[str]=0 , _UpperCamelCase : int="topK" , _UpperCamelCase : Dict="constant" , _UpperCamelCase : Tuple=0.0 , **_UpperCamelCase : Any , ) ->Dict: super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = pruning_method snake_case_ = mask_init snake_case_ = mask_scale
39
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not nums: raise ValueError('''List is empty''' ) return sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
39
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = "dpr" def __init__( self : str , _UpperCamelCase : str=3_0_5_2_2 , _UpperCamelCase : Optional[Any]=7_6_8 , _UpperCamelCase : Any=1_2 , _UpperCamelCase : Optional[Any]=1_2 , _UpperCamelCase : Dict=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Tuple=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Union[str, Any]=5_1_2 , _UpperCamelCase : int=2 , _UpperCamelCase : Union[str, Any]=0.02 , _UpperCamelCase : Union[str, Any]=1e-12 , _UpperCamelCase : List[str]=0 , _UpperCamelCase : int="absolute" , _UpperCamelCase : int = 0 , **_UpperCamelCase : List[Any] , ) ->Union[str, Any]: super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = projection_dim snake_case_ = position_embedding_type
39
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : List[str] ) ->str: snake_case_ = inspect.getfile(accelerate.test_utils ) snake_case_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 snake_case_ = test_metrics @require_cpu def snake_case__( self : str ) ->int: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case__( self : Union[str, Any] ) ->Any: debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case__( self : List[Any] ) ->Tuple: self.test_metrics.main() @require_multi_gpu def snake_case__( self : Any ) ->Union[str, Any]: print(f'''Found {torch.cuda.device_count()} devices.''' ) snake_case_ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
39
1
from __future__ import annotations from collections import deque class snake_case_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCamelCase : list[str] ) ->Optional[int]: snake_case_ = [] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(_UpperCamelCase ) self.set_fail_transitions() def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : str ) ->int | None: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def snake_case__( self : Optional[Any] , _UpperCamelCase : str ) ->None: snake_case_ = 0 for character in keyword: snake_case_ = self.find_next_state(_UpperCamelCase , _UpperCamelCase ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) snake_case_ = len(self.adlist ) - 1 else: snake_case_ = next_state self.adlist[current_state]["output"].append(_UpperCamelCase ) def snake_case__( self : List[Any] ) ->None: snake_case_ = deque() for node in self.adlist[0]["next_states"]: q.append(_UpperCamelCase ) snake_case_ = 0 while q: snake_case_ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_UpperCamelCase ) snake_case_ = self.adlist[r]['''fail_state'''] while ( self.find_next_state(_UpperCamelCase , self.adlist[child]['''value'''] ) is None and state != 0 ): snake_case_ = self.adlist[state]['''fail_state'''] snake_case_ = self.find_next_state( _UpperCamelCase , self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: snake_case_ = 0 snake_case_ = ( self.adlist[child]['''output'''] + self.adlist[self.adlist[child]['''fail_state''']]['''output'''] ) def snake_case__( self : Any , _UpperCamelCase : str ) ->dict[str, list[int]]: snake_case_ = {} # returns a dict with keywords and list of its occurrences snake_case_ = 0 for i in range(len(_UpperCamelCase ) ): while ( self.find_next_state(_UpperCamelCase , string[i] ) is None and current_state != 0 ): snake_case_ = self.adlist[current_state]['''fail_state'''] snake_case_ = self.find_next_state(_UpperCamelCase , string[i] ) if next_state is None: snake_case_ = 0 else: snake_case_ = next_state for key in self.adlist[current_state]["output"]: if key not in result: snake_case_ = [] result[key].append(i - len(_UpperCamelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
39
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = "informer" SCREAMING_SNAKE_CASE : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Dict , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "student_t" , _UpperCamelCase : str = "nll" , _UpperCamelCase : int = 1 , _UpperCamelCase : List[int] = None , _UpperCamelCase : Optional[Union[str, bool]] = "mean" , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : int = 6_4 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.05 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : Dict=True , _UpperCamelCase : str = "prob" , _UpperCamelCase : int = 5 , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Optional[int]: # time series specific configuration snake_case_ = prediction_length snake_case_ = context_length or prediction_length snake_case_ = distribution_output snake_case_ = loss snake_case_ = input_size snake_case_ = num_time_features snake_case_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case_ = scaling snake_case_ = num_dynamic_real_features snake_case_ = num_static_real_features snake_case_ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = cardinality else: snake_case_ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = embedding_dimension else: snake_case_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ = num_parallel_samples # Transformer architecture configuration snake_case_ = input_size * len(self.lags_sequence ) + self._number_of_features snake_case_ = d_model snake_case_ = encoder_attention_heads snake_case_ = decoder_attention_heads snake_case_ = encoder_ffn_dim snake_case_ = decoder_ffn_dim snake_case_ = encoder_layers snake_case_ = decoder_layers snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = activation_function snake_case_ = init_std snake_case_ = use_cache # Informer snake_case_ = attention_type snake_case_ = sampling_factor snake_case_ = distil super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def snake_case__( self : Optional[Any] ) ->int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
39
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) snake_case_ = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
39
import cmath import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) # Convert voltage and current to rectangular form snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
39
1
import numpy as np from PIL import Image def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = np.array(SCREAMING_SNAKE_CASE__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) snake_case_ = 0 snake_case_ = 0 snake_case_ = 0 snake_case_ = 0 # compute the shape of the output matrix snake_case_ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape snake_case_ = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix snake_case_ = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 snake_case_ = 0 snake_case_ = 0 return updated_arr def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = np.array(SCREAMING_SNAKE_CASE__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) snake_case_ = 0 snake_case_ = 0 snake_case_ = 0 snake_case_ = 0 # compute the shape of the output matrix snake_case_ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape snake_case_ = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix snake_case_ = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 snake_case_ = 0 snake_case_ = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image lowerCAmelCase_ = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
39
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=1_3 , _UpperCamelCase : str=7 , _UpperCamelCase : int=True , _UpperCamelCase : Dict=True , _UpperCamelCase : int=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : str=3_2 , _UpperCamelCase : str=5 , _UpperCamelCase : str=4 , _UpperCamelCase : int=3_7 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : str=5_1_2 , _UpperCamelCase : Optional[int]=1_6 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Any=0.02 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : str=None , ) ->Dict: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def snake_case__( self : str ) ->List[Any]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self : List[str] ) ->Tuple: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) ->Dict: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , ) ->Optional[int]: snake_case_ = BioGptForCausalLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , *_UpperCamelCase : List[Any] ) ->Union[str, Any]: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # create attention mask snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) snake_case_ = self.seq_length // 2 snake_case_ = 0 # first forward pass snake_case_, snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids snake_case_ = ids_tensor((1,) , _UpperCamelCase ).item() + 1 snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) snake_case_ = random_other_next_tokens # append to next input_ids and attn_mask snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCamelCase )] , dim=1 , ) # get two different outputs snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , past_key_values=_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , *_UpperCamelCase : List[Any] ) ->int: snake_case_ = BioGptModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval() snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) # first forward pass snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase ) snake_case_, snake_case_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[ '''last_hidden_state''' ] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , *_UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=False ) ->Dict: snake_case_ = BioGptForCausalLM(_UpperCamelCase ) model.to(_UpperCamelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def snake_case__( self : List[Any] , _UpperCamelCase : Optional[int] , *_UpperCamelCase : Dict ) ->Dict: snake_case_ = BioGptModel(_UpperCamelCase ) snake_case_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def snake_case__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , *_UpperCamelCase : List[str] ) ->int: snake_case_ = self.num_labels snake_case_ = BioGptForTokenClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = (BioGptForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Optional[Any] = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Tuple = False def snake_case__( self : List[str] ) ->Union[str, Any]: snake_case_ = BioGptModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : str ) ->int: self.config_tester.run_common_tests() def snake_case__( self : str ) ->Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_UpperCamelCase , gradient_checkpointing=_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCamelCase ) def snake_case__( self : List[Any] ) ->Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCamelCase ) @slow def snake_case__( self : int ) ->Optional[Any]: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = '''left''' # Define PAD Token = EOS Token = 50256 snake_case_ = tokenizer.eos_token snake_case_ = model.config.eos_token_id # use different length sentences to test batching snake_case_ = [ '''Hello, my dog is a little''', '''Today, I''', ] snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase ) snake_case_ = inputs['''input_ids'''].to(_UpperCamelCase ) snake_case_ = model.generate( input_ids=_UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(_UpperCamelCase ) , ) snake_case_ = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase ) snake_case_ = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() snake_case_ = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings ) snake_case_ = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] ) @slow def snake_case__( self : Optional[int] ) ->List[str]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = BioGptModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__( self : str ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = '''multi_label_classification''' snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__( self : int ) ->Any: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) snake_case_ = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) snake_case_ = model(_UpperCamelCase )[0] snake_case_ = 4_2_3_8_4 snake_case_ = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def snake_case__( self : List[str] ) ->Optional[int]: snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_UpperCamelCase ) snake_case_ = model.generate( **_UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=_UpperCamelCase , ) snake_case_ = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(_UpperCamelCase , _UpperCamelCase )
39
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
39
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) snake_case_ = (boundary[1] - boundary[0]) / steps snake_case_ = boundary[0] snake_case_ = boundary[1] snake_case_ = make_points(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = 0.0 y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) for i in x_i: # print(i) y += h * f(SCREAMING_SNAKE_CASE__ ) y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) return y def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = a + h while x < (b - h): yield x snake_case_ = x + h def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # enter your function here snake_case_ = (x - 0) * (x - 0) return y def __SCREAMING_SNAKE_CASE (): snake_case_ = 0.0 # Lower bound of integration snake_case_ = 1.0 # Upper bound of integration snake_case_ = 10.0 # define number of steps or resolution snake_case_ = [a, b] # define boundary of integration snake_case_ = method_a(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
39
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = "sew-d" def __init__( self : Dict , _UpperCamelCase : Union[str, Any]=3_2 , _UpperCamelCase : Dict=7_6_8 , _UpperCamelCase : Optional[Any]=1_2 , _UpperCamelCase : int=1_2 , _UpperCamelCase : Tuple=3_0_7_2 , _UpperCamelCase : Optional[int]=2 , _UpperCamelCase : int=5_1_2 , _UpperCamelCase : Any=2_5_6 , _UpperCamelCase : List[str]=True , _UpperCamelCase : int=True , _UpperCamelCase : Optional[int]=("p2c", "c2p") , _UpperCamelCase : Any="layer_norm" , _UpperCamelCase : str="gelu_python" , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Optional[Any]=0.0 , _UpperCamelCase : int=0.1 , _UpperCamelCase : Dict=0.02 , _UpperCamelCase : List[str]=1e-7 , _UpperCamelCase : Dict=1e-5 , _UpperCamelCase : str="group" , _UpperCamelCase : Optional[Any]="gelu" , _UpperCamelCase : List[str]=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , _UpperCamelCase : str=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _UpperCamelCase : Any=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _UpperCamelCase : Tuple=False , _UpperCamelCase : Optional[Any]=1_2_8 , _UpperCamelCase : List[str]=1_6 , _UpperCamelCase : Any=True , _UpperCamelCase : Union[str, Any]=0.05 , _UpperCamelCase : List[str]=1_0 , _UpperCamelCase : List[Any]=2 , _UpperCamelCase : int=0.0 , _UpperCamelCase : Dict=1_0 , _UpperCamelCase : List[str]=0 , _UpperCamelCase : str="mean" , _UpperCamelCase : Dict=False , _UpperCamelCase : List[str]=False , _UpperCamelCase : Optional[Any]=2_5_6 , _UpperCamelCase : Tuple=0 , _UpperCamelCase : Optional[Any]=1 , _UpperCamelCase : Tuple=2 , **_UpperCamelCase : Any , ) ->Tuple: super().__init__(**_UpperCamelCase , pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = feat_extract_norm snake_case_ = feat_extract_activation snake_case_ = list(_UpperCamelCase ) snake_case_ = list(_UpperCamelCase ) snake_case_ = list(_UpperCamelCase ) snake_case_ = conv_bias snake_case_ = num_conv_pos_embeddings snake_case_ = num_conv_pos_embedding_groups snake_case_ = len(self.conv_dim ) snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = squeeze_factor snake_case_ = max_position_embeddings snake_case_ = position_buckets snake_case_ = share_att_key snake_case_ = relative_attention snake_case_ = norm_rel_ebd snake_case_ = list(_UpperCamelCase ) snake_case_ = hidden_act snake_case_ = num_attention_heads snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = feat_proj_dropout snake_case_ = final_dropout snake_case_ = layer_norm_eps snake_case_ = feature_layer_norm_eps snake_case_ = initializer_range snake_case_ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ = apply_spec_augment snake_case_ = mask_time_prob snake_case_ = mask_time_length snake_case_ = mask_time_min_masks snake_case_ = mask_feature_prob snake_case_ = mask_feature_length snake_case_ = mask_feature_min_masks # ctc loss snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # sequence classification snake_case_ = use_weighted_layer_sum snake_case_ = classifier_proj_size @property def snake_case__( self : Dict ) ->Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
39
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / '''model_card_template.md''' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None ): snake_case_ = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if token is None: snake_case_ = HfFolder.get_token() if organization is None: snake_case_ = whoami(SCREAMING_SNAKE_CASE__ )['''name'''] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(SCREAMING_SNAKE_CASE__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , '''hub_token''' ) else None snake_case_ = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) snake_case_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ = os.path.join(args.output_dir , '''README.md''' ) model_card.save(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) snake_case_ = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE__ ) if search is None: return None snake_case_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, '''diffusers''') def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if new_cache_dir is None: snake_case_ = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ = old_diffusers_cache snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ '''the directory exists and can be written to.''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if variant is not None: snake_case_ = weights_name.split('''.''' ) snake_case_ = splits[:-1] + [variant] + splits[-1:] snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ ) return weights_name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ): snake_case_ = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' '''this model name. Check the model page at ''' F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
39
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase_ = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): snake_case_, snake_case_ = create_model( '''HTSAT-tiny''' , '''roberta''' , SCREAMING_SNAKE_CASE__ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=SCREAMING_SNAKE_CASE__ , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} snake_case_ = R'''.*sequential.(\d+).*''' snake_case_ = R'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case_ = key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # replace sequential layers with list snake_case_ = re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).group(1 ) snake_case_ = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(SCREAMING_SNAKE_CASE__ )//3}.linear.''' ) elif re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = int(re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... snake_case_ = 1 if projecton_layer == 0 else 2 snake_case_ = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value snake_case_ = value snake_case_ = mixed_qkv.size(0 ) // 3 snake_case_ = mixed_qkv[:qkv_dim] snake_case_ = mixed_qkv[qkv_dim : qkv_dim * 2] snake_case_ = mixed_qkv[qkv_dim * 2 :] snake_case_ = query_layer snake_case_ = key_layer snake_case_ = value_layer else: snake_case_ = value return model_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): snake_case_, snake_case_ = init_clap(SCREAMING_SNAKE_CASE__ , enable_fusion=SCREAMING_SNAKE_CASE__ ) clap_model.eval() snake_case_ = clap_model.state_dict() snake_case_ = rename_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = ClapConfig() snake_case_ = enable_fusion snake_case_ = ClapModel(SCREAMING_SNAKE_CASE__ ) # ignore the spectrogram embedding layer model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) transformers_config.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') lowerCAmelCase_ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
39
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt" def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) snake_case_ = backbone_featmap_shape snake_case_ = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: snake_case_ = None snake_case_ = None snake_case_ = [] snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) snake_case_ = readout_type snake_case_ = reassemble_factors snake_case_ = neck_hidden_sizes snake_case_ = fusion_hidden_size snake_case_ = head_in_index snake_case_ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = semantic_loss_ignore_index snake_case_ = semantic_classifier_dropout def snake_case__( self : List[str] ) ->List[Any]: snake_case_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
39
1
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
39
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = '''pytorch_model.bin''' @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "A csv or a json file containing the validation data."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "The name of the task to train on."} , ) SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field( default=__A , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=__A , metadata={"help": "Random seed for initialization."} , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case_ = dataset.filter(lambda SCREAMING_SNAKE_CASE__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case_ = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) ) print(SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = dataset.remove_columns(['''label''', '''probability'''] ) snake_case_ = dataset.rename_column('''prediction''' , '''label''' ) snake_case_ = dataset.map(lambda SCREAMING_SNAKE_CASE__ : {"label": idalabel[example["label"]]} ) snake_case_ = dataset.shuffle(seed=args.seed ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) else: dataset.to_json(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): snake_case_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case_ = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ ) snake_case_ = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ , infer_file=SCREAMING_SNAKE_CASE__ ) snake_case_ = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ ) snake_case_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(SCREAMING_SNAKE_CASE__ ).items(): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Sanity checks snake_case_ = {} snake_case_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case_ = args.train_file snake_case_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case_ = args.eval_file for key in data_files: snake_case_ = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: snake_case_ = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) snake_case_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format snake_case_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = None snake_case_ = None snake_case_ = 0 snake_case_ = False # Show the progress bar snake_case_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case_ = data_dir_format(SCREAMING_SNAKE_CASE__ ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-1''' ) snake_case_ = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): arguments_dict.update({key: value} ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-2''' ) # Update arguments_dict snake_case_ = model_path snake_case_ = data_files['''train'''] snake_case_ = current_output_dir snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = iteration snake_case_ = data_dir_format(iteration + 1 ) snake_case_ = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) ) snake_case_ = config.idalabel snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-checkpoint.json''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: snake_case_ = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Loading the dataset from local csv or json files. snake_case_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] snake_case_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case_ = eval_result if best_iteration is None: snake_case_ = new_iteration snake_case_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case_ = new_iteration snake_case_ = new_eval_result snake_case_ = 0 else: if new_eval_result == best_eval_result: snake_case_ = new_iteration snake_case_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE__ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , )
39
1
from itertools import product def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = sides_number snake_case_ = max_face_number * dice_number snake_case_ = [0] * (max_total + 1) snake_case_ = 1 snake_case_ = range(SCREAMING_SNAKE_CASE__ , max_face_number + 1 ) for dice_numbers in product(SCREAMING_SNAKE_CASE__ , repeat=SCREAMING_SNAKE_CASE__ ): snake_case_ = sum(SCREAMING_SNAKE_CASE__ ) totals_frequencies[total] += 1 return totals_frequencies def __SCREAMING_SNAKE_CASE (): snake_case_ = total_frequency_distribution( sides_number=4 , dice_number=9 ) snake_case_ = total_frequency_distribution( sides_number=6 , dice_number=6 ) snake_case_ = 0 snake_case_ = 9 snake_case_ = 4 * 9 snake_case_ = 6 for peter_total in range(SCREAMING_SNAKE_CASE__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case_ = (4**9) * (6**6) snake_case_ = peter_wins_count / total_games_number snake_case_ = round(SCREAMING_SNAKE_CASE__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
39
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AltDiffusionPipeline SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__( self : Dict ) ->int: torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) snake_case_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) snake_case_ = CLIPTextModel(_UpperCamelCase ) snake_case_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) snake_case_ = 7_7 snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__( self : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0 ) ->Any: if str(_UpperCamelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCamelCase ) else: snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case__( self : Dict ) ->List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def snake_case__( self : List[str] ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case__( self : Dict ) ->Any: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = '''A photo of an astronaut''' snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : Tuple ) ->Union[str, Any]: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : int ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self : List[str] ) ->Tuple: # make sure here that pndm scheduler skips prk snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='''np''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : List[str] ) ->Optional[Any]: snake_case_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , num_inference_steps=2 , output_type='''numpy''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ = { '''roberta-base''': 5_12, '''roberta-large''': 5_12, '''roberta-large-mnli''': 5_12, '''distilroberta-base''': 5_12, '''roberta-base-openai-detector''': 5_12, '''roberta-large-openai-detector''': 5_12, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Union[str, Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE : int = RobertaTokenizer def __init__( self : int , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[str]=None , _UpperCamelCase : List[str]="replace" , _UpperCamelCase : Any="<s>" , _UpperCamelCase : str="</s>" , _UpperCamelCase : Any="</s>" , _UpperCamelCase : List[str]="<s>" , _UpperCamelCase : Any="<unk>" , _UpperCamelCase : Tuple="<pad>" , _UpperCamelCase : Union[str, Any]="<mask>" , _UpperCamelCase : int=False , _UpperCamelCase : Union[str, Any]=True , **_UpperCamelCase : Tuple , ) ->int: super().__init__( _UpperCamelCase , _UpperCamelCase , tokenizer_file=_UpperCamelCase , errors=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _UpperCamelCase ) != add_prefix_space: snake_case_ = getattr(_UpperCamelCase , pre_tok_state.pop('''type''' ) ) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**_UpperCamelCase ) snake_case_ = add_prefix_space snake_case_ = '''post_processor''' snake_case_ = getattr(self.backend_tokenizer , _UpperCamelCase , _UpperCamelCase ) if tokenizer_component_instance: snake_case_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ = tuple(state['''sep'''] ) if "cls" in state: snake_case_ = tuple(state['''cls'''] ) snake_case_ = False if state.get('''add_prefix_space''' , _UpperCamelCase ) != add_prefix_space: snake_case_ = add_prefix_space snake_case_ = True if state.get('''trim_offsets''' , _UpperCamelCase ) != trim_offsets: snake_case_ = trim_offsets snake_case_ = True if changes_to_apply: snake_case_ = getattr(_UpperCamelCase , state.pop('''type''' ) ) snake_case_ = component_class(**_UpperCamelCase ) setattr(self.backend_tokenizer , _UpperCamelCase , _UpperCamelCase ) @property def snake_case__( self : Union[str, Any] ) ->str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def snake_case__( self : List[str] , _UpperCamelCase : List[Any] ) ->Any: snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else value snake_case_ = value def snake_case__( self : Any , *_UpperCamelCase : Union[str, Any] , **_UpperCamelCase : Any ) ->BatchEncoding: snake_case_ = kwargs.get('''is_split_into_words''' , _UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : str , *_UpperCamelCase : List[str] , **_UpperCamelCase : str ) ->BatchEncoding: snake_case_ = kwargs.get('''is_split_into_words''' , _UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: snake_case_ = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase ) def snake_case__( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Tuple=None ) ->Dict: snake_case_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case__( self : Union[str, Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
39
from math import factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( '''If a class of 40 students must be arranged into groups of''', f"""4 for group projects, there are {combinations(40, 4)} ways""", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f"""are {combinations(10, 3)} ways that first, second and""", '''third place can be awarded.''', )
39
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '''▁''' lowerCAmelCase_ = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase_ = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } lowerCAmelCase_ = { '''facebook/mbart-large-50-one-to-many-mmt''': 10_24, } # fmt: off lowerCAmelCase_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Dict = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE : List[int] = [] SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple=None , _UpperCamelCase : str=None , _UpperCamelCase : Any="</s>" , _UpperCamelCase : int="</s>" , _UpperCamelCase : List[Any]="<s>" , _UpperCamelCase : Optional[int]="<unk>" , _UpperCamelCase : Optional[Any]="<pad>" , _UpperCamelCase : Tuple="<mask>" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : List[Any] , ) ->None: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs snake_case_ = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_UpperCamelCase , tgt_lang=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) snake_case_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token snake_case_ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case_ = 1 snake_case_ = len(self.sp_model ) snake_case_ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_UpperCamelCase ) } snake_case_ = {v: k for k, v in self.lang_code_to_id.items()} snake_case_ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} snake_case_ = src_lang if src_lang is not None else '''en_XX''' snake_case_ = self.lang_code_to_id[self._src_lang] snake_case_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def snake_case__( self : Optional[int] ) ->int: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def snake_case__( self : Optional[int] ) ->str: return self._src_lang @src_lang.setter def snake_case__( self : Any , _UpperCamelCase : str ) ->None: snake_case_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[str] ) ->Dict: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : List[Any] , _UpperCamelCase : Dict ) ->None: snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__( self : Any ) ->Dict: snake_case_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case__( self : List[Any] , _UpperCamelCase : str ) ->List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def snake_case__( self : Optional[int] , _UpperCamelCase : str ) ->int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case__( self : List[Any] , _UpperCamelCase : int ) ->str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case__( self : str , _UpperCamelCase : Optional[int] ) ->Any: snake_case_ = [] snake_case_ = '''''' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(_UpperCamelCase ) snake_case_ = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def snake_case__( self : Any , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) snake_case_ = [1] * len(self.prefix_tokens ) snake_case_ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCamelCase )) + ([0] * len(_UpperCamelCase )) + suffix_ones def snake_case__( self : Dict , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case__( self : List[Any] , _UpperCamelCase : Any , _UpperCamelCase : str , _UpperCamelCase : Optional[str] , _UpperCamelCase : Optional[str] , **_UpperCamelCase : Dict ) ->List[str]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) snake_case_ = src_lang snake_case_ = self(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) snake_case_ = self.convert_tokens_to_ids(_UpperCamelCase ) snake_case_ = tgt_lang_id return inputs def snake_case__( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str = "en_XX" , _UpperCamelCase : Optional[List[str]] = None , _UpperCamelCase : str = "ro_RO" , **_UpperCamelCase : int , ) ->BatchEncoding: snake_case_ = src_lang snake_case_ = tgt_lang return super().prepare_seqaseq_batch(_UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : Dict ) ->Optional[Any]: return self.set_src_lang_special_tokens(self.src_lang ) def snake_case__( self : List[str] ) ->str: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case__( self : Optional[Any] , _UpperCamelCase : str ) ->None: snake_case_ = self.lang_code_to_id[src_lang] snake_case_ = [self.cur_lang_code_id] snake_case_ = [self.eos_token_id] def snake_case__( self : List[str] , _UpperCamelCase : str ) ->None: snake_case_ = self.lang_code_to_id[tgt_lang] snake_case_ = [self.cur_lang_code_id] snake_case_ = [self.eos_token_id]
39
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCAmelCase_ = sys.version_info >= (3, 10) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ): return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : bool @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int = 42 SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : Optional[bool] = None class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = "titi" SCREAMING_SNAKE_CASE : Any = "toto" class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = "titi" SCREAMING_SNAKE_CASE : Optional[Any] = "toto" SCREAMING_SNAKE_CASE : Any = 42 @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : BasicEnum = "toto" def snake_case__( self : Tuple ) ->List[str]: snake_case_ = BasicEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto" def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = MixedTypeEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[float] = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : Optional[str] = None SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] ) SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] ) SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] ) SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = field() SCREAMING_SNAKE_CASE : str = field() SCREAMING_SNAKE_CASE : BasicEnum = field() def snake_case__( self : Optional[Any] ) ->Tuple: snake_case_ = BasicEnum(self.required_enum ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : "BasicEnum" = field() SCREAMING_SNAKE_CASE : "Optional[bool]" = None SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : bool | None = None @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int | None = None SCREAMING_SNAKE_CASE : float | None = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : str | None = None SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] ) SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] ) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Dict , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser ) ->str: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _UpperCamelCase ) and yy.get('''choices''' , _UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_UpperCamelCase ) , yy['''type'''](_UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--bar''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--baz''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--flag''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((snake_case_), ) = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase ) self.assertFalse(example.flag ) def snake_case__( self : Tuple ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) snake_case_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case__( self : Tuple ) ->Union[str, Any]: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto" snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual( _UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def snake_case__( self : Optional[Any] ) ->List[Any]: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--bar''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) snake_case_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[] ) ) snake_case_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def snake_case__( self : Union[str, Any] ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--required_str''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Dict ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } snake_case_ = parser.parse_dict(_UpperCamelCase )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : int ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase ) def snake_case__( self : str ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_json''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_yaml''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Any ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase )
39
1
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''sentencepiece.model'''} lowerCAmelCase_ = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, } lowerCAmelCase_ = { '''google/rembert''': 2_56, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Tuple=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple="[CLS]" , _UpperCamelCase : Dict="[SEP]" , _UpperCamelCase : Tuple="[UNK]" , _UpperCamelCase : List[str]="[SEP]" , _UpperCamelCase : Tuple="[PAD]" , _UpperCamelCase : Optional[Any]="[CLS]" , _UpperCamelCase : List[str]="[MASK]" , **_UpperCamelCase : List[Any] , ) ->Tuple: super().__init__( do_lower_case=_UpperCamelCase , remove_space=_UpperCamelCase , keep_accents=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = do_lower_case snake_case_ = remove_space snake_case_ = keep_accents snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor() self.sp_model.Load(_UpperCamelCase ) @property def snake_case__( self : List[Any] ) ->Dict: return len(self.sp_model ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) ->Optional[Any]: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : Any , _UpperCamelCase : List[Any] ) ->Optional[Any]: snake_case_ = d snake_case_ = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def snake_case__( self : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Any=False ) ->List[Any]: snake_case_ = self.sp_model.EncodeAsPieces(_UpperCamelCase ) return pieces def snake_case__( self : str , _UpperCamelCase : Optional[int] ) ->Tuple: return self.sp_model.PieceToId(_UpperCamelCase ) def snake_case__( self : Tuple , _UpperCamelCase : int ) ->List[str]: return self.sp_model.IdToPiece(_UpperCamelCase ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : Dict ) ->Dict: snake_case_ = self.sp_model.decode_pieces(_UpperCamelCase ) return out_string def snake_case__( self : Any , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) ->List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1] def snake_case__( self : List[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_UpperCamelCase ) ) return snake_case_ = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ): copyfile(self.vocab_file , _UpperCamelCase ) return (out_vocab_file,)
39
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Dict , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
39
1
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [0 for i in range(len(SCREAMING_SNAKE_CASE__ ) )] # initialize interval's left pointer and right pointer snake_case_, snake_case_ = 0, 0 for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # case when current index is inside the interval if i <= right_pointer: snake_case_ = min(right_pointer - i + 1 , z_result[i - left_pointer] ) snake_case_ = min_edge while go_next(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: snake_case_, snake_case_ = i, i + z_result[i] - 1 return z_result def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return i + z_result[i] < len(SCREAMING_SNAKE_CASE__ ) and s[z_result[i]] == s[i + z_result[i]] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string snake_case_ = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(SCREAMING_SNAKE_CASE__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
39
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv" SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]: snake_case_ = vocab_size snake_case_ = context_length snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case_ = layer_norm_epsilon snake_case_ = rescale_every snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
39
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE : Any = "BridgeTowerImageProcessor" SCREAMING_SNAKE_CASE : Any = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict ) ->str: super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self : int , _UpperCamelCase : int , _UpperCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCamelCase : bool = True , _UpperCamelCase : Union[bool, str, PaddingStrategy] = False , _UpperCamelCase : Union[bool, str, TruncationStrategy] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[bool] = None , _UpperCamelCase : Optional[bool] = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[str, TensorType]] = None , **_UpperCamelCase : Optional[int] , ) ->BatchEncoding: snake_case_ = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel_values + pixel_mask snake_case_ = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def snake_case__( self : str , *_UpperCamelCase : List[Any] , **_UpperCamelCase : List[str] ) ->List[str]: return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : Optional[int] , *_UpperCamelCase : List[Any] , **_UpperCamelCase : Tuple ) ->List[str]: return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def snake_case__( self : List[str] ) ->Tuple: snake_case_ = self.tokenizer.model_input_names snake_case_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
39
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) class snake_case_ : '''simple docstring''' def __init__( self : int , _UpperCamelCase : Optional[str] = None ) ->Tuple: snake_case_ = ( os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) snake_case_ = Extractor def snake_case__( self : Any , _UpperCamelCase : str ) ->str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" snake_case_ = os.path.abspath(_UpperCamelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) ) def snake_case__( self : int , _UpperCamelCase : str , _UpperCamelCase : bool ) ->bool: return force_extract or ( not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase )) ) def snake_case__( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : bool = False ) ->str: snake_case_ = self.extractor.infer_extractor_format(_UpperCamelCase ) if not extractor_format: return input_path snake_case_ = self._get_output_path(_UpperCamelCase ) if self._do_extract(_UpperCamelCase , _UpperCamelCase ): self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return output_path class snake_case_ ( __A ): '''simple docstring''' @classmethod @abstractmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : str ) ->bool: ... @staticmethod @abstractmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: ... class snake_case_ ( __A , __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[bytes] = [] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->List[Any]: with open(_UpperCamelCase , '''rb''' ) as f: return f.read(_UpperCamelCase ) @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if not magic_number: snake_case_ = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) try: snake_case_ = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase ) except OSError: return False return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) class snake_case_ ( __A ): '''simple docstring''' @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : Any ) ->bool: return tarfile.is_tarfile(_UpperCamelCase ) @staticmethod def snake_case__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) ->List[str]: def resolved(_UpperCamelCase : str ) -> str: return os.path.realpath(os.path.abspath(_UpperCamelCase ) ) def badpath(_UpperCamelCase : str , _UpperCamelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase ) def badlink(_UpperCamelCase : Tuple , _UpperCamelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link snake_case_ = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCamelCase ) snake_case_ = resolved(_UpperCamelCase ) for finfo in members: if badpath(finfo.name , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = tarfile.open(_UpperCamelCase ) tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) ) tar_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [b"\x1F\x8B"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with gzip.open(_UpperCamelCase , '''rb''' ) as gzip_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def snake_case__( cls : List[str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCamelCase , '''rb''' ) as fp: snake_case_ = _EndRecData(_UpperCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: snake_case_ = fp.read(_UpperCamelCase ) # CD is where we expect it to be if len(_UpperCamelCase ) == sizeCentralDir: snake_case_ = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with zipfile.ZipFile(_UpperCamelCase , '''r''' ) as zip_file: zip_file.extractall(_UpperCamelCase ) zip_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with lzma.open(_UpperCamelCase ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = rarfile.RarFile(_UpperCamelCase ) rf.extractall(_UpperCamelCase ) rf.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [b"\x28\xb5\x2F\xFD"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd snake_case_ = zstd.ZstdDecompressor() with open(_UpperCamelCase , '''rb''' ) as ifh, open(_UpperCamelCase , '''wb''' ) as ofh: dctx.copy_stream(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"\x42\x5A\x68"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with bza.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with pyazr.SevenZipFile(_UpperCamelCase , '''r''' ) as archive: archive.extractall(_UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x04\x22\x4D\x18"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def snake_case__( cls : List[Any] ) ->List[str]: return max( len(_UpperCamelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCamelCase , _UpperCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->Tuple: try: return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase ) except OSError: return b"" @classmethod def snake_case__( cls : Optional[Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bool = False ) ->bool: warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = cls.infer_extractor_format(_UpperCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def snake_case__( cls : int , _UpperCamelCase : Union[Path, str] ) ->str: # <Added version="2.4.0"/> snake_case_ = cls._get_magic_number_max_length() snake_case_ = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return extractor_format @classmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[BaseExtractor] = "deprecated" , ) ->None: os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase ) # Prevent parallel extractions snake_case_ = str(Path(_UpperCamelCase ).with_suffix('''.lock''' ) ) with FileLock(_UpperCamelCase ): shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = extractor if extractor != '''deprecated''' else extractor_format else: snake_case_ = cls.extractors[extractor_format] return extractor.extract(_UpperCamelCase , _UpperCamelCase ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=_UpperCamelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCamelCase ): return extractor.extract(_UpperCamelCase , _UpperCamelCase )
39
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class snake_case_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : List[Any]=2 , _UpperCamelCase : Tuple=3 , _UpperCamelCase : Union[str, Any]=4 , _UpperCamelCase : Optional[Any]=2 , _UpperCamelCase : Any=7 , _UpperCamelCase : int=True , _UpperCamelCase : Any=True , _UpperCamelCase : Tuple=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Any=9_9 , _UpperCamelCase : int=3_6 , _UpperCamelCase : str=3 , _UpperCamelCase : str=4 , _UpperCamelCase : List[str]=3_7 , _UpperCamelCase : Optional[int]="gelu" , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Dict=5_1_2 , _UpperCamelCase : str=1_6 , _UpperCamelCase : Optional[int]=2 , _UpperCamelCase : int=0.02 , _UpperCamelCase : Any=6 , _UpperCamelCase : Optional[Any]=6 , _UpperCamelCase : Optional[int]=3 , _UpperCamelCase : Any=4 , _UpperCamelCase : List[Any]=None , _UpperCamelCase : List[Any]=1_0_0_0 , ) ->Dict: snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = image_size snake_case_ = patch_size snake_case_ = text_seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = coordinate_size snake_case_ = shape_size snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope snake_case_ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) snake_case_ = text_seq_length snake_case_ = (image_size // patch_size) ** 2 + 1 snake_case_ = self.text_seq_length + self.image_seq_length def snake_case__( self : str ) ->Optional[Any]: snake_case_ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) snake_case_ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case_ = bbox[i, j, 3] snake_case_ = bbox[i, j, 1] snake_case_ = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case_ = bbox[i, j, 2] snake_case_ = bbox[i, j, 0] snake_case_ = t snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.text_seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) snake_case_ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def snake_case__( self : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , _UpperCamelCase : int ) ->Any: snake_case_ = LayoutLMvaModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # text + image snake_case_ = model(_UpperCamelCase , pixel_values=_UpperCamelCase ) snake_case_ = model( _UpperCamelCase , bbox=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase , bbox=_UpperCamelCase , pixel_values=_UpperCamelCase , token_type_ids=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase , bbox=_UpperCamelCase , pixel_values=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only snake_case_ = model(pixel_values=_UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def snake_case__( self : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str ) ->Dict: snake_case_ = self.num_labels snake_case_ = LayoutLMvaForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model( _UpperCamelCase , bbox=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__( self : Tuple , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] ) ->List[Any]: snake_case_ = self.num_labels snake_case_ = LayoutLMvaForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model( _UpperCamelCase , bbox=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def snake_case__( self : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Any ) ->Any: snake_case_ = LayoutLMvaForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model( _UpperCamelCase , bbox=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__( self : List[str] ) ->List[str]: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class snake_case_ ( __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Any = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : List[Any] = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def snake_case__( self : Any , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] ) ->int: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = LayoutLMvaModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : int=False ) ->List[str]: snake_case_ = copy.deepcopy(_UpperCamelCase ) if model_class in get_values(_UpperCamelCase ): snake_case_ = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(_UpperCamelCase , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_UpperCamelCase ): snake_case_ = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase ) elif model_class in get_values(_UpperCamelCase ): snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase ) snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase ) elif model_class in [ *get_values(_UpperCamelCase ), ]: snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase ) elif model_class in [ *get_values(_UpperCamelCase ), ]: snake_case_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_UpperCamelCase , ) return inputs_dict def snake_case__( self : Tuple ) ->List[str]: self.config_tester.run_common_tests() def snake_case__( self : Any ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : int ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->Any: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def snake_case__( self : str ) ->Optional[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def snake_case__( self : Tuple ) ->Optional[Any]: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = LayoutLMvaModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE (): snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__( self : Optional[int] ) ->str: return LayoutLMvaImageProcessor(apply_ocr=_UpperCamelCase ) if is_vision_available() else None @slow def snake_case__( self : Dict ) ->int: snake_case_ = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(_UpperCamelCase ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCamelCase , return_tensors='''pt''' ).pixel_values.to(_UpperCamelCase ) snake_case_ = torch.tensor([[1, 2]] ) snake_case_ = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass snake_case_ = model( input_ids=input_ids.to(_UpperCamelCase ) , bbox=bbox.to(_UpperCamelCase ) , pixel_values=pixel_values.to(_UpperCamelCase ) , ) # verify the logits snake_case_ = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _UpperCamelCase , atol=1e-4 ) )
39
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
39
1
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast lowerCAmelCase_ = datasets.utils.logging.get_logger(__name__) @dataclass class snake_case_ ( datasets.BuilderConfig ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 10000 SCREAMING_SNAKE_CASE : Optional[List[str]] = None SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None class snake_case_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = ParquetConfig def snake_case__( self : Union[str, Any] ) ->List[Any]: return datasets.DatasetInfo(features=self.config.features ) def snake_case__( self : Tuple , _UpperCamelCase : Tuple ) ->Optional[Any]: if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) snake_case_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCamelCase , (str, list, tuple) ): snake_case_ = data_files if isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case_ = [dl_manager.iter_files(_UpperCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] snake_case_ = [] for split_name, files in data_files.items(): if isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case_ = [dl_manager.iter_files(_UpperCamelCase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_UpperCamelCase ): with open(_UpperCamelCase , '''rb''' ) as f: snake_case_ = datasets.Features.from_arrow_schema(pq.read_schema(_UpperCamelCase ) ) break splits.append(datasets.SplitGenerator(name=_UpperCamelCase , gen_kwargs={'''files''': files} ) ) return splits def snake_case__( self : List[Any] , _UpperCamelCase : pa.Table ) ->pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example snake_case_ = table_cast(_UpperCamelCase , self.info.features.arrow_schema ) return pa_table def snake_case__( self : Optional[int] , _UpperCamelCase : Tuple ) ->int: snake_case_ = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_UpperCamelCase ) ): with open(_UpperCamelCase , '''rb''' ) as f: snake_case_ = pq.ParquetFile(_UpperCamelCase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): snake_case_ = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'''{file_idx}_{batch_idx}''', self._cast_table(_UpperCamelCase ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_UpperCamelCase )}: {e}''' ) raise
39
import re from filelock import FileLock try: import nltk lowerCAmelCase_ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): re.sub('''<n>''' , '''''' , SCREAMING_SNAKE_CASE__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE__ ) )
39
1
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {} lowerCAmelCase_ = {} lowerCAmelCase_ = {} def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , ): snake_case_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) snake_case_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) snake_case_ = format_type def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): snake_case_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): snake_case_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: lowerCAmelCase_ = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: lowerCAmelCase_ = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: lowerCAmelCase_ = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): snake_case_ = get_format_type_from_alias(SCREAMING_SNAKE_CASE__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**SCREAMING_SNAKE_CASE__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
39
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [0 for i in range(r + 1 )] # nc0 = 1 snake_case_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case_ = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
39
1
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : Any ) ->str: snake_case_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCamelCase , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_UpperCamelCase , '''num_heads''' ) ) class snake_case_ : '''simple docstring''' def __init__( self : Any , _UpperCamelCase : int , _UpperCamelCase : List[Any]=1_3 , _UpperCamelCase : str=6_4 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : Union[str, Any]=[1_6, 4_8, 9_6] , _UpperCamelCase : Dict=[1, 3, 6] , _UpperCamelCase : int=[1, 2, 1_0] , _UpperCamelCase : Any=[7, 3, 3] , _UpperCamelCase : Union[str, Any]=[4, 2, 2] , _UpperCamelCase : List[str]=[2, 1, 1] , _UpperCamelCase : List[Any]=[2, 2, 2] , _UpperCamelCase : Tuple=[False, False, True] , _UpperCamelCase : List[Any]=[0.0, 0.0, 0.0] , _UpperCamelCase : int=0.02 , _UpperCamelCase : Any=1e-12 , _UpperCamelCase : Dict=True , _UpperCamelCase : List[str]=True , _UpperCamelCase : List[Any]=2 , ) ->Tuple: snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_sizes snake_case_ = patch_stride snake_case_ = patch_padding snake_case_ = is_training snake_case_ = use_labels snake_case_ = num_labels snake_case_ = num_channels snake_case_ = embed_dim snake_case_ = num_heads snake_case_ = stride_kv snake_case_ = depth snake_case_ = cls_token snake_case_ = attention_drop_rate snake_case_ = initializer_range snake_case_ = layer_norm_eps def snake_case__( self : Optional[int] ) ->Any: snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def snake_case__( self : List[Any] ) ->List[str]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] ) ->Optional[Any]: snake_case_ = CvtModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase ) snake_case_ = (self.image_size, self.image_size) snake_case_, snake_case_ = image_size[0], image_size[1] for i in range(len(self.depth ) ): snake_case_ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) snake_case_ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def snake_case__( self : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Tuple ) ->List[Any]: snake_case_ = self.num_labels snake_case_ = CvtForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__( self : Optional[int] ) ->Union[str, Any]: snake_case_ = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_ = config_and_inputs snake_case_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case_ ( __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = (CvtModel, CvtForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE : Dict = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Tuple = False def snake_case__( self : Optional[Any] ) ->Optional[Any]: snake_case_ = CvtModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : Dict ) ->Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__( self : str ) ->int: return @unittest.skip(reason='''Cvt does not output attentions''' ) def snake_case__( self : Optional[int] ) ->Any: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def snake_case__( self : Any ) ->Dict: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def snake_case__( self : List[Any] ) ->Union[str, Any]: pass def snake_case__( self : Dict ) ->Dict: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_UpperCamelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def snake_case__( self : int ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : List[Any] ) ->List[Any]: def check_hidden_states_output(_UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any ): snake_case_ = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) snake_case_ = outputs.hidden_states snake_case_ = len(self.model_tester.depth ) self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->Any: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case__( self : Any ) ->Any: pass @slow def snake_case__( self : Tuple ) ->Tuple: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = CvtModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE (): snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case_ ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__( self : Optional[int] ) ->Optional[Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def snake_case__( self : str ) ->str: snake_case_ = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_UpperCamelCase ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**_UpperCamelCase ) # verify the logits snake_case_ = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) snake_case_ = torch.tensor([0.9285, 0.9015, -0.3150] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) )
39
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCAmelCase_ = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 13_10_72, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return torch.atana(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / math.pi * 2 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.sin(t * math.pi / 2 ) ** 2 snake_case_ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class snake_case_ ( __A ): '''simple docstring''' pass class snake_case_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : int ) ->Optional[int]: super().__init__() snake_case_ = DiffusionAttnUnetaD(_UpperCamelCase , n_attn_layers=4 ) snake_case_ = deepcopy(self.diffusion ) snake_case_ = torch.quasirandom.SobolEngine(1 , scramble=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = MODELS_MAP[model_name]['''url'''] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCAmelCase_ = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCAmelCase_ = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCAmelCase_ = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCAmelCase_ = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif name.startswith(SCREAMING_SNAKE_CASE__ ): return [name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 ): snake_case_ = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) snake_case_ = 0 if string.startswith('''net.3.''' ): depth += 1 snake_case_ = string[6:] elif string.startswith('''net.''' ): snake_case_ = string[4:] while string.startswith('''main.7.''' ): depth += 1 snake_case_ = string[7:] if string.startswith('''main.''' ): snake_case_ = string[5:] # mid block if string[:2].isdigit(): snake_case_ = string[:2] snake_case_ = string[2:] else: snake_case_ = string[0] snake_case_ = string[1:] if depth == max_depth: snake_case_ = MID_NUM_TO_LAYER[layer_num] snake_case_ = '''mid_block''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) < 7: snake_case_ = DOWN_NUM_TO_LAYER[layer_num] snake_case_ = F'''down_blocks.{depth}''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) > 7: snake_case_ = UP_NUM_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: snake_case_ = DEPTH_0_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - 1}''' if int(SCREAMING_SNAKE_CASE__ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) snake_case_ = string_left[1:] if "resnets" in new_layer: snake_case_ = convert_resconv_naming(SCREAMING_SNAKE_CASE__ ) elif "attentions" in new_layer: snake_case_ = convert_attn_naming(SCREAMING_SNAKE_CASE__ ) snake_case_ = new_string_left if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = prefix + '''.''' + new_layer + '''.''' + string_left else: snake_case_ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue snake_case_ = rename(SCREAMING_SNAKE_CASE__ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = transform_conv_attns(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ = v return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) == 1: if len(v.shape ) == 3: # weight snake_case_ = v[:, :, 0] else: # bias snake_case_ = v else: # qkv matrices snake_case_ = v.shape[0] snake_case_ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: snake_case_ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: snake_case_ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) snake_case_ = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' snake_case_ = download(SCREAMING_SNAKE_CASE__ ) snake_case_ = MODELS_MAP[model_name]['''sample_rate'''] snake_case_ = MODELS_MAP[model_name]['''sample_size'''] snake_case_ = Object() snake_case_ = sample_size snake_case_ = sample_rate snake_case_ = 0 snake_case_ = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE__ , sample_rate=SCREAMING_SNAKE_CASE__ ) snake_case_ = diffusers_model.state_dict() snake_case_ = DiffusionUncond(SCREAMING_SNAKE_CASE__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE__ )['''state_dict'''] ) snake_case_ = orig_model.diffusion_ema.eval() snake_case_ = orig_model.state_dict() snake_case_ = rename_orig_weights(SCREAMING_SNAKE_CASE__ ) snake_case_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) snake_case_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE__ ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith('''kernel''' ) for k in list(SCREAMING_SNAKE_CASE__ ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": snake_case_ = value.squeeze() snake_case_ = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = 100 snake_case_ = 33 snake_case_ = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE__ )[:-1] snake_case_ = get_crash_schedule(SCREAMING_SNAKE_CASE__ ) snake_case_ = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(33 ) snake_case_ = pipe(num_inference_steps=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).audios snake_case_ = sampling.iplms_sample(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {} ) snake_case_ = generated.clamp(-1 , 1 ) snake_case_ = (generated - audio).abs().sum() snake_case_ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , SCREAMING_SNAKE_CASE__ ) print('''Diff max''' , SCREAMING_SNAKE_CASE__ ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCAmelCase_ = parser.parse_args() main(args)
39
1
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : List[str] ) ->str: snake_case_ = inspect.getfile(accelerate.test_utils ) snake_case_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 snake_case_ = test_metrics @require_cpu def snake_case__( self : str ) ->int: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case__( self : Union[str, Any] ) ->Any: debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case__( self : List[Any] ) ->Tuple: self.test_metrics.main() @require_multi_gpu def snake_case__( self : Any ) ->Union[str, Any]: print(f'''Found {torch.cuda.device_count()} devices.''' ) snake_case_ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
39
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
1
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCAmelCase_ = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model snake_case_ = list(s_dict.keys() ) for key in keys: snake_case_ = R'''.*/layers_(\d+)''' snake_case_ = key if re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = re.sub(R'''layers_(\d+)''' , R'''block/\1/layer''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = R'''(encoder|decoder)\/''' if re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).groups() if groups[0] == "encoder": snake_case_ = re.sub(R'''/mlp/''' , R'''/1/mlp/''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/1/layer_norm/''' , SCREAMING_SNAKE_CASE__ ) elif groups[0] == "decoder": snake_case_ = re.sub(R'''/mlp/''' , R'''/2/mlp/''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/2/layer_norm/''' , SCREAMING_SNAKE_CASE__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: snake_case_ = new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''{key} -> {new_key}''' ) snake_case_ = s_dict.pop(SCREAMING_SNAKE_CASE__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: snake_case_ = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: snake_case_ = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: snake_case_ = s_dict[key].shape[0] snake_case_ = s_dict[key] for idx in range(SCREAMING_SNAKE_CASE__ ): snake_case_ = expert_weihts[idx] print(F'''{key} -> {key.replace('expert/' , 'nested fstring' )}''' ) s_dict.pop(SCREAMING_SNAKE_CASE__ ) return s_dict lowerCAmelCase_ = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Convert a google style config to the hugging face fromat import regex as re with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: snake_case_ = f.read() snake_case_ = re.findall(R'''(.*) = ([0-9.]*)''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": snake_case_ = float(SCREAMING_SNAKE_CASE__ ) if '''.''' in value else int(SCREAMING_SNAKE_CASE__ ) snake_case_ = re.findall(R'''(.*activations) = \(\'(.*)\',\)''' , SCREAMING_SNAKE_CASE__ )[0] snake_case_ = str(activation[1] ) snake_case_ = num_experts snake_case_ = SwitchTransformersConfig(**SCREAMING_SNAKE_CASE__ ) return config def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="./" , SCREAMING_SNAKE_CASE__=8 ): # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) snake_case_ = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) if gin_file is not None: snake_case_ = convert_gin_to_config(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ = SwitchTransformersConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case_ = SwitchTransformersForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) snake_case_ = flax_params['''target'''] snake_case_ = flatten_dict(SCREAMING_SNAKE_CASE__ , sep='''/''' ) snake_case_ = rename_keys(SCREAMING_SNAKE_CASE__ ) snake_case_ = unflatten_dict(SCREAMING_SNAKE_CASE__ , sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') lowerCAmelCase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
39
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->Any: snake_case_ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case_ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case_ = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case_ = output[output != -float('''inf''' )] snake_case_ = tf.cast( tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-12 ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @require_tf class snake_case_ ( unittest.TestCase , __A ): '''simple docstring''' if is_tf_available(): SCREAMING_SNAKE_CASE : Optional[int] = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def snake_case__( self : List[Any] ) ->Optional[int]: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 2 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->List[Any]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) ->List[Any]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2, 0], [1_0_2, 1_0_3]] snake_case_ = [[1, 0], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for batch_size in range(1 , len(_UpperCamelCase ) + 1 ): snake_case_ = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow def snake_case__( self : List[str] ) ->int: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 1 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : Any ) ->List[str]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) ->Optional[int]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2], [1_0_2, 1_0_3]] snake_case_ = [[1], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for input_row in range(len(_UpperCamelCase ) ): snake_case_ = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow @require_tensorflow_text def snake_case__( self : Optional[Any] ) ->List[Any]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_UpperCamelCase ) class snake_case_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ) ->List[Any]: super().__init__() snake_case_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , '''spiece.model''' ) , '''rb''' ).read() ) snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->List[Any]: snake_case_ = self.tokenizer.tokenize(_UpperCamelCase ) snake_case_, snake_case_ = text.pad_model_inputs( _UpperCamelCase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) snake_case_ = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) return self.tokenizer.detokenize(_UpperCamelCase ) snake_case_ = CompleteSentenceTransformer() snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) snake_case_ = complete_model(_UpperCamelCase ) snake_case_ = tf.keras.Model(_UpperCamelCase , _UpperCamelCase ) keras_model.save(_UpperCamelCase ) def snake_case__( self : Any ) ->List[Any]: # Has PT equivalent: this test relies on random sampling snake_case_ = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 1_0, '''temperature''': 0.7, } snake_case_ = 1_4 snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = '''Hello, my dog is cute and''' snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''tf''' ) snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case_ = [6_3_8, 1_9_8] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def snake_case__( self : str ) ->Dict: # Has PT equivalent: ample use of framework-specific code snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = '''Hugging Face is a technology company based in New York and Paris.''' snake_case_ = bart_tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids snake_case_ = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Optional[int] ) ->List[str]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) ) class snake_case_ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , **_UpperCamelCase : Tuple ) ->Optional[Any]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() with self.assertRaises(_UpperCamelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_UpperCamelCase , foo='''bar''' )
39
1
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = "isbn/0140328726" ): snake_case_ = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: snake_case_ = F'''{olid} is not a valid Open Library olid''' raise ValueError(SCREAMING_SNAKE_CASE__ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } snake_case_ = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} snake_case_ = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] snake_case_ = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = ''', '''.join(SCREAMING_SNAKE_CASE__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCAmelCase_ = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(f"""\nSearching Open Library for ISBN: {isbn}...\n""") try: lowerCAmelCase_ = summarize_book(get_openlibrary_data(f"""isbn/{isbn}""")) print('''\n'''.join(f"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f"""Sorry, there are no results for ISBN: {isbn}.""")
39
import unittest from transformers import DonutProcessor lowerCAmelCase_ = '''naver-clova-ix/donut-base''' class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = DonutProcessor.from_pretrained(_UpperCamelCase ) def snake_case__( self : Dict ) ->str: snake_case_ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } snake_case_ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) snake_case_ = self.processor.tokenajson(_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , _UpperCamelCase )
39
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [] snake_case_ = [] snake_case_ = 0 snake_case_ = sum(SCREAMING_SNAKE_CASE__ ) create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return result def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): if sum(SCREAMING_SNAKE_CASE__ ) > max_sum or (remaining_nums_sum + sum(SCREAMING_SNAKE_CASE__ )) < max_sum: return if sum(SCREAMING_SNAKE_CASE__ ) == max_sum: result.append(SCREAMING_SNAKE_CASE__ ) return for index in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ): create_state_space_tree( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 , [*path, nums[index]] , SCREAMING_SNAKE_CASE__ , remaining_nums_sum - nums[index] , ) lowerCAmelCase_ = [3, 34, 4, 12, 5, 2] lowerCAmelCase_ = 9 lowerCAmelCase_ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
39
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not nums: raise ValueError('''List is empty''' ) return sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
39
1
import argparse import struct import unittest class snake_case_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCamelCase : bytes ) ->None: snake_case_ = data # Initialize hash values snake_case_ = [ 0x6_a_0_9_e_6_6_7, 0xb_b_6_7_a_e_8_5, 0x3_c_6_e_f_3_7_2, 0xa_5_4_f_f_5_3_a, 0x5_1_0_e_5_2_7_f, 0x9_b_0_5_6_8_8_c, 0x1_f_8_3_d_9_a_b, 0x5_b_e_0_c_d_1_9, ] # Initialize round constants snake_case_ = [ 0x4_2_8_a_2_f_9_8, 0x7_1_3_7_4_4_9_1, 0xb_5_c_0_f_b_c_f, 0xe_9_b_5_d_b_a_5, 0x3_9_5_6_c_2_5_b, 0x5_9_f_1_1_1_f_1, 0x9_2_3_f_8_2_a_4, 0xa_b_1_c_5_e_d_5, 0xd_8_0_7_a_a_9_8, 0x1_2_8_3_5_b_0_1, 0x2_4_3_1_8_5_b_e, 0x5_5_0_c_7_d_c_3, 0x7_2_b_e_5_d_7_4, 0x8_0_d_e_b_1_f_e, 0x9_b_d_c_0_6_a_7, 0xc_1_9_b_f_1_7_4, 0xe_4_9_b_6_9_c_1, 0xe_f_b_e_4_7_8_6, 0x0_f_c_1_9_d_c_6, 0x2_4_0_c_a_1_c_c, 0x2_d_e_9_2_c_6_f, 0x4_a_7_4_8_4_a_a, 0x5_c_b_0_a_9_d_c, 0x7_6_f_9_8_8_d_a, 0x9_8_3_e_5_1_5_2, 0xa_8_3_1_c_6_6_d, 0xb_0_0_3_2_7_c_8, 0xb_f_5_9_7_f_c_7, 0xc_6_e_0_0_b_f_3, 0xd_5_a_7_9_1_4_7, 0x0_6_c_a_6_3_5_1, 0x1_4_2_9_2_9_6_7, 0x2_7_b_7_0_a_8_5, 0x2_e_1_b_2_1_3_8, 0x4_d_2_c_6_d_f_c, 0x5_3_3_8_0_d_1_3, 0x6_5_0_a_7_3_5_4, 0x7_6_6_a_0_a_b_b, 0x8_1_c_2_c_9_2_e, 0x9_2_7_2_2_c_8_5, 0xa_2_b_f_e_8_a_1, 0xa_8_1_a_6_6_4_b, 0xc_2_4_b_8_b_7_0, 0xc_7_6_c_5_1_a_3, 0xd_1_9_2_e_8_1_9, 0xd_6_9_9_0_6_2_4, 0xf_4_0_e_3_5_8_5, 0x1_0_6_a_a_0_7_0, 0x1_9_a_4_c_1_1_6, 0x1_e_3_7_6_c_0_8, 0x2_7_4_8_7_7_4_c, 0x3_4_b_0_b_c_b_5, 0x3_9_1_c_0_c_b_3, 0x4_e_d_8_a_a_4_a, 0x5_b_9_c_c_a_4_f, 0x6_8_2_e_6_f_f_3, 0x7_4_8_f_8_2_e_e, 0x7_8_a_5_6_3_6_f, 0x8_4_c_8_7_8_1_4, 0x8_c_c_7_0_2_0_8, 0x9_0_b_e_f_f_f_a, 0xa_4_5_0_6_c_e_b, 0xb_e_f_9_a_3_f_7, 0xc_6_7_1_7_8_f_2, ] snake_case_ = self.preprocessing(self.data ) self.final_hash() @staticmethod def snake_case__( _UpperCamelCase : bytes ) ->bytes: snake_case_ = B'''\x80''' + (B'''\x00''' * (6_3 - (len(_UpperCamelCase ) + 8) % 6_4)) snake_case_ = struct.pack('''>Q''' , (len(_UpperCamelCase ) * 8) ) return data + padding + big_endian_integer def snake_case__( self : Optional[Any] ) ->None: # Convert into blocks of 64 bytes snake_case_ = [ self.preprocessed_data[x : x + 6_4] for x in range(0 , len(self.preprocessed_data ) , 6_4 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers snake_case_ = list(struct.unpack('''>16L''' , _UpperCamelCase ) ) # add 48 0-ed integers words += [0] * 4_8 snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ = self.hashes for index in range(0 , 6_4 ): if index > 1_5: # modify the zero-ed indexes at the end of the array snake_case_ = ( self.ror(words[index - 1_5] , 7 ) ^ self.ror(words[index - 1_5] , 1_8 ) ^ (words[index - 1_5] >> 3) ) snake_case_ = ( self.ror(words[index - 2] , 1_7 ) ^ self.ror(words[index - 2] , 1_9 ) ^ (words[index - 2] >> 1_0) ) snake_case_ = ( words[index - 1_6] + sa + words[index - 7] + sa ) % 0x1_0_0_0_0_0_0_0_0 # Compression snake_case_ = self.ror(_UpperCamelCase , 6 ) ^ self.ror(_UpperCamelCase , 1_1 ) ^ self.ror(_UpperCamelCase , 2_5 ) snake_case_ = (e & f) ^ ((~e & 0xf_f_f_f_f_f_f_f) & g) snake_case_ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0_0_0_0_0_0_0_0 snake_case_ = self.ror(_UpperCamelCase , 2 ) ^ self.ror(_UpperCamelCase , 1_3 ) ^ self.ror(_UpperCamelCase , 2_2 ) snake_case_ = (a & b) ^ (a & c) ^ (b & c) snake_case_ = (sa + maj) % 0x1_0_0_0_0_0_0_0_0 snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ = ( g, f, e, ((d + tempa) % 0x1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0), ) snake_case_ = [a, b, c, d, e, f, g, h] # Modify final values snake_case_ = [ ((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] snake_case_ = ''''''.join([hex(_UpperCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : int ) ->int: return 0xf_f_f_f_f_f_f_f & (value << (3_2 - rotations)) | (value >> rotations) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Any ) ->None: import hashlib snake_case_ = bytes('''Test String''' , '''utf-8''' ) self.assertEqual(SHAaaa(_UpperCamelCase ).hash , hashlib.shaaaa(_UpperCamelCase ).hexdigest() ) def __SCREAMING_SNAKE_CASE (): import doctest doctest.testmod() snake_case_ = argparse.ArgumentParser() parser.add_argument( '''-s''' , '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument( '''-f''' , '''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) snake_case_ = parser.parse_args() snake_case_ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: snake_case_ = f.read() else: snake_case_ = bytes(SCREAMING_SNAKE_CASE__ , '''utf-8''' ) print(SHAaaa(SCREAMING_SNAKE_CASE__ ).hash ) if __name__ == "__main__": main()
39
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : List[str] ) ->str: snake_case_ = inspect.getfile(accelerate.test_utils ) snake_case_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 snake_case_ = test_metrics @require_cpu def snake_case__( self : str ) ->int: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case__( self : Union[str, Any] ) ->Any: debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case__( self : List[Any] ) ->Tuple: self.test_metrics.main() @require_multi_gpu def snake_case__( self : Any ) ->Union[str, Any]: print(f'''Found {torch.cuda.device_count()} devices.''' ) snake_case_ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
39
1
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) snake_case_ = flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} snake_case_ = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } snake_case_ = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key snake_case_ = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): snake_case_ = new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): snake_case_ = new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number snake_case_ = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number snake_case_ = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = flax_dict[key] snake_case_ = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): snake_case_ = torch.from_numpy(converted_dict[key].T ) else: snake_case_ = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False ): snake_case_ = get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: snake_case_ = PixaStructVisionConfig() snake_case_ = PixaStructTextConfig() else: snake_case_ = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) snake_case_ = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) snake_case_ = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE__ ) snake_case_ = PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) snake_case_ = rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) snake_case_ = PixaStructImageProcessor() snake_case_ = PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: snake_case_ = 4096 snake_case_ = True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('''Model saved in {}'''.format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') lowerCAmelCase_ = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
39
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = "informer" SCREAMING_SNAKE_CASE : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Dict , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "student_t" , _UpperCamelCase : str = "nll" , _UpperCamelCase : int = 1 , _UpperCamelCase : List[int] = None , _UpperCamelCase : Optional[Union[str, bool]] = "mean" , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : int = 6_4 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.05 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : Dict=True , _UpperCamelCase : str = "prob" , _UpperCamelCase : int = 5 , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Optional[int]: # time series specific configuration snake_case_ = prediction_length snake_case_ = context_length or prediction_length snake_case_ = distribution_output snake_case_ = loss snake_case_ = input_size snake_case_ = num_time_features snake_case_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case_ = scaling snake_case_ = num_dynamic_real_features snake_case_ = num_static_real_features snake_case_ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = cardinality else: snake_case_ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = embedding_dimension else: snake_case_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ = num_parallel_samples # Transformer architecture configuration snake_case_ = input_size * len(self.lags_sequence ) + self._number_of_features snake_case_ = d_model snake_case_ = encoder_attention_heads snake_case_ = decoder_attention_heads snake_case_ = encoder_ffn_dim snake_case_ = decoder_ffn_dim snake_case_ = encoder_layers snake_case_ = decoder_layers snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = activation_function snake_case_ = init_std snake_case_ = use_cache # Informer snake_case_ = attention_type snake_case_ = sampling_factor snake_case_ = distil super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def snake_case__( self : Optional[Any] ) ->int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
39
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device lowerCAmelCase_ = False class snake_case_ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Tuple ) ->Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self : Dict ) ->List[str]: snake_case_ = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger ''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_UpperCamelCase ) snake_case_ = VersatileDiffusionTextToImagePipeline.from_pretrained(_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = generator.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def snake_case__( self : List[str] ) ->Tuple: snake_case_ = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger ''' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='''numpy''' ).images snake_case_ = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
import cmath import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) # Convert voltage and current to rectangular form snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
39
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = filter(lambda SCREAMING_SNAKE_CASE__ : p.requires_grad , model.parameters() ) snake_case_ = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if metric == "rouge2": snake_case_ = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": snake_case_ = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": snake_case_ = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ''' function.''' ) snake_case_ = ModelCheckpoint( dirpath=SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , monitor=F'''val_{metric}''' , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return EarlyStopping( monitor=F'''val_{metric}''' , mode='''min''' if '''loss''' in metric else '''max''' , patience=SCREAMING_SNAKE_CASE__ , verbose=SCREAMING_SNAKE_CASE__ , ) class snake_case_ ( pl.Callback ): '''simple docstring''' def snake_case__( self : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) ->List[Any]: snake_case_ = {f'''lr_group_{i}''': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_UpperCamelCase ) @rank_zero_only def snake_case__( self : Union[str, Any] , _UpperCamelCase : pl.Trainer , _UpperCamelCase : pl.LightningModule , _UpperCamelCase : str , _UpperCamelCase : List[str]=True ) ->None: logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) snake_case_ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results snake_case_ = Path(pl_module.hparams.output_dir ) if type_path == "test": snake_case_ = od / '''test_results.txt''' snake_case_ = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. snake_case_ = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' snake_case_ = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_UpperCamelCase ) generations_file.parent.mkdir(exist_ok=_UpperCamelCase ) with open(_UpperCamelCase , '''a+''' ) as writer: for key in sorted(_UpperCamelCase ): if key in ["log", "progress_bar", "preds"]: continue snake_case_ = metrics[key] if isinstance(_UpperCamelCase , torch.Tensor ): snake_case_ = val.item() snake_case_ = f'''{key}: {val:.6f}\n''' writer.write(_UpperCamelCase ) if not save_generations: return if "preds" in metrics: snake_case_ = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(_UpperCamelCase ) @rank_zero_only def snake_case__( self : List[str] , _UpperCamelCase : int , _UpperCamelCase : str ) ->Optional[Any]: try: snake_case_ = pl_module.model.model.num_parameters() except AttributeError: snake_case_ = pl_module.model.num_parameters() snake_case_ = count_trainable_parameters(_UpperCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def snake_case__( self : Tuple , _UpperCamelCase : pl.Trainer , _UpperCamelCase : pl.LightningModule ) ->str: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_UpperCamelCase , _UpperCamelCase , '''test''' ) @rank_zero_only def snake_case__( self : Tuple , _UpperCamelCase : pl.Trainer , _UpperCamelCase : Tuple ) ->Dict: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
39
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=1_3 , _UpperCamelCase : str=7 , _UpperCamelCase : int=True , _UpperCamelCase : Dict=True , _UpperCamelCase : int=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : str=3_2 , _UpperCamelCase : str=5 , _UpperCamelCase : str=4 , _UpperCamelCase : int=3_7 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : str=5_1_2 , _UpperCamelCase : Optional[int]=1_6 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Any=0.02 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : str=None , ) ->Dict: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def snake_case__( self : str ) ->List[Any]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self : List[str] ) ->Tuple: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) ->Dict: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , ) ->Optional[int]: snake_case_ = BioGptForCausalLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , *_UpperCamelCase : List[Any] ) ->Union[str, Any]: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # create attention mask snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) snake_case_ = self.seq_length // 2 snake_case_ = 0 # first forward pass snake_case_, snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids snake_case_ = ids_tensor((1,) , _UpperCamelCase ).item() + 1 snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) snake_case_ = random_other_next_tokens # append to next input_ids and attn_mask snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCamelCase )] , dim=1 , ) # get two different outputs snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , past_key_values=_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , *_UpperCamelCase : List[Any] ) ->int: snake_case_ = BioGptModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval() snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) # first forward pass snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase ) snake_case_, snake_case_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[ '''last_hidden_state''' ] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , *_UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=False ) ->Dict: snake_case_ = BioGptForCausalLM(_UpperCamelCase ) model.to(_UpperCamelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def snake_case__( self : List[Any] , _UpperCamelCase : Optional[int] , *_UpperCamelCase : Dict ) ->Dict: snake_case_ = BioGptModel(_UpperCamelCase ) snake_case_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def snake_case__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , *_UpperCamelCase : List[str] ) ->int: snake_case_ = self.num_labels snake_case_ = BioGptForTokenClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = (BioGptForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Optional[Any] = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Tuple = False def snake_case__( self : List[str] ) ->Union[str, Any]: snake_case_ = BioGptModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : str ) ->int: self.config_tester.run_common_tests() def snake_case__( self : str ) ->Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_UpperCamelCase , gradient_checkpointing=_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCamelCase ) def snake_case__( self : List[Any] ) ->Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCamelCase ) @slow def snake_case__( self : int ) ->Optional[Any]: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = '''left''' # Define PAD Token = EOS Token = 50256 snake_case_ = tokenizer.eos_token snake_case_ = model.config.eos_token_id # use different length sentences to test batching snake_case_ = [ '''Hello, my dog is a little''', '''Today, I''', ] snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase ) snake_case_ = inputs['''input_ids'''].to(_UpperCamelCase ) snake_case_ = model.generate( input_ids=_UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(_UpperCamelCase ) , ) snake_case_ = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase ) snake_case_ = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() snake_case_ = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings ) snake_case_ = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] ) @slow def snake_case__( self : Optional[int] ) ->List[str]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = BioGptModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__( self : str ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = '''multi_label_classification''' snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__( self : int ) ->Any: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) snake_case_ = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) snake_case_ = model(_UpperCamelCase )[0] snake_case_ = 4_2_3_8_4 snake_case_ = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def snake_case__( self : List[str] ) ->Optional[int]: snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_UpperCamelCase ) snake_case_ = model.generate( **_UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=_UpperCamelCase , ) snake_case_ = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(_UpperCamelCase , _UpperCamelCase )
39
1
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowerCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : int ) ->Optional[int]: super().__init__() self.register_modules(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) @torch.no_grad() def __call__( self : List[Any] , _UpperCamelCase : int = 1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCamelCase : Optional[float] = None , _UpperCamelCase : bool = True , ) ->Union[AudioPipelineOutput, Tuple]: if audio_length_in_s is None: snake_case_ = self.unet.config.sample_size / self.unet.config.sample_rate snake_case_ = audio_length_in_s * self.unet.config.sample_rate snake_case_ = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) snake_case_ = int(_UpperCamelCase ) if sample_size % down_scale_factor != 0: snake_case_ = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ''' process.''' ) snake_case_ = int(_UpperCamelCase ) snake_case_ = next(iter(self.unet.parameters() ) ).dtype snake_case_ = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_UpperCamelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) snake_case_ = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=self.device , dtype=_UpperCamelCase ) # set step values self.scheduler.set_timesteps(_UpperCamelCase , device=audio.device ) snake_case_ = self.scheduler.timesteps.to(_UpperCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case_ = self.unet(_UpperCamelCase , _UpperCamelCase ).sample # 2. compute previous image: x_t -> t_t-1 snake_case_ = self.scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample snake_case_ = audio.clamp(-1 , 1 ).float().cpu().numpy() snake_case_ = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_UpperCamelCase )
39
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) snake_case_ = (boundary[1] - boundary[0]) / steps snake_case_ = boundary[0] snake_case_ = boundary[1] snake_case_ = make_points(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = 0.0 y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) for i in x_i: # print(i) y += h * f(SCREAMING_SNAKE_CASE__ ) y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) return y def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = a + h while x < (b - h): yield x snake_case_ = x + h def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # enter your function here snake_case_ = (x - 0) * (x - 0) return y def __SCREAMING_SNAKE_CASE (): snake_case_ = 0.0 # Lower bound of integration snake_case_ = 1.0 # Upper bound of integration snake_case_ = 10.0 # define number of steps or resolution snake_case_ = [a, b] # define boundary of integration snake_case_ = method_a(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
39
1
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging lowerCAmelCase_ = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] lowerCAmelCase_ = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = ''' Hello world! cécé herlolip''' lowerCAmelCase_ = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = dct.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ = val def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.load(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' ) snake_case_ = torch.hub.load('''pytorch/fairseq''' , '''bart.large.cnn''' ).eval() hub_interface.model.load_state_dict(sd['''model'''] ) return hub_interface def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_, snake_case_ = emb.weight.shape snake_case_ = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) snake_case_ = emb.weight.data return lin_layer @torch.no_grad() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): if not os.path.exists(SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.hub.load('''pytorch/fairseq''' , SCREAMING_SNAKE_CASE__ ).eval() else: snake_case_ = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: snake_case_ = checkpoint_path.replace('''.''' , '''-''' ) snake_case_ = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case_ = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) snake_case_ = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": snake_case_ = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) snake_case_ = state_dict['''model.decoder.embed_tokens.weight'''] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = bart.predict('''mnli''' , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) snake_case_ = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about snake_case_ = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) snake_case_ = state_dict['''decoder.embed_tokens.weight'''] snake_case_ = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": snake_case_ = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = model(SCREAMING_SNAKE_CASE__ ).model[0] else: snake_case_ = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , '''lm_head''' ): snake_case_ = make_linear_from_emb(model.model.shared ) snake_case_ = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('''Some values in `fairseq_output` are different from `new_model_outputs`''' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) lowerCAmelCase_ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
39
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / '''model_card_template.md''' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None ): snake_case_ = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if token is None: snake_case_ = HfFolder.get_token() if organization is None: snake_case_ = whoami(SCREAMING_SNAKE_CASE__ )['''name'''] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(SCREAMING_SNAKE_CASE__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , '''hub_token''' ) else None snake_case_ = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) snake_case_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ = os.path.join(args.output_dir , '''README.md''' ) model_card.save(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) snake_case_ = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE__ ) if search is None: return None snake_case_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, '''diffusers''') def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if new_cache_dir is None: snake_case_ = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ = old_diffusers_cache snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ '''the directory exists and can be written to.''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if variant is not None: snake_case_ = weights_name.split('''.''' ) snake_case_ = splits[:-1] + [variant] + splits[-1:] snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ ) return weights_name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ): snake_case_ = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' '''this model name. Check the model page at ''' F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
39
1
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 3 ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(SCREAMING_SNAKE_CASE__ ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) snake_case_ = QuantumRegister(SCREAMING_SNAKE_CASE__ , '''qr''' ) snake_case_ = ClassicalRegister(SCREAMING_SNAKE_CASE__ , '''cr''' ) snake_case_ = QuantumCircuit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = number_of_qubits for i in range(SCREAMING_SNAKE_CASE__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(SCREAMING_SNAKE_CASE__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(SCREAMING_SNAKE_CASE__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # simulate with 10000 shots snake_case_ = Aer.get_backend('''qasm_simulator''' ) snake_case_ = execute(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , shots=10000 ) return job.result().get_counts(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print( f"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
39
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt" def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) snake_case_ = backbone_featmap_shape snake_case_ = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: snake_case_ = None snake_case_ = None snake_case_ = [] snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) snake_case_ = readout_type snake_case_ = reassemble_factors snake_case_ = neck_hidden_sizes snake_case_ = fusion_hidden_size snake_case_ = head_in_index snake_case_ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = semantic_loss_ignore_index snake_case_ = semantic_classifier_dropout def snake_case__( self : List[str] ) ->List[Any]: snake_case_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
39
1
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = 1 snake_case_ = 2 while i * i <= n: snake_case_ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __SCREAMING_SNAKE_CASE (): snake_case_ = 1 snake_case_ = 1 while True: i += 1 t_num += i if count_divisors(SCREAMING_SNAKE_CASE__ ) > 500: break return t_num if __name__ == "__main__": print(solution())
39
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = '''pytorch_model.bin''' @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "A csv or a json file containing the validation data."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "The name of the task to train on."} , ) SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field( default=__A , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=__A , metadata={"help": "Random seed for initialization."} , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case_ = dataset.filter(lambda SCREAMING_SNAKE_CASE__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case_ = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) ) print(SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = dataset.remove_columns(['''label''', '''probability'''] ) snake_case_ = dataset.rename_column('''prediction''' , '''label''' ) snake_case_ = dataset.map(lambda SCREAMING_SNAKE_CASE__ : {"label": idalabel[example["label"]]} ) snake_case_ = dataset.shuffle(seed=args.seed ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) else: dataset.to_json(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): snake_case_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case_ = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ ) snake_case_ = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ , infer_file=SCREAMING_SNAKE_CASE__ ) snake_case_ = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ ) snake_case_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(SCREAMING_SNAKE_CASE__ ).items(): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Sanity checks snake_case_ = {} snake_case_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case_ = args.train_file snake_case_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case_ = args.eval_file for key in data_files: snake_case_ = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: snake_case_ = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) snake_case_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format snake_case_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = None snake_case_ = None snake_case_ = 0 snake_case_ = False # Show the progress bar snake_case_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case_ = data_dir_format(SCREAMING_SNAKE_CASE__ ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-1''' ) snake_case_ = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): arguments_dict.update({key: value} ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-2''' ) # Update arguments_dict snake_case_ = model_path snake_case_ = data_files['''train'''] snake_case_ = current_output_dir snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = iteration snake_case_ = data_dir_format(iteration + 1 ) snake_case_ = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) ) snake_case_ = config.idalabel snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-checkpoint.json''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: snake_case_ = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Loading the dataset from local csv or json files. snake_case_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] snake_case_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case_ = eval_result if best_iteration is None: snake_case_ = new_iteration snake_case_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case_ = new_iteration snake_case_ = new_eval_result snake_case_ = 0 else: if new_eval_result == best_eval_result: snake_case_ = new_iteration snake_case_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE__ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , )
39
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class snake_case_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any]=7 , _UpperCamelCase : Union[str, Any]=3 , _UpperCamelCase : Union[str, Any]=1_8 , _UpperCamelCase : Optional[int]=3_0 , _UpperCamelCase : Union[str, Any]=4_0_0 , _UpperCamelCase : Tuple=True , _UpperCamelCase : int=None , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : List[str]=None , _UpperCamelCase : Tuple=True , _UpperCamelCase : Dict=[0.48145466, 0.4578275, 0.40821073] , _UpperCamelCase : Dict=[0.26862954, 0.26130258, 0.27577711] , _UpperCamelCase : List[str]=True , ) ->Optional[int]: snake_case_ = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} snake_case_ = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = image_size snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size snake_case_ = do_center_crop snake_case_ = crop_size snake_case_ = do_normalize snake_case_ = image_mean snake_case_ = image_std snake_case_ = do_convert_rgb def snake_case__( self : Optional[int] ) ->Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def snake_case__( self : Tuple , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : List[Any]=False , _UpperCamelCase : int=False ) ->str: assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: snake_case_ = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 2_5_5 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: snake_case_ = [] for i in range(self.batch_size ): snake_case_, snake_case_ = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(2_5_5 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension snake_case_ = [Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1 ) ) for x in image_inputs] if torchify: snake_case_ = [torch.from_numpy(_UpperCamelCase ) for x in image_inputs] return image_inputs @require_torch @require_vision class snake_case_ ( __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = ChineseCLIPImageProcessor if is_vision_available() else None def snake_case__( self : int ) ->List[Any]: snake_case_ = ChineseCLIPImageProcessingTester(self , do_center_crop=_UpperCamelCase ) @property def snake_case__( self : str ) ->int: return self.image_processor_tester.prepare_image_processor_dict() def snake_case__( self : Optional[Any] ) ->str: snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''size''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''center_crop''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''do_convert_rgb''' ) ) def snake_case__( self : str ) ->Union[str, Any]: snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 2_2_4, '''width''': 2_2_4} ) self.assertEqual(image_processor.crop_size , {'''height''': 1_8, '''width''': 1_8} ) snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4} ) def snake_case__( self : str ) ->Tuple: pass def snake_case__( self : Any ) ->int: # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = self.image_processor_tester.prepare_inputs(equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched snake_case_ = image_processing(_UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__( self : List[Any] ) ->Optional[int]: # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ = self.image_processor_tester.prepare_inputs(equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched snake_case_ = image_processing(_UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__( self : Any ) ->Union[str, Any]: # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ = self.image_processor_tester.prepare_inputs(equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched snake_case_ = image_processing(_UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) @require_torch @require_vision class snake_case_ ( __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = ChineseCLIPImageProcessor if is_vision_available() else None def snake_case__( self : Tuple ) ->List[str]: snake_case_ = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=_UpperCamelCase ) snake_case_ = 3 @property def snake_case__( self : Optional[Any] ) ->Dict: return self.image_processor_tester.prepare_image_processor_dict() def snake_case__( self : int ) ->List[Any]: snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''size''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''center_crop''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''do_convert_rgb''' ) ) def snake_case__( self : int ) ->Dict: pass def snake_case__( self : Any ) ->List[Any]: # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = self.image_processor_tester.prepare_inputs(equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched snake_case_ = image_processing(_UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
39
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AltDiffusionPipeline SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__( self : Dict ) ->int: torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) snake_case_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) snake_case_ = CLIPTextModel(_UpperCamelCase ) snake_case_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) snake_case_ = 7_7 snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__( self : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0 ) ->Any: if str(_UpperCamelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCamelCase ) else: snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case__( self : Dict ) ->List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def snake_case__( self : List[str] ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case__( self : Dict ) ->Any: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = '''A photo of an astronaut''' snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : Tuple ) ->Union[str, Any]: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : int ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self : List[str] ) ->Tuple: # make sure here that pndm scheduler skips prk snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='''np''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : List[str] ) ->Optional[Any]: snake_case_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , num_inference_steps=2 , output_type='''numpy''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowerCAmelCase_ = get_tests_dir('''fixtures''') class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Tuple ) ->Optional[int]: # A mock response for an HTTP head request to emulate server down snake_case_ = mock.Mock() snake_case_ = 5_0_0 snake_case_ = {} snake_case_ = HTTPError snake_case_ = {} # Download this model to make sure it's in the cache. snake_case_ = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_UpperCamelCase ) as mock_head: snake_case_ = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def snake_case__( self : Any ) ->str: # This test is for deprecated behavior and can be removed in v5 snake_case_ = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def snake_case__( self : Union[str, Any] ) ->Union[str, Any]: with self.assertRaises(_UpperCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder snake_case_ = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) snake_case_ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(_UpperCamelCase ) @is_staging_test class snake_case_ ( unittest.TestCase ): '''simple docstring''' @classmethod def snake_case__( cls : Optional[int] ) ->Tuple: snake_case_ = TOKEN HfFolder.save_token(_UpperCamelCase ) @classmethod def snake_case__( cls : str ) ->List[str]: try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def snake_case__( self : Optional[Any] ) ->Union[str, Any]: snake_case_ = ViTImageProcessor.from_pretrained(_UpperCamelCase ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _UpperCamelCase , repo_id='''test-image-processor''' , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) def snake_case__( self : str ) ->List[str]: snake_case_ = ViTImageProcessor.from_pretrained(_UpperCamelCase ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _UpperCamelCase , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) def snake_case__( self : Tuple ) ->Union[str, Any]: CustomImageProcessor.register_for_auto_class() snake_case_ = CustomImageProcessor.from_pretrained(_UpperCamelCase ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) snake_case_ = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=_UpperCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
39
from math import factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( '''If a class of 40 students must be arranged into groups of''', f"""4 for group projects, there are {combinations(40, 4)} ways""", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f"""are {combinations(10, 3)} ways that first, second and""", '''third place can be awarded.''', )
39
1
from queue import PriorityQueue from typing import Any import numpy as np def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case_ = cst_fwd.get(SCREAMING_SNAKE_CASE__ , np.inf ) snake_case_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case_ = new_cost_f snake_case_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = -1 snake_case_ = set() snake_case_ = set() snake_case_ = {source: 0} snake_case_ = {destination: 0} snake_case_ = {source: None} snake_case_ = {destination: None} snake_case_ = PriorityQueue() snake_case_ = PriorityQueue() snake_case_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case_, snake_case_ = queue_forward.get() visited_forward.add(SCREAMING_SNAKE_CASE__ ) snake_case_, snake_case_ = queue_backward.get() visited_backward.add(SCREAMING_SNAKE_CASE__ ) snake_case_ = pass_and_relaxation( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) snake_case_ = pass_and_relaxation( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case_ = shortest_distance return shortest_path_distance lowerCAmelCase_ = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } lowerCAmelCase_ = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
39
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCAmelCase_ = sys.version_info >= (3, 10) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ): return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : bool @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int = 42 SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : Optional[bool] = None class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = "titi" SCREAMING_SNAKE_CASE : Any = "toto" class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = "titi" SCREAMING_SNAKE_CASE : Optional[Any] = "toto" SCREAMING_SNAKE_CASE : Any = 42 @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : BasicEnum = "toto" def snake_case__( self : Tuple ) ->List[str]: snake_case_ = BasicEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto" def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = MixedTypeEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[float] = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : Optional[str] = None SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] ) SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] ) SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] ) SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = field() SCREAMING_SNAKE_CASE : str = field() SCREAMING_SNAKE_CASE : BasicEnum = field() def snake_case__( self : Optional[Any] ) ->Tuple: snake_case_ = BasicEnum(self.required_enum ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : "BasicEnum" = field() SCREAMING_SNAKE_CASE : "Optional[bool]" = None SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : bool | None = None @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int | None = None SCREAMING_SNAKE_CASE : float | None = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : str | None = None SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] ) SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] ) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Dict , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser ) ->str: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _UpperCamelCase ) and yy.get('''choices''' , _UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_UpperCamelCase ) , yy['''type'''](_UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--bar''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--baz''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--flag''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((snake_case_), ) = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase ) self.assertFalse(example.flag ) def snake_case__( self : Tuple ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) snake_case_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case__( self : Tuple ) ->Union[str, Any]: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto" snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual( _UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def snake_case__( self : Optional[Any] ) ->List[Any]: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--bar''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) snake_case_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[] ) ) snake_case_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def snake_case__( self : Union[str, Any] ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--required_str''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Dict ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } snake_case_ = parser.parse_dict(_UpperCamelCase )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : int ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase ) def snake_case__( self : str ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_json''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_yaml''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Any ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase )
39
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) snake_case_ = DetaConfig( backbone_config=SCREAMING_SNAKE_CASE__ , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=SCREAMING_SNAKE_CASE__ , with_box_refine=SCREAMING_SNAKE_CASE__ , two_stage=SCREAMING_SNAKE_CASE__ , ) # set labels snake_case_ = '''huggingface/label-files''' if "o365" in model_name: snake_case_ = 366 snake_case_ = '''object365-id2label.json''' else: snake_case_ = 91 snake_case_ = '''coco-detection-id2label.json''' snake_case_ = num_labels snake_case_ = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) ) , '''r''' ) ) snake_case_ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.reduction.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.bias''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', F'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', F'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', F'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', F'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', F'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', F'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.weight''', F'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.weight''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.weight''', F'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.bias''', F'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = dct.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ = val def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): snake_case_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) snake_case_ = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) snake_case_ = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[:dim, :] snake_case_ = in_proj_bias[: dim] snake_case_ = in_proj_weight[ dim : dim * 2, : ] snake_case_ = in_proj_bias[ dim : dim * 2 ] snake_case_ = in_proj_weight[ -dim :, : ] snake_case_ = in_proj_bias[-dim :] # fmt: on def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # transformer decoder self-attention layers snake_case_ = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention snake_case_ = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case_ = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[:hidden_size, :] snake_case_ = in_proj_bias[:hidden_size] snake_case_ = in_proj_weight[ hidden_size : hidden_size * 2, : ] snake_case_ = in_proj_bias[hidden_size : hidden_size * 2] snake_case_ = in_proj_weight[-hidden_size:, :] snake_case_ = in_proj_bias[-hidden_size:] def __SCREAMING_SNAKE_CASE (): snake_case_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = get_deta_config(SCREAMING_SNAKE_CASE__ ) # load original state dict if model_name == "deta-swin-large": snake_case_ = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": snake_case_ = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(F'''Model name {model_name} not supported''' ) snake_case_ = torch.load(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(SCREAMING_SNAKE_CASE__ , param.shape ) # rename keys snake_case_ = create_rename_keys(SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) read_in_swin_q_k_v(SCREAMING_SNAKE_CASE__ , config.backbone_config ) read_in_decoder_q_k_v(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: snake_case_ = state_dict.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ = val if "input_proj" in key: snake_case_ = state_dict.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: snake_case_ = state_dict.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ = val # finally, create HuggingFace model and load state dict snake_case_ = DetaForObjectDetection(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(SCREAMING_SNAKE_CASE__ ) # load image processor snake_case_ = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image snake_case_ = prepare_img() snake_case_ = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ) snake_case_ = encoding['''pixel_values'''] snake_case_ = model(pixel_values.to(SCREAMING_SNAKE_CASE__ ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": snake_case_ = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) snake_case_ = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": snake_case_ = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) snake_case_ = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(SCREAMING_SNAKE_CASE__ ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(SCREAMING_SNAKE_CASE__ ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(F'''jozhang97/{model_name}''' ) processor.push_to_hub(F'''jozhang97/{model_name}''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCAmelCase_ = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
39
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Dict , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
39
1
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : Tuple ) ->Optional[Any]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def snake_case__( self : List[str] ) ->List[str]: snake_case_ = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(_UpperCamelCase ) def snake_case__( self : Tuple ) ->str: snake_case_ = self._create_example_records() snake_case_ = Dataset.from_list(_UpperCamelCase ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(_UpperCamelCase ): self.assertDictEqual(_UpperCamelCase , example_records[i] ) def snake_case__( self : Optional[int] ) ->Any: snake_case_ = self._create_example_records() snake_case_ = Dataset.from_list(_UpperCamelCase ) snake_case_ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def snake_case__( self : Dict ) ->Optional[int]: # checks what happens with missing columns snake_case_ = [{'''col_1''': 1}, {'''col_2''': '''x'''}] snake_case_ = Dataset.from_list(_UpperCamelCase ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def snake_case__( self : Dict ) ->str: # checks if the type can be inferred from the second record snake_case_ = [{'''col_1''': []}, {'''col_1''': [1, 2]}] snake_case_ = Dataset.from_list(_UpperCamelCase ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def snake_case__( self : Dict ) ->int: snake_case_ = Dataset.from_list([] ) self.assertEqual(len(_UpperCamelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
39
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv" SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]: snake_case_ = vocab_size snake_case_ = context_length snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case_ = layer_norm_epsilon snake_case_ = rescale_every snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
39
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case_ ( __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = KandinskyImgaImgPipeline SCREAMING_SNAKE_CASE : int = ["prompt", "image_embeds", "negative_image_embeds", "image"] SCREAMING_SNAKE_CASE : str = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] SCREAMING_SNAKE_CASE : List[Any] = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] SCREAMING_SNAKE_CASE : Optional[Any] = False @property def snake_case__( self : Union[str, Any] ) ->Tuple: return 3_2 @property def snake_case__( self : Any ) ->List[Any]: return 3_2 @property def snake_case__( self : Any ) ->Tuple: return self.time_input_dim @property def snake_case__( self : Any ) ->List[Any]: return self.time_input_dim * 4 @property def snake_case__( self : Dict ) ->List[Any]: return 1_0_0 @property def snake_case__( self : Optional[Any] ) ->Optional[int]: snake_case_ = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def snake_case__( self : int ) ->List[Any]: torch.manual_seed(0 ) snake_case_ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) snake_case_ = MultilingualCLIP(_UpperCamelCase ) snake_case_ = text_encoder.eval() return text_encoder @property def snake_case__( self : Union[str, Any] ) ->str: torch.manual_seed(0 ) snake_case_ = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } snake_case_ = UNetaDConditionModel(**_UpperCamelCase ) return model @property def snake_case__( self : int ) ->Dict: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case__( self : Any ) ->Dict: torch.manual_seed(0 ) snake_case_ = VQModel(**self.dummy_movq_kwargs ) return model def snake_case__( self : Tuple ) ->str: snake_case_ = self.dummy_text_encoder snake_case_ = self.dummy_tokenizer snake_case_ = self.dummy_unet snake_case_ = self.dummy_movq snake_case_ = { '''num_train_timesteps''': 1_0_0_0, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } snake_case_ = DDIMScheduler(**_UpperCamelCase ) snake_case_ = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def snake_case__( self : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple=0 ) ->Optional[Any]: snake_case_ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) snake_case_ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_UpperCamelCase ) # create init_image snake_case_ = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) if str(_UpperCamelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCamelCase ) else: snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 1_0, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def snake_case__( self : str ) ->str: snake_case_ = '''cpu''' snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**_UpperCamelCase ) snake_case_ = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = pipe(**self.get_dummy_inputs(_UpperCamelCase ) ) snake_case_ = output.images snake_case_ = pipe( **self.get_dummy_inputs(_UpperCamelCase ) , return_dict=_UpperCamelCase , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : str ) ->Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self : Dict ) ->Any: snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) snake_case_ = '''A red cartoon frog, 4k''' snake_case_ = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCamelCase ) snake_case_ = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) snake_case_ = pipeline.to(_UpperCamelCase ) pipeline.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case_, snake_case_ = pipe_prior( _UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() snake_case_ = pipeline( _UpperCamelCase , image=_UpperCamelCase , image_embeds=_UpperCamelCase , negative_image_embeds=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type='''np''' , ) snake_case_ = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase )
39
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) class snake_case_ : '''simple docstring''' def __init__( self : int , _UpperCamelCase : Optional[str] = None ) ->Tuple: snake_case_ = ( os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) snake_case_ = Extractor def snake_case__( self : Any , _UpperCamelCase : str ) ->str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" snake_case_ = os.path.abspath(_UpperCamelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) ) def snake_case__( self : int , _UpperCamelCase : str , _UpperCamelCase : bool ) ->bool: return force_extract or ( not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase )) ) def snake_case__( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : bool = False ) ->str: snake_case_ = self.extractor.infer_extractor_format(_UpperCamelCase ) if not extractor_format: return input_path snake_case_ = self._get_output_path(_UpperCamelCase ) if self._do_extract(_UpperCamelCase , _UpperCamelCase ): self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return output_path class snake_case_ ( __A ): '''simple docstring''' @classmethod @abstractmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : str ) ->bool: ... @staticmethod @abstractmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: ... class snake_case_ ( __A , __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[bytes] = [] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->List[Any]: with open(_UpperCamelCase , '''rb''' ) as f: return f.read(_UpperCamelCase ) @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if not magic_number: snake_case_ = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) try: snake_case_ = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase ) except OSError: return False return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) class snake_case_ ( __A ): '''simple docstring''' @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : Any ) ->bool: return tarfile.is_tarfile(_UpperCamelCase ) @staticmethod def snake_case__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) ->List[str]: def resolved(_UpperCamelCase : str ) -> str: return os.path.realpath(os.path.abspath(_UpperCamelCase ) ) def badpath(_UpperCamelCase : str , _UpperCamelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase ) def badlink(_UpperCamelCase : Tuple , _UpperCamelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link snake_case_ = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCamelCase ) snake_case_ = resolved(_UpperCamelCase ) for finfo in members: if badpath(finfo.name , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = tarfile.open(_UpperCamelCase ) tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) ) tar_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [b"\x1F\x8B"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with gzip.open(_UpperCamelCase , '''rb''' ) as gzip_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def snake_case__( cls : List[str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCamelCase , '''rb''' ) as fp: snake_case_ = _EndRecData(_UpperCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: snake_case_ = fp.read(_UpperCamelCase ) # CD is where we expect it to be if len(_UpperCamelCase ) == sizeCentralDir: snake_case_ = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with zipfile.ZipFile(_UpperCamelCase , '''r''' ) as zip_file: zip_file.extractall(_UpperCamelCase ) zip_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with lzma.open(_UpperCamelCase ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = rarfile.RarFile(_UpperCamelCase ) rf.extractall(_UpperCamelCase ) rf.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [b"\x28\xb5\x2F\xFD"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd snake_case_ = zstd.ZstdDecompressor() with open(_UpperCamelCase , '''rb''' ) as ifh, open(_UpperCamelCase , '''wb''' ) as ofh: dctx.copy_stream(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"\x42\x5A\x68"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with bza.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with pyazr.SevenZipFile(_UpperCamelCase , '''r''' ) as archive: archive.extractall(_UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x04\x22\x4D\x18"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def snake_case__( cls : List[Any] ) ->List[str]: return max( len(_UpperCamelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCamelCase , _UpperCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->Tuple: try: return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase ) except OSError: return b"" @classmethod def snake_case__( cls : Optional[Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bool = False ) ->bool: warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = cls.infer_extractor_format(_UpperCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def snake_case__( cls : int , _UpperCamelCase : Union[Path, str] ) ->str: # <Added version="2.4.0"/> snake_case_ = cls._get_magic_number_max_length() snake_case_ = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return extractor_format @classmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[BaseExtractor] = "deprecated" , ) ->None: os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase ) # Prevent parallel extractions snake_case_ = str(Path(_UpperCamelCase ).with_suffix('''.lock''' ) ) with FileLock(_UpperCamelCase ): shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = extractor if extractor != '''deprecated''' else extractor_format else: snake_case_ = cls.extractors[extractor_format] return extractor.extract(_UpperCamelCase , _UpperCamelCase ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=_UpperCamelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCamelCase ): return extractor.extract(_UpperCamelCase , _UpperCamelCase )
39
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
39
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
39
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AltDiffusionPipeline SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__( self : Dict ) ->int: torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) snake_case_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) snake_case_ = CLIPTextModel(_UpperCamelCase ) snake_case_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) snake_case_ = 7_7 snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__( self : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0 ) ->Any: if str(_UpperCamelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCamelCase ) else: snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case__( self : Dict ) ->List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def snake_case__( self : List[str] ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case__( self : Dict ) ->Any: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = '''A photo of an astronaut''' snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : Tuple ) ->Union[str, Any]: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : int ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self : List[str] ) ->Tuple: # make sure here that pndm scheduler skips prk snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='''np''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : List[str] ) ->Optional[Any]: snake_case_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , num_inference_steps=2 , output_type='''numpy''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
import re from filelock import FileLock try: import nltk lowerCAmelCase_ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): re.sub('''<n>''' , '''''' , SCREAMING_SNAKE_CASE__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE__ ) )
39
1
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) snake_case_ = sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
39
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [0 for i in range(r + 1 )] # nc0 = 1 snake_case_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case_ = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
39
1
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : torch.FloatTensor class snake_case_ ( __A , __A ): '''simple docstring''' @register_to_config def __init__( self : Optional[int] , _UpperCamelCase : int = 1_6 , _UpperCamelCase : int = 8_8 , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : int = 1 , _UpperCamelCase : float = 0.0 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "geglu" , _UpperCamelCase : bool = True , _UpperCamelCase : bool = True , ) ->Union[str, Any]: super().__init__() snake_case_ = num_attention_heads snake_case_ = attention_head_dim snake_case_ = num_attention_heads * attention_head_dim snake_case_ = in_channels snake_case_ = torch.nn.GroupNorm(num_groups=_UpperCamelCase , num_channels=_UpperCamelCase , eps=1e-6 , affine=_UpperCamelCase ) snake_case_ = nn.Linear(_UpperCamelCase , _UpperCamelCase ) # 3. Define transformers blocks snake_case_ = nn.ModuleList( [ BasicTransformerBlock( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , dropout=_UpperCamelCase , cross_attention_dim=_UpperCamelCase , activation_fn=_UpperCamelCase , attention_bias=_UpperCamelCase , double_self_attention=_UpperCamelCase , norm_elementwise_affine=_UpperCamelCase , ) for d in range(_UpperCamelCase ) ] ) snake_case_ = nn.Linear(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Tuple , _UpperCamelCase : Dict , _UpperCamelCase : Tuple=None , _UpperCamelCase : List[str]=None , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Union[str, Any]=1 , _UpperCamelCase : List[str]=None , _UpperCamelCase : bool = True , ) ->Union[str, Any]: snake_case_, snake_case_, snake_case_, snake_case_ = hidden_states.shape snake_case_ = batch_frames // num_frames snake_case_ = hidden_states snake_case_ = hidden_states[None, :].reshape(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) snake_case_ = self.norm(_UpperCamelCase ) snake_case_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , _UpperCamelCase , _UpperCamelCase ) snake_case_ = self.proj_in(_UpperCamelCase ) # 2. Blocks for block in self.transformer_blocks: snake_case_ = block( _UpperCamelCase , encoder_hidden_states=_UpperCamelCase , timestep=_UpperCamelCase , cross_attention_kwargs=_UpperCamelCase , class_labels=_UpperCamelCase , ) # 3. Output snake_case_ = self.proj_out(_UpperCamelCase ) snake_case_ = ( hidden_states[None, None, :] .reshape(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) snake_case_ = hidden_states.reshape(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case_ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=_UpperCamelCase )
39
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCAmelCase_ = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 13_10_72, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return torch.atana(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / math.pi * 2 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.sin(t * math.pi / 2 ) ** 2 snake_case_ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class snake_case_ ( __A ): '''simple docstring''' pass class snake_case_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : int ) ->Optional[int]: super().__init__() snake_case_ = DiffusionAttnUnetaD(_UpperCamelCase , n_attn_layers=4 ) snake_case_ = deepcopy(self.diffusion ) snake_case_ = torch.quasirandom.SobolEngine(1 , scramble=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = MODELS_MAP[model_name]['''url'''] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCAmelCase_ = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCAmelCase_ = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCAmelCase_ = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCAmelCase_ = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif name.startswith(SCREAMING_SNAKE_CASE__ ): return [name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 ): snake_case_ = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) snake_case_ = 0 if string.startswith('''net.3.''' ): depth += 1 snake_case_ = string[6:] elif string.startswith('''net.''' ): snake_case_ = string[4:] while string.startswith('''main.7.''' ): depth += 1 snake_case_ = string[7:] if string.startswith('''main.''' ): snake_case_ = string[5:] # mid block if string[:2].isdigit(): snake_case_ = string[:2] snake_case_ = string[2:] else: snake_case_ = string[0] snake_case_ = string[1:] if depth == max_depth: snake_case_ = MID_NUM_TO_LAYER[layer_num] snake_case_ = '''mid_block''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) < 7: snake_case_ = DOWN_NUM_TO_LAYER[layer_num] snake_case_ = F'''down_blocks.{depth}''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) > 7: snake_case_ = UP_NUM_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: snake_case_ = DEPTH_0_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - 1}''' if int(SCREAMING_SNAKE_CASE__ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) snake_case_ = string_left[1:] if "resnets" in new_layer: snake_case_ = convert_resconv_naming(SCREAMING_SNAKE_CASE__ ) elif "attentions" in new_layer: snake_case_ = convert_attn_naming(SCREAMING_SNAKE_CASE__ ) snake_case_ = new_string_left if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = prefix + '''.''' + new_layer + '''.''' + string_left else: snake_case_ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue snake_case_ = rename(SCREAMING_SNAKE_CASE__ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = transform_conv_attns(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ = v return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) == 1: if len(v.shape ) == 3: # weight snake_case_ = v[:, :, 0] else: # bias snake_case_ = v else: # qkv matrices snake_case_ = v.shape[0] snake_case_ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: snake_case_ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: snake_case_ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) snake_case_ = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' snake_case_ = download(SCREAMING_SNAKE_CASE__ ) snake_case_ = MODELS_MAP[model_name]['''sample_rate'''] snake_case_ = MODELS_MAP[model_name]['''sample_size'''] snake_case_ = Object() snake_case_ = sample_size snake_case_ = sample_rate snake_case_ = 0 snake_case_ = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE__ , sample_rate=SCREAMING_SNAKE_CASE__ ) snake_case_ = diffusers_model.state_dict() snake_case_ = DiffusionUncond(SCREAMING_SNAKE_CASE__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE__ )['''state_dict'''] ) snake_case_ = orig_model.diffusion_ema.eval() snake_case_ = orig_model.state_dict() snake_case_ = rename_orig_weights(SCREAMING_SNAKE_CASE__ ) snake_case_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) snake_case_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE__ ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith('''kernel''' ) for k in list(SCREAMING_SNAKE_CASE__ ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": snake_case_ = value.squeeze() snake_case_ = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = 100 snake_case_ = 33 snake_case_ = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE__ )[:-1] snake_case_ = get_crash_schedule(SCREAMING_SNAKE_CASE__ ) snake_case_ = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(33 ) snake_case_ = pipe(num_inference_steps=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).audios snake_case_ = sampling.iplms_sample(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {} ) snake_case_ = generated.clamp(-1 , 1 ) snake_case_ = (generated - audio).abs().sum() snake_case_ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , SCREAMING_SNAKE_CASE__ ) print('''Diff max''' , SCREAMING_SNAKE_CASE__ ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCAmelCase_ = parser.parse_args() main(args)
39
1
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str=2 , _UpperCamelCase : Dict=8 , _UpperCamelCase : str=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Any=True , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : Any=1_6 , _UpperCamelCase : List[str]=5 , _UpperCamelCase : Optional[Any]=2 , _UpperCamelCase : str=3_6 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : str=0.0 , _UpperCamelCase : Any=5_1_2 , _UpperCamelCase : int=1_6 , _UpperCamelCase : List[Any]=2 , _UpperCamelCase : Tuple=0.02 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=4 , _UpperCamelCase : Dict=None , ) ->Optional[Any]: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def snake_case__( self : List[Any] ) ->List[Any]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self : Optional[int] ) ->Optional[Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def snake_case__( self : List[Any] ) ->str: snake_case_ = self.get_config() snake_case_ = 3_0_0 return config def snake_case__( self : List[str] ) ->Optional[Any]: ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = self.prepare_config_and_inputs() snake_case_ = True snake_case_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case__( self : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : int , _UpperCamelCase : Dict ) ->Dict: snake_case_ = MraModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase , token_type_ids=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Any , ) ->Optional[Any]: snake_case_ = True snake_case_ = MraModel(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , ) snake_case_ = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , ) snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] ) ->str: snake_case_ = MraForMaskedLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] ) ->Any: snake_case_ = MraForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__( self : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : List[str] ) ->Optional[Any]: snake_case_ = self.num_labels snake_case_ = MraForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__( self : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : str , _UpperCamelCase : Optional[int] ) ->int: snake_case_ = self.num_labels snake_case_ = MraForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any ) ->Any: snake_case_ = self.num_choices snake_case_ = MraForMultipleChoice(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__( self : str ) ->List[str]: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_ ( __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : List[str] = () def snake_case__( self : List[str] ) ->Optional[int]: snake_case_ = MraModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : Dict ) ->Optional[int]: self.config_tester.run_common_tests() def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : int ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCamelCase ) def snake_case__( self : List[str] ) ->Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCamelCase ) def snake_case__( self : Any ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) def snake_case__( self : str ) ->List[str]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCamelCase ) def snake_case__( self : int ) ->Any: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) @slow def snake_case__( self : int ) ->str: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = MraModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def snake_case__( self : Union[str, Any] ) ->Tuple: return @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__( self : List[Any] ) ->Optional[Any]: snake_case_ = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) snake_case_ = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): snake_case_ = model(_UpperCamelCase )[0] snake_case_ = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def snake_case__( self : List[str] ) ->int: snake_case_ = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) snake_case_ = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): snake_case_ = model(_UpperCamelCase )[0] snake_case_ = 5_0_2_6_5 snake_case_ = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) snake_case_ = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): snake_case_ = model(_UpperCamelCase )[0] snake_case_ = 5_0_2_6_5 snake_case_ = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) )
39
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv" SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]: snake_case_ = vocab_size snake_case_ = context_length snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case_ = layer_norm_epsilon snake_case_ = rescale_every snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
39
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->Any: snake_case_ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case_ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case_ = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case_ = output[output != -float('''inf''' )] snake_case_ = tf.cast( tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-12 ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @require_tf class snake_case_ ( unittest.TestCase , __A ): '''simple docstring''' if is_tf_available(): SCREAMING_SNAKE_CASE : Optional[int] = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def snake_case__( self : List[Any] ) ->Optional[int]: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 2 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->List[Any]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) ->List[Any]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2, 0], [1_0_2, 1_0_3]] snake_case_ = [[1, 0], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for batch_size in range(1 , len(_UpperCamelCase ) + 1 ): snake_case_ = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow def snake_case__( self : List[str] ) ->int: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 1 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : Any ) ->List[str]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) ->Optional[int]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2], [1_0_2, 1_0_3]] snake_case_ = [[1], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for input_row in range(len(_UpperCamelCase ) ): snake_case_ = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow @require_tensorflow_text def snake_case__( self : Optional[Any] ) ->List[Any]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_UpperCamelCase ) class snake_case_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ) ->List[Any]: super().__init__() snake_case_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , '''spiece.model''' ) , '''rb''' ).read() ) snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->List[Any]: snake_case_ = self.tokenizer.tokenize(_UpperCamelCase ) snake_case_, snake_case_ = text.pad_model_inputs( _UpperCamelCase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) snake_case_ = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) return self.tokenizer.detokenize(_UpperCamelCase ) snake_case_ = CompleteSentenceTransformer() snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) snake_case_ = complete_model(_UpperCamelCase ) snake_case_ = tf.keras.Model(_UpperCamelCase , _UpperCamelCase ) keras_model.save(_UpperCamelCase ) def snake_case__( self : Any ) ->List[Any]: # Has PT equivalent: this test relies on random sampling snake_case_ = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 1_0, '''temperature''': 0.7, } snake_case_ = 1_4 snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = '''Hello, my dog is cute and''' snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''tf''' ) snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case_ = [6_3_8, 1_9_8] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def snake_case__( self : str ) ->Dict: # Has PT equivalent: ample use of framework-specific code snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = '''Hugging Face is a technology company based in New York and Paris.''' snake_case_ = bart_tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids snake_case_ = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Optional[int] ) ->List[str]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) ) class snake_case_ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , **_UpperCamelCase : Tuple ) ->Optional[Any]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() with self.assertRaises(_UpperCamelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_UpperCamelCase , foo='''bar''' )
39
1
from argparse import ArgumentParser from . import BaseTransformersCLICommand def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class snake_case_ ( __A ): '''simple docstring''' @staticmethod def snake_case__( _UpperCamelCase : ArgumentParser ) ->List[Any]: snake_case_ = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=_UpperCamelCase , default=_UpperCamelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=_UpperCamelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=_UpperCamelCase ) def __init__( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : bool , _UpperCamelCase : bool ) ->Any: snake_case_ = model snake_case_ = cache snake_case_ = force snake_case_ = trust_remote_code def snake_case__( self : str ) ->Dict: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
39
import unittest from transformers import DonutProcessor lowerCAmelCase_ = '''naver-clova-ix/donut-base''' class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = DonutProcessor.from_pretrained(_UpperCamelCase ) def snake_case__( self : Dict ) ->str: snake_case_ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } snake_case_ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) snake_case_ = self.processor.tokenajson(_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , _UpperCamelCase )
39
1
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = "The quick brown fox jumps over the lazy dog" , ): snake_case_ = set() # Replace all the whitespace in our sentence snake_case_ = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE__ ) == 26 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = "The quick brown fox jumps over the lazy dog" , ): snake_case_ = [False] * 26 for char in input_str: if char.islower(): snake_case_ = True elif char.isupper(): snake_case_ = True return all(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = "The quick brown fox jumps over the lazy dog" , ): return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def __SCREAMING_SNAKE_CASE (): from timeit import timeit snake_case_ = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=SCREAMING_SNAKE_CASE__ ) ) print(timeit('''is_pangram_faster()''' , setup=SCREAMING_SNAKE_CASE__ ) ) print(timeit('''is_pangram_fastest()''' , setup=SCREAMING_SNAKE_CASE__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
39
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not nums: raise ValueError('''List is empty''' ) return sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
39
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not nums: raise ValueError('''List is empty''' ) return sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
39
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : List[str] ) ->str: snake_case_ = inspect.getfile(accelerate.test_utils ) snake_case_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 snake_case_ = test_metrics @require_cpu def snake_case__( self : str ) ->int: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case__( self : Union[str, Any] ) ->Any: debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case__( self : List[Any] ) ->Tuple: self.test_metrics.main() @require_multi_gpu def snake_case__( self : Any ) ->Union[str, Any]: print(f'''Found {torch.cuda.device_count()} devices.''' ) snake_case_ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
39
1
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = tmp_path / '''cache''' snake_case_ = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = tmp_path / '''cache''' snake_case_ = {'''text''': '''string'''} snake_case_ = features.copy() if features else default_expected_features snake_case_ = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = tmp_path / '''cache''' snake_case_ = {'''text''': '''string'''} snake_case_ = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [text_path] snake_case_ = tmp_path / '''cache''' snake_case_ = {'''text''': '''string'''} snake_case_ = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=("train",) ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = tmp_path / '''cache''' snake_case_ = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ = TextDatasetReader({'''train''': text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ = {'''text''': '''string'''} snake_case_ = features.copy() if features else default_expected_features snake_case_ = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ = TextDatasetReader({'''train''': text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if split: snake_case_ = {split: text_path} else: snake_case_ = '''train''' snake_case_ = {'''train''': text_path, '''test''': text_path} snake_case_ = tmp_path / '''cache''' snake_case_ = {'''text''': '''string'''} snake_case_ = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
39
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = "informer" SCREAMING_SNAKE_CASE : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Dict , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "student_t" , _UpperCamelCase : str = "nll" , _UpperCamelCase : int = 1 , _UpperCamelCase : List[int] = None , _UpperCamelCase : Optional[Union[str, bool]] = "mean" , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : int = 6_4 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.05 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : Dict=True , _UpperCamelCase : str = "prob" , _UpperCamelCase : int = 5 , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Optional[int]: # time series specific configuration snake_case_ = prediction_length snake_case_ = context_length or prediction_length snake_case_ = distribution_output snake_case_ = loss snake_case_ = input_size snake_case_ = num_time_features snake_case_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case_ = scaling snake_case_ = num_dynamic_real_features snake_case_ = num_static_real_features snake_case_ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = cardinality else: snake_case_ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = embedding_dimension else: snake_case_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ = num_parallel_samples # Transformer architecture configuration snake_case_ = input_size * len(self.lags_sequence ) + self._number_of_features snake_case_ = d_model snake_case_ = encoder_attention_heads snake_case_ = decoder_attention_heads snake_case_ = encoder_ffn_dim snake_case_ = decoder_ffn_dim snake_case_ = encoder_layers snake_case_ = decoder_layers snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = activation_function snake_case_ = init_std snake_case_ = use_cache # Informer snake_case_ = attention_type snake_case_ = sampling_factor snake_case_ = distil super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def snake_case__( self : Optional[Any] ) ->int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
39
1
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = False, False, False @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" SCREAMING_SNAKE_CASE : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) SCREAMING_SNAKE_CASE : str = field(default="Audio" , init=__A , repr=__A ) def __call__( self : Dict ) ->Any: return self.pa_type def snake_case__( self : Tuple , _UpperCamelCase : Union[str, bytes, dict] ) ->dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(_UpperCamelCase , _UpperCamelCase ): return {"bytes": None, "path": value} elif isinstance(_UpperCamelCase , _UpperCamelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes snake_case_ = BytesIO() sf.write(_UpperCamelCase , value['''array'''] , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) snake_case_ = np.frombuffer(value['''bytes'''] , dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: snake_case_ = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''' ).astype(np.floataa ) / 3_2_7_6_7 snake_case_ = BytesIO(bytes() ) sf.write(_UpperCamelCase , _UpperCamelCase , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def snake_case__( self : Optional[int] , _UpperCamelCase : dict , _UpperCamelCase : Optional[Dict[str, Union[str, bool, None]]] = None ) ->dict: if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) snake_case_, snake_case_ = (value['''path'''], BytesIO(value['''bytes'''] )) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err snake_case_ = xsplitext(_UpperCamelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) if file is None: snake_case_ = token_per_repo_id or {} snake_case_ = path.split('''::''' )[-1] try: snake_case_ = string_to_dict(_UpperCamelCase , config.HUB_DATASETS_URL )['''repo_id'''] snake_case_ = token_per_repo_id[repo_id] except (ValueError, KeyError): snake_case_ = None with xopen(_UpperCamelCase , '''rb''' , use_auth_token=_UpperCamelCase ) as f: snake_case_, snake_case_ = sf.read(_UpperCamelCase ) else: snake_case_, snake_case_ = sf.read(_UpperCamelCase ) snake_case_ = array.T if self.mono: snake_case_ = librosa.to_mono(_UpperCamelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: snake_case_ = librosa.resample(_UpperCamelCase , orig_sr=_UpperCamelCase , target_sr=self.sampling_rate ) snake_case_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def snake_case__( self : Optional[Any] ) ->Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def snake_case__( self : Any , _UpperCamelCase : Union[pa.StringArray, pa.StructArray] ) ->pa.StructArray: if pa.types.is_string(storage.type ): snake_case_ = pa.array([None] * len(_UpperCamelCase ) , type=pa.binary() ) snake_case_ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): snake_case_ = pa.array([None] * len(_UpperCamelCase ) , type=pa.string() ) snake_case_ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): snake_case_ = pa.array([Audio().encode_example(_UpperCamelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: snake_case_ = storage.field('''bytes''' ) else: snake_case_ = pa.array([None] * len(_UpperCamelCase ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: snake_case_ = storage.field('''path''' ) else: snake_case_ = pa.array([None] * len(_UpperCamelCase ) , type=pa.string() ) snake_case_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) return array_cast(_UpperCamelCase , self.pa_type ) def snake_case__( self : List[Any] , _UpperCamelCase : pa.StructArray ) ->pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_UpperCamelCase : Any ): with xopen(_UpperCamelCase , '''rb''' ) as f: snake_case_ = f.read() return bytes_ snake_case_ = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) snake_case_ = pa.array( [os.path.basename(_UpperCamelCase ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) snake_case_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(_UpperCamelCase , self.pa_type )
39
import cmath import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) # Convert voltage and current to rectangular form snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
39
1
from pathlib import Path import numpy as np from PIL import Image def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_, snake_case_, snake_case_ = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return (gray > 127) & (gray <= 255) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = np.zeros_like(SCREAMING_SNAKE_CASE__ ) snake_case_ = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image snake_case_ = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): snake_case_ = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() snake_case_ = int(summation > 0 ) return output if __name__ == "__main__": # read original image lowerCAmelCase_ = Path(__file__).resolve().parent / '''image_data''' / '''lena.jpg''' lowerCAmelCase_ = np.array(Image.open(lena_path)) # kernel to be applied lowerCAmelCase_ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) lowerCAmelCase_ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image lowerCAmelCase_ = Image.fromarray(output).convert('''RGB''') pil_img.save('''result_dilation.png''')
39
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=1_3 , _UpperCamelCase : str=7 , _UpperCamelCase : int=True , _UpperCamelCase : Dict=True , _UpperCamelCase : int=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : str=3_2 , _UpperCamelCase : str=5 , _UpperCamelCase : str=4 , _UpperCamelCase : int=3_7 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : str=5_1_2 , _UpperCamelCase : Optional[int]=1_6 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Any=0.02 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : str=None , ) ->Dict: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def snake_case__( self : str ) ->List[Any]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self : List[str] ) ->Tuple: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) ->Dict: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , ) ->Optional[int]: snake_case_ = BioGptForCausalLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , *_UpperCamelCase : List[Any] ) ->Union[str, Any]: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # create attention mask snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) snake_case_ = self.seq_length // 2 snake_case_ = 0 # first forward pass snake_case_, snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids snake_case_ = ids_tensor((1,) , _UpperCamelCase ).item() + 1 snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) snake_case_ = random_other_next_tokens # append to next input_ids and attn_mask snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCamelCase )] , dim=1 , ) # get two different outputs snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , past_key_values=_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , *_UpperCamelCase : List[Any] ) ->int: snake_case_ = BioGptModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval() snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) # first forward pass snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase ) snake_case_, snake_case_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[ '''last_hidden_state''' ] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , *_UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=False ) ->Dict: snake_case_ = BioGptForCausalLM(_UpperCamelCase ) model.to(_UpperCamelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def snake_case__( self : List[Any] , _UpperCamelCase : Optional[int] , *_UpperCamelCase : Dict ) ->Dict: snake_case_ = BioGptModel(_UpperCamelCase ) snake_case_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def snake_case__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , *_UpperCamelCase : List[str] ) ->int: snake_case_ = self.num_labels snake_case_ = BioGptForTokenClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = (BioGptForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Optional[Any] = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Tuple = False def snake_case__( self : List[str] ) ->Union[str, Any]: snake_case_ = BioGptModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : str ) ->int: self.config_tester.run_common_tests() def snake_case__( self : str ) ->Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_UpperCamelCase , gradient_checkpointing=_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCamelCase ) def snake_case__( self : List[Any] ) ->Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCamelCase ) @slow def snake_case__( self : int ) ->Optional[Any]: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = '''left''' # Define PAD Token = EOS Token = 50256 snake_case_ = tokenizer.eos_token snake_case_ = model.config.eos_token_id # use different length sentences to test batching snake_case_ = [ '''Hello, my dog is a little''', '''Today, I''', ] snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase ) snake_case_ = inputs['''input_ids'''].to(_UpperCamelCase ) snake_case_ = model.generate( input_ids=_UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(_UpperCamelCase ) , ) snake_case_ = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase ) snake_case_ = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() snake_case_ = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings ) snake_case_ = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] ) @slow def snake_case__( self : Optional[int] ) ->List[str]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = BioGptModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__( self : str ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = '''multi_label_classification''' snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__( self : int ) ->Any: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) snake_case_ = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) snake_case_ = model(_UpperCamelCase )[0] snake_case_ = 4_2_3_8_4 snake_case_ = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def snake_case__( self : List[str] ) ->Optional[int]: snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_UpperCamelCase ) snake_case_ = model.generate( **_UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=_UpperCamelCase , ) snake_case_ = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(_UpperCamelCase , _UpperCamelCase )
39
1
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->Any: snake_case_ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case_ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case_ = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case_ = output[output != -float('''inf''' )] snake_case_ = tf.cast( tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-12 ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @require_tf class snake_case_ ( unittest.TestCase , __A ): '''simple docstring''' if is_tf_available(): SCREAMING_SNAKE_CASE : Optional[int] = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def snake_case__( self : List[Any] ) ->Optional[int]: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 2 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->List[Any]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) ->List[Any]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2, 0], [1_0_2, 1_0_3]] snake_case_ = [[1, 0], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for batch_size in range(1 , len(_UpperCamelCase ) + 1 ): snake_case_ = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow def snake_case__( self : List[str] ) ->int: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 1 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : Any ) ->List[str]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) ->Optional[int]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2], [1_0_2, 1_0_3]] snake_case_ = [[1], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for input_row in range(len(_UpperCamelCase ) ): snake_case_ = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow @require_tensorflow_text def snake_case__( self : Optional[Any] ) ->List[Any]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_UpperCamelCase ) class snake_case_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ) ->List[Any]: super().__init__() snake_case_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , '''spiece.model''' ) , '''rb''' ).read() ) snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->List[Any]: snake_case_ = self.tokenizer.tokenize(_UpperCamelCase ) snake_case_, snake_case_ = text.pad_model_inputs( _UpperCamelCase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) snake_case_ = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) return self.tokenizer.detokenize(_UpperCamelCase ) snake_case_ = CompleteSentenceTransformer() snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) snake_case_ = complete_model(_UpperCamelCase ) snake_case_ = tf.keras.Model(_UpperCamelCase , _UpperCamelCase ) keras_model.save(_UpperCamelCase ) def snake_case__( self : Any ) ->List[Any]: # Has PT equivalent: this test relies on random sampling snake_case_ = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 1_0, '''temperature''': 0.7, } snake_case_ = 1_4 snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = '''Hello, my dog is cute and''' snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''tf''' ) snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case_ = [6_3_8, 1_9_8] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def snake_case__( self : str ) ->Dict: # Has PT equivalent: ample use of framework-specific code snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = '''Hugging Face is a technology company based in New York and Paris.''' snake_case_ = bart_tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids snake_case_ = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Optional[int] ) ->List[str]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) ) class snake_case_ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , **_UpperCamelCase : Tuple ) ->Optional[Any]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() with self.assertRaises(_UpperCamelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_UpperCamelCase , foo='''bar''' )
39
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) snake_case_ = (boundary[1] - boundary[0]) / steps snake_case_ = boundary[0] snake_case_ = boundary[1] snake_case_ = make_points(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = 0.0 y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) for i in x_i: # print(i) y += h * f(SCREAMING_SNAKE_CASE__ ) y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) return y def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = a + h while x < (b - h): yield x snake_case_ = x + h def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # enter your function here snake_case_ = (x - 0) * (x - 0) return y def __SCREAMING_SNAKE_CASE (): snake_case_ = 0.0 # Lower bound of integration snake_case_ = 1.0 # Upper bound of integration snake_case_ = 10.0 # define number of steps or resolution snake_case_ = [a, b] # define boundary of integration snake_case_ = method_a(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
39
1
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , SCREAMING_SNAKE_CASE__ , ) if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): return image elif isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): snake_case_ = [image] if isinstance(image[0] , PIL.Image.Image ): snake_case_, snake_case_ = image[0].size snake_case_, snake_case_ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 snake_case_ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] snake_case_ = np.concatenate(SCREAMING_SNAKE_CASE__ , axis=0 ) snake_case_ = np.array(SCREAMING_SNAKE_CASE__ ).astype(np.floataa ) / 255.0 snake_case_ = image.transpose(0 , 3 , 1 , 2 ) snake_case_ = 2.0 * image - 1.0 snake_case_ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) elif isinstance(image[0] , torch.Tensor ): snake_case_ = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) return image def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): return mask elif isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): snake_case_ = [mask] if isinstance(mask[0] , PIL.Image.Image ): snake_case_, snake_case_ = mask[0].size snake_case_, snake_case_ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 snake_case_ = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] snake_case_ = np.concatenate(SCREAMING_SNAKE_CASE__ , axis=0 ) snake_case_ = mask.astype(np.floataa ) / 255.0 snake_case_ = 0 snake_case_ = 1 snake_case_ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) elif isinstance(mask[0] , torch.Tensor ): snake_case_ = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) return mask class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : UNetaDModel SCREAMING_SNAKE_CASE : RePaintScheduler def __init__( self : str , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) ->Tuple: super().__init__() self.register_modules(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) @torch.no_grad() def __call__( self : Union[str, Any] , _UpperCamelCase : Union[torch.Tensor, PIL.Image.Image] , _UpperCamelCase : Union[torch.Tensor, PIL.Image.Image] , _UpperCamelCase : int = 2_5_0 , _UpperCamelCase : float = 0.0 , _UpperCamelCase : int = 1_0 , _UpperCamelCase : int = 1_0 , _UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCamelCase : Optional[str] = "pil" , _UpperCamelCase : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: snake_case_ = image snake_case_ = _preprocess_image(_UpperCamelCase ) snake_case_ = original_image.to(device=self.device , dtype=self.unet.dtype ) snake_case_ = _preprocess_mask(_UpperCamelCase ) snake_case_ = mask_image.to(device=self.device , dtype=self.unet.dtype ) snake_case_ = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_UpperCamelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) snake_case_ = original_image.shape snake_case_ = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , self.device ) snake_case_ = eta snake_case_ = self.scheduler.timesteps[0] + 1 snake_case_ = generator[0] if isinstance(_UpperCamelCase , _UpperCamelCase ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual snake_case_ = self.unet(_UpperCamelCase , _UpperCamelCase ).sample # compute previous image: x_t -> x_t-1 snake_case_ = self.scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample else: # compute the reverse: x_t-1 -> x_t snake_case_ = self.scheduler.undo_step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case_ = t snake_case_ = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCamelCase )
39
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / '''model_card_template.md''' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None ): snake_case_ = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if token is None: snake_case_ = HfFolder.get_token() if organization is None: snake_case_ = whoami(SCREAMING_SNAKE_CASE__ )['''name'''] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(SCREAMING_SNAKE_CASE__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , '''hub_token''' ) else None snake_case_ = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) snake_case_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ = os.path.join(args.output_dir , '''README.md''' ) model_card.save(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) snake_case_ = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE__ ) if search is None: return None snake_case_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, '''diffusers''') def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if new_cache_dir is None: snake_case_ = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ = old_diffusers_cache snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ '''the directory exists and can be written to.''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if variant is not None: snake_case_ = weights_name.split('''.''' ) snake_case_ = splits[:-1] + [variant] + splits[-1:] snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ ) return weights_name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ): snake_case_ = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' '''this model name. Check the model page at ''' F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
39
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) // 2 # choose the middle 3 elements snake_case_ = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
39
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt" def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) snake_case_ = backbone_featmap_shape snake_case_ = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: snake_case_ = None snake_case_ = None snake_case_ = [] snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) snake_case_ = readout_type snake_case_ = reassemble_factors snake_case_ = neck_hidden_sizes snake_case_ = fusion_hidden_size snake_case_ = head_in_index snake_case_ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = semantic_loss_ignore_index snake_case_ = semantic_classifier_dropout def snake_case__( self : List[str] ) ->List[Any]: snake_case_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
39
1
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(__A )} , ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) SCREAMING_SNAKE_CASE : bool = field( default=__A , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) SCREAMING_SNAKE_CASE : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) SCREAMING_SNAKE_CASE : bool = field( default=__A , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def snake_case__( self : Optional[Any] ) ->Any: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__A , metadata={"help": "The input training data file (a text file)."} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "An optional input train ref data file for whole word masking in Chinese."} , ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__A , metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."} , ) SCREAMING_SNAKE_CASE : bool = field( default=__A , metadata={"help": "Overwrite the cached training and evaluation sets"} ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=5 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=__A , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated. Default to the max input length of the model." ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=__A , metadata={"help": "The number of processes to use for the preprocessing."} , ) SCREAMING_SNAKE_CASE : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) SCREAMING_SNAKE_CASE : bool = field( default=__A , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) def snake_case__( self : Tuple ) ->Optional[int]: if self.train_file is not None: snake_case_ = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: snake_case_ = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ , '''r''' , encoding='''utf-8''' ) as f: snake_case_ = [json.loads(SCREAMING_SNAKE_CASE__ ) for line in f.read().splitlines() if (len(SCREAMING_SNAKE_CASE__ ) > 0 and not line.isspace())] assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) snake_case_ = {c: dataset[c] for c in dataset.column_names} snake_case_ = refs return Dataset.from_dict(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_, snake_case_, snake_case_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_, snake_case_, snake_case_ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. snake_case_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , SCREAMING_SNAKE_CASE__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case_ = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): snake_case_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''train[:{data_args.validation_split_percentage}%]''' , ) snake_case_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''train[{data_args.validation_split_percentage}%:]''' , ) else: snake_case_ = {} if data_args.train_file is not None: snake_case_ = data_args.train_file if data_args.validation_file is not None: snake_case_ = data_args.validation_file snake_case_ = data_args.train_file.split('''.''' )[-1] if extension == "txt": snake_case_ = '''text''' snake_case_ = load_dataset(SCREAMING_SNAKE_CASE__ , data_files=SCREAMING_SNAKE_CASE__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: snake_case_ = AutoConfig.from_pretrained(model_args.config_name , **SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: snake_case_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ ) else: snake_case_ = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) snake_case_ = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: snake_case_ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: snake_case_ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: snake_case_ = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) snake_case_ = AutoModelForMaskedLM.from_config(SCREAMING_SNAKE_CASE__ ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: snake_case_ = datasets['''train'''].column_names else: snake_case_ = datasets['''validation'''].column_names snake_case_ = '''text''' if '''text''' in column_names else column_names[0] snake_case_ = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(SCREAMING_SNAKE_CASE__ ): # Remove empty lines snake_case_ = [line for line in examples['''text'''] if len(SCREAMING_SNAKE_CASE__ ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=data_args.max_seq_length ) snake_case_ = datasets.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: snake_case_ = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: snake_case_ = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer snake_case_ = data_args.train_ref_file or data_args.validation_ref_file if has_ref: snake_case_ = False # Data collator # This one will take care of randomly masking the tokens. snake_case_ = DataCollatorForWholeWordMask(tokenizer=SCREAMING_SNAKE_CASE__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer snake_case_ = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: if last_checkpoint is not None: snake_case_ = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): snake_case_ = model_args.model_name_or_path else: snake_case_ = None snake_case_ = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() # Saves the tokenizer too for easy upload snake_case_ = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__ , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation snake_case_ = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) snake_case_ = trainer.evaluate() snake_case_ = math.exp(eval_output['''eval_loss'''] ) snake_case_ = perplexity snake_case_ = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) return results def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
39
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = '''pytorch_model.bin''' @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "A csv or a json file containing the validation data."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "The name of the task to train on."} , ) SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field( default=__A , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=__A , metadata={"help": "Random seed for initialization."} , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case_ = dataset.filter(lambda SCREAMING_SNAKE_CASE__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case_ = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) ) print(SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = dataset.remove_columns(['''label''', '''probability'''] ) snake_case_ = dataset.rename_column('''prediction''' , '''label''' ) snake_case_ = dataset.map(lambda SCREAMING_SNAKE_CASE__ : {"label": idalabel[example["label"]]} ) snake_case_ = dataset.shuffle(seed=args.seed ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) else: dataset.to_json(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): snake_case_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case_ = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ ) snake_case_ = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ , infer_file=SCREAMING_SNAKE_CASE__ ) snake_case_ = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ ) snake_case_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(SCREAMING_SNAKE_CASE__ ).items(): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Sanity checks snake_case_ = {} snake_case_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case_ = args.train_file snake_case_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case_ = args.eval_file for key in data_files: snake_case_ = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: snake_case_ = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) snake_case_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format snake_case_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = None snake_case_ = None snake_case_ = 0 snake_case_ = False # Show the progress bar snake_case_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case_ = data_dir_format(SCREAMING_SNAKE_CASE__ ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-1''' ) snake_case_ = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): arguments_dict.update({key: value} ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-2''' ) # Update arguments_dict snake_case_ = model_path snake_case_ = data_files['''train'''] snake_case_ = current_output_dir snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = iteration snake_case_ = data_dir_format(iteration + 1 ) snake_case_ = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) ) snake_case_ = config.idalabel snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-checkpoint.json''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: snake_case_ = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Loading the dataset from local csv or json files. snake_case_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] snake_case_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case_ = eval_result if best_iteration is None: snake_case_ = new_iteration snake_case_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case_ = new_iteration snake_case_ = new_eval_result snake_case_ = 0 else: if new_eval_result == best_eval_result: snake_case_ = new_iteration snake_case_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE__ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , )
39
1
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) class snake_case_ : '''simple docstring''' def __init__( self : int , _UpperCamelCase : Optional[str] = None ) ->Tuple: snake_case_ = ( os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) snake_case_ = Extractor def snake_case__( self : Any , _UpperCamelCase : str ) ->str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" snake_case_ = os.path.abspath(_UpperCamelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) ) def snake_case__( self : int , _UpperCamelCase : str , _UpperCamelCase : bool ) ->bool: return force_extract or ( not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase )) ) def snake_case__( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : bool = False ) ->str: snake_case_ = self.extractor.infer_extractor_format(_UpperCamelCase ) if not extractor_format: return input_path snake_case_ = self._get_output_path(_UpperCamelCase ) if self._do_extract(_UpperCamelCase , _UpperCamelCase ): self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return output_path class snake_case_ ( __A ): '''simple docstring''' @classmethod @abstractmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : str ) ->bool: ... @staticmethod @abstractmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: ... class snake_case_ ( __A , __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[bytes] = [] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->List[Any]: with open(_UpperCamelCase , '''rb''' ) as f: return f.read(_UpperCamelCase ) @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if not magic_number: snake_case_ = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) try: snake_case_ = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase ) except OSError: return False return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) class snake_case_ ( __A ): '''simple docstring''' @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : Any ) ->bool: return tarfile.is_tarfile(_UpperCamelCase ) @staticmethod def snake_case__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) ->List[str]: def resolved(_UpperCamelCase : str ) -> str: return os.path.realpath(os.path.abspath(_UpperCamelCase ) ) def badpath(_UpperCamelCase : str , _UpperCamelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase ) def badlink(_UpperCamelCase : Tuple , _UpperCamelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link snake_case_ = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCamelCase ) snake_case_ = resolved(_UpperCamelCase ) for finfo in members: if badpath(finfo.name , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = tarfile.open(_UpperCamelCase ) tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) ) tar_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [b"\x1F\x8B"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with gzip.open(_UpperCamelCase , '''rb''' ) as gzip_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def snake_case__( cls : List[str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCamelCase , '''rb''' ) as fp: snake_case_ = _EndRecData(_UpperCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: snake_case_ = fp.read(_UpperCamelCase ) # CD is where we expect it to be if len(_UpperCamelCase ) == sizeCentralDir: snake_case_ = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with zipfile.ZipFile(_UpperCamelCase , '''r''' ) as zip_file: zip_file.extractall(_UpperCamelCase ) zip_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with lzma.open(_UpperCamelCase ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = rarfile.RarFile(_UpperCamelCase ) rf.extractall(_UpperCamelCase ) rf.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [b"\x28\xb5\x2F\xFD"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd snake_case_ = zstd.ZstdDecompressor() with open(_UpperCamelCase , '''rb''' ) as ifh, open(_UpperCamelCase , '''wb''' ) as ofh: dctx.copy_stream(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"\x42\x5A\x68"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with bza.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with pyazr.SevenZipFile(_UpperCamelCase , '''r''' ) as archive: archive.extractall(_UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x04\x22\x4D\x18"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def snake_case__( cls : List[Any] ) ->List[str]: return max( len(_UpperCamelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCamelCase , _UpperCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->Tuple: try: return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase ) except OSError: return b"" @classmethod def snake_case__( cls : Optional[Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bool = False ) ->bool: warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = cls.infer_extractor_format(_UpperCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def snake_case__( cls : int , _UpperCamelCase : Union[Path, str] ) ->str: # <Added version="2.4.0"/> snake_case_ = cls._get_magic_number_max_length() snake_case_ = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return extractor_format @classmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[BaseExtractor] = "deprecated" , ) ->None: os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase ) # Prevent parallel extractions snake_case_ = str(Path(_UpperCamelCase ).with_suffix('''.lock''' ) ) with FileLock(_UpperCamelCase ): shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = extractor if extractor != '''deprecated''' else extractor_format else: snake_case_ = cls.extractors[extractor_format] return extractor.extract(_UpperCamelCase , _UpperCamelCase ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=_UpperCamelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCamelCase ): return extractor.extract(_UpperCamelCase , _UpperCamelCase )
39
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AltDiffusionPipeline SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__( self : Dict ) ->int: torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) snake_case_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) snake_case_ = CLIPTextModel(_UpperCamelCase ) snake_case_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) snake_case_ = 7_7 snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__( self : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0 ) ->Any: if str(_UpperCamelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCamelCase ) else: snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case__( self : Dict ) ->List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def snake_case__( self : List[str] ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case__( self : Dict ) ->Any: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = '''A photo of an astronaut''' snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : Tuple ) ->Union[str, Any]: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : int ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self : List[str] ) ->Tuple: # make sure here that pndm scheduler skips prk snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='''np''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : List[str] ) ->Optional[Any]: snake_case_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , num_inference_steps=2 , output_type='''numpy''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
1
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowerCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase_ = ''' Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") >>> pipe.to("cuda") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save("cat.png") ``` ''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=8 ): snake_case_ = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 snake_case_ = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : MultilingualCLIP , _UpperCamelCase : XLMRobertaTokenizer , _UpperCamelCase : UNetaDConditionModel , _UpperCamelCase : Union[DDIMScheduler, DDPMScheduler] , _UpperCamelCase : VQModel , ) ->List[Any]: super().__init__() self.register_modules( text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase , unet=_UpperCamelCase , scheduler=_UpperCamelCase , movq=_UpperCamelCase , ) snake_case_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def snake_case__( self : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) ->Union[str, Any]: if latents is None: snake_case_ = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) snake_case_ = latents.to(_UpperCamelCase ) snake_case_ = latents * scheduler.init_noise_sigma return latents def snake_case__( self : str , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str=None , ) ->Tuple: snake_case_ = len(_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else 1 # get prompt text embeddings snake_case_ = self.tokenizer( _UpperCamelCase , padding='''max_length''' , truncation=_UpperCamelCase , max_length=7_7 , return_attention_mask=_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_tensors='''pt''' , ) snake_case_ = text_inputs.input_ids snake_case_ = self.tokenizer(_UpperCamelCase , padding='''longest''' , return_tensors='''pt''' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(_UpperCamelCase , _UpperCamelCase ): snake_case_ = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) snake_case_ = text_input_ids.to(_UpperCamelCase ) snake_case_ = text_inputs.attention_mask.to(_UpperCamelCase ) snake_case_, snake_case_ = self.text_encoder( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) snake_case_ = prompt_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) snake_case_ = text_encoder_hidden_states.repeat_interleave(_UpperCamelCase , dim=0 ) snake_case_ = text_mask.repeat_interleave(_UpperCamelCase , dim=0 ) if do_classifier_free_guidance: snake_case_ = 42 if negative_prompt is None: snake_case_ = [''''''] * batch_size elif type(_UpperCamelCase ) is not type(_UpperCamelCase ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(_UpperCamelCase )} !=''' f''' {type(_UpperCamelCase )}.''' ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = [negative_prompt] elif batch_size != len(_UpperCamelCase ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(_UpperCamelCase )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ''' the batch size of `prompt`.''' ) else: snake_case_ = negative_prompt snake_case_ = self.tokenizer( _UpperCamelCase , padding='''max_length''' , max_length=7_7 , truncation=_UpperCamelCase , return_attention_mask=_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_tensors='''pt''' , ) snake_case_ = uncond_input.input_ids.to(_UpperCamelCase ) snake_case_ = uncond_input.attention_mask.to(_UpperCamelCase ) snake_case_, snake_case_ = self.text_encoder( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case_ = negative_prompt_embeds.shape[1] snake_case_ = negative_prompt_embeds.repeat(1 , _UpperCamelCase ) snake_case_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _UpperCamelCase ) snake_case_ = uncond_text_encoder_hidden_states.shape[1] snake_case_ = uncond_text_encoder_hidden_states.repeat(1 , _UpperCamelCase , 1 ) snake_case_ = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , _UpperCamelCase , -1 ) snake_case_ = uncond_text_mask.repeat_interleave(_UpperCamelCase , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) snake_case_ = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) snake_case_ = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def snake_case__( self : Dict , _UpperCamelCase : int=0 ) ->Union[str, Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) snake_case_ = torch.device(f'''cuda:{gpu_id}''' ) snake_case_ = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : str=0 ) ->Tuple: if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) snake_case_ = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_UpperCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) snake_case_ = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: snake_case_, snake_case_ = cpu_offload_with_hook(_UpperCamelCase , _UpperCamelCase , prev_module_hook=_UpperCamelCase ) if self.safety_checker is not None: snake_case_, snake_case_ = cpu_offload_with_hook(self.safety_checker , _UpperCamelCase , prev_module_hook=_UpperCamelCase ) # We'll offload the last model manually. snake_case_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case__( self : Optional[int] ) ->Optional[Any]: if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_UpperCamelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_UpperCamelCase ) def __call__( self : Tuple , _UpperCamelCase : Union[str, List[str]] , _UpperCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCamelCase : Optional[Union[str, List[str]]] = None , _UpperCamelCase : int = 5_1_2 , _UpperCamelCase : int = 5_1_2 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 4.0 , _UpperCamelCase : int = 1 , _UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCamelCase : Optional[torch.FloatTensor] = None , _UpperCamelCase : Optional[str] = "pil" , _UpperCamelCase : bool = True , ) ->Optional[int]: if isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = 1 elif isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = len(_UpperCamelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(_UpperCamelCase )}''' ) snake_case_ = self._execution_device snake_case_ = batch_size * num_images_per_prompt snake_case_ = guidance_scale > 1.0 snake_case_, snake_case_, snake_case_ = self._encode_prompt( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = torch.cat(_UpperCamelCase , dim=0 ) if isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = torch.cat(_UpperCamelCase , dim=0 ) if do_classifier_free_guidance: snake_case_ = image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) snake_case_ = negative_image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) snake_case_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=_UpperCamelCase ) self.scheduler.set_timesteps(_UpperCamelCase , device=_UpperCamelCase ) snake_case_ = self.scheduler.timesteps snake_case_ = self.unet.config.in_channels snake_case_, snake_case_ = get_new_h_w(_UpperCamelCase , _UpperCamelCase , self.movq_scale_factor ) # create initial latent snake_case_ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance snake_case_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case_ = {'''text_embeds''': prompt_embeds, '''image_embeds''': image_embeds} snake_case_ = self.unet( sample=_UpperCamelCase , timestep=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , added_cond_kwargs=_UpperCamelCase , return_dict=_UpperCamelCase , )[0] if do_classifier_free_guidance: snake_case_, snake_case_ = noise_pred.split(latents.shape[1] , dim=1 ) snake_case_, snake_case_ = noise_pred.chunk(2 ) snake_case_, snake_case_ = variance_pred.chunk(2 ) snake_case_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) snake_case_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): snake_case_, snake_case_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 snake_case_ = self.scheduler.step( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase , ).prev_sample # post-processing snake_case_ = self.movq.decode(_UpperCamelCase , force_not_quantize=_UpperCamelCase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: snake_case_ = image * 0.5 + 0.5 snake_case_ = image.clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCamelCase )
39
from math import factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( '''If a class of 40 students must be arranged into groups of''', f"""4 for group projects, there are {combinations(40, 4)} ways""", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f"""are {combinations(10, 3)} ways that first, second and""", '''third place can be awarded.''', )
39
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # noqa: E741 while r - l > 1: snake_case_ = (l + r) // 2 if v[m] >= key: snake_case_ = m else: snake_case_ = m # noqa: E741 return r def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) == 0: return 0 snake_case_ = [0] * len(SCREAMING_SNAKE_CASE__ ) snake_case_ = 1 snake_case_ = v[0] for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): if v[i] < tail[0]: snake_case_ = v[i] elif v[i] > tail[length - 1]: snake_case_ = v[i] length += 1 else: snake_case_ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
39
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCAmelCase_ = sys.version_info >= (3, 10) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ): return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : bool @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int = 42 SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : Optional[bool] = None class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = "titi" SCREAMING_SNAKE_CASE : Any = "toto" class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = "titi" SCREAMING_SNAKE_CASE : Optional[Any] = "toto" SCREAMING_SNAKE_CASE : Any = 42 @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : BasicEnum = "toto" def snake_case__( self : Tuple ) ->List[str]: snake_case_ = BasicEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto" def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = MixedTypeEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[float] = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : Optional[str] = None SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] ) SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] ) SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] ) SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = field() SCREAMING_SNAKE_CASE : str = field() SCREAMING_SNAKE_CASE : BasicEnum = field() def snake_case__( self : Optional[Any] ) ->Tuple: snake_case_ = BasicEnum(self.required_enum ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : "BasicEnum" = field() SCREAMING_SNAKE_CASE : "Optional[bool]" = None SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : bool | None = None @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int | None = None SCREAMING_SNAKE_CASE : float | None = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : str | None = None SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] ) SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] ) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Dict , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser ) ->str: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _UpperCamelCase ) and yy.get('''choices''' , _UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_UpperCamelCase ) , yy['''type'''](_UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--bar''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--baz''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--flag''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((snake_case_), ) = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase ) self.assertFalse(example.flag ) def snake_case__( self : Tuple ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) snake_case_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case__( self : Tuple ) ->Union[str, Any]: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto" snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual( _UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def snake_case__( self : Optional[Any] ) ->List[Any]: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--bar''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) snake_case_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[] ) ) snake_case_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def snake_case__( self : Union[str, Any] ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--required_str''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Dict ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } snake_case_ = parser.parse_dict(_UpperCamelCase )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : int ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase ) def snake_case__( self : str ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_json''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_yaml''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Any ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase )
39
1