code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class lowercase_ (lowercase__ ): snake_case =42 @flax_register_to_config class lowercase_ (nn.Module , lowercase__ , lowercase__ ): snake_case =32 snake_case =4 snake_case =4 snake_case =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) snake_case =("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") snake_case =False snake_case =(320, 640, 1280, 1280) snake_case =2 snake_case =8 snake_case =None snake_case =1280 snake_case =0.0 snake_case =False snake_case =jnp.floataa snake_case =True snake_case =0 snake_case =False def __UpperCamelCase ( self , lowercase_) -> FrozenDict: # init input tensors a__ =(1, self.in_channels, self.sample_size, self.sample_size) a__ =jnp.zeros(lowercase_ , dtype=jnp.floataa) a__ =jnp.ones((1,) , dtype=jnp.intaa) a__ =jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa) a__ , a__ =jax.random.split(lowercase_) a__ ={'params': params_rng, 'dropout': dropout_rng} return self.init(lowercase_ , lowercase_ , lowercase_ , lowercase_)["params"] def __UpperCamelCase ( self) -> Union[str, Any]: a__ =self.block_out_channels a__ =block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.') # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. a__ =self.num_attention_heads or self.attention_head_dim # input a__ =nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time a__ =FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift) a__ =FlaxTimestepEmbedding(lowercase_ , dtype=self.dtype) a__ =self.only_cross_attention if isinstance(lowercase_ , lowercase_): a__ =(only_cross_attention,) * len(self.down_block_types) if isinstance(lowercase_ , lowercase_): a__ =(num_attention_heads,) * len(self.down_block_types) # down a__ =[] a__ =block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types): a__ =output_channel a__ =block_out_channels[i] a__ =i == len(lowercase_) - 1 if down_block_type == "CrossAttnDownBlock2D": a__ =FlaxCrossAttnDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: a__ =FlaxDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowercase_) a__ =down_blocks # mid a__ =FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up a__ =[] a__ =list(reversed(lowercase_)) a__ =list(reversed(lowercase_)) a__ =list(reversed(lowercase_)) a__ =reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types): a__ =output_channel a__ =reversed_block_out_channels[i] a__ =reversed_block_out_channels[min(i + 1 , len(lowercase_) - 1)] a__ =i == len(lowercase_) - 1 if up_block_type == "CrossAttnUpBlock2D": a__ =FlaxCrossAttnUpBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , prev_output_channel=lowercase_ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: a__ =FlaxUpBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , prev_output_channel=lowercase_ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(lowercase_) a__ =output_channel a__ =up_blocks # out a__ =nn.GroupNorm(num_groups=32 , epsilon=1e-5) a__ =nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_ = True , lowercase_ = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(lowercase_ , jnp.ndarray): a__ =jnp.array([timesteps] , dtype=jnp.intaa) elif isinstance(lowercase_ , jnp.ndarray) and len(timesteps.shape) == 0: a__ =timesteps.astype(dtype=jnp.floataa) a__ =jnp.expand_dims(lowercase_ , 0) a__ =self.time_proj(lowercase_) a__ =self.time_embedding(lowercase_) # 2. pre-process a__ =jnp.transpose(lowercase_ , (0, 2, 3, 1)) a__ =self.conv_in(lowercase_) # 3. down a__ =(sample,) for down_block in self.down_blocks: if isinstance(lowercase_ , lowercase_): a__ , a__ =down_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train) else: a__ , a__ =down_block(lowercase_ , lowercase_ , deterministic=not train) down_block_res_samples += res_samples if down_block_additional_residuals is not None: a__ =() for down_block_res_sample, down_block_additional_residual in zip( lowercase_ , lowercase_): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) a__ =new_down_block_res_samples # 4. mid a__ =self.mid_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: a__ =down_block_res_samples[-(self.layers_per_block + 1) :] a__ =down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(lowercase_ , lowercase_): a__ =up_block( lowercase_ , temb=lowercase_ , encoder_hidden_states=lowercase_ , res_hidden_states_tuple=lowercase_ , deterministic=not train , ) else: a__ =up_block(lowercase_ , temb=lowercase_ , res_hidden_states_tuple=lowercase_ , deterministic=not train) # 6. post-process a__ =self.conv_norm_out(lowercase_) a__ =nn.silu(lowercase_) a__ =self.conv_out(lowercase_) a__ =jnp.transpose(lowercase_ , (0, 3, 1, 2)) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=lowercase_)
20
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = "informer" SCREAMING_SNAKE_CASE : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Dict , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "student_t" , _UpperCamelCase : str = "nll" , _UpperCamelCase : int = 1 , _UpperCamelCase : List[int] = None , _UpperCamelCase : Optional[Union[str, bool]] = "mean" , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : int = 6_4 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.05 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : Dict=True , _UpperCamelCase : str = "prob" , _UpperCamelCase : int = 5 , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Optional[int]: # time series specific configuration snake_case_ = prediction_length snake_case_ = context_length or prediction_length snake_case_ = distribution_output snake_case_ = loss snake_case_ = input_size snake_case_ = num_time_features snake_case_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case_ = scaling snake_case_ = num_dynamic_real_features snake_case_ = num_static_real_features snake_case_ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = cardinality else: snake_case_ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = embedding_dimension else: snake_case_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ = num_parallel_samples # Transformer architecture configuration snake_case_ = input_size * len(self.lags_sequence ) + self._number_of_features snake_case_ = d_model snake_case_ = encoder_attention_heads snake_case_ = decoder_attention_heads snake_case_ = encoder_ffn_dim snake_case_ = decoder_ffn_dim snake_case_ = encoder_layers snake_case_ = decoder_layers snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = activation_function snake_case_ = init_std snake_case_ = use_cache # Informer snake_case_ = attention_type snake_case_ = sampling_factor snake_case_ = distil super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def snake_case__( self : Optional[Any] ) ->int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
39
0
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCAmelCase_ : Tuple = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__( self :int , *__snake_case :int , **__snake_case :Optional[Any] ): '''simple docstring''' warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
21
import cmath import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) # Convert voltage and current to rectangular form snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
39
0
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : str=1e-12 ): '''simple docstring''' _a = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase , axis=1 ) , a_min=UpperCamelCase ) ).T _a = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase , axis=1 ) , a_min=UpperCamelCase ) ).T return jnp.matmul(UpperCamelCase , norm_emb_a.T ) class A ( nn.Module ): lowercase_ = 42 lowercase_ = jnp.floataa def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _a = FlaxCLIPVisionModule(self.config.vision_config ) _a = nn.Dense(self.config.projection_dim , use_bias=lowerCAmelCase_ , dtype=self.dtype ) _a = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) _a = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) _a = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) _a = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self : Any , lowerCAmelCase_ : int ) -> List[str]: """simple docstring""" _a = self.vision_model(lowerCAmelCase_ )[1] _a = self.visual_projection(lowerCAmelCase_ ) _a = jax_cosine_distance(lowerCAmelCase_ , self.special_care_embeds ) _a = jax_cosine_distance(lowerCAmelCase_ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs _a = 0.0 _a = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment _a = jnp.round(lowerCAmelCase_ , 3 ) _a = jnp.any(special_scores > 0 , axis=1 , keepdims=lowerCAmelCase_ ) # Use a lower threshold if an image has any special care concept _a = is_special_care * 0.0_1 _a = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment _a = jnp.round(lowerCAmelCase_ , 3 ) _a = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class A ( _a ): lowercase_ = CLIPConfig lowercase_ = 'clip_input' lowercase_ = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Optional[int] , lowerCAmelCase_ : CLIPConfig , lowerCAmelCase_ : Optional[Tuple] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : jnp.dtype = jnp.floataa , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" if input_shape is None: _a = (1, 2_24, 2_24, 3) _a = self.module_class(config=lowerCAmelCase_ , dtype=lowerCAmelCase_ , **lowerCAmelCase_ ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ , input_shape=lowerCAmelCase_ , seed=lowerCAmelCase_ , dtype=lowerCAmelCase_ , _do_init=_do_init ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : jax.random.KeyArray , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : FrozenDict = None ) -> FrozenDict: """simple docstring""" _a = jax.random.normal(lowerCAmelCase_ , lowerCAmelCase_ ) _a , _a = jax.random.split(lowerCAmelCase_ ) _a = {'''params''': params_rng, '''dropout''': dropout_rng} _a = self.module.init(lowerCAmelCase_ , lowerCAmelCase_ )['''params'''] return random_params def __call__( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : dict = None , ) -> int: """simple docstring""" _a = jnp.transpose(lowerCAmelCase_ , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) , rngs={} , )
22
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=1_3 , _UpperCamelCase : str=7 , _UpperCamelCase : int=True , _UpperCamelCase : Dict=True , _UpperCamelCase : int=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : str=3_2 , _UpperCamelCase : str=5 , _UpperCamelCase : str=4 , _UpperCamelCase : int=3_7 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : str=5_1_2 , _UpperCamelCase : Optional[int]=1_6 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Any=0.02 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : str=None , ) ->Dict: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def snake_case__( self : str ) ->List[Any]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self : List[str] ) ->Tuple: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) ->Dict: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , ) ->Optional[int]: snake_case_ = BioGptForCausalLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , *_UpperCamelCase : List[Any] ) ->Union[str, Any]: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # create attention mask snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) snake_case_ = self.seq_length // 2 snake_case_ = 0 # first forward pass snake_case_, snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids snake_case_ = ids_tensor((1,) , _UpperCamelCase ).item() + 1 snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) snake_case_ = random_other_next_tokens # append to next input_ids and attn_mask snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCamelCase )] , dim=1 , ) # get two different outputs snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , past_key_values=_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , *_UpperCamelCase : List[Any] ) ->int: snake_case_ = BioGptModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval() snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) # first forward pass snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase ) snake_case_, snake_case_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[ '''last_hidden_state''' ] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , *_UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=False ) ->Dict: snake_case_ = BioGptForCausalLM(_UpperCamelCase ) model.to(_UpperCamelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def snake_case__( self : List[Any] , _UpperCamelCase : Optional[int] , *_UpperCamelCase : Dict ) ->Dict: snake_case_ = BioGptModel(_UpperCamelCase ) snake_case_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def snake_case__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , *_UpperCamelCase : List[str] ) ->int: snake_case_ = self.num_labels snake_case_ = BioGptForTokenClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = (BioGptForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Optional[Any] = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Tuple = False def snake_case__( self : List[str] ) ->Union[str, Any]: snake_case_ = BioGptModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : str ) ->int: self.config_tester.run_common_tests() def snake_case__( self : str ) ->Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_UpperCamelCase , gradient_checkpointing=_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCamelCase ) def snake_case__( self : List[Any] ) ->Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCamelCase ) @slow def snake_case__( self : int ) ->Optional[Any]: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = '''left''' # Define PAD Token = EOS Token = 50256 snake_case_ = tokenizer.eos_token snake_case_ = model.config.eos_token_id # use different length sentences to test batching snake_case_ = [ '''Hello, my dog is a little''', '''Today, I''', ] snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase ) snake_case_ = inputs['''input_ids'''].to(_UpperCamelCase ) snake_case_ = model.generate( input_ids=_UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(_UpperCamelCase ) , ) snake_case_ = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase ) snake_case_ = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() snake_case_ = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings ) snake_case_ = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] ) @slow def snake_case__( self : Optional[int] ) ->List[str]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = BioGptModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__( self : str ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = '''multi_label_classification''' snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__( self : int ) ->Any: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) snake_case_ = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) snake_case_ = model(_UpperCamelCase )[0] snake_case_ = 4_2_3_8_4 snake_case_ = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def snake_case__( self : List[str] ) ->Optional[int]: snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_UpperCamelCase ) snake_case_ = model.generate( **_UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=_UpperCamelCase , ) snake_case_ = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(_UpperCamelCase , _UpperCamelCase )
39
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = 42 A_ = 42 class _a ( nn.Module ): """simple docstring""" A_ = 42 A_ = (16, 32, 96, 256) A_ = jnp.floataa def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCamelCase_ = [] for i in range(len(self.block_out_channels ) - 1 ): UpperCamelCase_ = self.block_out_channels[i] UpperCamelCase_ = self.block_out_channels[i + 1] UpperCamelCase_ = nn.Conv( _UpperCAmelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_UpperCAmelCase ) UpperCamelCase_ = nn.Conv( _UpperCAmelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_UpperCAmelCase ) UpperCamelCase_ = blocks UpperCamelCase_ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _UpperCAmelCase ) -> Any: UpperCamelCase_ = self.conv_in(_UpperCAmelCase ) UpperCamelCase_ = nn.silu(_UpperCAmelCase ) for block in self.blocks: UpperCamelCase_ = block(_UpperCAmelCase ) UpperCamelCase_ = nn.silu(_UpperCAmelCase ) UpperCamelCase_ = self.conv_out(_UpperCAmelCase ) return embedding @flax_register_to_config class _a ( nn.Module , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" A_ = 32 A_ = 4 A_ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) A_ = False A_ = (320, 640, 1_280, 1_280) A_ = 2 A_ = 8 A_ = None A_ = 1_280 A_ = 0.0 A_ = False A_ = jnp.floataa A_ = True A_ = 0 A_ = "rgb" A_ = (16, 32, 96, 256) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> FrozenDict: # init input tensors UpperCamelCase_ = (1, self.in_channels, self.sample_size, self.sample_size) UpperCamelCase_ = jnp.zeros(_UpperCAmelCase , dtype=jnp.floataa ) UpperCamelCase_ = jnp.ones((1,) , dtype=jnp.intaa ) UpperCamelCase_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) UpperCamelCase_ = (1, 3, self.sample_size * 8, self.sample_size * 8) UpperCamelCase_ = jnp.zeros(_UpperCAmelCase , dtype=jnp.floataa ) UpperCamelCase_ , UpperCamelCase_ = jax.random.split(_UpperCAmelCase ) UpperCamelCase_ = {'params': params_rng, 'dropout': dropout_rng} return self.init(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )["params"] def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = self.block_out_channels UpperCamelCase_ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCamelCase_ = self.num_attention_heads or self.attention_head_dim # input UpperCamelCase_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time UpperCamelCase_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) UpperCamelCase_ = FlaxTimestepEmbedding(_UpperCAmelCase , dtype=self.dtype ) UpperCamelCase_ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) UpperCamelCase_ = self.only_cross_attention if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase_ = (num_attention_heads,) * len(self.down_block_types ) # down UpperCamelCase_ = [] UpperCamelCase_ = [] UpperCamelCase_ = block_out_channels[0] UpperCamelCase_ = nn.Conv( _UpperCAmelCase , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_UpperCAmelCase ) for i, down_block_type in enumerate(self.down_block_types ): UpperCamelCase_ = output_channel UpperCamelCase_ = block_out_channels[i] UpperCamelCase_ = i == len(_UpperCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCamelCase_ = FlaxCrossAttnDownBlockaD( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: UpperCamelCase_ = FlaxDownBlockaD( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_UpperCAmelCase ) for _ in range(self.layers_per_block ): UpperCamelCase_ = nn.Conv( _UpperCAmelCase , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_UpperCAmelCase ) if not is_final_block: UpperCamelCase_ = nn.Conv( _UpperCAmelCase , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_UpperCAmelCase ) UpperCamelCase_ = down_blocks UpperCamelCase_ = controlnet_down_blocks # mid UpperCamelCase_ = block_out_channels[-1] UpperCamelCase_ = FlaxUNetMidBlockaDCrossAttn( in_channels=_UpperCAmelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) UpperCamelCase_ = nn.Conv( _UpperCAmelCase , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1.0 , _UpperCAmelCase = True , _UpperCAmelCase = False , ) -> Union[FlaxControlNetOutput, Tuple]: UpperCamelCase_ = self.controlnet_conditioning_channel_order if channel_order == "bgr": UpperCamelCase_ = jnp.flip(_UpperCAmelCase , axis=1 ) # 1. time if not isinstance(_UpperCAmelCase , jnp.ndarray ): UpperCamelCase_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_UpperCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: UpperCamelCase_ = timesteps.astype(dtype=jnp.floataa ) UpperCamelCase_ = jnp.expand_dims(_UpperCAmelCase , 0 ) UpperCamelCase_ = self.time_proj(_UpperCAmelCase ) UpperCamelCase_ = self.time_embedding(_UpperCAmelCase ) # 2. pre-process UpperCamelCase_ = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) ) UpperCamelCase_ = self.conv_in(_UpperCAmelCase ) UpperCamelCase_ = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) ) UpperCamelCase_ = self.controlnet_cond_embedding(_UpperCAmelCase ) sample += controlnet_cond # 3. down UpperCamelCase_ = (sample,) for down_block in self.down_blocks: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase_ , UpperCamelCase_ = down_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train ) else: UpperCamelCase_ , UpperCamelCase_ = down_block(_UpperCAmelCase , _UpperCAmelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid UpperCamelCase_ = self.mid_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train ) # 5. contronet blocks UpperCamelCase_ = () for down_block_res_sample, controlnet_block in zip(_UpperCAmelCase , self.controlnet_down_blocks ): UpperCamelCase_ = controlnet_block(_UpperCAmelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) UpperCamelCase_ = controlnet_down_block_res_samples UpperCamelCase_ = self.controlnet_mid_block(_UpperCAmelCase ) # 6. scaling UpperCamelCase_ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_UpperCAmelCase , mid_block_res_sample=_UpperCAmelCase )
23
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) snake_case_ = (boundary[1] - boundary[0]) / steps snake_case_ = boundary[0] snake_case_ = boundary[1] snake_case_ = make_points(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = 0.0 y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) for i in x_i: # print(i) y += h * f(SCREAMING_SNAKE_CASE__ ) y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) return y def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = a + h while x < (b - h): yield x snake_case_ = x + h def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # enter your function here snake_case_ = (x - 0) * (x - 0) return y def __SCREAMING_SNAKE_CASE (): snake_case_ = 0.0 # Lower bound of integration snake_case_ = 1.0 # Upper bound of integration snake_case_ = 10.0 # define number of steps or resolution snake_case_ = [a, b] # define boundary of integration snake_case_ = method_a(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
39
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCAmelCase ( unittest.TestCase): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=18 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> Union[str, Any]: '''simple docstring''' __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize __snake_case = size if size is not None else {'''height''': 18, '''width''': 20} __snake_case = do_thumbnail __snake_case = do_align_axis __snake_case = do_pad __snake_case = do_normalize __snake_case = image_mean __snake_case = image_std def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCAmelCase ( __lowerCAmelCase , unittest.TestCase): __lowercase : Optional[Any] = DonutImageProcessor if is_vision_available() else None def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case = DonutImageProcessingTester(self ) @property def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_thumbnail''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_pad''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_mean''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_std''' ) ) def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def lowerCAmelCase ( self ) -> Any: '''simple docstring''' pass @is_flaky() def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __snake_case = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def lowerCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __snake_case = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __snake_case = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
24
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / '''model_card_template.md''' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None ): snake_case_ = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if token is None: snake_case_ = HfFolder.get_token() if organization is None: snake_case_ = whoami(SCREAMING_SNAKE_CASE__ )['''name'''] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(SCREAMING_SNAKE_CASE__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , '''hub_token''' ) else None snake_case_ = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) snake_case_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ = os.path.join(args.output_dir , '''README.md''' ) model_card.save(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) snake_case_ = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE__ ) if search is None: return None snake_case_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, '''diffusers''') def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if new_cache_dir is None: snake_case_ = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ = old_diffusers_cache snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ '''the directory exists and can be written to.''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if variant is not None: snake_case_ = weights_name.split('''.''' ) snake_case_ = splits[:-1] + [variant] + splits[-1:] snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ ) return weights_name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ): snake_case_ = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' '''this model name. Check the model page at ''' F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
39
0
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def lowerCamelCase__ ( _a , _a , _a , _a=None , _a=None , _a=None , _a=None , _a=None , ): if attention_mask is None: SCREAMING_SNAKE_CASE : Optional[int] = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE : Tuple = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: SCREAMING_SNAKE_CASE : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=_a) if decoder_head_mask is None: SCREAMING_SNAKE_CASE : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_a) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE : List[Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_a) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class _UpperCamelCase : '''simple docstring''' def __init__( self : List[Any] , a : Optional[Any] , a : Any=13 , a : Optional[int]=7 , a : Optional[Any]=True , a : Dict=False , a : List[str]=99 , a : Any=16 , a : Optional[int]=2 , a : Union[str, Any]=4 , a : List[Any]=4 , a : Dict="relu" , a : Any=0.1 , a : Optional[Any]=0.1 , a : str=0.0 , a : List[Any]=0.0 , a : Dict=20 , a : Optional[int]=2 , a : Optional[Any]=1 , a : Any=0 , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : str = seq_length SCREAMING_SNAKE_CASE : str = is_training SCREAMING_SNAKE_CASE : List[Any] = use_labels SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : Dict = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = encoder_layerdrop SCREAMING_SNAKE_CASE : int = decoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = eos_token_id SCREAMING_SNAKE_CASE : Optional[Any] = pad_token_id SCREAMING_SNAKE_CASE : Optional[Any] = bos_token_id def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Any = self.eos_token_id # Eos Token SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input SCREAMING_SNAKE_CASE : int = input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE : str = decoder_input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() SCREAMING_SNAKE_CASE : str = prepare_mam_aaa_inputs_dict(a , a , a ) return config, inputs_dict def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() return config, inputs_dict def __UpperCamelCase ( self : Dict , a : Tuple , a : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = MaMaaaModel(config=a ).get_decoder().to(a ).eval() SCREAMING_SNAKE_CASE : Optional[int] = inputs_dict["input_ids"] SCREAMING_SNAKE_CASE : Optional[Any] = inputs_dict["attention_mask"] SCREAMING_SNAKE_CASE : Union[str, Any] = inputs_dict["head_mask"] # first forward pass SCREAMING_SNAKE_CASE : Union[str, Any] = model(a , attention_mask=a , head_mask=a , use_cache=a ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE : int = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and SCREAMING_SNAKE_CASE : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE : List[str] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) SCREAMING_SNAKE_CASE : int = model(a , attention_mask=a )["last_hidden_state"] SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , past_key_values=a )[ "last_hidden_state" ] # select random slice SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1e-2 ) ) def __UpperCamelCase ( self : Any , a : Any , a : Any ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = MaMaaaModel(config=a ).to(a ).eval() SCREAMING_SNAKE_CASE : str = model(**a ) SCREAMING_SNAKE_CASE : Dict = outputs.encoder_last_hidden_state SCREAMING_SNAKE_CASE : Dict = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Optional[Any] = model.get_encoder() encoder.save_pretrained(a ) SCREAMING_SNAKE_CASE : Dict = MaMaaaEncoder.from_pretrained(a ).to(a ) SCREAMING_SNAKE_CASE : Optional[Any] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Optional[Any] = model.get_decoder() decoder.save_pretrained(a ) SCREAMING_SNAKE_CASE : str = MaMaaaDecoder.from_pretrained(a ).to(a ) SCREAMING_SNAKE_CASE : Dict = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=a , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class _UpperCamelCase ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) lowerCamelCase__ =(MaMaaaForConditionalGeneration,) if is_torch_available() else () lowerCamelCase__ =( { 'conversational': MaMaaaForConditionalGeneration, 'feature-extraction': MaMaaaModel, 'summarization': MaMaaaForConditionalGeneration, 'text2text-generation': MaMaaaForConditionalGeneration, 'translation': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =False lowerCamelCase__ =False def __UpperCamelCase ( self : List[Any] , a : Tuple , a : int , a : Optional[Any] , a : Optional[Any] , a : Tuple ) -> Dict: """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : str = MaMaaaModelTester(self ) SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=a ) def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Any ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = model_class.from_pretrained(a , output_loading_info=a ) self.assertEqual(info["missing_keys"] , [] ) def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*a ) def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): SCREAMING_SNAKE_CASE : List[str] = model_class(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self._prepare_for_class(a , a ) ) if not self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Optional[Any] = inputs["input_ids"] del inputs["input_ids"] else: SCREAMING_SNAKE_CASE : str = inputs["input_ids"] SCREAMING_SNAKE_CASE : Optional[Any] = inputs.get("decoder_input_ids" , a ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , a ) SCREAMING_SNAKE_CASE : Any = model.get_input_embeddings() if not self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Tuple = wte(a ) else: SCREAMING_SNAKE_CASE : List[str] = wte(a ) SCREAMING_SNAKE_CASE : Dict = wte(a ) with torch.no_grad(): model(**a )[0] def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Optional[int] = input_dict["input_ids"] SCREAMING_SNAKE_CASE : Optional[int] = input_ids.ne(1 ).to(a ) SCREAMING_SNAKE_CASE : str = MaMaaaForConditionalGeneration(a ).eval().to(a ) if torch_device == "cuda": model.half() model.generate(a , attention_mask=a ) model.generate(num_beams=4 , do_sample=a , early_stopping=a , num_return_sequences=3 ) def lowerCamelCase__ ( _a): return torch.tensor(_a , dtype=torch.long , device=_a) a_ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : str = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(a ) SCREAMING_SNAKE_CASE : List[str] = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) SCREAMING_SNAKE_CASE : Union[str, Any] = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) SCREAMING_SNAKE_CASE : Any = prepare_mam_aaa_inputs_dict(model.config , a , a ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**a )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , a ) # change to expected output here SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=a ) self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=a ) ) def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : int = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(a ) # change to intended input SCREAMING_SNAKE_CASE : str = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) SCREAMING_SNAKE_CASE : Dict = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) SCREAMING_SNAKE_CASE : Any = prepare_mam_aaa_inputs_dict(model.config , a , a ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**a )[0] SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , a ) # change to expected output here SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=a ) self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=a ) ) def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(a ) SCREAMING_SNAKE_CASE : Tuple = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) SCREAMING_SNAKE_CASE : str = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(a , padding=a , return_tensors="pt" ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.generate( input_ids=dct["input_ids"].to(a ) , attention_mask=dct["attention_mask"].to(a ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) SCREAMING_SNAKE_CASE : str = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=a , skip_special_tokens=a ) assert generated == expected_en
25
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt" def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) snake_case_ = backbone_featmap_shape snake_case_ = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: snake_case_ = None snake_case_ = None snake_case_ = [] snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) snake_case_ = readout_type snake_case_ = reassemble_factors snake_case_ = neck_hidden_sizes snake_case_ = fusion_hidden_size snake_case_ = head_in_index snake_case_ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = semantic_loss_ignore_index snake_case_ = semantic_classifier_dropout def snake_case__( self : List[str] ) ->List[Any]: snake_case_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
39
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): lowercase__: Any = '''encoder-decoder''' lowercase__: str = True def __init__( self : str , **__magic_name__ : int ) -> str: """simple docstring""" super().__init__(**__magic_name__ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" __snake_case : Any = kwargs.pop("""encoder""" ) __snake_case : Union[str, Any] = encoder_config.pop("""model_type""" ) __snake_case : Optional[int] = kwargs.pop("""decoder""" ) __snake_case : Dict = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig __snake_case : Optional[Any] = AutoConfig.for_model(__magic_name__ , **__magic_name__ ) __snake_case : Optional[Any] = AutoConfig.for_model(__magic_name__ , **__magic_name__ ) __snake_case : List[str] = True @classmethod def lowercase__ ( cls : Optional[Any] , __magic_name__ : PretrainedConfig , __magic_name__ : PretrainedConfig , **__magic_name__ : Dict ) -> PretrainedConfig: """simple docstring""" logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) __snake_case : List[Any] = True __snake_case : Any = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = copy.deepcopy(self.__dict__ ) __snake_case : int = self.encoder.to_dict() __snake_case : List[str] = self.decoder.to_dict() __snake_case : Tuple = self.__class__.model_type return output
26
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = '''pytorch_model.bin''' @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "A csv or a json file containing the validation data."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "The name of the task to train on."} , ) SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field( default=__A , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=__A , metadata={"help": "Random seed for initialization."} , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case_ = dataset.filter(lambda SCREAMING_SNAKE_CASE__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case_ = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) ) print(SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = dataset.remove_columns(['''label''', '''probability'''] ) snake_case_ = dataset.rename_column('''prediction''' , '''label''' ) snake_case_ = dataset.map(lambda SCREAMING_SNAKE_CASE__ : {"label": idalabel[example["label"]]} ) snake_case_ = dataset.shuffle(seed=args.seed ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) else: dataset.to_json(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): snake_case_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case_ = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ ) snake_case_ = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ , infer_file=SCREAMING_SNAKE_CASE__ ) snake_case_ = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ ) snake_case_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(SCREAMING_SNAKE_CASE__ ).items(): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Sanity checks snake_case_ = {} snake_case_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case_ = args.train_file snake_case_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case_ = args.eval_file for key in data_files: snake_case_ = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: snake_case_ = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) snake_case_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format snake_case_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = None snake_case_ = None snake_case_ = 0 snake_case_ = False # Show the progress bar snake_case_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case_ = data_dir_format(SCREAMING_SNAKE_CASE__ ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-1''' ) snake_case_ = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): arguments_dict.update({key: value} ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-2''' ) # Update arguments_dict snake_case_ = model_path snake_case_ = data_files['''train'''] snake_case_ = current_output_dir snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = iteration snake_case_ = data_dir_format(iteration + 1 ) snake_case_ = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) ) snake_case_ = config.idalabel snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-checkpoint.json''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: snake_case_ = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Loading the dataset from local csv or json files. snake_case_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] snake_case_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case_ = eval_result if best_iteration is None: snake_case_ = new_iteration snake_case_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case_ = new_iteration snake_case_ = new_eval_result snake_case_ = 0 else: if new_eval_result == best_eval_result: snake_case_ = new_iteration snake_case_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE__ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , )
39
0
from math import asin, atan, cos, radians, sin, sqrt, tan __A : int = 6_3_7_8_1_3_7.0 __A : Dict = 6_3_5_6_7_5_2.3_1_4_2_4_5 __A : List[Any] = 6_378_137 def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" _A = (AXIS_A - AXIS_B) / AXIS_A _A = atan((1 - flattening) * tan(radians(_SCREAMING_SNAKE_CASE ) ) ) _A = atan((1 - flattening) * tan(radians(_SCREAMING_SNAKE_CASE ) ) ) _A = radians(_SCREAMING_SNAKE_CASE ) _A = radians(_SCREAMING_SNAKE_CASE ) # Equation _A = sin((phi_a - phi_a) / 2 ) _A = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda _A = sqrt(sin_sq_phi + (cos(_SCREAMING_SNAKE_CASE ) * cos(_SCREAMING_SNAKE_CASE ) * sin_sq_lambda) ) return 2 * RADIUS * asin(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
27
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AltDiffusionPipeline SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__( self : Dict ) ->int: torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) snake_case_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) snake_case_ = CLIPTextModel(_UpperCamelCase ) snake_case_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) snake_case_ = 7_7 snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__( self : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0 ) ->Any: if str(_UpperCamelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCamelCase ) else: snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case__( self : Dict ) ->List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def snake_case__( self : List[str] ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case__( self : Dict ) ->Any: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = '''A photo of an astronaut''' snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : Tuple ) ->Union[str, Any]: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : int ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self : List[str] ) ->Tuple: # make sure here that pndm scheduler skips prk snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='''np''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : List[str] ) ->Optional[Any]: snake_case_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , num_inference_steps=2 , output_type='''numpy''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
0
'''simple docstring''' def lowercase__( __UpperCamelCase: int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE : int = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
28
from math import factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( '''If a class of 40 students must be arranged into groups of''', f"""4 for group projects, there are {combinations(40, 4)} ways""", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f"""are {combinations(10, 3)} ways that first, second and""", '''third place can be awarded.''', )
39
0
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowerCamelCase ( lowerCAmelCase ): a__: Union[str, Any] = 'M-CLIP' def __init__( self , UpperCAmelCase=1024 , UpperCAmelCase=768 , **UpperCAmelCase ): lowerCamelCase_ = transformerDimSize lowerCamelCase_ = imageDimSize super().__init__(**UpperCAmelCase ) class __lowerCamelCase ( lowerCAmelCase ): a__: Any = MCLIPConfig def __init__( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ): super().__init__(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = XLMRobertaModel(UpperCAmelCase ) lowerCamelCase_ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = self.transformer(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )[0] lowerCamelCase_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(UpperCAmelCase ), embs
29
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCAmelCase_ = sys.version_info >= (3, 10) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ): return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : bool @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int = 42 SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : Optional[bool] = None class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = "titi" SCREAMING_SNAKE_CASE : Any = "toto" class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = "titi" SCREAMING_SNAKE_CASE : Optional[Any] = "toto" SCREAMING_SNAKE_CASE : Any = 42 @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : BasicEnum = "toto" def snake_case__( self : Tuple ) ->List[str]: snake_case_ = BasicEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto" def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = MixedTypeEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[float] = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : Optional[str] = None SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] ) SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] ) SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] ) SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = field() SCREAMING_SNAKE_CASE : str = field() SCREAMING_SNAKE_CASE : BasicEnum = field() def snake_case__( self : Optional[Any] ) ->Tuple: snake_case_ = BasicEnum(self.required_enum ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : "BasicEnum" = field() SCREAMING_SNAKE_CASE : "Optional[bool]" = None SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : bool | None = None @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int | None = None SCREAMING_SNAKE_CASE : float | None = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : str | None = None SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] ) SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] ) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Dict , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser ) ->str: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _UpperCamelCase ) and yy.get('''choices''' , _UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_UpperCamelCase ) , yy['''type'''](_UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--bar''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--baz''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--flag''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((snake_case_), ) = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase ) self.assertFalse(example.flag ) def snake_case__( self : Tuple ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) snake_case_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case__( self : Tuple ) ->Union[str, Any]: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto" snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual( _UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def snake_case__( self : Optional[Any] ) ->List[Any]: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--bar''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) snake_case_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[] ) ) snake_case_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def snake_case__( self : Union[str, Any] ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--required_str''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Dict ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } snake_case_ = parser.parse_dict(_UpperCamelCase )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : int ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase ) def snake_case__( self : str ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_json''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_yaml''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Any ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase )
39
0
def lowerCamelCase__ ( _lowercase ): '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') __a = int(input('Enter number: ').strip()) print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
30
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Dict , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
39
0
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def UpperCAmelCase_ ( __UpperCAmelCase : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = tokenizer(example['content'] , truncation=__UpperCAmelCase )['input_ids'] SCREAMING_SNAKE_CASE_ = len(example['content'] ) / len(output['input_ids'] ) return output lowerCamelCase__ : List[str] = HfArgumentParser(PretokenizationArguments) lowerCamelCase__ : Any = parser.parse_args() if args.num_workers is None: lowerCamelCase__ : Optional[Any] = multiprocessing.cpu_count() lowerCamelCase__ : Optional[Any] = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCamelCase__ : Dict = time.time() lowerCamelCase__ : Dict = load_dataset(args.dataset_name, split='train') print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') lowerCamelCase__ : Optional[Any] = time.time() lowerCamelCase__ : Optional[int] = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') lowerCamelCase__ : Union[str, Any] = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
31
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv" SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]: snake_case_ = vocab_size snake_case_ = context_length snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case_ = layer_norm_epsilon snake_case_ = rescale_every snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
39
0
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def A__ ( ) -> None: """simple docstring""" print('''Making key files...''' ) make_key_files('''rsa''' , 10_24 ) print('''Key files generation successful.''' ) def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> tuple[tuple[int, int], tuple[int, int]]: """simple docstring""" print('''Generating prime p...''' ) _UpperCAmelCase = rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE_ ) print('''Generating prime q...''' ) _UpperCAmelCase = rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = p * q print('''Generating e that is relatively prime to (p - 1) * (q - 1)...''' ) while True: _UpperCAmelCase = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(SCREAMING_SNAKE_CASE_ , (p - 1) * (q - 1) ) == 1: break print('''Calculating d that is mod inverse of e...''' ) _UpperCAmelCase = cryptoMath.find_mod_inverse(SCREAMING_SNAKE_CASE_ , (p - 1) * (q - 1) ) _UpperCAmelCase = (n, e) _UpperCAmelCase = (n, d) return (public_key, private_key) def A__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int ) -> None: """simple docstring""" if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ): print('''\nWARNING:''' ) print( F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' '''Use a different name or delete these files and re-run this program.''' ) sys.exit() _UpperCAmelCase , _UpperCAmelCase = generate_key(SCREAMING_SNAKE_CASE_ ) print(F'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(F'''{name}_pubkey.txt''' , '''w''' ) as out_file: out_file.write(F'''{key_size},{public_key[0]},{public_key[1]}''' ) print(F'''Writing private key to file {name}_privkey.txt...''' ) with open(F'''{name}_privkey.txt''' , '''w''' ) as out_file: out_file.write(F'''{key_size},{private_key[0]},{private_key[1]}''' ) if __name__ == "__main__": main()
32
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) class snake_case_ : '''simple docstring''' def __init__( self : int , _UpperCamelCase : Optional[str] = None ) ->Tuple: snake_case_ = ( os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) snake_case_ = Extractor def snake_case__( self : Any , _UpperCamelCase : str ) ->str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" snake_case_ = os.path.abspath(_UpperCamelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) ) def snake_case__( self : int , _UpperCamelCase : str , _UpperCamelCase : bool ) ->bool: return force_extract or ( not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase )) ) def snake_case__( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : bool = False ) ->str: snake_case_ = self.extractor.infer_extractor_format(_UpperCamelCase ) if not extractor_format: return input_path snake_case_ = self._get_output_path(_UpperCamelCase ) if self._do_extract(_UpperCamelCase , _UpperCamelCase ): self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return output_path class snake_case_ ( __A ): '''simple docstring''' @classmethod @abstractmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : str ) ->bool: ... @staticmethod @abstractmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: ... class snake_case_ ( __A , __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[bytes] = [] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->List[Any]: with open(_UpperCamelCase , '''rb''' ) as f: return f.read(_UpperCamelCase ) @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if not magic_number: snake_case_ = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) try: snake_case_ = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase ) except OSError: return False return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) class snake_case_ ( __A ): '''simple docstring''' @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : Any ) ->bool: return tarfile.is_tarfile(_UpperCamelCase ) @staticmethod def snake_case__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) ->List[str]: def resolved(_UpperCamelCase : str ) -> str: return os.path.realpath(os.path.abspath(_UpperCamelCase ) ) def badpath(_UpperCamelCase : str , _UpperCamelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase ) def badlink(_UpperCamelCase : Tuple , _UpperCamelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link snake_case_ = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCamelCase ) snake_case_ = resolved(_UpperCamelCase ) for finfo in members: if badpath(finfo.name , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = tarfile.open(_UpperCamelCase ) tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) ) tar_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [b"\x1F\x8B"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with gzip.open(_UpperCamelCase , '''rb''' ) as gzip_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def snake_case__( cls : List[str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCamelCase , '''rb''' ) as fp: snake_case_ = _EndRecData(_UpperCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: snake_case_ = fp.read(_UpperCamelCase ) # CD is where we expect it to be if len(_UpperCamelCase ) == sizeCentralDir: snake_case_ = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with zipfile.ZipFile(_UpperCamelCase , '''r''' ) as zip_file: zip_file.extractall(_UpperCamelCase ) zip_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with lzma.open(_UpperCamelCase ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = rarfile.RarFile(_UpperCamelCase ) rf.extractall(_UpperCamelCase ) rf.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [b"\x28\xb5\x2F\xFD"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd snake_case_ = zstd.ZstdDecompressor() with open(_UpperCamelCase , '''rb''' ) as ifh, open(_UpperCamelCase , '''wb''' ) as ofh: dctx.copy_stream(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"\x42\x5A\x68"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with bza.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with pyazr.SevenZipFile(_UpperCamelCase , '''r''' ) as archive: archive.extractall(_UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x04\x22\x4D\x18"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def snake_case__( cls : List[Any] ) ->List[str]: return max( len(_UpperCamelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCamelCase , _UpperCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->Tuple: try: return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase ) except OSError: return b"" @classmethod def snake_case__( cls : Optional[Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bool = False ) ->bool: warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = cls.infer_extractor_format(_UpperCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def snake_case__( cls : int , _UpperCamelCase : Union[Path, str] ) ->str: # <Added version="2.4.0"/> snake_case_ = cls._get_magic_number_max_length() snake_case_ = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return extractor_format @classmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[BaseExtractor] = "deprecated" , ) ->None: os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase ) # Prevent parallel extractions snake_case_ = str(Path(_UpperCamelCase ).with_suffix('''.lock''' ) ) with FileLock(_UpperCamelCase ): shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = extractor if extractor != '''deprecated''' else extractor_format else: snake_case_ = cls.extractors[extractor_format] return extractor.extract(_UpperCamelCase , _UpperCamelCase ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=_UpperCamelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCamelCase ): return extractor.extract(_UpperCamelCase , _UpperCamelCase )
39
0
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : str = IFImgaImgSuperResolutionPipeline __lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} __lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) __lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def SCREAMING_SNAKE_CASE__ ( self:Dict ): return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self:str ): self._test_save_load_local() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
33
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
39
0
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image SCREAMING_SNAKE_CASE_ = ['text', 'image', 'audio'] def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_lowercase ,_lowercase ): inputs.append(create_inputs(_lowercase ) ) else: raise ValueError(f'Invalid type requested: {input_type}' ) return inputs def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [] for output in outputs: if isinstance(_lowercase ,(str, AgentText) ): output_types.append('''text''' ) elif isinstance(_lowercase ,(Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(_lowercase ,(torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(f'Invalid output: {output}' ) return output_types @is_tool_test class snake_case_ : """simple docstring""" def UpperCAmelCase__ ( self) -> List[Any]: self.assertTrue(hasattr(self.tool , '''inputs''')) self.assertTrue(hasattr(self.tool , '''outputs''')) UpperCamelCase = self.tool.inputs for _input in inputs: if isinstance(_input , lowerCamelCase_): for __input in _input: self.assertTrue(__input in authorized_types) else: self.assertTrue(_input in authorized_types) UpperCamelCase = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = create_inputs(self.tool.inputs) UpperCamelCase = self.tool(*lowerCamelCase_) # There is a single output if len(self.tool.outputs) == 1: UpperCamelCase = [outputs] self.assertListEqual(output_types(lowerCamelCase_) , self.tool.outputs) def UpperCAmelCase__ ( self) -> str: self.assertTrue(hasattr(self.tool , '''description''')) self.assertTrue(hasattr(self.tool , '''default_checkpoint''')) self.assertTrue(self.tool.description.startswith('''This is a tool that''')) def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = create_inputs(self.tool.inputs) UpperCamelCase = self.tool(*lowerCamelCase_) if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [outputs] self.assertEqual(len(lowerCamelCase_) , len(self.tool.outputs)) for output, output_type in zip(lowerCamelCase_ , self.tool.outputs): UpperCamelCase = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_)) def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = create_inputs(self.tool.inputs) UpperCamelCase = [] for _input, input_type in zip(lowerCamelCase_ , self.tool.inputs): if isinstance(lowerCamelCase_ , lowerCamelCase_): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) # Should not raise an error UpperCamelCase = self.tool(*lowerCamelCase_) if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [outputs] self.assertEqual(len(lowerCamelCase_) , len(self.tool.outputs))
34
import re from filelock import FileLock try: import nltk lowerCAmelCase_ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): re.sub('''<n>''' , '''''' , SCREAMING_SNAKE_CASE__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE__ ) )
39
0
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase ( _UpperCAmelCase ): def __init__( self : Union[str, Any] , _lowercase : Tuple , _lowercase : Any ): super().__init__() # make sure scheduler can always be converted to DDIM SCREAMING_SNAKE_CASE__ : List[Any] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self : Any , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , _lowercase ): SCREAMING_SNAKE_CASE__ : Tuple = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: SCREAMING_SNAKE_CASE__ : Dict = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) SCREAMING_SNAKE_CASE__ : List[str] = randn_tensor(_lowercase , generator=_lowercase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output SCREAMING_SNAKE_CASE__ : str = self.unet(_lowercase , _lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 SCREAMING_SNAKE_CASE__ : int = self.scheduler.step( _lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase ).prev_sample SCREAMING_SNAKE_CASE__ : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ : Optional[Any] = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
35
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [0 for i in range(r + 1 )] # nc0 = 1 snake_case_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case_ = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
39
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase : List[Any] = logging.get_logger(__name__) __lowercase : Tuple = { '''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''', '''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''', '''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''', '''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''', '''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''', '''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''', '''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''', '''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''', '''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''', '''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''', } class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : List[str] = '''xlm''' __lowerCamelCase : Any = { '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self ,SCREAMING_SNAKE_CASE_=30145 ,SCREAMING_SNAKE_CASE_=2048 ,SCREAMING_SNAKE_CASE_=12 ,SCREAMING_SNAKE_CASE_=16 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=False ,SCREAMING_SNAKE_CASE_=False ,SCREAMING_SNAKE_CASE_=False ,SCREAMING_SNAKE_CASE_=1 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=512 ,SCREAMING_SNAKE_CASE_=2048**-0.5 ,SCREAMING_SNAKE_CASE_=1E-12 ,SCREAMING_SNAKE_CASE_=0.02 ,SCREAMING_SNAKE_CASE_=0 ,SCREAMING_SNAKE_CASE_=1 ,SCREAMING_SNAKE_CASE_=2 ,SCREAMING_SNAKE_CASE_=3 ,SCREAMING_SNAKE_CASE_=5 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_="first" ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=5 ,SCREAMING_SNAKE_CASE_=5 ,SCREAMING_SNAKE_CASE_=0 ,SCREAMING_SNAKE_CASE_=0 ,SCREAMING_SNAKE_CASE_=2 ,SCREAMING_SNAKE_CASE_=0 ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : Optional[int] = vocab_size snake_case : Optional[int] = emb_dim snake_case : Optional[Any] = n_layers snake_case : Dict = n_heads snake_case : Union[str, Any] = dropout snake_case : Dict = attention_dropout snake_case : Tuple = gelu_activation snake_case : Tuple = sinusoidal_embeddings snake_case : Optional[Any] = causal snake_case : int = asm snake_case : Any = n_langs snake_case : str = use_lang_emb snake_case : Optional[int] = layer_norm_eps snake_case : Optional[Any] = bos_index snake_case : List[str] = eos_index snake_case : Optional[int] = pad_index snake_case : Optional[Any] = unk_index snake_case : Union[str, Any] = mask_index snake_case : Any = is_encoder snake_case : Dict = max_position_embeddings snake_case : Optional[int] = embed_init_std snake_case : Dict = init_std snake_case : List[Any] = summary_type snake_case : List[Any] = summary_use_proj snake_case : List[str] = summary_activation snake_case : Dict = summary_proj_to_labels snake_case : Union[str, Any] = summary_first_dropout snake_case : str = start_n_top snake_case : Tuple = end_n_top snake_case : str = mask_token_id snake_case : Tuple = lang_id if "n_words" in kwargs: snake_case : Dict = kwargs["""n_words"""] super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ ,bos_token_id=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) class _A ( snake_case ): '''simple docstring''' @property def snake_case_ ( self ): '''simple docstring''' if self.task == "multiple-choice": snake_case : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case : Any = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
36
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCAmelCase_ = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 13_10_72, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return torch.atana(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / math.pi * 2 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.sin(t * math.pi / 2 ) ** 2 snake_case_ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class snake_case_ ( __A ): '''simple docstring''' pass class snake_case_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : int ) ->Optional[int]: super().__init__() snake_case_ = DiffusionAttnUnetaD(_UpperCamelCase , n_attn_layers=4 ) snake_case_ = deepcopy(self.diffusion ) snake_case_ = torch.quasirandom.SobolEngine(1 , scramble=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = MODELS_MAP[model_name]['''url'''] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCAmelCase_ = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCAmelCase_ = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCAmelCase_ = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCAmelCase_ = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif name.startswith(SCREAMING_SNAKE_CASE__ ): return [name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 ): snake_case_ = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) snake_case_ = 0 if string.startswith('''net.3.''' ): depth += 1 snake_case_ = string[6:] elif string.startswith('''net.''' ): snake_case_ = string[4:] while string.startswith('''main.7.''' ): depth += 1 snake_case_ = string[7:] if string.startswith('''main.''' ): snake_case_ = string[5:] # mid block if string[:2].isdigit(): snake_case_ = string[:2] snake_case_ = string[2:] else: snake_case_ = string[0] snake_case_ = string[1:] if depth == max_depth: snake_case_ = MID_NUM_TO_LAYER[layer_num] snake_case_ = '''mid_block''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) < 7: snake_case_ = DOWN_NUM_TO_LAYER[layer_num] snake_case_ = F'''down_blocks.{depth}''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) > 7: snake_case_ = UP_NUM_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: snake_case_ = DEPTH_0_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - 1}''' if int(SCREAMING_SNAKE_CASE__ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) snake_case_ = string_left[1:] if "resnets" in new_layer: snake_case_ = convert_resconv_naming(SCREAMING_SNAKE_CASE__ ) elif "attentions" in new_layer: snake_case_ = convert_attn_naming(SCREAMING_SNAKE_CASE__ ) snake_case_ = new_string_left if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = prefix + '''.''' + new_layer + '''.''' + string_left else: snake_case_ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue snake_case_ = rename(SCREAMING_SNAKE_CASE__ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = transform_conv_attns(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ = v return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) == 1: if len(v.shape ) == 3: # weight snake_case_ = v[:, :, 0] else: # bias snake_case_ = v else: # qkv matrices snake_case_ = v.shape[0] snake_case_ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: snake_case_ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: snake_case_ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) snake_case_ = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' snake_case_ = download(SCREAMING_SNAKE_CASE__ ) snake_case_ = MODELS_MAP[model_name]['''sample_rate'''] snake_case_ = MODELS_MAP[model_name]['''sample_size'''] snake_case_ = Object() snake_case_ = sample_size snake_case_ = sample_rate snake_case_ = 0 snake_case_ = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE__ , sample_rate=SCREAMING_SNAKE_CASE__ ) snake_case_ = diffusers_model.state_dict() snake_case_ = DiffusionUncond(SCREAMING_SNAKE_CASE__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE__ )['''state_dict'''] ) snake_case_ = orig_model.diffusion_ema.eval() snake_case_ = orig_model.state_dict() snake_case_ = rename_orig_weights(SCREAMING_SNAKE_CASE__ ) snake_case_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) snake_case_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE__ ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith('''kernel''' ) for k in list(SCREAMING_SNAKE_CASE__ ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": snake_case_ = value.squeeze() snake_case_ = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = 100 snake_case_ = 33 snake_case_ = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE__ )[:-1] snake_case_ = get_crash_schedule(SCREAMING_SNAKE_CASE__ ) snake_case_ = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(33 ) snake_case_ = pipe(num_inference_steps=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).audios snake_case_ = sampling.iplms_sample(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {} ) snake_case_ = generated.clamp(-1 , 1 ) snake_case_ = (generated - audio).abs().sum() snake_case_ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , SCREAMING_SNAKE_CASE__ ) print('''Diff max''' , SCREAMING_SNAKE_CASE__ ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCAmelCase_ = parser.parse_args() main(args)
39
0
def UpperCamelCase_ ( __a ) -> bool: a__ : List[Any] = 0 for ch in input_str: a__ : str = ord(__a ) a__ : Any = pow(2 , __a ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
37
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : Optional[Any] = { "configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = ["VisionEncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["TFVisionEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = ["FlaxVisionEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys A_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
38
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->Any: snake_case_ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case_ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case_ = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case_ = output[output != -float('''inf''' )] snake_case_ = tf.cast( tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-12 ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @require_tf class snake_case_ ( unittest.TestCase , __A ): '''simple docstring''' if is_tf_available(): SCREAMING_SNAKE_CASE : Optional[int] = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def snake_case__( self : List[Any] ) ->Optional[int]: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 2 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->List[Any]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) ->List[Any]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2, 0], [1_0_2, 1_0_3]] snake_case_ = [[1, 0], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for batch_size in range(1 , len(_UpperCamelCase ) + 1 ): snake_case_ = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow def snake_case__( self : List[str] ) ->int: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 1 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : Any ) ->List[str]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) ->Optional[int]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2], [1_0_2, 1_0_3]] snake_case_ = [[1], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for input_row in range(len(_UpperCamelCase ) ): snake_case_ = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow @require_tensorflow_text def snake_case__( self : Optional[Any] ) ->List[Any]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_UpperCamelCase ) class snake_case_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ) ->List[Any]: super().__init__() snake_case_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , '''spiece.model''' ) , '''rb''' ).read() ) snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->List[Any]: snake_case_ = self.tokenizer.tokenize(_UpperCamelCase ) snake_case_, snake_case_ = text.pad_model_inputs( _UpperCamelCase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) snake_case_ = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) return self.tokenizer.detokenize(_UpperCamelCase ) snake_case_ = CompleteSentenceTransformer() snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) snake_case_ = complete_model(_UpperCamelCase ) snake_case_ = tf.keras.Model(_UpperCamelCase , _UpperCamelCase ) keras_model.save(_UpperCamelCase ) def snake_case__( self : Any ) ->List[Any]: # Has PT equivalent: this test relies on random sampling snake_case_ = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 1_0, '''temperature''': 0.7, } snake_case_ = 1_4 snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = '''Hello, my dog is cute and''' snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''tf''' ) snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case_ = [6_3_8, 1_9_8] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def snake_case__( self : str ) ->Dict: # Has PT equivalent: ample use of framework-specific code snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = '''Hugging Face is a technology company based in New York and Paris.''' snake_case_ = bart_tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids snake_case_ = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Optional[int] ) ->List[str]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) ) class snake_case_ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , **_UpperCamelCase : Tuple ) ->Optional[Any]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() with self.assertRaises(_UpperCamelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_UpperCamelCase , foo='''bar''' )
39
0
def UpperCamelCase ( ) -> Any: for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> Any: UpperCamelCase : str = 1 UpperCamelCase : Optional[Any] = 2 while i * i <= n: UpperCamelCase : List[str] = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def UpperCamelCase ( ) -> List[str]: return next(i for i in triangle_number_generator() if count_divisors(snake_case__ ) > 500 ) if __name__ == "__main__": print(solution())
40
import unittest from transformers import DonutProcessor lowerCAmelCase_ = '''naver-clova-ix/donut-base''' class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = DonutProcessor.from_pretrained(_UpperCamelCase ) def snake_case__( self : Dict ) ->str: snake_case_ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } snake_case_ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) snake_case_ = self.processor.tokenajson(_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , _UpperCamelCase )
39
0
'''simple docstring''' def _A ( A__ ): """simple docstring""" __lowercase = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _A ( A__ ): """simple docstring""" __lowercase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowercase = remove_duplicates(key.upper() ) __lowercase = len(A__ ) # First fill cipher with key characters __lowercase = {alphabet[i]: char for i, char in enumerate(A__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(A__ ) , 26 ): __lowercase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowercase = alphabet[i - offset] __lowercase = char return cipher_alphabet def _A ( A__ , A__ ): """simple docstring""" return "".join(cipher_map.get(A__ , A__ ) for ch in message.upper() ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(A__ , A__ ) for ch in message.upper() ) def _A ( ): """simple docstring""" __lowercase = input('''Enter message to encode or decode: ''' ).strip() __lowercase = input('''Enter keyword: ''' ).strip() __lowercase = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: __lowercase = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) __lowercase = create_cipher_map(A__ ) print(func(A__ , A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
41
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not nums: raise ValueError('''List is empty''' ) return sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
39
0
'''simple docstring''' from math import pow def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> tuple[int, int]: if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count lowerCamelCase_ = int(pow(__UpperCamelCase ,__UpperCamelCase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n lowerCamelCase_ ,lowerCamelCase_ = backtrack( __UpperCamelCase ,__UpperCamelCase ,current_number + 1 ,__UpperCamelCase ,__UpperCamelCase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. lowerCamelCase_ ,lowerCamelCase_ = backtrack( __UpperCamelCase ,__UpperCamelCase ,current_number + 1 ,__UpperCamelCase ,__UpperCamelCase ) return current_sum, solutions_count def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> int: if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10): raise ValueError( 'Invalid input\n' 'needed_sum must be between 1 and 1000, power between 2 and 10.' ) return backtrack(__UpperCamelCase ,__UpperCamelCase ,1 ,0 ,0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
42
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : List[str] ) ->str: snake_case_ = inspect.getfile(accelerate.test_utils ) snake_case_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 snake_case_ = test_metrics @require_cpu def snake_case__( self : str ) ->int: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case__( self : Union[str, Any] ) ->Any: debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case__( self : List[Any] ) ->Tuple: self.test_metrics.main() @require_multi_gpu def snake_case__( self : Any ) ->Union[str, Any]: print(f'''Found {torch.cuda.device_count()} devices.''' ) snake_case_ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
39
0
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase_ ( self: Any ) -> str: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" torch.manual_seed(0 ) lowercase__ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) lowercase__ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowercase__ = DDPMScheduler() lowercase__ = AudioDiffusionPipeline(vqvae=UpperCamelCase_ , unet=self.dummy_unet , mel=UpperCamelCase_ , scheduler=UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(42 ) lowercase__ = pipe(generator=UpperCamelCase_ , steps=4 ) lowercase__ = output.audios[0] lowercase__ = output.images[0] lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(42 ) lowercase__ = pipe(generator=UpperCamelCase_ , steps=4 , return_dict=UpperCamelCase_ ) lowercase__ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowercase__ = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] lowercase__ = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] lowercase__ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowercase__ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowercase__ = DDIMScheduler() lowercase__ = self.dummy_vqvae_and_unet lowercase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=UpperCamelCase_ , scheduler=UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) np.random.seed(0 ) lowercase__ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(42 ) lowercase__ = pipe(raw_audio=UpperCamelCase_ , generator=UpperCamelCase_ , start_step=5 , steps=10 ) lowercase__ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowercase__ = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] lowercase__ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowercase__ = self.dummy_unet_condition lowercase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=UpperCamelCase_ , mel=UpperCamelCase_ , scheduler=UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) np.random.seed(0 ) lowercase__ = torch.rand((1, 1, 10) ) lowercase__ = pipe(generator=UpperCamelCase_ , encoding=UpperCamelCase_ ) lowercase__ = output.images[0] lowercase__ = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] lowercase__ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = torch_device lowercase__ = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(42 ) lowercase__ = pipe(generator=UpperCamelCase_ ) lowercase__ = output.audios[0] lowercase__ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowercase__ = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] lowercase__ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
43
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = "informer" SCREAMING_SNAKE_CASE : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Dict , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "student_t" , _UpperCamelCase : str = "nll" , _UpperCamelCase : int = 1 , _UpperCamelCase : List[int] = None , _UpperCamelCase : Optional[Union[str, bool]] = "mean" , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : int = 6_4 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.05 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : Dict=True , _UpperCamelCase : str = "prob" , _UpperCamelCase : int = 5 , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Optional[int]: # time series specific configuration snake_case_ = prediction_length snake_case_ = context_length or prediction_length snake_case_ = distribution_output snake_case_ = loss snake_case_ = input_size snake_case_ = num_time_features snake_case_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case_ = scaling snake_case_ = num_dynamic_real_features snake_case_ = num_static_real_features snake_case_ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = cardinality else: snake_case_ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = embedding_dimension else: snake_case_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ = num_parallel_samples # Transformer architecture configuration snake_case_ = input_size * len(self.lags_sequence ) + self._number_of_features snake_case_ = d_model snake_case_ = encoder_attention_heads snake_case_ = decoder_attention_heads snake_case_ = encoder_ffn_dim snake_case_ = decoder_ffn_dim snake_case_ = encoder_layers snake_case_ = decoder_layers snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = activation_function snake_case_ = init_std snake_case_ = use_cache # Informer snake_case_ = attention_type snake_case_ = sampling_factor snake_case_ = distil super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def snake_case__( self : Optional[Any] ) ->int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
39
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[int],__A : Any,__A : Tuple=7,__A : List[Any]=3,__A : str=1_8,__A : Tuple=3_0,__A : Dict=4_0_0,__A : int=True,__A : List[Any]=None,__A : Any=True,__A : int=False,__A : str=True,__A : int=True,__A : Any=[0.5, 0.5, 0.5],__A : Dict=[0.5, 0.5, 0.5],): _lowerCamelCase : str = parent _lowerCamelCase : Dict = batch_size _lowerCamelCase : List[Any] = num_channels _lowerCamelCase : Dict = image_size _lowerCamelCase : Tuple = min_resolution _lowerCamelCase : List[str] = max_resolution _lowerCamelCase : str = do_resize _lowerCamelCase : int = size if size is not None else {"height": 1_8, "width": 2_0} _lowerCamelCase : Union[str, Any] = do_thumbnail _lowerCamelCase : Optional[int] = do_align_axis _lowerCamelCase : Any = do_pad _lowerCamelCase : Tuple = do_normalize _lowerCamelCase : str = image_mean _lowerCamelCase : int = image_std def lowerCamelCase_ ( self : List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = DonutImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = DonutImageProcessingTester(self ) @property def lowerCamelCase_ ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A,"do_resize" ) ) self.assertTrue(hasattr(__A,"size" ) ) self.assertTrue(hasattr(__A,"do_thumbnail" ) ) self.assertTrue(hasattr(__A,"do_align_long_axis" ) ) self.assertTrue(hasattr(__A,"do_pad" ) ) self.assertTrue(hasattr(__A,"do_normalize" ) ) self.assertTrue(hasattr(__A,"image_mean" ) ) self.assertTrue(hasattr(__A,"image_std" ) ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size,{"height": 1_8, "width": 2_0} ) _lowerCamelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict,size=4_2 ) self.assertEqual(image_processor.size,{"height": 4_2, "width": 4_2} ) # Previous config had dimensions in (width, height) order _lowerCamelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict,size=(4_2, 8_4) ) self.assertEqual(image_processor.size,{"height": 8_4, "width": 4_2} ) def lowerCamelCase_ ( self : List[Any] ): pass @is_flaky() def lowerCamelCase_ ( self : Dict ): # Initialize image_processing _lowerCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester,equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A,Image.Image ) # Test not batched input _lowerCamelCase : Union[str, Any] = image_processing(image_inputs[0],return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ),) # Test batched _lowerCamelCase : int = image_processing(__A,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ),) @is_flaky() def lowerCamelCase_ ( self : List[str] ): # Initialize image_processing _lowerCamelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester,equal_resolution=__A,numpify=__A ) for image in image_inputs: self.assertIsInstance(__A,np.ndarray ) # Test not batched input _lowerCamelCase : List[Any] = image_processing(image_inputs[0],return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ),) # Test batched _lowerCamelCase : List[Any] = image_processing(__A,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ),) @is_flaky() def lowerCamelCase_ ( self : Optional[Any] ): # Initialize image_processing _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester,equal_resolution=__A,torchify=__A ) for image in image_inputs: self.assertIsInstance(__A,torch.Tensor ) # Test not batched input _lowerCamelCase : Tuple = image_processing(image_inputs[0],return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ),) # Test batched _lowerCamelCase : int = image_processing(__A,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ),)
44
import cmath import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) # Convert voltage and current to rectangular form snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
39
0
def A ( ) -> int: return 1 def A ( lowercase__ : int ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def A ( lowercase__ : int ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowercase__ ) def A ( lowercase__ : int ) -> int: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowercase__ ) def A ( lowercase__ : int ) -> int: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowercase__ ) def A ( lowercase__ : int ) -> int: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowercase__ ) def A ( lowercase__ : int ) -> int: return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowercase__ ) def A ( lowercase__ : int ) -> int: return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowercase__ ) def A ( lowercase__ : int = 200 ) -> int: return two_pound(lowercase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
45
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=1_3 , _UpperCamelCase : str=7 , _UpperCamelCase : int=True , _UpperCamelCase : Dict=True , _UpperCamelCase : int=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : str=3_2 , _UpperCamelCase : str=5 , _UpperCamelCase : str=4 , _UpperCamelCase : int=3_7 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : str=5_1_2 , _UpperCamelCase : Optional[int]=1_6 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Any=0.02 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : str=None , ) ->Dict: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def snake_case__( self : str ) ->List[Any]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self : List[str] ) ->Tuple: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) ->Dict: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , ) ->Optional[int]: snake_case_ = BioGptForCausalLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , *_UpperCamelCase : List[Any] ) ->Union[str, Any]: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # create attention mask snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) snake_case_ = self.seq_length // 2 snake_case_ = 0 # first forward pass snake_case_, snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids snake_case_ = ids_tensor((1,) , _UpperCamelCase ).item() + 1 snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) snake_case_ = random_other_next_tokens # append to next input_ids and attn_mask snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCamelCase )] , dim=1 , ) # get two different outputs snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , past_key_values=_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , *_UpperCamelCase : List[Any] ) ->int: snake_case_ = BioGptModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval() snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) # first forward pass snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase ) snake_case_, snake_case_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[ '''last_hidden_state''' ] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , *_UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=False ) ->Dict: snake_case_ = BioGptForCausalLM(_UpperCamelCase ) model.to(_UpperCamelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def snake_case__( self : List[Any] , _UpperCamelCase : Optional[int] , *_UpperCamelCase : Dict ) ->Dict: snake_case_ = BioGptModel(_UpperCamelCase ) snake_case_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def snake_case__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , *_UpperCamelCase : List[str] ) ->int: snake_case_ = self.num_labels snake_case_ = BioGptForTokenClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = (BioGptForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Optional[Any] = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Tuple = False def snake_case__( self : List[str] ) ->Union[str, Any]: snake_case_ = BioGptModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : str ) ->int: self.config_tester.run_common_tests() def snake_case__( self : str ) ->Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_UpperCamelCase , gradient_checkpointing=_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCamelCase ) def snake_case__( self : List[Any] ) ->Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCamelCase ) @slow def snake_case__( self : int ) ->Optional[Any]: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = '''left''' # Define PAD Token = EOS Token = 50256 snake_case_ = tokenizer.eos_token snake_case_ = model.config.eos_token_id # use different length sentences to test batching snake_case_ = [ '''Hello, my dog is a little''', '''Today, I''', ] snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase ) snake_case_ = inputs['''input_ids'''].to(_UpperCamelCase ) snake_case_ = model.generate( input_ids=_UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(_UpperCamelCase ) , ) snake_case_ = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase ) snake_case_ = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() snake_case_ = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings ) snake_case_ = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] ) @slow def snake_case__( self : Optional[int] ) ->List[str]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = BioGptModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__( self : str ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = '''multi_label_classification''' snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__( self : int ) ->Any: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) snake_case_ = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) snake_case_ = model(_UpperCamelCase )[0] snake_case_ = 4_2_3_8_4 snake_case_ = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def snake_case__( self : List[str] ) ->Optional[int]: snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_UpperCamelCase ) snake_case_ = model.generate( **_UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=_UpperCamelCase , ) snake_case_ = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(_UpperCamelCase , _UpperCamelCase )
39
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { '''microsoft/unispeech-sat-base-100h-libri-ft''': ( '''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json''' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class A_ ( _a ): lowerCAmelCase__ = 'unispeech-sat' def __init__( self: List[str] ,__lowerCAmelCase: Any=32 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[Any]=0.1 ,__lowerCAmelCase: Tuple=0.1 ,__lowerCAmelCase: str=0.0 ,__lowerCAmelCase: int=0.0 ,__lowerCAmelCase: List[Any]=0.1 ,__lowerCAmelCase: List[Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Tuple=1e-5 ,__lowerCAmelCase: Tuple="group" ,__lowerCAmelCase: Optional[Any]="gelu" ,__lowerCAmelCase: List[Any]=(512, 512, 512, 512, 512, 512, 512) ,__lowerCAmelCase: Dict=(5, 2, 2, 2, 2, 2, 2) ,__lowerCAmelCase: Any=(10, 3, 3, 3, 3, 2, 2) ,__lowerCAmelCase: int=False ,__lowerCAmelCase: Union[str, Any]=128 ,__lowerCAmelCase: Optional[Any]=16 ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Optional[int]=0.05 ,__lowerCAmelCase: str=10 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Optional[int]=0.0 ,__lowerCAmelCase: Dict=10 ,__lowerCAmelCase: Dict=0 ,__lowerCAmelCase: int=320 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Any=100 ,__lowerCAmelCase: List[Any]=256 ,__lowerCAmelCase: Any=256 ,__lowerCAmelCase: Optional[int]=0.1 ,__lowerCAmelCase: List[str]="mean" ,__lowerCAmelCase: str=False ,__lowerCAmelCase: Optional[Any]=False ,__lowerCAmelCase: Any=256 ,__lowerCAmelCase: Optional[int]=(512, 512, 512, 512, 1_500) ,__lowerCAmelCase: Optional[Any]=(5, 3, 3, 1, 1) ,__lowerCAmelCase: Optional[Any]=(1, 2, 3, 1, 1) ,__lowerCAmelCase: Dict=512 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Optional[int]=504 ,**__lowerCAmelCase: Optional[Any] ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ,pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = hidden_size _lowerCamelCase : str = feat_extract_norm _lowerCamelCase : int = feat_extract_activation _lowerCamelCase : int = list(__lowerCAmelCase ) _lowerCamelCase : List[Any] = list(__lowerCAmelCase ) _lowerCamelCase : str = list(__lowerCAmelCase ) _lowerCamelCase : Dict = conv_bias _lowerCamelCase : List[Any] = num_conv_pos_embeddings _lowerCamelCase : int = num_conv_pos_embedding_groups _lowerCamelCase : List[Any] = len(self.conv_dim ) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : List[Any] = hidden_dropout _lowerCamelCase : int = attention_dropout _lowerCamelCase : List[Any] = activation_dropout _lowerCamelCase : Union[str, Any] = feat_proj_dropout _lowerCamelCase : List[Any] = final_dropout _lowerCamelCase : Union[str, Any] = layerdrop _lowerCamelCase : Any = layer_norm_eps _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : Any = vocab_size _lowerCamelCase : Any = num_clusters _lowerCamelCase : int = do_stable_layer_norm _lowerCamelCase : Dict = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : List[Any] = apply_spec_augment _lowerCamelCase : List[str] = mask_time_prob _lowerCamelCase : Optional[int] = mask_time_length _lowerCamelCase : str = mask_time_min_masks _lowerCamelCase : Optional[int] = mask_feature_prob _lowerCamelCase : Any = mask_feature_length _lowerCamelCase : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCamelCase : int = num_codevectors_per_group _lowerCamelCase : List[Any] = num_codevector_groups _lowerCamelCase : List[str] = contrastive_logits_temperature _lowerCamelCase : List[Any] = feat_quantizer_dropout _lowerCamelCase : List[Any] = num_negatives _lowerCamelCase : Dict = codevector_dim _lowerCamelCase : List[Any] = proj_codevector_dim _lowerCamelCase : int = diversity_loss_weight # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : List[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : Any = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : Any = list(__lowerCAmelCase ) _lowerCamelCase : Any = list(__lowerCAmelCase ) _lowerCamelCase : List[str] = list(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = xvector_output_dim @property def _lowercase ( self: Optional[int] ): '''simple docstring''' return functools.reduce(operator.mul ,self.conv_stride ,1 )
46
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) snake_case_ = (boundary[1] - boundary[0]) / steps snake_case_ = boundary[0] snake_case_ = boundary[1] snake_case_ = make_points(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = 0.0 y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) for i in x_i: # print(i) y += h * f(SCREAMING_SNAKE_CASE__ ) y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) return y def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = a + h while x < (b - h): yield x snake_case_ = x + h def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # enter your function here snake_case_ = (x - 0) * (x - 0) return y def __SCREAMING_SNAKE_CASE (): snake_case_ = 0.0 # Lower bound of integration snake_case_ = 1.0 # Upper bound of integration snake_case_ = 10.0 # define number of steps or resolution snake_case_ = [a, b] # define boundary of integration snake_case_ = method_a(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
39
0
import heapq as hq import math from collections.abc import Iterator class _UpperCamelCase: def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' __a : str = str(id_ ) __a : Optional[int] = None __a : Any = None __a : List[Any] = [] __a : Dict = {} # {vertex:distance} def __lt__( self : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' return self.key < other.key def __repr__( self : Tuple ): '''simple docstring''' return self.id def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' self.neighbors.append(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a : Any = weight def UpperCAmelCase__ ( lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowerCamelCase_ ) graph[b - 1].add_edge(graph[a - 1] , lowerCamelCase_ ) def UpperCAmelCase__ ( lowerCamelCase_ : list , lowerCamelCase_ : Vertex ): __a : Optional[int] = [] for u in graph: __a : Union[str, Any] = math.inf __a : Optional[int] = None __a : List[Any] = 0 __a : Union[str, Any] = graph[:] while q: __a : Optional[Any] = min(lowerCamelCase_ ) q.remove(lowerCamelCase_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __a : Dict = u __a : Dict = u.edges[v.id] for i in range(1 , len(lowerCamelCase_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase__ ( lowerCamelCase_ : list , lowerCamelCase_ : Vertex ): for u in graph: __a : Optional[int] = math.inf __a : Dict = None __a : Tuple = 0 __a : Union[str, Any] = list(lowerCamelCase_ ) hq.heapify(lowerCamelCase_ ) while h: __a : int = hq.heappop(lowerCamelCase_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __a : List[str] = u __a : Optional[Any] = u.edges[v.id] hq.heapify(lowerCamelCase_ ) for i in range(1 , len(lowerCamelCase_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
47
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / '''model_card_template.md''' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None ): snake_case_ = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if token is None: snake_case_ = HfFolder.get_token() if organization is None: snake_case_ = whoami(SCREAMING_SNAKE_CASE__ )['''name'''] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(SCREAMING_SNAKE_CASE__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , '''hub_token''' ) else None snake_case_ = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) snake_case_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ = os.path.join(args.output_dir , '''README.md''' ) model_card.save(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) snake_case_ = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE__ ) if search is None: return None snake_case_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, '''diffusers''') def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if new_cache_dir is None: snake_case_ = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ = old_diffusers_cache snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ '''the directory exists and can be written to.''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if variant is not None: snake_case_ = weights_name.split('''.''' ) snake_case_ = splits[:-1] + [variant] + splits[-1:] snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ ) return weights_name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ): snake_case_ = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' '''this model name. Check the model page at ''' F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
39
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = "▁" UpperCAmelCase__ : Dict = {"vocab_file": "sentencepiece.bpe.model"} UpperCAmelCase__ : int = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } UpperCAmelCase__ : Dict = { "facebook/xglm-564M": 20_48, } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :List[Any] = VOCAB_FILES_NAMES snake_case__ :Any = PRETRAINED_VOCAB_FILES_MAP snake_case__ :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ :Tuple = ['input_ids', 'attention_mask'] def __init__( self : int , __magic_name__ : str , __magic_name__ : Optional[int]="<s>" , __magic_name__ : int="</s>" , __magic_name__ : Optional[Any]="</s>" , __magic_name__ : List[Any]="<s>" , __magic_name__ : List[str]="<unk>" , __magic_name__ : Optional[int]="<pad>" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Optional[Any] , ): """simple docstring""" lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowerCAmelCase__ = 7 lowerCAmelCase__ = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowerCAmelCase__ = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__magic_name__ ) ) lowerCAmelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase__ = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} lowerCAmelCase__ = len(self.sp_model ) lowerCAmelCase__ = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__magic_name__ ) lowerCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[str] ): """simple docstring""" lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None lowerCAmelCase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[str] , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase__ = {} lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowerCAmelCase__ = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) if token_ids_a is None: return [1] + ([0] * len(__magic_name__ )) return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ): """simple docstring""" lowerCAmelCase__ = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ): """simple docstring""" return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Dict ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase__ = self.sp_model.PieceToId(__magic_name__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Tuple ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : List[str] ): """simple docstring""" lowerCAmelCase__ = "".join(__magic_name__ ).replace(__magic_name__ , " " ).strip() return out_string def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , "wb" ) as fi: lowerCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,)
48
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt" def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) snake_case_ = backbone_featmap_shape snake_case_ = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: snake_case_ = None snake_case_ = None snake_case_ = [] snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) snake_case_ = readout_type snake_case_ = reassemble_factors snake_case_ = neck_hidden_sizes snake_case_ = fusion_hidden_size snake_case_ = head_in_index snake_case_ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = semantic_loss_ignore_index snake_case_ = semantic_classifier_dropout def snake_case__( self : List[str] ) ->List[Any]: snake_case_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
39
0
"""simple docstring""" from collections import defaultdict from math import gcd def lowercase__ ( snake_case_ :int = 1_500_000 ): __UpperCAmelCase = defaultdict(snake_case_ ) __UpperCAmelCase = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , snake_case_ , 2 ): if gcd(snake_case_ , snake_case_ ) > 1: continue __UpperCAmelCase = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(snake_case_ , limit + 1 , snake_case_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f"""{solution() = }""")
49
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = '''pytorch_model.bin''' @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "A csv or a json file containing the validation data."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "The name of the task to train on."} , ) SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field( default=__A , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=__A , metadata={"help": "Random seed for initialization."} , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case_ = dataset.filter(lambda SCREAMING_SNAKE_CASE__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case_ = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) ) print(SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = dataset.remove_columns(['''label''', '''probability'''] ) snake_case_ = dataset.rename_column('''prediction''' , '''label''' ) snake_case_ = dataset.map(lambda SCREAMING_SNAKE_CASE__ : {"label": idalabel[example["label"]]} ) snake_case_ = dataset.shuffle(seed=args.seed ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) else: dataset.to_json(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): snake_case_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case_ = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ ) snake_case_ = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ , infer_file=SCREAMING_SNAKE_CASE__ ) snake_case_ = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ ) snake_case_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(SCREAMING_SNAKE_CASE__ ).items(): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Sanity checks snake_case_ = {} snake_case_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case_ = args.train_file snake_case_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case_ = args.eval_file for key in data_files: snake_case_ = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: snake_case_ = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) snake_case_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format snake_case_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = None snake_case_ = None snake_case_ = 0 snake_case_ = False # Show the progress bar snake_case_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case_ = data_dir_format(SCREAMING_SNAKE_CASE__ ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-1''' ) snake_case_ = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): arguments_dict.update({key: value} ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-2''' ) # Update arguments_dict snake_case_ = model_path snake_case_ = data_files['''train'''] snake_case_ = current_output_dir snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = iteration snake_case_ = data_dir_format(iteration + 1 ) snake_case_ = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) ) snake_case_ = config.idalabel snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-checkpoint.json''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: snake_case_ = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Loading the dataset from local csv or json files. snake_case_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] snake_case_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case_ = eval_result if best_iteration is None: snake_case_ = new_iteration snake_case_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case_ = new_iteration snake_case_ = new_eval_result snake_case_ = 0 else: if new_eval_result == best_eval_result: snake_case_ = new_iteration snake_case_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE__ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , )
39
0
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = 3 lowerCamelCase__ = 2_50 lowerCamelCase__ = ids_tensor((batch_size, length) ,_lowerCAmelCase ) lowerCamelCase__ = torch.ones((batch_size, length) ,device=_lowerCAmelCase ,dtype=torch.float ) / length return input_ids, scores def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self._get_tensors(5 ) lowerCamelCase__ = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ , lowerCamelCase__ = self._get_tensors(9 ) self.assertFalse(criteria(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ , lowerCamelCase__ = self._get_tensors(10 ) self.assertTrue(criteria(_lowerCAmelCase ,_lowerCAmelCase ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = MaxLengthCriteria(max_length=10 ) lowerCamelCase__ , lowerCamelCase__ = self._get_tensors(5 ) self.assertFalse(criteria(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ , lowerCamelCase__ = self._get_tensors(9 ) self.assertFalse(criteria(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ , lowerCamelCase__ = self._get_tensors(10 ) self.assertTrue(criteria(_lowerCAmelCase ,_lowerCAmelCase ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ = MaxNewTokensCriteria(start_length=5 ,max_new_tokens=5 ) lowerCamelCase__ , lowerCamelCase__ = self._get_tensors(5 ) self.assertFalse(criteria(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ , lowerCamelCase__ = self._get_tensors(9 ) self.assertFalse(criteria(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ , lowerCamelCase__ = self._get_tensors(10 ) self.assertTrue(criteria(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length ,10 ) def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self._get_tensors(5 ) lowerCamelCase__ = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ = MaxTimeCriteria(max_time=0.1 ,initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(_lowerCAmelCase ,_lowerCAmelCase ) ) def UpperCamelCase_ ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) ,10 ) with self.assertWarns(_lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) ,11 ) lowerCamelCase__ = validate_stopping_criteria(StoppingCriteriaList() ,11 ) self.assertEqual(len(_lowerCAmelCase ) ,1 )
50
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AltDiffusionPipeline SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__( self : Dict ) ->int: torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) snake_case_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) snake_case_ = CLIPTextModel(_UpperCamelCase ) snake_case_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) snake_case_ = 7_7 snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__( self : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0 ) ->Any: if str(_UpperCamelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCamelCase ) else: snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case__( self : Dict ) ->List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def snake_case__( self : List[str] ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case__( self : Dict ) ->Any: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = '''A photo of an astronaut''' snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : Tuple ) ->Union[str, Any]: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : int ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self : List[str] ) ->Tuple: # make sure here that pndm scheduler skips prk snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='''np''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : List[str] ) ->Optional[Any]: snake_case_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , num_inference_steps=2 , output_type='''numpy''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
0
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a__ : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.14.0', 'To fix: pip install -r examples/pytorch/audio-classification/requirements.txt') def __snake_case ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : int = 16_000 ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = int(round(sample_rate * max_length ) ) if len(SCREAMING_SNAKE_CASE_ ) <= sample_length: return wav UpperCAmelCase = randint(0 , len(SCREAMING_SNAKE_CASE_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase =field(default=UpperCAmelCase_ , metadata={"help": "Name of a dataset from the datasets package"} ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "A file containing the training audio paths and labels."} ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "A file containing the validation audio paths and labels."} ) _lowerCamelCase =field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) _lowerCamelCase =field( default="validation" , metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) _lowerCamelCase =field( default="audio" , metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} , ) _lowerCamelCase =field( default="label" , metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) _lowerCamelCase =field( default=20 , metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} , ) @dataclass class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase =field( default="facebook/wav2vec2-base" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) _lowerCamelCase =field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Name or path of preprocessor config."} ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) _lowerCamelCase =field( default=UpperCAmelCase_ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __snake_case ( self : Union[str, Any] ): if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , a__ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''' ) def __snake_case ( ) -> int: """simple docstring""" UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE_ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. UpperCAmelCase = DatasetDict() UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' f"{', '.join(raw_datasets['train'].column_names )}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " '''Make sure to set `--label_column_name` to the correct text column - one of ''' f"{', '.join(raw_datasets['train'].column_names )}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCAmelCase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCAmelCase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCAmelCase = feature_extractor.model_input_names[0] def train_transforms(SCREAMING_SNAKE_CASE_ : int ): UpperCAmelCase = [] for audio in batch[data_args.audio_column_name]: UpperCAmelCase = random_subsample( audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=feature_extractor.sampling_rate ) UpperCAmelCase = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE_ )} UpperCAmelCase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(SCREAMING_SNAKE_CASE_ : List[Any] ): UpperCAmelCase = [audio['''array'''] for audio in batch[data_args.audio_column_name]] UpperCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=feature_extractor.sampling_rate ) UpperCAmelCase = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE_ )} UpperCAmelCase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCAmelCase = raw_datasets['''train'''].features[data_args.label_column_name].names UpperCAmelCase, UpperCAmelCase = {}, {} for i, label in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = label # Load the accuracy metric from the datasets package UpperCAmelCase = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE_ : Dict ): UpperCAmelCase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=SCREAMING_SNAKE_CASE_ , references=eval_pred.label_ids ) UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(SCREAMING_SNAKE_CASE_ ) , labelaid=SCREAMING_SNAKE_CASE_ , idalabel=SCREAMING_SNAKE_CASE_ , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCAmelCase = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(SCREAMING_SNAKE_CASE_ , output_all_columns=SCREAMING_SNAKE_CASE_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCAmelCase = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(SCREAMING_SNAKE_CASE_ , output_all_columns=SCREAMING_SNAKE_CASE_ ) # Initialize our trainer UpperCAmelCase = Trainer( model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , ) # Training if training_args.do_train: UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase = last_checkpoint UpperCAmelCase = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE_ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase = trainer.evaluate() trainer.log_metrics('''eval''' , SCREAMING_SNAKE_CASE_ ) trainer.save_metrics('''eval''' , SCREAMING_SNAKE_CASE_ ) # Write model card and (optionally) push to hub UpperCAmelCase = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE_ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
51
from math import factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( '''If a class of 40 students must be arranged into groups of''', f"""4 for group projects, there are {combinations(40, 4)} ways""", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f"""are {combinations(10, 3)} ways that first, second and""", '''third place can be awarded.''', )
39
0
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A = TypeVar('''KEY''') A = TypeVar('''VAL''') @dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase ) class __lowercase ( Generic[KEY, VAL] ): '''simple docstring''' __lowerCAmelCase = 42 __lowerCAmelCase = 42 class __lowercase ( _Item ): '''simple docstring''' def __init__( self ): super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __bool__( self ): return False A = _DeletedItem() class __lowercase ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self , _UpperCAmelCase = 8 , _UpperCAmelCase = 0.7_5 ): __a : Union[str, Any] = initial_block_size __a : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __a : Optional[Any] = capacity_factor __a : Union[str, Any] = 0 def _lowerCamelCase ( self , _UpperCAmelCase ): return hash(_UpperCAmelCase ) % len(self._buckets ) def _lowerCamelCase ( self , _UpperCAmelCase ): return (ind + 1) % len(self._buckets ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : List[str] = self._buckets[ind] if not stored: __a : int = _Item(_UpperCAmelCase , _UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __a : Dict = _Item(_UpperCAmelCase , _UpperCAmelCase ) return True else: return False def _lowerCamelCase ( self ): __a : Optional[int] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(_UpperCAmelCase ) def _lowerCamelCase ( self ): if len(self._buckets ) <= self._initial_block_size: return False __a : Optional[Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _lowerCamelCase ( self , _UpperCAmelCase ): __a : List[str] = self._buckets __a : List[Any] = [None] * new_size __a : int = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _lowerCamelCase ( self ): self._resize(len(self._buckets ) * 2 ) def _lowerCamelCase ( self ): self._resize(len(self._buckets ) // 2 ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : int = self._get_bucket_index(_UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __a : Dict = self._get_next_ind(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): for ind in self._iterate_buckets(_UpperCAmelCase ): if self._try_set(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): break def __setitem__( self , _UpperCAmelCase , _UpperCAmelCase ): if self._is_full(): self._size_up() self._add_item(_UpperCAmelCase , _UpperCAmelCase ) def __delitem__( self , _UpperCAmelCase ): for ind in self._iterate_buckets(_UpperCAmelCase ): __a : List[str] = self._buckets[ind] if item is None: raise KeyError(_UpperCAmelCase ) if item is _deleted: continue if item.key == key: __a : Dict = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , _UpperCAmelCase ): for ind in self._iterate_buckets(_UpperCAmelCase ): __a : List[str] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(_UpperCAmelCase ) def __len__( self ): return self._len def __iter__( self ): yield from (item.key for item in self._buckets if item) def __repr__( self ): __a : List[str] = ''' ,'''.join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
52
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCAmelCase_ = sys.version_info >= (3, 10) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ): return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : bool @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int = 42 SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : Optional[bool] = None class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = "titi" SCREAMING_SNAKE_CASE : Any = "toto" class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = "titi" SCREAMING_SNAKE_CASE : Optional[Any] = "toto" SCREAMING_SNAKE_CASE : Any = 42 @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : BasicEnum = "toto" def snake_case__( self : Tuple ) ->List[str]: snake_case_ = BasicEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto" def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = MixedTypeEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[float] = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : Optional[str] = None SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] ) SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] ) SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] ) SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = field() SCREAMING_SNAKE_CASE : str = field() SCREAMING_SNAKE_CASE : BasicEnum = field() def snake_case__( self : Optional[Any] ) ->Tuple: snake_case_ = BasicEnum(self.required_enum ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : "BasicEnum" = field() SCREAMING_SNAKE_CASE : "Optional[bool]" = None SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : bool | None = None @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int | None = None SCREAMING_SNAKE_CASE : float | None = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : str | None = None SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] ) SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] ) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Dict , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser ) ->str: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _UpperCamelCase ) and yy.get('''choices''' , _UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_UpperCamelCase ) , yy['''type'''](_UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--bar''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--baz''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--flag''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((snake_case_), ) = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase ) self.assertFalse(example.flag ) def snake_case__( self : Tuple ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) snake_case_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case__( self : Tuple ) ->Union[str, Any]: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto" snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual( _UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def snake_case__( self : Optional[Any] ) ->List[Any]: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--bar''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) snake_case_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[] ) ) snake_case_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def snake_case__( self : Union[str, Any] ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--required_str''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Dict ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } snake_case_ = parser.parse_dict(_UpperCamelCase )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : int ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase ) def snake_case__( self : str ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_json''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_yaml''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Any ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase )
39
0
import pytest import datasets # Import fixture modules as plugins _snake_case : List[str] = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : List[str] ): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def a_ ( lowerCAmelCase_ : int ): config.addinivalue_line('markers', 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Dict ): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? __lowerCAmelCase = tmp_path_factory.getbasetemp() / 'cache' __lowerCAmelCase = test_hf_cache_home / 'datasets' __lowerCAmelCase = test_hf_cache_home / 'metrics' __lowerCAmelCase = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE', str(lowerCAmelCase_ ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE', str(lowerCAmelCase_ ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE', str(lowerCAmelCase_ ) ) __lowerCAmelCase = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH', str(lowerCAmelCase_ ) ) __lowerCAmelCase = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH', str(lowerCAmelCase_ ) ) @pytest.fixture(autouse=lowerCAmelCase_, scope='session' ) def a_ ( ): datasets.disable_progress_bar() @pytest.fixture(autouse=lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : str ): # don't take tests into account when counting downloads monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS', lowerCAmelCase_ ) @pytest.fixture def a_ ( lowerCAmelCase_ : List[str] ): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING', lowerCAmelCase_ )
53
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Dict , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
39
0
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class A ( __lowercase ): _snake_case =DistilBertTokenizer _snake_case =DistilBertTokenizerFast _snake_case =True @slow def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase_ =tokenizer.encode("sequence builders" , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode("multi-sequence build" , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
54
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv" SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]: snake_case_ = vocab_size snake_case_ = context_length snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case_ = layer_norm_epsilon snake_case_ = rescale_every snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
39
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE :str = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] SCREAMING_SNAKE_CASE :Dict = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } SCREAMING_SNAKE_CASE :Union[str, Any] = {f'''funnel-transformer/{name}''': 512 for name in _model_names} SCREAMING_SNAKE_CASE :Union[str, Any] = {f'''funnel-transformer/{name}''': {'do_lower_case': True} for name in _model_names} class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_INIT_CONFIGURATION snake_case_ = FunnelTokenizer snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = 2 def __init__( self : List[Any] ,A : Optional[int]=None ,A : List[str]=None ,A : Tuple=True ,A : str="<unk>" ,A : int="<sep>" ,A : Any="<pad>" ,A : List[str]="<cls>" ,A : str="<mask>" ,A : Any="<s>" ,A : int="</s>" ,A : Union[str, Any]=True ,A : List[str]=True ,A : Optional[int]=None ,A : Optional[int]="##" ,**A : str ,): super().__init__( A ,tokenizer_file=A ,do_lower_case=A ,unk_token=A ,sep_token=A ,pad_token=A ,cls_token=A ,mask_token=A ,bos_token=A ,eos_token=A ,clean_text=A ,tokenize_chinese_chars=A ,strip_accents=A ,wordpieces_prefix=A ,**A ,) __A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,A ) != do_lower_case or normalizer_state.get("strip_accents" ,A ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,A ) != tokenize_chinese_chars ): __A = getattr(A ,normalizer_state.pop("type" ) ) __A = do_lower_case __A = strip_accents __A = tokenize_chinese_chars __A = normalizer_class(**A ) __A = do_lower_case def UpperCamelCase_ ( self : str ,A : Any ,A : List[Any]=None ): __A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Optional[int] ,A : List[int] ,A : Optional[List[int]] = None ): __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int ,A : str ,A : Optional[str] = None ): __A = self._tokenizer.model.save(A ,name=A ) return tuple(A )
55
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) class snake_case_ : '''simple docstring''' def __init__( self : int , _UpperCamelCase : Optional[str] = None ) ->Tuple: snake_case_ = ( os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) snake_case_ = Extractor def snake_case__( self : Any , _UpperCamelCase : str ) ->str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" snake_case_ = os.path.abspath(_UpperCamelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) ) def snake_case__( self : int , _UpperCamelCase : str , _UpperCamelCase : bool ) ->bool: return force_extract or ( not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase )) ) def snake_case__( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : bool = False ) ->str: snake_case_ = self.extractor.infer_extractor_format(_UpperCamelCase ) if not extractor_format: return input_path snake_case_ = self._get_output_path(_UpperCamelCase ) if self._do_extract(_UpperCamelCase , _UpperCamelCase ): self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return output_path class snake_case_ ( __A ): '''simple docstring''' @classmethod @abstractmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : str ) ->bool: ... @staticmethod @abstractmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: ... class snake_case_ ( __A , __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[bytes] = [] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->List[Any]: with open(_UpperCamelCase , '''rb''' ) as f: return f.read(_UpperCamelCase ) @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if not magic_number: snake_case_ = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) try: snake_case_ = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase ) except OSError: return False return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) class snake_case_ ( __A ): '''simple docstring''' @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : Any ) ->bool: return tarfile.is_tarfile(_UpperCamelCase ) @staticmethod def snake_case__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) ->List[str]: def resolved(_UpperCamelCase : str ) -> str: return os.path.realpath(os.path.abspath(_UpperCamelCase ) ) def badpath(_UpperCamelCase : str , _UpperCamelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase ) def badlink(_UpperCamelCase : Tuple , _UpperCamelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link snake_case_ = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCamelCase ) snake_case_ = resolved(_UpperCamelCase ) for finfo in members: if badpath(finfo.name , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = tarfile.open(_UpperCamelCase ) tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) ) tar_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [b"\x1F\x8B"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with gzip.open(_UpperCamelCase , '''rb''' ) as gzip_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def snake_case__( cls : List[str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCamelCase , '''rb''' ) as fp: snake_case_ = _EndRecData(_UpperCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: snake_case_ = fp.read(_UpperCamelCase ) # CD is where we expect it to be if len(_UpperCamelCase ) == sizeCentralDir: snake_case_ = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with zipfile.ZipFile(_UpperCamelCase , '''r''' ) as zip_file: zip_file.extractall(_UpperCamelCase ) zip_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with lzma.open(_UpperCamelCase ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = rarfile.RarFile(_UpperCamelCase ) rf.extractall(_UpperCamelCase ) rf.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [b"\x28\xb5\x2F\xFD"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd snake_case_ = zstd.ZstdDecompressor() with open(_UpperCamelCase , '''rb''' ) as ifh, open(_UpperCamelCase , '''wb''' ) as ofh: dctx.copy_stream(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"\x42\x5A\x68"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with bza.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with pyazr.SevenZipFile(_UpperCamelCase , '''r''' ) as archive: archive.extractall(_UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x04\x22\x4D\x18"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def snake_case__( cls : List[Any] ) ->List[str]: return max( len(_UpperCamelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCamelCase , _UpperCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->Tuple: try: return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase ) except OSError: return b"" @classmethod def snake_case__( cls : Optional[Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bool = False ) ->bool: warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = cls.infer_extractor_format(_UpperCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def snake_case__( cls : int , _UpperCamelCase : Union[Path, str] ) ->str: # <Added version="2.4.0"/> snake_case_ = cls._get_magic_number_max_length() snake_case_ = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return extractor_format @classmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[BaseExtractor] = "deprecated" , ) ->None: os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase ) # Prevent parallel extractions snake_case_ = str(Path(_UpperCamelCase ).with_suffix('''.lock''' ) ) with FileLock(_UpperCamelCase ): shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = extractor if extractor != '''deprecated''' else extractor_format else: snake_case_ = cls.extractors[extractor_format] return extractor.extract(_UpperCamelCase , _UpperCamelCase ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=_UpperCamelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCamelCase ): return extractor.extract(_UpperCamelCase , _UpperCamelCase )
39
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _a : List[Any] = logging.get_logger(__name__) _a : str = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Any = "instructblip_vision_model" def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=1408 , SCREAMING_SNAKE_CASE_ : str=6144 , SCREAMING_SNAKE_CASE_ : List[Any]=39 , SCREAMING_SNAKE_CASE_ : List[str]=16 , SCREAMING_SNAKE_CASE_ : Optional[int]=224 , SCREAMING_SNAKE_CASE_ : List[str]=14 , SCREAMING_SNAKE_CASE_ : Dict="gelu" , SCREAMING_SNAKE_CASE_ : Any=1e-6 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Any=1e-10 , SCREAMING_SNAKE_CASE_ : Any=True , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> int: super().__init__(**SCREAMING_SNAKE_CASE_ ) __snake_case = hidden_size __snake_case = intermediate_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = patch_size __snake_case = image_size __snake_case = initializer_range __snake_case = attention_dropout __snake_case = layer_norm_eps __snake_case = hidden_act __snake_case = qkv_bias @classmethod def a ( cls : Any , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "instructblip_qformer" def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : List[Any]=3_0522 , SCREAMING_SNAKE_CASE_ : str=768 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : Optional[Any]=12 , SCREAMING_SNAKE_CASE_ : Dict=3072 , SCREAMING_SNAKE_CASE_ : Dict="gelu" , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=512 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.0_2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1e-12 , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : int="absolute" , SCREAMING_SNAKE_CASE_ : Tuple=2 , SCREAMING_SNAKE_CASE_ : str=1408 , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> Any: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = cross_attention_frequency __snake_case = encoder_hidden_size @classmethod def a ( cls : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE_ : Dict ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Dict = "instructblip" _SCREAMING_SNAKE_CASE : str = True def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : List[str]=32 , **SCREAMING_SNAKE_CASE_ : str ) -> int: super().__init__(**SCREAMING_SNAKE_CASE_ ) if vision_config is None: __snake_case = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __snake_case = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __snake_case = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __snake_case = InstructBlipVisionConfig(**SCREAMING_SNAKE_CASE_ ) __snake_case = InstructBlipQFormerConfig(**SCREAMING_SNAKE_CASE_ ) __snake_case = text_config['model_type'] if 'model_type' in text_config else 'opt' __snake_case = CONFIG_MAPPING[text_model_type](**SCREAMING_SNAKE_CASE_ ) __snake_case = self.text_config.tie_word_embeddings __snake_case = self.text_config.is_encoder_decoder __snake_case = num_query_tokens __snake_case = self.vision_config.hidden_size __snake_case = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __snake_case = 1.0 __snake_case = 0.0_2 @classmethod def a ( cls : Union[str, Any] , SCREAMING_SNAKE_CASE_ : InstructBlipVisionConfig , SCREAMING_SNAKE_CASE_ : InstructBlipQFormerConfig , SCREAMING_SNAKE_CASE_ : PretrainedConfig , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> Optional[Any]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **SCREAMING_SNAKE_CASE_ , ) def a ( self : Optional[int] ) -> Any: __snake_case = copy.deepcopy(self.__dict__ ) __snake_case = self.vision_config.to_dict() __snake_case = self.qformer_config.to_dict() __snake_case = self.text_config.to_dict() __snake_case = self.__class__.model_type return output
56
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
39
0
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: # Initialise PyTorch model UpperCamelCase_: Union[str, Any] = BigBirdConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: UpperCamelCase_: List[Any] = BigBirdForQuestionAnswering(UpperCAmelCase__ ) else: UpperCamelCase_: str = BigBirdForPreTraining(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(UpperCAmelCase__ , UpperCAmelCase__ , is_trivia_qa=UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--big_bird_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.' ) A_ : List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
57
import re from filelock import FileLock try: import nltk lowerCAmelCase_ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): re.sub('''<n>''' , '''''' , SCREAMING_SNAKE_CASE__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE__ ) )
39
0
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Any = os.path.join(args.tf_model_dir , """parameters.json""" ) snake_case_ : List[str] = json.loads(open(__UpperCamelCase ).read() ) if not params: raise ValueError( F'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith(""".pt""" ): snake_case_ : Optional[Any] = args.output + """.pt""" snake_case_ : List[Any] = OrderedDict() with tf.device("""/CPU:0""" ): snake_case_ : Any = tf.train.load_checkpoint(args.tf_model_dir ) snake_case_ : Tuple = reader.get_variable_to_shape_map() for key_name in shapes.keys(): snake_case_ : Union[str, Any] = reader.get_tensor(__UpperCamelCase ).astype(np.floataa ) if key_name.endswith("""/adam_m""" ) or key_name.endswith("""/adam_v""" ): continue if key_name.startswith("""pasts/""" ): if key_name.startswith("""pasts/mlp""" ): snake_case_ : Any = int(key_name[9] ) elif key_name.startswith("""pasts/out""" ): snake_case_ : Union[str, Any] = 8 snake_case_ : Optional[Any] = """model.sqout.%d.weight""" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time snake_case_ : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ : Dict = torch.tensor(__UpperCamelCase ) elif key_name.startswith("""model/moe""" ): snake_case_ : Optional[int] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/switch_gating/kernel""" ): snake_case_ : Dict = """model.blocks.%d.feed_forward.mlp.router.classifier.weight""" % player snake_case_ : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ : Union[str, Any] = torch.tensor(__UpperCamelCase ) elif key_name.endswith("""/softmlp/kernel""" ): snake_case_ : Tuple = """model.blocks.%d.feed_forward.soft_bypass_mlp.weight""" % player snake_case_ : Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ : List[str] = torch.tensor(__UpperCamelCase ) elif key_name.endswith("""/wo/kernel""" ) or key_name.endswith("""/wi/kernel""" ): snake_case_ : List[Any] = key_name[-9:-7] for i in range(1_6 ): snake_case_ : int = """model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight""" % (player, i, nlayer) snake_case_ : Union[str, Any] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided snake_case_ : Optional[Any] = torch.tensor(__UpperCamelCase ) elif key_name.startswith("""model/mlp""" ): snake_case_ : int = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/p1/kernel""" ): snake_case_ : Optional[int] = """model.blocks.%d.feed_forward.mlp.wi.weight""" % player snake_case_ : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ : Optional[int] = torch.tensor(__UpperCamelCase ) elif key_name.endswith("""/p1/bias""" ): snake_case_ : str = """model.blocks.%d.feed_forward.mlp.wi.bias""" % player snake_case_ : Optional[int] = vnp.copy() # same because it is one dimensional snake_case_ : Any = torch.tensor(__UpperCamelCase ) elif key_name.endswith("""/p2/kernel""" ): snake_case_ : Any = """model.blocks.%d.feed_forward.mlp.wo.weight""" % player snake_case_ : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ : str = torch.tensor(__UpperCamelCase ) elif key_name.endswith("""/p2/bias""" ): snake_case_ : List[Any] = """model.blocks.%d.feed_forward.mlp.wo.bias""" % player snake_case_ : List[str] = vnp.copy() # same because it is one dimensional snake_case_ : Tuple = torch.tensor(__UpperCamelCase ) elif key_name.startswith("""model/ln""" ): snake_case_ : Optional[Any] = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): snake_case_ : Optional[int] = """model.blocks.%d.feed_forward.norm.bias""" % player snake_case_ : Tuple = vnp.copy() # same because it is one dimensional snake_case_ : Optional[Any] = torch.tensor(__UpperCamelCase ) elif key_name.endswith("""/g""" ): snake_case_ : List[Any] = """model.blocks.%d.feed_forward.norm.weight""" % player snake_case_ : Dict = vnp.copy() # same because it is one dimensional snake_case_ : Optional[int] = torch.tensor(__UpperCamelCase ) elif key_name.startswith("""model/att""" ): snake_case_ : List[Any] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/qkv/kernel""" ): snake_case_ : Tuple = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum snake_case_ : str = state[:, 0, :, :] snake_case_ : str = state[:, 1, :, :] snake_case_ : Optional[Any] = state[:, 2, :, :] snake_case_ : Any = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ : str = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ : List[str] = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ : str = """model.blocks.%d.self_attn.self_attn.q_proj.weight""" % player snake_case_ : Optional[Any] = torch.tensor(__UpperCamelCase ) snake_case_ : Dict = """model.blocks.%d.self_attn.self_attn.k_proj.weight""" % player snake_case_ : int = torch.tensor(__UpperCamelCase ) snake_case_ : Tuple = """model.blocks.%d.self_attn.self_attn.v_proj.weight""" % player snake_case_ : Tuple = torch.tensor(__UpperCamelCase ) elif key_name.endswith("""/o/kernel""" ): snake_case_ : List[str] = """model.blocks.%d.self_attn.self_attn.out_proj.weight""" % player snake_case_ : Dict = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ : Union[str, Any] = torch.tensor(__UpperCamelCase ) elif key_name.startswith("""model/an""" ): snake_case_ : Optional[int] = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): snake_case_ : Optional[int] = """model.blocks.%d.self_attn.norm.bias""" % player snake_case_ : Optional[Any] = vnp.copy() # same because it is one dimensional snake_case_ : Optional[Any] = torch.tensor(__UpperCamelCase ) elif key_name.endswith("""/g""" ): snake_case_ : str = """model.blocks.%d.self_attn.norm.weight""" % player snake_case_ : str = vnp.copy() # same because it is one dimensional snake_case_ : Dict = torch.tensor(__UpperCamelCase ) elif ( key_name.startswith("""model/wte""" ) or key_name.startswith("""model/wpe""" ) or key_name.startswith("""model/ete""" ) ): snake_case_ : Optional[int] = {"""wte""": """embed_tokens""", """wpe""": """position_embeddings""", """ete""": """extra_position_embeddings"""}[ key_name[-3:] ] snake_case_ : Union[str, Any] = """model.%s.weight""" % nlayer snake_case_ : Optional[Any] = vnp.copy() # same in embedded snake_case_ : str = torch.tensor(__UpperCamelCase ) if key_name.startswith("""model/wte""" ): snake_case_ : Optional[int] = """lm_head.weight""" snake_case_ : Tuple = vnp.copy() # same in embedded snake_case_ : Union[str, Any] = torch.tensor(__UpperCamelCase ) elif key_name.startswith("""model/wob""" ): snake_case_ : List[str] = """final_logits_bias""" snake_case_ : Optional[int] = vnp.copy() # same in embedded snake_case_ : List[str] = state.reshape((1, -1) ) snake_case_ : str = torch.tensor(__UpperCamelCase ) elif key_name == "model/dense/kernel": snake_case_ : Tuple = """model.last_project.weight""" snake_case_ : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ : Tuple = torch.tensor(__UpperCamelCase ) elif key_name == "model/dense_1/bias": snake_case_ : Tuple = """model.last_project.bias""" snake_case_ : Tuple = vnp.copy() # same because it is one dimensional snake_case_ : int = torch.tensor(__UpperCamelCase ) torch.save(__UpperCamelCase , args.output ) if __name__ == "__main__": __lowerCAmelCase : Dict = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') __lowerCAmelCase : Dict = parser.parse_args() convert_tf_gptsan_to_pt(args)
58
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [0 for i in range(r + 1 )] # nc0 = 1 snake_case_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case_ = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
39
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig __A = logging.get_logger(__name__) __A = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "dpt" def __init__(self : Optional[int] , UpperCAmelCase_ : Any=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Any=1E-1_2 , UpperCAmelCase_ : Tuple=384 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=[2, 5, 8, 11] , UpperCAmelCase_ : List[str]="project" , UpperCAmelCase_ : Dict=[4, 2, 1, 0.5] , UpperCAmelCase_ : Dict=[96, 192, 384, 768] , UpperCAmelCase_ : Dict=256 , UpperCAmelCase_ : List[Any]=-1 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=0.4 , UpperCAmelCase_ : str=255 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=[1, 1_024, 24, 24] , UpperCAmelCase_ : Dict=[0, 1] , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : Optional[Any] , ) ->Tuple: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =hidden_size lowerCamelCase__: List[str] =is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone.") lowerCamelCase__: str ={ "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } lowerCamelCase__: Union[str, Any] =BitConfig(**UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): logger.info("Initializing the config with a `BiT` backbone.") lowerCamelCase__: Optional[Any] =BitConfig(**UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: int =backbone_config else: raise ValueError( F"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""") lowerCamelCase__: Optional[int] =backbone_featmap_shape lowerCamelCase__: Optional[Any] =neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode.") else: lowerCamelCase__: List[Any] =None lowerCamelCase__: Optional[int] =None lowerCamelCase__: Optional[Any] =[] lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: List[str] =num_attention_heads lowerCamelCase__: Any =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: Optional[int] =hidden_dropout_prob lowerCamelCase__: Dict =attention_probs_dropout_prob lowerCamelCase__: Any =initializer_range lowerCamelCase__: Optional[int] =layer_norm_eps lowerCamelCase__: Dict =image_size lowerCamelCase__: str =patch_size lowerCamelCase__: Any =num_channels lowerCamelCase__: Dict =qkv_bias lowerCamelCase__: Dict =backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']") lowerCamelCase__: int =readout_type lowerCamelCase__: str =reassemble_factors lowerCamelCase__: int =neck_hidden_sizes lowerCamelCase__: Dict =fusion_hidden_size lowerCamelCase__: List[str] =head_in_index lowerCamelCase__: Dict =use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowerCamelCase__: Dict =use_auxiliary_head lowerCamelCase__: List[str] =auxiliary_loss_weight lowerCamelCase__: Union[str, Any] =semantic_loss_ignore_index lowerCamelCase__: int =semantic_classifier_dropout def SCREAMING_SNAKE_CASE_ (self : Dict) ->Tuple: '''simple docstring''' lowerCamelCase__: List[str] =copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: lowerCamelCase__: List[Any] =self.backbone_config.to_dict() lowerCamelCase__: Union[str, Any] =self.__class__.model_type return output
59
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCAmelCase_ = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 13_10_72, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return torch.atana(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / math.pi * 2 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.sin(t * math.pi / 2 ) ** 2 snake_case_ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class snake_case_ ( __A ): '''simple docstring''' pass class snake_case_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : int ) ->Optional[int]: super().__init__() snake_case_ = DiffusionAttnUnetaD(_UpperCamelCase , n_attn_layers=4 ) snake_case_ = deepcopy(self.diffusion ) snake_case_ = torch.quasirandom.SobolEngine(1 , scramble=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = MODELS_MAP[model_name]['''url'''] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCAmelCase_ = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCAmelCase_ = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCAmelCase_ = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCAmelCase_ = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif name.startswith(SCREAMING_SNAKE_CASE__ ): return [name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 ): snake_case_ = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) snake_case_ = 0 if string.startswith('''net.3.''' ): depth += 1 snake_case_ = string[6:] elif string.startswith('''net.''' ): snake_case_ = string[4:] while string.startswith('''main.7.''' ): depth += 1 snake_case_ = string[7:] if string.startswith('''main.''' ): snake_case_ = string[5:] # mid block if string[:2].isdigit(): snake_case_ = string[:2] snake_case_ = string[2:] else: snake_case_ = string[0] snake_case_ = string[1:] if depth == max_depth: snake_case_ = MID_NUM_TO_LAYER[layer_num] snake_case_ = '''mid_block''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) < 7: snake_case_ = DOWN_NUM_TO_LAYER[layer_num] snake_case_ = F'''down_blocks.{depth}''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) > 7: snake_case_ = UP_NUM_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: snake_case_ = DEPTH_0_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - 1}''' if int(SCREAMING_SNAKE_CASE__ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) snake_case_ = string_left[1:] if "resnets" in new_layer: snake_case_ = convert_resconv_naming(SCREAMING_SNAKE_CASE__ ) elif "attentions" in new_layer: snake_case_ = convert_attn_naming(SCREAMING_SNAKE_CASE__ ) snake_case_ = new_string_left if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = prefix + '''.''' + new_layer + '''.''' + string_left else: snake_case_ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue snake_case_ = rename(SCREAMING_SNAKE_CASE__ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = transform_conv_attns(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ = v return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) == 1: if len(v.shape ) == 3: # weight snake_case_ = v[:, :, 0] else: # bias snake_case_ = v else: # qkv matrices snake_case_ = v.shape[0] snake_case_ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: snake_case_ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: snake_case_ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) snake_case_ = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' snake_case_ = download(SCREAMING_SNAKE_CASE__ ) snake_case_ = MODELS_MAP[model_name]['''sample_rate'''] snake_case_ = MODELS_MAP[model_name]['''sample_size'''] snake_case_ = Object() snake_case_ = sample_size snake_case_ = sample_rate snake_case_ = 0 snake_case_ = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE__ , sample_rate=SCREAMING_SNAKE_CASE__ ) snake_case_ = diffusers_model.state_dict() snake_case_ = DiffusionUncond(SCREAMING_SNAKE_CASE__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE__ )['''state_dict'''] ) snake_case_ = orig_model.diffusion_ema.eval() snake_case_ = orig_model.state_dict() snake_case_ = rename_orig_weights(SCREAMING_SNAKE_CASE__ ) snake_case_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) snake_case_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE__ ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith('''kernel''' ) for k in list(SCREAMING_SNAKE_CASE__ ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": snake_case_ = value.squeeze() snake_case_ = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = 100 snake_case_ = 33 snake_case_ = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE__ )[:-1] snake_case_ = get_crash_schedule(SCREAMING_SNAKE_CASE__ ) snake_case_ = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(33 ) snake_case_ = pipe(num_inference_steps=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).audios snake_case_ = sampling.iplms_sample(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {} ) snake_case_ = generated.clamp(-1 , 1 ) snake_case_ = (generated - audio).abs().sum() snake_case_ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , SCREAMING_SNAKE_CASE__ ) print('''Diff max''' , SCREAMING_SNAKE_CASE__ ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCAmelCase_ = parser.parse_args() main(args)
39
0
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata lowerCAmelCase_ = '''''' if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class __lowerCAmelCase ( tr.AbstractTransform ): def __init__(self , __magic_name__ = " " ) -> int: '''simple docstring''' snake_case_ : Dict = sentence_delimiter def lowerCamelCase (self , __magic_name__ ) -> Dict: '''simple docstring''' return list(__magic_name__ ) def lowerCamelCase (self , __magic_name__ ) -> Tuple: '''simple docstring''' snake_case_ : Any = [] for sent_idx, sentence in enumerate(__magic_name__ ): chars.extend(self.process_string(__magic_name__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__magic_name__ ) - 1: chars.append(self.sentence_delimiter ) return chars lowerCAmelCase_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowerCAmelCase_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowerCAmelCase_ = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' lowerCAmelCase_ = '''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' lowerCAmelCase_ = ''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def lowerCamelCase (self ) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__=False ) -> Dict: '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( __magic_name__ , __magic_name__ , truth_transform=__magic_name__ , hypothesis_transform=__magic_name__ , )["wer"] snake_case_ : List[Any] = 0 snake_case_ : int = 0 for prediction, reference in zip(__magic_name__ , __magic_name__ ): snake_case_ : Dict = jiwer.compute_measures( __magic_name__ , __magic_name__ , truth_transform=__magic_name__ , hypothesis_transform=__magic_name__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
60
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
0
import re def _A ( lowerCAmelCase_ : str ): """simple docstring""" if len(re.findall("[ATCG]" , lowerCAmelCase_ ) ) != len(lowerCAmelCase_ ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
61
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->Any: snake_case_ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case_ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case_ = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case_ = output[output != -float('''inf''' )] snake_case_ = tf.cast( tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-12 ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @require_tf class snake_case_ ( unittest.TestCase , __A ): '''simple docstring''' if is_tf_available(): SCREAMING_SNAKE_CASE : Optional[int] = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def snake_case__( self : List[Any] ) ->Optional[int]: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 2 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->List[Any]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) ->List[Any]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2, 0], [1_0_2, 1_0_3]] snake_case_ = [[1, 0], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for batch_size in range(1 , len(_UpperCamelCase ) + 1 ): snake_case_ = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow def snake_case__( self : List[str] ) ->int: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 1 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : Any ) ->List[str]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) ->Optional[int]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2], [1_0_2, 1_0_3]] snake_case_ = [[1], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for input_row in range(len(_UpperCamelCase ) ): snake_case_ = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow @require_tensorflow_text def snake_case__( self : Optional[Any] ) ->List[Any]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_UpperCamelCase ) class snake_case_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ) ->List[Any]: super().__init__() snake_case_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , '''spiece.model''' ) , '''rb''' ).read() ) snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->List[Any]: snake_case_ = self.tokenizer.tokenize(_UpperCamelCase ) snake_case_, snake_case_ = text.pad_model_inputs( _UpperCamelCase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) snake_case_ = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) return self.tokenizer.detokenize(_UpperCamelCase ) snake_case_ = CompleteSentenceTransformer() snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) snake_case_ = complete_model(_UpperCamelCase ) snake_case_ = tf.keras.Model(_UpperCamelCase , _UpperCamelCase ) keras_model.save(_UpperCamelCase ) def snake_case__( self : Any ) ->List[Any]: # Has PT equivalent: this test relies on random sampling snake_case_ = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 1_0, '''temperature''': 0.7, } snake_case_ = 1_4 snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = '''Hello, my dog is cute and''' snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''tf''' ) snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case_ = [6_3_8, 1_9_8] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def snake_case__( self : str ) ->Dict: # Has PT equivalent: ample use of framework-specific code snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = '''Hugging Face is a technology company based in New York and Paris.''' snake_case_ = bart_tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids snake_case_ = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Optional[int] ) ->List[str]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) ) class snake_case_ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , **_UpperCamelCase : Tuple ) ->Optional[Any]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() with self.assertRaises(_UpperCamelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_UpperCamelCase , foo='''bar''' )
39
0
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL snake_case = logging.get_logger(__name__) def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" def constraint_to_multiple_of(lowercase , lowercase , lowercase=0 , lowercase=None ): SCREAMING_SNAKE_CASE : Any = round(val / multiple ) * multiple if max_val is not None and x > max_val: SCREAMING_SNAKE_CASE : Optional[int] = math.floor(val / multiple ) * multiple if x < min_val: SCREAMING_SNAKE_CASE : int = math.ceil(val / multiple ) * multiple return x SCREAMING_SNAKE_CASE : Tuple = (output_size, output_size) if isinstance(lowercase , lowercase ) else output_size SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = get_image_size(lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = output_size # determine new height and width SCREAMING_SNAKE_CASE : Tuple = output_height / input_height SCREAMING_SNAKE_CASE : List[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width SCREAMING_SNAKE_CASE : List[str] = scale_width else: # fit height SCREAMING_SNAKE_CASE : Optional[Any] = scale_height SCREAMING_SNAKE_CASE : int = constraint_to_multiple_of(scale_height * input_height , multiple=lowercase ) SCREAMING_SNAKE_CASE : Dict = constraint_to_multiple_of(scale_width * input_width , multiple=lowercase ) return (new_height, new_width) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''pixel_values'''] def __init__( self : Any , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 255 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase_ : str , ): super().__init__(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = size if size is not None else {"height": 384, "width": 384} SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = do_resize SCREAMING_SNAKE_CASE : Optional[Any] = size SCREAMING_SNAKE_CASE : str = keep_aspect_ratio SCREAMING_SNAKE_CASE : int = ensure_multiple_of SCREAMING_SNAKE_CASE : Any = resample SCREAMING_SNAKE_CASE : List[str] = do_rescale SCREAMING_SNAKE_CASE : Tuple = rescale_factor SCREAMING_SNAKE_CASE : Union[str, Any] = do_normalize SCREAMING_SNAKE_CASE : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _A ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : int , ): SCREAMING_SNAKE_CASE : List[str] = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) SCREAMING_SNAKE_CASE : Optional[Any] = get_resize_output_image_size( UpperCAmelCase_ , output_size=(size["height"], size["width"]) , keep_aspect_ratio=UpperCAmelCase_ , multiple=UpperCAmelCase_ , ) return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : Optional[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Dict , ): return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : Dict , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[str] , ): return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : Optional[Any] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : float = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : Optional[Any] , ): SCREAMING_SNAKE_CASE : Optional[int] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : Dict = size if size is not None else self.size SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio SCREAMING_SNAKE_CASE : Optional[Any] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of SCREAMING_SNAKE_CASE : Any = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : Dict = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : int = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : Tuple = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : List[str] = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : Any = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : Tuple = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : Tuple = [self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE : Optional[Any] = [self.normalize(image=UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ ) for image in images] SCREAMING_SNAKE_CASE : Optional[Any] = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images] SCREAMING_SNAKE_CASE : Optional[Any] = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ ) def _A ( self : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Tuple] = None ): SCREAMING_SNAKE_CASE : int = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : List[Any] = target_sizes.numpy() SCREAMING_SNAKE_CASE : str = [] for idx in range(len(UpperCAmelCase_ ) ): SCREAMING_SNAKE_CASE : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : str = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE : str = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
62
import unittest from transformers import DonutProcessor lowerCAmelCase_ = '''naver-clova-ix/donut-base''' class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = DonutProcessor.from_pretrained(_UpperCamelCase ) def snake_case__( self : Dict ) ->str: snake_case_ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } snake_case_ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) snake_case_ = self.processor.tokenajson(_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , _UpperCamelCase )
39
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase__ ( __lowerCamelCase : Tuple ): __UpperCAmelCase : str = [2, 2, 6, 2] if """tiny""" in model_name else [2, 2, 18, 2] __UpperCAmelCase : Any = True if """large""" in model_name or """huge""" in model_name else False __UpperCAmelCase : int = True if """large""" in model_name or """huge""" in model_name else False __UpperCAmelCase : Optional[int] = True if """large""" in model_name or """huge""" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 3, 3] __UpperCAmelCase : Union[str, Any] = [5, 5, 5, 5] elif "fl4" in model_name: __UpperCAmelCase : str = [4, 4, 4, 4] __UpperCAmelCase : Optional[Any] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __UpperCAmelCase : Dict = [3, 3, 3, 3] if "lrf" in model_name: __UpperCAmelCase : Optional[Any] = [3, 3, 3, 3] else: __UpperCAmelCase : Optional[int] = [2, 2, 2, 2] if "tiny" in model_name: __UpperCAmelCase : List[str] = 96 elif "small" in model_name: __UpperCAmelCase : Dict = 96 elif "base" in model_name: __UpperCAmelCase : List[Any] = 128 elif "large" in model_name: __UpperCAmelCase : Any = 192 elif "xlarge" in model_name: __UpperCAmelCase : Tuple = 256 elif "huge" in model_name: __UpperCAmelCase : int = 352 # set label information __UpperCAmelCase : Tuple = """huggingface/label-files""" if "large" in model_name or "huge" in model_name: __UpperCAmelCase : Any = """imagenet-22k-id2label.json""" else: __UpperCAmelCase : Dict = """imagenet-1k-id2label.json""" __UpperCAmelCase : str = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : Optional[int] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : List[str] = FocalNetConfig( embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , ) return config def lowerCamelCase__ ( __lowerCamelCase : Tuple ): if "patch_embed.proj" in name: __UpperCAmelCase : List[Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __UpperCAmelCase : Dict = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: __UpperCAmelCase : int = """encoder.""" + name if "encoder.layers" in name: __UpperCAmelCase : Optional[int] = name.replace("""encoder.layers""" , """encoder.stages""" ) if "downsample.proj" in name: __UpperCAmelCase : Optional[Any] = name.replace("""downsample.proj""" , """downsample.projection""" ) if "blocks" in name: __UpperCAmelCase : Union[str, Any] = name.replace("""blocks""" , """layers""" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __UpperCAmelCase : List[str] = name.replace("""modulation.f""" , """modulation.projection_in""" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __UpperCAmelCase : List[Any] = name.replace("""modulation.h""" , """modulation.projection_context""" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __UpperCAmelCase : str = name.replace("""modulation.proj""" , """modulation.projection_out""" ) if name == "norm.weight": __UpperCAmelCase : Optional[Any] = """layernorm.weight""" if name == "norm.bias": __UpperCAmelCase : Dict = """layernorm.bias""" if "head" in name: __UpperCAmelCase : Tuple = name.replace("""head""" , """classifier""" ) else: __UpperCAmelCase : int = """focalnet.""" + name return name def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str]=False ): # fmt: off __UpperCAmelCase : Dict = { """focalnet-tiny""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth""", """focalnet-tiny-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth""", """focalnet-small""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth""", """focalnet-small-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth""", """focalnet-base""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth""", """focalnet-base-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth""", """focalnet-large-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth""", """focalnet-large-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth""", """focalnet-xlarge-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth""", """focalnet-xlarge-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth""", } # fmt: on __UpperCAmelCase : int = model_name_to_url[model_name] print("""Checkpoint URL: """ , __lowerCamelCase ) __UpperCAmelCase : Dict = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""model"""] # rename keys for key in state_dict.copy().keys(): __UpperCAmelCase : Tuple = state_dict.pop(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = val __UpperCAmelCase : Optional[Any] = get_focalnet_config(__lowerCamelCase ) __UpperCAmelCase : Any = FocalNetForImageClassification(__lowerCamelCase ) model.eval() # load state dict model.load_state_dict(__lowerCamelCase ) # verify conversion __UpperCAmelCase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Union[str, Any] = BitImageProcessor( do_resize=__lowerCamelCase , size={"""shortest_edge""": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=224 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , ) __UpperCAmelCase : Optional[Any] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) __UpperCAmelCase : List[Any] = processor(images=__lowerCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : str = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) __UpperCAmelCase : List[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 ) __UpperCAmelCase : Dict = model(**__lowerCamelCase ) __UpperCAmelCase : Any = outputs.logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) print("""First values of logits:""" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __UpperCAmelCase : Union[str, Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": __UpperCAmelCase : Dict = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": __UpperCAmelCase : int = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": __UpperCAmelCase : int = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": __UpperCAmelCase : Optional[int] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": __UpperCAmelCase : Optional[Any] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) a : Any = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
63
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not nums: raise ValueError('''List is empty''' ) return sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
39
0
def A__ ( snake_case_ : int = 1_000 ): SCREAMING_SNAKE_CASE__: Optional[int]= -1 SCREAMING_SNAKE_CASE__: Optional[Any]= 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c SCREAMING_SNAKE_CASE__: Dict= (n * n - 2 * a * n) // (2 * n - 2 * a) SCREAMING_SNAKE_CASE__: str= n - a - b if c * c == (a * a + b * b): SCREAMING_SNAKE_CASE__: List[Any]= a * b * c if candidate >= product: SCREAMING_SNAKE_CASE__: Union[str, Any]= candidate return product if __name__ == "__main__": print(f'''{solution() = }''')
64
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : List[str] ) ->str: snake_case_ = inspect.getfile(accelerate.test_utils ) snake_case_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 snake_case_ = test_metrics @require_cpu def snake_case__( self : str ) ->int: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case__( self : Union[str, Any] ) ->Any: debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case__( self : List[Any] ) ->Tuple: self.test_metrics.main() @require_multi_gpu def snake_case__( self : Any ) ->Union[str, Any]: print(f'''Found {torch.cuda.device_count()} devices.''' ) snake_case_ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
39
0
"""simple docstring""" import math class __lowercase : def __lowercase ( self : Any ,A : list[list[float]] ,A : list[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = 0.0 UpperCAmelCase__ : Any = 0.0 for i in range(len(A ) ): da += math.pow((sample[i] - weights[0][i]) ,2 ) da += math.pow((sample[i] - weights[1][i]) ,2 ) return 0 if da > da else 1 return 0 def __lowercase ( self : Union[str, Any] ,A : list[list[int | float]] ,A : list[int] ,A : int ,A : float ): '''simple docstring''' for i in range(len(A ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : int = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) UpperCAmelCase__ : Union[str, Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training UpperCAmelCase__ : int = SelfOrganizingMap() UpperCAmelCase__ : Any = 3 UpperCAmelCase__ : Optional[int] = 0.5 for _ in range(__UpperCamelCase ): for j in range(len(__UpperCamelCase ) ): # training sample UpperCAmelCase__ : int = training_samples[j] # Compute the winning vector UpperCAmelCase__ : List[str] = self_organizing_map.get_winner(__UpperCamelCase , __UpperCamelCase ) # Update the winning vector UpperCAmelCase__ : Optional[Any] = self_organizing_map.update(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # classify test sample UpperCAmelCase__ : List[str] = [0, 0, 0, 1] UpperCAmelCase__ : Optional[int] = self_organizing_map.get_winner(__UpperCamelCase , __UpperCamelCase ) # results print(F"Clusters that the test sample belongs to : {winner}" ) print(F"Weights that have been trained : {weights}" ) # running the main() function if __name__ == "__main__": main()
65
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = "informer" SCREAMING_SNAKE_CASE : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Dict , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "student_t" , _UpperCamelCase : str = "nll" , _UpperCamelCase : int = 1 , _UpperCamelCase : List[int] = None , _UpperCamelCase : Optional[Union[str, bool]] = "mean" , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : int = 6_4 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.05 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : Dict=True , _UpperCamelCase : str = "prob" , _UpperCamelCase : int = 5 , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Optional[int]: # time series specific configuration snake_case_ = prediction_length snake_case_ = context_length or prediction_length snake_case_ = distribution_output snake_case_ = loss snake_case_ = input_size snake_case_ = num_time_features snake_case_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case_ = scaling snake_case_ = num_dynamic_real_features snake_case_ = num_static_real_features snake_case_ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = cardinality else: snake_case_ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = embedding_dimension else: snake_case_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ = num_parallel_samples # Transformer architecture configuration snake_case_ = input_size * len(self.lags_sequence ) + self._number_of_features snake_case_ = d_model snake_case_ = encoder_attention_heads snake_case_ = decoder_attention_heads snake_case_ = encoder_ffn_dim snake_case_ = decoder_ffn_dim snake_case_ = encoder_layers snake_case_ = decoder_layers snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = activation_function snake_case_ = init_std snake_case_ = use_cache # Informer snake_case_ = attention_type snake_case_ = sampling_factor snake_case_ = distil super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def snake_case__( self : Optional[Any] ) ->int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
39
0
from collections import defaultdict def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool: _lowercase : Union[str, Any] = first_str.lower().strip() _lowercase : Tuple = second_str.lower().strip() # Remove whitespace _lowercase : Dict = first_str.replace(' ' , '' ) _lowercase : str = second_str.replace(' ' , '' ) # Strings of different lengths are not anagrams if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): return False # Default values for count should be 0 _lowercase : defaultdict[str, int] = defaultdict(SCREAMING_SNAKE_CASE ) # For each character in input strings, # increment count in the corresponding for i in range(len(SCREAMING_SNAKE_CASE ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = input("Enter the first string ").strip() UpperCamelCase = input("Enter the second string ").strip() UpperCamelCase = check_anagrams(input_a, input_b) print(f'''{input_a} and {input_b} are {"" if status else "not "}anagrams.''')
66
import cmath import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) # Convert voltage and current to rectangular form snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
39
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType snake_case = logging.get_logger(__name__) class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = '''vision-encoder-decoder''' SCREAMING_SNAKE_CASE_ : Any = True def __init__( self : List[Any] ,**__A : List[str] ) -> Optional[Any]: super().__init__(**__A ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"""A configuraton of type {self.model_type} cannot be instantiated because """ F"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) _lowercase = kwargs.pop('encoder' ) _lowercase = encoder_config.pop('model_type' ) _lowercase = kwargs.pop('decoder' ) _lowercase = decoder_config.pop('model_type' ) _lowercase = AutoConfig.for_model(__A ,**__A ) _lowercase = AutoConfig.for_model(__A ,**__A ) _lowercase = True @classmethod def __UpperCAmelCase ( cls : Any ,__A : PretrainedConfig ,__A : PretrainedConfig ,**__A : List[str] ) -> PretrainedConfig: logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _lowercase = True _lowercase = True return cls(encoder=encoder_config.to_dict() ,decoder=decoder_config.to_dict() ,**__A ) def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: _lowercase = copy.deepcopy(self.__dict__ ) _lowercase = self.encoder.to_dict() _lowercase = self.decoder.to_dict() _lowercase = self.__class__.model_type return output class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = version.parse('''1.11''' ) @property def __UpperCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __UpperCAmelCase ( self : int ) -> float: return 1e-4 @property def __UpperCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class A_ ( UpperCAmelCase ): """simple docstring""" @property def __UpperCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: _lowercase = OrderedDict() _lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _lowercase = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def __UpperCAmelCase ( self : List[str] ,__A : "PreTrainedTokenizerBase" ,__A : int = -1 ,__A : int = -1 ,__A : bool = False ,__A : Optional["TensorType"] = None ,) -> Mapping[str, Any]: import torch _lowercase = OrderedDict() _lowercase = super().generate_dummy_inputs( __A ,batch_size=__A ,seq_length=__A ,is_pair=__A ,framework=__A ) _lowercase , _lowercase = dummy_input['input_ids'].shape _lowercase = (batch, encoder_sequence, self._config.encoder_hidden_size) _lowercase = dummy_input.pop('input_ids' ) _lowercase = dummy_input.pop('attention_mask' ) _lowercase = torch.zeros(__A ) return common_inputs class A_ ( UpperCAmelCase ): """simple docstring""" @property def __UpperCAmelCase ( self : List[str] ) -> None: pass def __UpperCAmelCase ( self : List[str] ,__A : PretrainedConfig ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(__A ) def __UpperCAmelCase ( self : Dict ,__A : PretrainedConfig ,__A : PretrainedConfig ,__A : str = "default" ) -> OnnxConfig: _lowercase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__A ,__A )
67
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=1_3 , _UpperCamelCase : str=7 , _UpperCamelCase : int=True , _UpperCamelCase : Dict=True , _UpperCamelCase : int=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : str=3_2 , _UpperCamelCase : str=5 , _UpperCamelCase : str=4 , _UpperCamelCase : int=3_7 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : str=5_1_2 , _UpperCamelCase : Optional[int]=1_6 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Any=0.02 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : str=None , ) ->Dict: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def snake_case__( self : str ) ->List[Any]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self : List[str] ) ->Tuple: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) ->Dict: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , ) ->Optional[int]: snake_case_ = BioGptForCausalLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , *_UpperCamelCase : List[Any] ) ->Union[str, Any]: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # create attention mask snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) snake_case_ = self.seq_length // 2 snake_case_ = 0 # first forward pass snake_case_, snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids snake_case_ = ids_tensor((1,) , _UpperCamelCase ).item() + 1 snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) snake_case_ = random_other_next_tokens # append to next input_ids and attn_mask snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCamelCase )] , dim=1 , ) # get two different outputs snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , past_key_values=_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , *_UpperCamelCase : List[Any] ) ->int: snake_case_ = BioGptModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval() snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) # first forward pass snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase ) snake_case_, snake_case_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[ '''last_hidden_state''' ] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , *_UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=False ) ->Dict: snake_case_ = BioGptForCausalLM(_UpperCamelCase ) model.to(_UpperCamelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def snake_case__( self : List[Any] , _UpperCamelCase : Optional[int] , *_UpperCamelCase : Dict ) ->Dict: snake_case_ = BioGptModel(_UpperCamelCase ) snake_case_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def snake_case__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , *_UpperCamelCase : List[str] ) ->int: snake_case_ = self.num_labels snake_case_ = BioGptForTokenClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = (BioGptForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Optional[Any] = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Tuple = False def snake_case__( self : List[str] ) ->Union[str, Any]: snake_case_ = BioGptModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : str ) ->int: self.config_tester.run_common_tests() def snake_case__( self : str ) ->Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_UpperCamelCase , gradient_checkpointing=_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCamelCase ) def snake_case__( self : List[Any] ) ->Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCamelCase ) @slow def snake_case__( self : int ) ->Optional[Any]: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = '''left''' # Define PAD Token = EOS Token = 50256 snake_case_ = tokenizer.eos_token snake_case_ = model.config.eos_token_id # use different length sentences to test batching snake_case_ = [ '''Hello, my dog is a little''', '''Today, I''', ] snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase ) snake_case_ = inputs['''input_ids'''].to(_UpperCamelCase ) snake_case_ = model.generate( input_ids=_UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(_UpperCamelCase ) , ) snake_case_ = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase ) snake_case_ = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() snake_case_ = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings ) snake_case_ = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] ) @slow def snake_case__( self : Optional[int] ) ->List[str]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = BioGptModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__( self : str ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = '''multi_label_classification''' snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__( self : int ) ->Any: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) snake_case_ = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) snake_case_ = model(_UpperCamelCase )[0] snake_case_ = 4_2_3_8_4 snake_case_ = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def snake_case__( self : List[str] ) ->Optional[int]: snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_UpperCamelCase ) snake_case_ = model.generate( **_UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=_UpperCamelCase , ) snake_case_ = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(_UpperCamelCase , _UpperCamelCase )
39
0
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _A ( unittest.TestCase ): """simple docstring""" def _a ( self : Dict ) -> List[Any]: __UpperCAmelCase =[ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE ) ) def _a ( self : Tuple ) -> Dict: __UpperCAmelCase =[ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE ) ) def _a ( self : Any ) -> List[Any]: __UpperCAmelCase =[ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE ) ) def _a ( self : Union[str, Any] ) -> Any: __UpperCAmelCase =[ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE ) ) def _a ( self : Tuple ) -> Any: __UpperCAmelCase =[ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", # Removed: 'text_encoder/model.safetensors', """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE ) ) def _a ( self : List[str] ) -> str: __UpperCAmelCase =[ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] __UpperCAmelCase ="""fp16""" self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE ) ) def _a ( self : Any ) -> int: __UpperCAmelCase =[ """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] __UpperCAmelCase ="""fp16""" self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE ) ) def _a ( self : Dict ) -> Any: # pass variant but use the non-variant filenames __UpperCAmelCase =[ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] __UpperCAmelCase ="""fp16""" self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE ) ) def _a ( self : str ) -> Any: __UpperCAmelCase =[ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __UpperCAmelCase ="""fp16""" self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE ) ) def _a ( self : Optional[Any] ) -> int: __UpperCAmelCase =[ """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", ] __UpperCAmelCase ="""fp16""" self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE ) ) def _a ( self : Any ) -> Union[str, Any]: # pass variant but use the non-variant filenames __UpperCAmelCase =[ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] __UpperCAmelCase ="""fp16""" self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE ) ) def _a ( self : Optional[Any] ) -> int: __UpperCAmelCase =[ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", # 'text_encoder/model.fp16.safetensors', """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] __UpperCAmelCase ="""fp16""" self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE ) )
68
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) snake_case_ = (boundary[1] - boundary[0]) / steps snake_case_ = boundary[0] snake_case_ = boundary[1] snake_case_ = make_points(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = 0.0 y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) for i in x_i: # print(i) y += h * f(SCREAMING_SNAKE_CASE__ ) y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) return y def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = a + h while x < (b - h): yield x snake_case_ = x + h def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # enter your function here snake_case_ = (x - 0) * (x - 0) return y def __SCREAMING_SNAKE_CASE (): snake_case_ = 0.0 # Lower bound of integration snake_case_ = 1.0 # Upper bound of integration snake_case_ = 10.0 # define number of steps or resolution snake_case_ = [a, b] # define boundary of integration snake_case_ = method_a(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
39
0
'''simple docstring''' import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def __UpperCAmelCase ( _UpperCAmelCase : int = 3 ) -> qiskit.result.counts.Counts: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(_UpperCAmelCase ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) __snake_case = QuantumRegister(_UpperCAmelCase , "qr" ) __snake_case = ClassicalRegister(_UpperCAmelCase , "cr" ) __snake_case = QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = number_of_qubits for i in range(_UpperCAmelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_UpperCAmelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _UpperCAmelCase , _UpperCAmelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_UpperCAmelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_UpperCAmelCase , _UpperCAmelCase ) # simulate with 10000 shots __snake_case = Aer.get_backend("qasm_simulator" ) __snake_case = execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_00_00 ) return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": print( F'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
69
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / '''model_card_template.md''' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None ): snake_case_ = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if token is None: snake_case_ = HfFolder.get_token() if organization is None: snake_case_ = whoami(SCREAMING_SNAKE_CASE__ )['''name'''] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(SCREAMING_SNAKE_CASE__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , '''hub_token''' ) else None snake_case_ = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) snake_case_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ = os.path.join(args.output_dir , '''README.md''' ) model_card.save(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) snake_case_ = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE__ ) if search is None: return None snake_case_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, '''diffusers''') def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if new_cache_dir is None: snake_case_ = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ = old_diffusers_cache snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ '''the directory exists and can be written to.''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if variant is not None: snake_case_ = weights_name.split('''.''' ) snake_case_ = splits[:-1] + [variant] + splits[-1:] snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ ) return weights_name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ): snake_case_ = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' '''this model name. Check the model page at ''' F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
39
0
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Any = logging.get_logger() def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : str , lowercase : LevitConfig , lowercase : Path , lowercase : bool = True ): '''simple docstring''' print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": lowerCamelCase_ = timm.create_model('levit_128s' , pretrained=lowercase ) else: lowerCamelCase_ = timm.create_model('levit_128' , pretrained=lowercase ) if hidden_sizes == 1_92: lowerCamelCase_ = timm.create_model('levit_192' , pretrained=lowercase ) if hidden_sizes == 2_56: lowerCamelCase_ = timm.create_model('levit_256' , pretrained=lowercase ) if hidden_sizes == 3_84: lowerCamelCase_ = timm.create_model('levit_384' , pretrained=lowercase ) from_model.eval() lowerCamelCase_ = LevitForImageClassificationWithTeacher(lowercase ).eval() lowerCamelCase_ = OrderedDict() lowerCamelCase_ = from_model.state_dict() lowerCamelCase_ = list(from_model.state_dict().keys() ) lowerCamelCase_ = list(our_model.state_dict().keys() ) print(len(lowercase ) , len(lowercase ) ) for i in range(len(lowercase ) ): lowerCamelCase_ = weights[og_keys[i]] our_model.load_state_dict(lowercase ) lowerCamelCase_ = torch.randn((2, 3, 2_24, 2_24) ) lowerCamelCase_ = from_model(lowercase ) lowerCamelCase_ = our_model(lowercase ).logits assert torch.allclose(lowercase , lowercase ), "The model logits don't match the original one." lowerCamelCase_ = name print(lowercase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowerCamelCase_ = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def _SCREAMING_SNAKE_CASE ( lowercase : Path , lowercase : str = None , lowercase : bool = True ): '''simple docstring''' lowerCamelCase_ = 'imagenet-1k-id2label.json' lowerCamelCase_ = 10_00 lowerCamelCase_ = (1, num_labels) lowerCamelCase_ = 'huggingface/label-files' lowerCamelCase_ = num_labels lowerCamelCase_ = json.load(open(hf_hub_download(lowercase , lowercase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase_ = {int(lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = partial(lowercase , num_labels=lowercase , idalabel=lowercase , labelaid=lowercase ) lowerCamelCase_ = { 'levit-128S': 1_28, 'levit-128': 1_28, 'levit-192': 1_92, 'levit-256': 2_56, 'levit-384': 3_84, } lowerCamelCase_ = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , lowercase , names_to_config[model_name] , lowercase , lowercase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , lowercase , lowercase , lowercase , lowercase ) return config, expected_shape if __name__ == "__main__": lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help="The name of the model you wish to convert, it must be one of the supported Levit* architecture,", ) parser.add_argument( "--pytorch_dump_folder_path", default="levit-dump-folder/", type=Path, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) lowerCamelCase : Optional[int] = parser.parse_args() lowerCamelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
70
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt" def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) snake_case_ = backbone_featmap_shape snake_case_ = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: snake_case_ = None snake_case_ = None snake_case_ = [] snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) snake_case_ = readout_type snake_case_ = reassemble_factors snake_case_ = neck_hidden_sizes snake_case_ = fusion_hidden_size snake_case_ = head_in_index snake_case_ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = semantic_loss_ignore_index snake_case_ = semantic_classifier_dropout def snake_case__( self : List[str] ) ->List[Any]: snake_case_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
39
0
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class _snake_case (nn.Module): def __init__( self ,_snake_case = 16 ,_snake_case = 88 ,_snake_case = None ,_snake_case = 1 ,_snake_case = 0.0 ,_snake_case = 32 ,_snake_case = None ,_snake_case = False ,_snake_case = None ,_snake_case = None ,_snake_case = "geglu" ,_snake_case = None ,): super().__init__() UpperCAmelCase_ : Optional[Any] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=_snake_case ,attention_head_dim=_snake_case ,in_channels=_snake_case ,num_layers=_snake_case ,dropout=_snake_case ,norm_num_groups=_snake_case ,cross_attention_dim=_snake_case ,attention_bias=_snake_case ,sample_size=_snake_case ,num_vector_embeds=_snake_case ,activation_fn=_snake_case ,num_embeds_ada_norm=_snake_case ,) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference UpperCAmelCase_ : List[str] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` UpperCAmelCase_ : int = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` UpperCAmelCase_ : List[Any] = [1, 0] def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case=None ,_snake_case=None ,_snake_case=None ,_snake_case = True ,): UpperCAmelCase_ : List[str] = hidden_states UpperCAmelCase_ : str = [] UpperCAmelCase_ : Optional[int] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens UpperCAmelCase_ : Any = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] UpperCAmelCase_ : Any = self.transformer_index_for_condition[i] UpperCAmelCase_ : int = self.transformers[transformer_index]( _snake_case ,encoder_hidden_states=_snake_case ,timestep=_snake_case ,cross_attention_kwargs=_snake_case ,return_dict=_snake_case ,)[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] UpperCAmelCase_ : Dict = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) UpperCAmelCase_ : List[Any] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_snake_case )
71
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = '''pytorch_model.bin''' @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "A csv or a json file containing the validation data."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "The name of the task to train on."} , ) SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field( default=__A , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=__A , metadata={"help": "Random seed for initialization."} , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case_ = dataset.filter(lambda SCREAMING_SNAKE_CASE__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case_ = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) ) print(SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = dataset.remove_columns(['''label''', '''probability'''] ) snake_case_ = dataset.rename_column('''prediction''' , '''label''' ) snake_case_ = dataset.map(lambda SCREAMING_SNAKE_CASE__ : {"label": idalabel[example["label"]]} ) snake_case_ = dataset.shuffle(seed=args.seed ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) else: dataset.to_json(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): snake_case_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case_ = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ ) snake_case_ = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ , infer_file=SCREAMING_SNAKE_CASE__ ) snake_case_ = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ ) snake_case_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(SCREAMING_SNAKE_CASE__ ).items(): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Sanity checks snake_case_ = {} snake_case_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case_ = args.train_file snake_case_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case_ = args.eval_file for key in data_files: snake_case_ = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: snake_case_ = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) snake_case_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format snake_case_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = None snake_case_ = None snake_case_ = 0 snake_case_ = False # Show the progress bar snake_case_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case_ = data_dir_format(SCREAMING_SNAKE_CASE__ ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-1''' ) snake_case_ = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): arguments_dict.update({key: value} ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-2''' ) # Update arguments_dict snake_case_ = model_path snake_case_ = data_files['''train'''] snake_case_ = current_output_dir snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = iteration snake_case_ = data_dir_format(iteration + 1 ) snake_case_ = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) ) snake_case_ = config.idalabel snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-checkpoint.json''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: snake_case_ = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Loading the dataset from local csv or json files. snake_case_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] snake_case_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case_ = eval_result if best_iteration is None: snake_case_ = new_iteration snake_case_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case_ = new_iteration snake_case_ = new_eval_result snake_case_ = 0 else: if new_eval_result == best_eval_result: snake_case_ = new_iteration snake_case_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE__ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , )
39
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Dict = { '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'pix2struct_text_model' UpperCamelCase__ = ['past_key_values'] UpperCamelCase__ = { 'hidden_size': 'hidden_size', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , snake_case_=5_02_44 , snake_case_=7_68 , snake_case_=64 , snake_case_=20_48 , snake_case_=12 , snake_case_=12 , snake_case_=32 , snake_case_=1_28 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=1.0 , snake_case_="gelu_new" , snake_case_=0 , snake_case_=False , snake_case_=0 , snake_case_=1 , snake_case_=False , snake_case_=True , **snake_case_ , ): lowercase =vocab_size lowercase =hidden_size lowercase =d_kv lowercase =d_ff lowercase =num_layers lowercase =num_heads lowercase =relative_attention_num_buckets lowercase =relative_attention_max_distance lowercase =dropout_rate lowercase =layer_norm_epsilon lowercase =initializer_factor lowercase =use_cache lowercase =eos_token_id lowercase =decoder_start_token_id # for backwards compatibility lowercase =dense_act_fn super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , tie_word_embeddings=snake_case_ , is_decoder=snake_case_ , **snake_case_ , ) @classmethod def _A( cls , snake_case_ , **snake_case_ ): cls._set_token_in_kwargs(snake_case_ ) lowercase , lowercase =cls.get_config_dict(snake_case_ , **snake_case_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": lowercase =config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case_ , **snake_case_ ) class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'pix2struct_vision_model' def __init__( self , snake_case_=7_68 , snake_case_=7_68 , snake_case_=20_48 , snake_case_=64 , snake_case_=12 , snake_case_=12 , snake_case_="gelu_new" , snake_case_=1E-6 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=1E-10 , snake_case_=1.0 , snake_case_=40_96 , snake_case_=32 , snake_case_=1_28 , **snake_case_ , ): super().__init__(**snake_case_ ) lowercase =hidden_size lowercase =patch_embed_hidden_size lowercase =d_ff lowercase =dropout_rate lowercase =num_hidden_layers lowercase =num_attention_heads lowercase =initializer_range lowercase =initializer_factor lowercase =attention_dropout lowercase =layer_norm_eps lowercase =dense_act_fn lowercase =seq_len lowercase =relative_attention_num_buckets lowercase =relative_attention_max_distance lowercase =d_kv @classmethod def _A( cls , snake_case_ , **snake_case_ ): cls._set_token_in_kwargs(snake_case_ ) lowercase , lowercase =cls.get_config_dict(snake_case_ , **snake_case_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": lowercase =config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case_ , **snake_case_ ) class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'pix2struct' UpperCamelCase__ = True def __init__( self , snake_case_=None , snake_case_=None , snake_case_=1.0 , snake_case_=0.02 , snake_case_=False , snake_case_=False , snake_case_=True , **snake_case_ , ): super().__init__(tie_word_embeddings=snake_case_ , is_encoder_decoder=snake_case_ , **snake_case_ ) if text_config is None: lowercase ={} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: lowercase ={} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) lowercase =PixaStructTextConfig(**snake_case_ ) lowercase =PixaStructVisionConfig(**snake_case_ ) lowercase =self.text_config.decoder_start_token_id lowercase =self.text_config.pad_token_id lowercase =self.text_config.eos_token_id lowercase =initializer_factor lowercase =initializer_range lowercase =self.initializer_range lowercase =self.initializer_range lowercase =is_vqa @classmethod def _A( cls , snake_case_ , snake_case_ , **snake_case_ ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case_ ) def _A( self ): lowercase =copy.deepcopy(self.__dict__ ) lowercase =self.text_config.to_dict() lowercase =self.vision_config.to_dict() lowercase =self.__class__.model_type return output
72
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AltDiffusionPipeline SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__( self : Dict ) ->int: torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) snake_case_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) snake_case_ = CLIPTextModel(_UpperCamelCase ) snake_case_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) snake_case_ = 7_7 snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__( self : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0 ) ->Any: if str(_UpperCamelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCamelCase ) else: snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case__( self : Dict ) ->List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def snake_case__( self : List[str] ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case__( self : Dict ) ->Any: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = '''A photo of an astronaut''' snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : Tuple ) ->Union[str, Any]: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : int ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self : List[str] ) ->Tuple: # make sure here that pndm scheduler skips prk snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='''np''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : List[str] ) ->Optional[Any]: snake_case_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , num_inference_steps=2 , output_type='''numpy''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
0
def lowerCamelCase__ (_UpperCAmelCase = 50): SCREAMING_SNAKE_CASE = [[0] * 3 for _ in range(length + 1)] for row_length in range(length + 1): for tile_length in range(2 , 5): for tile_start in range(row_length - tile_length + 1): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length]) if __name__ == "__main__": print(f"""{solution() = }""")
73
from math import factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( '''If a class of 40 students must be arranged into groups of''', f"""4 for group projects, there are {combinations(40, 4)} ways""", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f"""are {combinations(10, 3)} ways that first, second and""", '''third place can be awarded.''', )
39
0
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowercase_ = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowercase_ = concatenate_datasets lowercase_ = DownloadConfig lowercase_ = DownloadManager lowercase_ = DownloadMode lowercase_ = DownloadConfig lowercase_ = DownloadMode lowercase_ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
74
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCAmelCase_ = sys.version_info >= (3, 10) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ): return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : bool @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int = 42 SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : Optional[bool] = None class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = "titi" SCREAMING_SNAKE_CASE : Any = "toto" class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = "titi" SCREAMING_SNAKE_CASE : Optional[Any] = "toto" SCREAMING_SNAKE_CASE : Any = 42 @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : BasicEnum = "toto" def snake_case__( self : Tuple ) ->List[str]: snake_case_ = BasicEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto" def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = MixedTypeEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[float] = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : Optional[str] = None SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] ) SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] ) SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] ) SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = field() SCREAMING_SNAKE_CASE : str = field() SCREAMING_SNAKE_CASE : BasicEnum = field() def snake_case__( self : Optional[Any] ) ->Tuple: snake_case_ = BasicEnum(self.required_enum ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : "BasicEnum" = field() SCREAMING_SNAKE_CASE : "Optional[bool]" = None SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : bool | None = None @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int | None = None SCREAMING_SNAKE_CASE : float | None = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : str | None = None SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] ) SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] ) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Dict , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser ) ->str: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _UpperCamelCase ) and yy.get('''choices''' , _UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_UpperCamelCase ) , yy['''type'''](_UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--bar''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--baz''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--flag''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((snake_case_), ) = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase ) self.assertFalse(example.flag ) def snake_case__( self : Tuple ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) snake_case_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case__( self : Tuple ) ->Union[str, Any]: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto" snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual( _UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def snake_case__( self : Optional[Any] ) ->List[Any]: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--bar''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) snake_case_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[] ) ) snake_case_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def snake_case__( self : Union[str, Any] ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--required_str''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Dict ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } snake_case_ = parser.parse_dict(_UpperCamelCase )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : int ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase ) def snake_case__( self : str ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_json''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_yaml''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Any ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase )
39
0
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: # Initialise PyTorch model UpperCAmelCase__ : Optional[int] = BertConfig.from_json_file(lowerCAmelCase__ ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase__ : Optional[Any] = BertForPreTraining(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
75
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Dict , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
39
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
76
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv" SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]: snake_case_ = vocab_size snake_case_ = context_length snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case_ = layer_norm_epsilon snake_case_ = rescale_every snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
39
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class a__ ( unittest.TestCase ): def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : int = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __UpperCAmelCase : Tuple = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __UpperCAmelCase : List[str] = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above __UpperCAmelCase : Any = tf_top_k_top_p_filtering(UpperCamelCase_ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4) __UpperCAmelCase : List[Any] = output[output != -float("inf")] __UpperCAmelCase : Tuple = tf.cast( tf.where(tf.not_equal(UpperCamelCase_ , tf.constant(-float("inf") , dtype=tf.floataa))) , dtype=tf.intaa , ) tf.debugging.assert_near(UpperCamelCase_ , UpperCamelCase_ , rtol=1e-12) tf.debugging.assert_equal(UpperCamelCase_ , UpperCamelCase_) @require_tf class a__ ( unittest.TestCase , __magic_name__ ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase_ = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def a_ ( self : int): """simple docstring""" __UpperCAmelCase : int = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") __UpperCAmelCase : str = 2 __UpperCAmelCase : int = 2 class a__ ( tf.Module ): def __init__( self : List[Any] , UpperCamelCase_ : Tuple): """simple docstring""" super(UpperCamelCase_ , self).__init__() __UpperCAmelCase : Optional[Any] = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids"), tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask"), ) , jit_compile=UpperCamelCase_ , ) def a_ ( self : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : List[str]): """simple docstring""" __UpperCAmelCase : Optional[int] = self.model.generate( input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , max_new_tokens=UpperCamelCase_ , return_dict_in_generate=UpperCamelCase_ , ) return {"sequences": outputs["sequences"]} __UpperCAmelCase : str = [[2, 0], [102, 103]] __UpperCAmelCase : str = [[1, 0], [1, 1]] __UpperCAmelCase : str = DummyModel(model=UpperCamelCase_) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCamelCase_ , UpperCamelCase_ , signatures={"serving_default": dummy_model.serving}) __UpperCAmelCase : List[str] = tf.saved_model.load(UpperCamelCase_).signatures["serving_default"] for batch_size in range(1 , len(UpperCamelCase_) + 1): __UpperCAmelCase : Optional[int] = { "input_ids": tf.constant(dummy_input_ids[:batch_size]), "attention_mask": tf.constant(dummy_attention_masks[:batch_size]), } __UpperCAmelCase : str = serving_func(**UpperCamelCase_)["sequences"] __UpperCAmelCase : str = test_model.generate(**UpperCamelCase_ , max_new_tokens=UpperCamelCase_) tf.debugging.assert_equal(UpperCamelCase_ , UpperCamelCase_) @slow def a_ ( self : int): """simple docstring""" __UpperCAmelCase : Optional[int] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") __UpperCAmelCase : List[str] = 1 __UpperCAmelCase : List[Any] = 2 class a__ ( tf.Module ): def __init__( self : Union[str, Any] , UpperCamelCase_ : Any): """simple docstring""" super(UpperCamelCase_ , self).__init__() __UpperCAmelCase : int = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids"), tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask"), ) , jit_compile=UpperCamelCase_ , ) def a_ ( self : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any]): """simple docstring""" __UpperCAmelCase : Tuple = self.model.generate( input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , max_new_tokens=UpperCamelCase_ , return_dict_in_generate=UpperCamelCase_ , ) return {"sequences": outputs["sequences"]} __UpperCAmelCase : Union[str, Any] = [[2], [102, 103]] __UpperCAmelCase : str = [[1], [1, 1]] __UpperCAmelCase : Optional[int] = DummyModel(model=UpperCamelCase_) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCamelCase_ , UpperCamelCase_ , signatures={"serving_default": dummy_model.serving}) __UpperCAmelCase : Tuple = tf.saved_model.load(UpperCamelCase_).signatures["serving_default"] for input_row in range(len(UpperCamelCase_)): __UpperCAmelCase : Dict = { "input_ids": tf.constant([dummy_input_ids[input_row]]), "attention_mask": tf.constant([dummy_attention_masks[input_row]]), } __UpperCAmelCase : Dict = serving_func(**UpperCamelCase_)["sequences"] __UpperCAmelCase : int = test_model.generate(**UpperCamelCase_ , max_new_tokens=UpperCamelCase_) tf.debugging.assert_equal(UpperCamelCase_ , UpperCamelCase_) @slow @require_tensorflow_text def a_ ( self : Any): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=UpperCamelCase_) class a__ ( tf.keras.layers.Layer ): def __init__( self : Tuple): """simple docstring""" super().__init__() __UpperCAmelCase : Dict = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(UpperCamelCase_ , "spiece.model") , "rb").read()) __UpperCAmelCase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5") def a_ ( self : List[Any] , UpperCamelCase_ : Tuple , *UpperCamelCase_ : Dict , **UpperCamelCase_ : Any): """simple docstring""" __UpperCAmelCase : Optional[int] = self.tokenizer.tokenize(UpperCamelCase_) __UpperCAmelCase , __UpperCAmelCase : List[str] = text.pad_model_inputs( UpperCamelCase_ , max_seq_length=64 , pad_value=self.model.config.pad_token_id) __UpperCAmelCase : int = self.model.generate(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_) return self.tokenizer.detokenize(UpperCamelCase_) __UpperCAmelCase : Dict = CompleteSentenceTransformer() __UpperCAmelCase : List[str] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs") __UpperCAmelCase : Optional[Any] = complete_model(UpperCamelCase_) __UpperCAmelCase : Optional[Any] = tf.keras.Model(UpperCamelCase_ , UpperCamelCase_) keras_model.save(UpperCamelCase_) def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : Tuple = { "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 10, "temperature": 0.7, } __UpperCAmelCase : List[str] = 14 __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") __UpperCAmelCase : List[str] = "Hello, my dog is cute and" __UpperCAmelCase : Optional[Any] = tokenizer(UpperCamelCase_ , return_tensors="tf") __UpperCAmelCase : List[str] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") __UpperCAmelCase : Optional[int] = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0"): tf.random.set_seed(0) __UpperCAmelCase : List[Any] = model.generate(**UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_) self.assertTrue(expectation == len(generated_tokens[0])) __UpperCAmelCase : Dict = [638, 198] with tf.device(":/CPU:0"): tf.random.set_seed(0) __UpperCAmelCase : List[Any] = model.generate(**UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_) self.assertTrue(expectation == len(generated_tokens[0])) def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") __UpperCAmelCase : Dict = "Hugging Face is a technology company based in New York and Paris." __UpperCAmelCase : Tuple = bart_tokenizer(UpperCamelCase_ , return_tensors="tf").input_ids __UpperCAmelCase : List[str] = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart") __UpperCAmelCase : int = bart_model.generate(UpperCamelCase_).numpy() class a__ ( __magic_name__ ): def a_ ( self : Any , UpperCamelCase_ : str , UpperCamelCase_ : List[Any]=None , **UpperCamelCase_ : int): """simple docstring""" return super().call(UpperCamelCase_ , **UpperCamelCase_) __UpperCAmelCase : List[Any] = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart") __UpperCAmelCase : Union[str, Any] = bart_model.generate(UpperCamelCase_ , foo="bar").numpy() self.assertTrue(np.array_equal(UpperCamelCase_ , UpperCamelCase_)) class a__ ( bart_model.model.encoder.__class__ ): def a_ ( self : Dict , UpperCamelCase_ : int , **UpperCamelCase_ : Dict): """simple docstring""" return super().call(UpperCamelCase_ , **UpperCamelCase_) __UpperCAmelCase : Dict = FakeEncoder(bart_model.config , bart_model.model.shared) __UpperCAmelCase : str = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __UpperCAmelCase : List[str] = bart_model.generate(UpperCamelCase_).numpy() with self.assertRaises(UpperCamelCase_): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(UpperCamelCase_ , foo="bar")
77
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) class snake_case_ : '''simple docstring''' def __init__( self : int , _UpperCamelCase : Optional[str] = None ) ->Tuple: snake_case_ = ( os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) snake_case_ = Extractor def snake_case__( self : Any , _UpperCamelCase : str ) ->str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" snake_case_ = os.path.abspath(_UpperCamelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) ) def snake_case__( self : int , _UpperCamelCase : str , _UpperCamelCase : bool ) ->bool: return force_extract or ( not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase )) ) def snake_case__( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : bool = False ) ->str: snake_case_ = self.extractor.infer_extractor_format(_UpperCamelCase ) if not extractor_format: return input_path snake_case_ = self._get_output_path(_UpperCamelCase ) if self._do_extract(_UpperCamelCase , _UpperCamelCase ): self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return output_path class snake_case_ ( __A ): '''simple docstring''' @classmethod @abstractmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : str ) ->bool: ... @staticmethod @abstractmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: ... class snake_case_ ( __A , __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[bytes] = [] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->List[Any]: with open(_UpperCamelCase , '''rb''' ) as f: return f.read(_UpperCamelCase ) @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if not magic_number: snake_case_ = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) try: snake_case_ = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase ) except OSError: return False return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) class snake_case_ ( __A ): '''simple docstring''' @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : Any ) ->bool: return tarfile.is_tarfile(_UpperCamelCase ) @staticmethod def snake_case__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) ->List[str]: def resolved(_UpperCamelCase : str ) -> str: return os.path.realpath(os.path.abspath(_UpperCamelCase ) ) def badpath(_UpperCamelCase : str , _UpperCamelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase ) def badlink(_UpperCamelCase : Tuple , _UpperCamelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link snake_case_ = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCamelCase ) snake_case_ = resolved(_UpperCamelCase ) for finfo in members: if badpath(finfo.name , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = tarfile.open(_UpperCamelCase ) tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) ) tar_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [b"\x1F\x8B"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with gzip.open(_UpperCamelCase , '''rb''' ) as gzip_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def snake_case__( cls : List[str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCamelCase , '''rb''' ) as fp: snake_case_ = _EndRecData(_UpperCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: snake_case_ = fp.read(_UpperCamelCase ) # CD is where we expect it to be if len(_UpperCamelCase ) == sizeCentralDir: snake_case_ = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with zipfile.ZipFile(_UpperCamelCase , '''r''' ) as zip_file: zip_file.extractall(_UpperCamelCase ) zip_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with lzma.open(_UpperCamelCase ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = rarfile.RarFile(_UpperCamelCase ) rf.extractall(_UpperCamelCase ) rf.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [b"\x28\xb5\x2F\xFD"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd snake_case_ = zstd.ZstdDecompressor() with open(_UpperCamelCase , '''rb''' ) as ifh, open(_UpperCamelCase , '''wb''' ) as ofh: dctx.copy_stream(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"\x42\x5A\x68"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with bza.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with pyazr.SevenZipFile(_UpperCamelCase , '''r''' ) as archive: archive.extractall(_UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x04\x22\x4D\x18"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def snake_case__( cls : List[Any] ) ->List[str]: return max( len(_UpperCamelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCamelCase , _UpperCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->Tuple: try: return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase ) except OSError: return b"" @classmethod def snake_case__( cls : Optional[Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bool = False ) ->bool: warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = cls.infer_extractor_format(_UpperCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def snake_case__( cls : int , _UpperCamelCase : Union[Path, str] ) ->str: # <Added version="2.4.0"/> snake_case_ = cls._get_magic_number_max_length() snake_case_ = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return extractor_format @classmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[BaseExtractor] = "deprecated" , ) ->None: os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase ) # Prevent parallel extractions snake_case_ = str(Path(_UpperCamelCase ).with_suffix('''.lock''' ) ) with FileLock(_UpperCamelCase ): shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = extractor if extractor != '''deprecated''' else extractor_format else: snake_case_ = cls.extractors[extractor_format] return extractor.extract(_UpperCamelCase , _UpperCamelCase ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=_UpperCamelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCamelCase ): return extractor.extract(_UpperCamelCase , _UpperCamelCase )
39
0
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class __A ( UpperCamelCase__ ): def __init__(self : Union[str, Any] ): UpperCAmelCase_ = [] def _lowercase (self : Any , __a : int , __a : Union[str, Any] , __a : Optional[Any] , **__a : Dict ): self.events.append("on_init_end" ) def _lowercase (self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Any , **__a : List[str] ): self.events.append("on_train_begin" ) def _lowercase (self : Optional[Any] , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , **__a : Union[str, Any] ): self.events.append("on_train_end" ) def _lowercase (self : Optional[Any] , __a : Optional[Any] , __a : List[Any] , __a : Union[str, Any] , **__a : Any ): self.events.append("on_epoch_begin" ) def _lowercase (self : List[str] , __a : Union[str, Any] , __a : List[Any] , __a : Tuple , **__a : Optional[int] ): self.events.append("on_epoch_end" ) def _lowercase (self : Any , __a : Optional[Any] , __a : Dict , __a : str , **__a : Union[str, Any] ): self.events.append("on_step_begin" ) def _lowercase (self : int , __a : Tuple , __a : int , __a : Any , **__a : Dict ): self.events.append("on_step_end" ) def _lowercase (self : List[Any] , __a : Dict , __a : int , __a : Dict , **__a : Optional[int] ): self.events.append("on_evaluate" ) def _lowercase (self : int , __a : Union[str, Any] , __a : str , __a : Optional[Any] , **__a : int ): self.events.append("on_predict" ) def _lowercase (self : int , __a : Any , __a : int , __a : List[Any] , **__a : Tuple ): self.events.append("on_save" ) def _lowercase (self : List[Any] , __a : Any , __a : Optional[int] , __a : Tuple , **__a : Optional[Any] ): self.events.append("on_log" ) def _lowercase (self : List[Any] , __a : Optional[Any] , __a : Optional[Any] , __a : int , **__a : int ): self.events.append("on_prediction_step" ) @require_torch class __A ( unittest.TestCase ): def _lowercase (self : List[str] ): UpperCAmelCase_ = tempfile.mkdtemp() def _lowercase (self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def _lowercase (self : int , __a : Dict=0 , __a : str=0 , __a : Any=64 , __a : Any=64 , __a : List[str]=None , __a : Optional[int]=False , **__a : List[str] ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. UpperCAmelCase_ = RegressionDataset(length=__a ) UpperCAmelCase_ = RegressionDataset(length=__a ) UpperCAmelCase_ = RegressionModelConfig(a=__a , b=__a ) UpperCAmelCase_ = RegressionPreTrainedModel(__a ) UpperCAmelCase_ = TrainingArguments(self.output_dir , disable_tqdm=__a , report_to=[] , **__a ) return Trainer( __a , __a , train_dataset=__a , eval_dataset=__a , callbacks=__a , ) def _lowercase (self : List[Any] , __a : Dict , __a : List[Any] ): self.assertEqual(len(__a ) , len(__a ) ) # Order doesn't matter UpperCAmelCase_ = sorted(__a , key=lambda __a : cb.__name__ if isinstance(__a , __a ) else cb.__class__.__name__ ) UpperCAmelCase_ = sorted(__a , key=lambda __a : cb.__name__ if isinstance(__a , __a ) else cb.__class__.__name__ ) for cba, cba in zip(__a , __a ): if isinstance(__a , __a ) and isinstance(__a , __a ): self.assertEqual(__a , __a ) elif isinstance(__a , __a ) and not isinstance(__a , __a ): self.assertEqual(__a , cba.__class__ ) elif not isinstance(__a , __a ) and isinstance(__a , __a ): self.assertEqual(cba.__class__ , __a ) else: self.assertEqual(__a , __a ) def _lowercase (self : Tuple , __a : Optional[Any] ): UpperCAmelCase_ = ["on_init_end", "on_train_begin"] UpperCAmelCase_ = 0 UpperCAmelCase_ = len(trainer.get_eval_dataloader() ) UpperCAmelCase_ = ["on_prediction_step"] * len(trainer.get_eval_dataloader() ) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs ): expected_events.append("on_epoch_begin" ) for _ in range(__a ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("on_log" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("on_save" ) expected_events.append("on_epoch_end" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.get_trainer() UpperCAmelCase_ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __a ) # Callbacks passed at init are added to the default callbacks UpperCAmelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(__a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __a ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback UpperCAmelCase_ = self.get_trainer(disable_tqdm=__a ) UpperCAmelCase_ = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __a ) def _lowercase (self : int ): UpperCAmelCase_ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] UpperCAmelCase_ = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(__a ) expected_callbacks.remove(__a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __a ) UpperCAmelCase_ = self.get_trainer() UpperCAmelCase_ = trainer.pop_callback(__a ) self.assertEqual(cb.__class__ , __a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __a ) trainer.add_callback(__a ) expected_callbacks.insert(0 , __a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __a ) # We can also add, pop, or remove by instance UpperCAmelCase_ = self.get_trainer() UpperCAmelCase_ = trainer.callback_handler.callbacks[0] trainer.remove_callback(__a ) expected_callbacks.remove(__a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __a ) UpperCAmelCase_ = self.get_trainer() UpperCAmelCase_ = trainer.callback_handler.callbacks[0] UpperCAmelCase_ = trainer.pop_callback(__a ) self.assertEqual(__a , __a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __a ) trainer.add_callback(__a ) expected_callbacks.insert(0 , __a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __a ) def _lowercase (self : List[Any] ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="ignore" , category=__a ) UpperCAmelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() UpperCAmelCase_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(__a , self.get_expected_events(__a ) ) # Independent log/save/eval UpperCAmelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() UpperCAmelCase_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(__a , self.get_expected_events(__a ) ) UpperCAmelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() UpperCAmelCase_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(__a , self.get_expected_events(__a ) ) UpperCAmelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps" ) trainer.train() UpperCAmelCase_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(__a , self.get_expected_events(__a ) ) UpperCAmelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch" ) trainer.train() UpperCAmelCase_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(__a , self.get_expected_events(__a ) ) # A bit of everything UpperCAmelCase_ = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="steps" , ) trainer.train() UpperCAmelCase_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(__a , self.get_expected_events(__a ) ) # warning should be emitted for duplicated callbacks with patch("transformers.trainer_callback.logger.warning" ) as warn_mock: UpperCAmelCase_ = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(__a ) in warn_mock.call_args[0][0]
78
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
39
0
from __future__ import annotations from collections.abc import Iterator class UpperCAmelCase_ : def __init__( self , _lowerCAmelCase ): UpperCAmelCase__ : Union[str, Any] = value UpperCAmelCase__ : Node | None = None UpperCAmelCase__ : Node | None = None class UpperCAmelCase_ : def __init__( self , _lowerCAmelCase ): UpperCAmelCase__ : int = tree def __UpperCAmelCase ( self , _lowerCAmelCase ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
79
import re from filelock import FileLock try: import nltk lowerCAmelCase_ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): re.sub('''<n>''' , '''''' , SCREAMING_SNAKE_CASE__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE__ ) )
39
0
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : List[str] = logging.get_logger(__name__) @dataclass class __UpperCamelCase : __snake_case :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __snake_case :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase = self.task_name.lower() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[Any] = 'train' __snake_case :int = 'dev' __snake_case :Optional[int] = 'test' class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :GlueDataTrainingArguments __snake_case :str __snake_case :List[InputFeatures] def __init__( self : int , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ) -> str: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowerCAmelCase , ) __lowercase = args __lowercase = glue_processors[args.task_name]() __lowercase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) __lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(_lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowercase = self.processor.get_test_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowercase = examples[:limit_length] __lowercase = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) __lowercase = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Any ) -> Optional[Any]: """simple docstring""" return len(self.features ) def __getitem__( self : Any , _lowerCAmelCase : Optional[Any] ) -> InputFeatures: """simple docstring""" return self.features[i] def _a ( self : int ) -> Optional[Any]: """simple docstring""" return self.label_list
80
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [0 for i in range(r + 1 )] # nc0 = 1 snake_case_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case_ = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
39
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class a : """simple docstring""" def __init__( self : int , lowerCamelCase : Optional[int] , lowerCamelCase : int=13 , lowerCamelCase : Tuple=7 , lowerCamelCase : Optional[int]=True , lowerCamelCase : int=True , lowerCamelCase : Any=True , lowerCamelCase : int=True , lowerCamelCase : Optional[int]=99 , lowerCamelCase : Any=64 , lowerCamelCase : Dict=32 , lowerCamelCase : int=5 , lowerCamelCase : List[str]=4 , lowerCamelCase : Optional[int]=37 , lowerCamelCase : List[str]="gelu" , lowerCamelCase : int=0.1 , lowerCamelCase : Tuple=0.1 , lowerCamelCase : Dict=512 , lowerCamelCase : Tuple=16 , lowerCamelCase : int=2 , lowerCamelCase : Any=0.02 , lowerCamelCase : List[Any]=3 , lowerCamelCase : int=4 , lowerCamelCase : Optional[int]=None , ) -> Union[str, Any]: __snake_case : Tuple = parent __snake_case : Tuple = batch_size __snake_case : List[str] = seq_length __snake_case : int = is_training __snake_case : Dict = use_input_mask __snake_case : Optional[Any] = use_token_type_ids __snake_case : int = use_labels __snake_case : int = vocab_size __snake_case : List[str] = hidden_size __snake_case : str = embedding_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Optional[Any] = num_attention_heads __snake_case : int = intermediate_size __snake_case : List[str] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Dict = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Tuple = type_sequence_label_size __snake_case : Optional[int] = initializer_range __snake_case : Optional[Any] = num_labels __snake_case : List[Any] = num_choices __snake_case : Optional[int] = scope def __snake_case ( self : List[str] ) -> int: __snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : List[str] = None if self.use_input_mask: __snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : str = None if self.use_token_type_ids: __snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Tuple = None __snake_case : int = None __snake_case : List[str] = None if self.use_labels: __snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[str] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self : Any ) -> int: return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , ) def __snake_case ( self : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Any ) -> List[str]: __snake_case : str = MegatronBertModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[Any] = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase ) __snake_case : Tuple = model(lowerCamelCase , token_type_ids=lowerCamelCase ) __snake_case : Optional[int] = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __snake_case ( self : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : List[Any] , lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ) -> List[Any]: __snake_case : Union[str, Any] = MegatronBertForMaskedLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Optional[int] = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self : Dict , lowerCamelCase : List[str] , lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : str , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] ) -> Union[str, Any]: __snake_case : List[str] = MegatronBertForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Tuple = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Dict ) -> Optional[Any]: __snake_case : str = MegatronBertForNextSentencePrediction(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[Any] = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __snake_case ( self : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : Dict , lowerCamelCase : List[Any] , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] ) -> str: __snake_case : str = MegatronBertForPreTraining(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[Any] = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , next_sentence_label=lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __snake_case ( self : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : Dict , lowerCamelCase : Dict , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] ) -> Tuple: __snake_case : str = MegatronBertForQuestionAnswering(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Dict = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] ) -> Tuple: __snake_case : Optional[int] = self.num_labels __snake_case : Union[str, Any] = MegatronBertForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Union[str, Any] = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : Any , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict ) -> Union[str, Any]: __snake_case : Tuple = self.num_labels __snake_case : Tuple = MegatronBertForTokenClassification(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[str] = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Any , lowerCamelCase : Optional[Any] ) -> Dict: __snake_case : List[str] = self.num_choices __snake_case : Dict = MegatronBertForMultipleChoice(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Dict = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self : Dict ) -> Tuple: __snake_case : Union[str, Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = config_and_inputs __snake_case : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) __UpperCAmelCase : Optional[Any] = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : List[str] = True # test_resize_embeddings = False __UpperCAmelCase : Union[str, Any] = False def __snake_case ( self : Any , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : List[str]=False ) -> Any: __snake_case : Tuple = super()._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) if return_labels: if model_class in get_values(lowerCamelCase ): __snake_case : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase ) __snake_case : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase ) return inputs_dict def __snake_case ( self : List[str] ) -> int: __snake_case : Any = MegatronBertModelTester(self ) __snake_case : Union[str, Any] = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def __snake_case ( self : str ) -> str: self.config_tester.run_common_tests() def __snake_case ( self : List[str] ) -> Optional[Any]: __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowerCamelCase ) def __snake_case ( self : Optional[int] ) -> Optional[Any]: __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCamelCase ) def __snake_case ( self : str ) -> List[Any]: __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCamelCase ) def __snake_case ( self : List[Any] ) -> Optional[int]: __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCamelCase ) def __snake_case ( self : List[str] ) -> str: __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCamelCase ) def __snake_case ( self : List[Any] ) -> Any: __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCamelCase ) def __snake_case ( self : int ) -> List[Any]: __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCamelCase ) def __snake_case ( self : List[Any] ) -> Union[str, Any]: __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase ): return torch.tensor( __lowerCamelCase , dtype=torch.long , device=__lowerCamelCase , ) _snake_case : Optional[Any] = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class a (unittest.TestCase ): """simple docstring""" @slow @unittest.skip("Model is not available." ) def __snake_case ( self : List[Any] ) -> Dict: __snake_case : List[str] = "nvidia/megatron-bert-uncased-345m" if "MYDIR" in os.environ: __snake_case : str = os.path.join(os.environ["MYDIR"] , lowerCamelCase ) __snake_case : Dict = MegatronBertModel.from_pretrained(lowerCamelCase ) model.to(lowerCamelCase ) model.half() __snake_case : int = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): __snake_case : Optional[Any] = model(lowerCamelCase )[0] __snake_case : str = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , lowerCamelCase ) __snake_case : Any = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28] for ii in range(3 ): for jj in range(3 ): __snake_case : List[Any] = output[0, ii, jj] __snake_case : Tuple = expected[3 * ii + jj] __snake_case : List[str] = "ii={} jj={} a={} b={}".format(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.assertTrue(math.isclose(lowerCamelCase , lowerCamelCase , rel_tol=lowerCamelCase , abs_tol=lowerCamelCase ) , msg=lowerCamelCase )
81
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCAmelCase_ = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 13_10_72, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return torch.atana(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / math.pi * 2 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.sin(t * math.pi / 2 ) ** 2 snake_case_ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class snake_case_ ( __A ): '''simple docstring''' pass class snake_case_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : int ) ->Optional[int]: super().__init__() snake_case_ = DiffusionAttnUnetaD(_UpperCamelCase , n_attn_layers=4 ) snake_case_ = deepcopy(self.diffusion ) snake_case_ = torch.quasirandom.SobolEngine(1 , scramble=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = MODELS_MAP[model_name]['''url'''] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCAmelCase_ = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCAmelCase_ = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCAmelCase_ = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCAmelCase_ = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif name.startswith(SCREAMING_SNAKE_CASE__ ): return [name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 ): snake_case_ = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) snake_case_ = 0 if string.startswith('''net.3.''' ): depth += 1 snake_case_ = string[6:] elif string.startswith('''net.''' ): snake_case_ = string[4:] while string.startswith('''main.7.''' ): depth += 1 snake_case_ = string[7:] if string.startswith('''main.''' ): snake_case_ = string[5:] # mid block if string[:2].isdigit(): snake_case_ = string[:2] snake_case_ = string[2:] else: snake_case_ = string[0] snake_case_ = string[1:] if depth == max_depth: snake_case_ = MID_NUM_TO_LAYER[layer_num] snake_case_ = '''mid_block''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) < 7: snake_case_ = DOWN_NUM_TO_LAYER[layer_num] snake_case_ = F'''down_blocks.{depth}''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) > 7: snake_case_ = UP_NUM_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: snake_case_ = DEPTH_0_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - 1}''' if int(SCREAMING_SNAKE_CASE__ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) snake_case_ = string_left[1:] if "resnets" in new_layer: snake_case_ = convert_resconv_naming(SCREAMING_SNAKE_CASE__ ) elif "attentions" in new_layer: snake_case_ = convert_attn_naming(SCREAMING_SNAKE_CASE__ ) snake_case_ = new_string_left if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = prefix + '''.''' + new_layer + '''.''' + string_left else: snake_case_ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue snake_case_ = rename(SCREAMING_SNAKE_CASE__ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = transform_conv_attns(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ = v return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) == 1: if len(v.shape ) == 3: # weight snake_case_ = v[:, :, 0] else: # bias snake_case_ = v else: # qkv matrices snake_case_ = v.shape[0] snake_case_ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: snake_case_ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: snake_case_ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) snake_case_ = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' snake_case_ = download(SCREAMING_SNAKE_CASE__ ) snake_case_ = MODELS_MAP[model_name]['''sample_rate'''] snake_case_ = MODELS_MAP[model_name]['''sample_size'''] snake_case_ = Object() snake_case_ = sample_size snake_case_ = sample_rate snake_case_ = 0 snake_case_ = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE__ , sample_rate=SCREAMING_SNAKE_CASE__ ) snake_case_ = diffusers_model.state_dict() snake_case_ = DiffusionUncond(SCREAMING_SNAKE_CASE__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE__ )['''state_dict'''] ) snake_case_ = orig_model.diffusion_ema.eval() snake_case_ = orig_model.state_dict() snake_case_ = rename_orig_weights(SCREAMING_SNAKE_CASE__ ) snake_case_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) snake_case_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE__ ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith('''kernel''' ) for k in list(SCREAMING_SNAKE_CASE__ ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": snake_case_ = value.squeeze() snake_case_ = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = 100 snake_case_ = 33 snake_case_ = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE__ )[:-1] snake_case_ = get_crash_schedule(SCREAMING_SNAKE_CASE__ ) snake_case_ = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(33 ) snake_case_ = pipe(num_inference_steps=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).audios snake_case_ = sampling.iplms_sample(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {} ) snake_case_ = generated.clamp(-1 , 1 ) snake_case_ = (generated - audio).abs().sum() snake_case_ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , SCREAMING_SNAKE_CASE__ ) print('''Diff max''' , SCREAMING_SNAKE_CASE__ ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCAmelCase_ = parser.parse_args() main(args)
39
0
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def a__ ( lowerCAmelCase__ ): return getitem, k def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): return setitem, k, v def a__ ( lowerCAmelCase__ ): return delitem, k def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ ): try: return fun(lowerCAmelCase__ , *lowerCAmelCase__ ), None except Exception as e: return None, e lowerCamelCase = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) lowerCamelCase = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] lowerCamelCase = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] lowerCamelCase = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] lowerCamelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCamelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = HashMap(initial_block_size=4 ) UpperCAmelCase_ = {} for _, (fun, *args) in enumerate(lowerCAmelCase__ ): UpperCAmelCase_ , UpperCAmelCase_ = _run_operation(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = _run_operation(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ ) assert my_res == py_res assert str(lowerCAmelCase__ ) == str(lowerCAmelCase__ ) assert set(lowerCAmelCase__ ) == set(lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) assert set(my.items() ) == set(py.items() ) def a__ ( ): def is_public(lowerCAmelCase__ ) -> bool: return not name.startswith("_" ) UpperCAmelCase_ = {name for name in dir({} ) if is_public(lowerCAmelCase__ )} UpperCAmelCase_ = {name for name in dir(HashMap() ) if is_public(lowerCAmelCase__ )} assert dict_public_names > hash_public_names
82
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
0
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def snake_case_ ( A_ : List[str] ): '''simple docstring''' _lowerCamelCase : Dict = torch.load(A_, map_location='''cpu''' ) if "model" in sd.keys(): _lowerCamelCase : List[str] = torch.load(A_, map_location='''cpu''' )['''model'''] # pop unnecessary weights _lowerCamelCase : Tuple = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(A_ ) _lowerCamelCase : Dict = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCamelCase : int = sd.pop(A_ ) _lowerCamelCase : List[Any] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCamelCase : Tuple = sd[key] # We split QKV in separate Q,K,V _lowerCamelCase : Any = key.replace('''.qkv_proj.''', '''.q_proj.''' ) _lowerCamelCase : Dict = key.replace('''.qkv_proj.''', '''.k_proj.''' ) _lowerCamelCase : int = key.replace('''.qkv_proj.''', '''.v_proj.''' ) _lowerCamelCase : Tuple = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = torch.split(A_, depth // 3, dim=0 ) _lowerCamelCase : Optional[Any] = q _lowerCamelCase : Tuple = k _lowerCamelCase : Tuple = v del sd[key] return sd @torch.no_grad() def snake_case_ ( A_ : Dict, A_ : Optional[int], A_ : Union[str, Any]=None ): '''simple docstring''' _lowerCamelCase : Dict = load_checkpoint(A_ ) if config is not None: _lowerCamelCase : List[Any] = OPTConfig.from_pretrained(A_ ) else: _lowerCamelCase : Union[str, Any] = OPTConfig() _lowerCamelCase : Optional[Any] = OPTModel(A_ ).half().eval() model.load_state_dict(A_ ) # Check results Path(A_ ).mkdir(exist_ok=A_ ) model.save_pretrained(A_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') lowerCAmelCase__ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
83
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->Any: snake_case_ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case_ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case_ = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case_ = output[output != -float('''inf''' )] snake_case_ = tf.cast( tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-12 ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @require_tf class snake_case_ ( unittest.TestCase , __A ): '''simple docstring''' if is_tf_available(): SCREAMING_SNAKE_CASE : Optional[int] = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def snake_case__( self : List[Any] ) ->Optional[int]: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 2 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->List[Any]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) ->List[Any]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2, 0], [1_0_2, 1_0_3]] snake_case_ = [[1, 0], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for batch_size in range(1 , len(_UpperCamelCase ) + 1 ): snake_case_ = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow def snake_case__( self : List[str] ) ->int: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 1 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : Any ) ->List[str]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) ->Optional[int]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2], [1_0_2, 1_0_3]] snake_case_ = [[1], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for input_row in range(len(_UpperCamelCase ) ): snake_case_ = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow @require_tensorflow_text def snake_case__( self : Optional[Any] ) ->List[Any]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_UpperCamelCase ) class snake_case_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ) ->List[Any]: super().__init__() snake_case_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , '''spiece.model''' ) , '''rb''' ).read() ) snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->List[Any]: snake_case_ = self.tokenizer.tokenize(_UpperCamelCase ) snake_case_, snake_case_ = text.pad_model_inputs( _UpperCamelCase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) snake_case_ = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) return self.tokenizer.detokenize(_UpperCamelCase ) snake_case_ = CompleteSentenceTransformer() snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) snake_case_ = complete_model(_UpperCamelCase ) snake_case_ = tf.keras.Model(_UpperCamelCase , _UpperCamelCase ) keras_model.save(_UpperCamelCase ) def snake_case__( self : Any ) ->List[Any]: # Has PT equivalent: this test relies on random sampling snake_case_ = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 1_0, '''temperature''': 0.7, } snake_case_ = 1_4 snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = '''Hello, my dog is cute and''' snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''tf''' ) snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case_ = [6_3_8, 1_9_8] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def snake_case__( self : str ) ->Dict: # Has PT equivalent: ample use of framework-specific code snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = '''Hugging Face is a technology company based in New York and Paris.''' snake_case_ = bart_tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids snake_case_ = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Optional[int] ) ->List[str]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) ) class snake_case_ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , **_UpperCamelCase : Tuple ) ->Optional[Any]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() with self.assertRaises(_UpperCamelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_UpperCamelCase , foo='''bar''' )
39
0
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase = 16 UpperCAmelCase = 32 def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 16 ): lowercase = AutoTokenizer.from_pretrained('bert-base-cased' ) lowercase = load_dataset('glue' , 'mrpc' ) def tokenize_function(__SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) lowercase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase = datasets.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase = 16 elif accelerator.mixed_precision != "no": lowercase = 8 else: lowercase = None return tokenizer.pad( __SCREAMING_SNAKE_CASE , padding='longest' , max_length=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_tensors='pt' , ) # Instantiate dataloaders. lowercase = DataLoader( tokenized_datasets['train'] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) lowercase = DataLoader( tokenized_datasets['validation'] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase = mocked_dataloaders # noqa: F811 def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , __SCREAMING_SNAKE_CASE ) == "1": lowercase = 2 # Initialize accelerator lowercase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase = config['lr'] lowercase = int(config['num_epochs'] ) lowercase = int(config['seed'] ) lowercase = int(config['batch_size'] ) lowercase = evaluate.load('glue' , 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__SCREAMING_SNAKE_CASE ) def inner_training_loop(__SCREAMING_SNAKE_CASE ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase = model.to(accelerator.device ) # Instantiate optimizer lowercase = AdamW(params=model.parameters() , lr=__SCREAMING_SNAKE_CASE ) lowercase , lowercase = get_dataloaders(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Instantiate scheduler lowercase = get_linear_schedule_with_warmup( optimizer=__SCREAMING_SNAKE_CASE , num_warmup_steps=100 , num_training_steps=(len(__SCREAMING_SNAKE_CASE ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase , lowercase , lowercase , lowercase , lowercase = accelerator.prepare( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(__SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase = model(**__SCREAMING_SNAKE_CASE ) lowercase = outputs.loss accelerator.backward(__SCREAMING_SNAKE_CASE ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase = model(**__SCREAMING_SNAKE_CASE ) lowercase = outputs.logits.argmax(dim=-1 ) lowercase , lowercase = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE , ) lowercase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __SCREAMING_SNAKE_CASE ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def UpperCAmelCase_ ( ): lowercase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) lowercase = parser.parse_args() lowercase = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
84
import unittest from transformers import DonutProcessor lowerCAmelCase_ = '''naver-clova-ix/donut-base''' class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = DonutProcessor.from_pretrained(_UpperCamelCase ) def snake_case__( self : Dict ) ->str: snake_case_ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } snake_case_ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) snake_case_ = self.processor.tokenajson(_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , _UpperCamelCase )
39
0
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _a ( lowercase__ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = [] embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', f'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', f'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', f'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', f'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def _a ( lowercase__ : Union[str, Any] , lowercase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = [] attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', f'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', f'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', f'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', f'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def _a ( lowercase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = [] token.append((f'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def _a ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Optional[int] , lowercase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = 'imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE__ : int = 10_00 SCREAMING_SNAKE_CASE__ : Dict = 'huggingface/label-files' SCREAMING_SNAKE_CASE__ : str = num_labels SCREAMING_SNAKE_CASE__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowercase__ , lowercase__ , repo_type='dataset' ) ) , 'r' ) ) SCREAMING_SNAKE_CASE__ : Dict = {int(lowercase__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : Optional[Any] = idalabel SCREAMING_SNAKE_CASE__ : Union[str, Any] = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : List[str] = CvtConfig(num_labels=lowercase__ , idalabel=lowercase__ , labelaid=lowercase__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": SCREAMING_SNAKE_CASE__ : int = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": SCREAMING_SNAKE_CASE__ : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: SCREAMING_SNAKE_CASE__ : Dict = [2, 2, 20] SCREAMING_SNAKE_CASE__ : Any = [3, 12, 16] SCREAMING_SNAKE_CASE__ : List[str] = [1_92, 7_68, 10_24] SCREAMING_SNAKE_CASE__ : List[Any] = CvtForImageClassification(lowercase__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) SCREAMING_SNAKE_CASE__ : Optional[int] = image_size SCREAMING_SNAKE_CASE__ : List[str] = torch.load(lowercase__ , map_location=torch.device('cpu' ) ) SCREAMING_SNAKE_CASE__ : Any = OrderedDict() SCREAMING_SNAKE_CASE__ : Dict = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: SCREAMING_SNAKE_CASE__ : Tuple = list_of_state_dict + cls_token(lowercase__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = list_of_state_dict + embeddings(lowercase__ ) for cnt in range(config.depth[idx] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = list_of_state_dict + attention(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE__ : Any = list_of_state_dict + final() for gg in list_of_state_dict: print(lowercase__ ) for i in range(len(lowercase__ ) ): SCREAMING_SNAKE_CASE__ : Optional[int] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : List[str] = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) SCREAMING_SNAKE_CASE__ : Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
85
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not nums: raise ValueError('''List is empty''' ) return sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
39
0
from math import ceil def __snake_case ( __UpperCamelCase : int = 1001 ): """simple docstring""" A_ = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): A_ = 2 * i + 1 A_ = 2 * i A_ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __a :Union[str, Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
86
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : List[str] ) ->str: snake_case_ = inspect.getfile(accelerate.test_utils ) snake_case_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 snake_case_ = test_metrics @require_cpu def snake_case__( self : str ) ->int: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case__( self : Union[str, Any] ) ->Any: debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case__( self : List[Any] ) ->Tuple: self.test_metrics.main() @require_multi_gpu def snake_case__( self : Any ) ->Union[str, Any]: print(f'''Found {torch.cuda.device_count()} devices.''' ) snake_case_ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
39
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int=13 , UpperCAmelCase__ : Dict=32 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : int=[10, 20, 30, 40] , UpperCAmelCase__ : Tuple=[2, 2, 3, 2] , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : List[str]=37 , UpperCAmelCase__ : Optional[Any]="gelu" , UpperCAmelCase__ : Optional[int]=10 , UpperCAmelCase__ : str=0.02 , UpperCAmelCase__ : Optional[Any]=["stage2", "stage3", "stage4"] , UpperCAmelCase__ : Tuple=[2, 3, 4] , UpperCAmelCase__ : Any=None , ) ->Dict: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_stages A__ = hidden_sizes A__ = depths A__ = is_training A__ = use_labels A__ = intermediate_size A__ = hidden_act A__ = num_labels A__ = initializer_range A__ = out_features A__ = out_indices A__ = scope def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.num_labels) A__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict) ->Optional[int]: '''simple docstring''' A__ = ConvNextModel(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str]) ->str: '''simple docstring''' A__ = ConvNextForImageClassification(UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str) ->Optional[Any]: '''simple docstring''' A__ = ConvNextBackbone(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__) # verify hidden states self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None A__ = None A__ = ConvNextBackbone(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) UpperCAmelCase__ = ( {'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Dict) ->Any: '''simple docstring''' A__ = ConvNextModelTester(self) A__ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : int) ->Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self : Tuple) ->str: '''simple docstring''' return @unittest.skip(reason='''ConvNext does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : str) ->str: '''simple docstring''' pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''') def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: '''simple docstring''' pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''') def SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__) A__ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int): A__ = model_class(UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__)) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase__) , expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->int: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]: '''simple docstring''' for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = ConvNextModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Tuple: '''simple docstring''' return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict: '''simple docstring''' A__ = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''').to(UpperCAmelCase__) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''pt''').to(UpperCAmelCase__) # forward pass with torch.no_grad(): A__ = model(**UpperCAmelCase__) # verify the logits A__ = torch.Size((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = torch.tensor([-0.0260, -0.4739, 0.1911]).to(UpperCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4)) @require_torch class UpperCamelCase_ ( unittest.TestCase , UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = (ConvNextBackbone,) if is_torch_available() else () UpperCAmelCase__ = ConvNextConfig UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: '''simple docstring''' A__ = ConvNextModelTester(self)
87
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = "informer" SCREAMING_SNAKE_CASE : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Dict , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "student_t" , _UpperCamelCase : str = "nll" , _UpperCamelCase : int = 1 , _UpperCamelCase : List[int] = None , _UpperCamelCase : Optional[Union[str, bool]] = "mean" , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : int = 6_4 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.05 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : Dict=True , _UpperCamelCase : str = "prob" , _UpperCamelCase : int = 5 , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Optional[int]: # time series specific configuration snake_case_ = prediction_length snake_case_ = context_length or prediction_length snake_case_ = distribution_output snake_case_ = loss snake_case_ = input_size snake_case_ = num_time_features snake_case_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case_ = scaling snake_case_ = num_dynamic_real_features snake_case_ = num_static_real_features snake_case_ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = cardinality else: snake_case_ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = embedding_dimension else: snake_case_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ = num_parallel_samples # Transformer architecture configuration snake_case_ = input_size * len(self.lags_sequence ) + self._number_of_features snake_case_ = d_model snake_case_ = encoder_attention_heads snake_case_ = decoder_attention_heads snake_case_ = encoder_ffn_dim snake_case_ = decoder_ffn_dim snake_case_ = encoder_layers snake_case_ = decoder_layers snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = activation_function snake_case_ = init_std snake_case_ = use_cache # Informer snake_case_ = attention_type snake_case_ = sampling_factor snake_case_ = distil super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def snake_case__( self : Optional[Any] ) ->int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
39
0
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase__ ( A_ ): __UpperCAmelCase = ['''image_processor''', '''tokenizer'''] __UpperCAmelCase = '''AutoImageProcessor''' __UpperCAmelCase = '''AutoTokenizer''' def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> str: super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[int] = self.image_processor def __call__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE) -> str: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""") if text is not None: _lowerCamelCase : str = self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) if images is not None: _lowerCamelCase : Dict = self.image_processor(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) if text is not None and images is not None: _lowerCamelCase : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE) , tensor_type=SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) -> List[str]: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) -> Tuple: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) @property def UpperCamelCase_ ( self) -> int: return ["input_ids", "attention_mask", "pixel_values"]
88
import cmath import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) # Convert voltage and current to rectangular form snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
39
0
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = torch.nn.Linear(10, 10) _lowercase : Optional[int] = torch.optim.SGD(model.parameters(), 0.1) _lowercase : Optional[Any] = Accelerator() _lowercase : Any = accelerator.prepare(lowerCamelCase) try: pickle.loads(pickle.dumps(lowerCamelCase)) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''') AcceleratorState._reset_state()
89
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=1_3 , _UpperCamelCase : str=7 , _UpperCamelCase : int=True , _UpperCamelCase : Dict=True , _UpperCamelCase : int=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : str=3_2 , _UpperCamelCase : str=5 , _UpperCamelCase : str=4 , _UpperCamelCase : int=3_7 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : str=5_1_2 , _UpperCamelCase : Optional[int]=1_6 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Any=0.02 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : str=None , ) ->Dict: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def snake_case__( self : str ) ->List[Any]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self : List[str] ) ->Tuple: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) ->Dict: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , ) ->Optional[int]: snake_case_ = BioGptForCausalLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , *_UpperCamelCase : List[Any] ) ->Union[str, Any]: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # create attention mask snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) snake_case_ = self.seq_length // 2 snake_case_ = 0 # first forward pass snake_case_, snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids snake_case_ = ids_tensor((1,) , _UpperCamelCase ).item() + 1 snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) snake_case_ = random_other_next_tokens # append to next input_ids and attn_mask snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCamelCase )] , dim=1 , ) # get two different outputs snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , past_key_values=_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , *_UpperCamelCase : List[Any] ) ->int: snake_case_ = BioGptModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval() snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) # first forward pass snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase ) snake_case_, snake_case_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[ '''last_hidden_state''' ] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , *_UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=False ) ->Dict: snake_case_ = BioGptForCausalLM(_UpperCamelCase ) model.to(_UpperCamelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def snake_case__( self : List[Any] , _UpperCamelCase : Optional[int] , *_UpperCamelCase : Dict ) ->Dict: snake_case_ = BioGptModel(_UpperCamelCase ) snake_case_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def snake_case__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , *_UpperCamelCase : List[str] ) ->int: snake_case_ = self.num_labels snake_case_ = BioGptForTokenClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = (BioGptForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Optional[Any] = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Tuple = False def snake_case__( self : List[str] ) ->Union[str, Any]: snake_case_ = BioGptModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : str ) ->int: self.config_tester.run_common_tests() def snake_case__( self : str ) ->Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_UpperCamelCase , gradient_checkpointing=_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCamelCase ) def snake_case__( self : List[Any] ) ->Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCamelCase ) @slow def snake_case__( self : int ) ->Optional[Any]: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = '''left''' # Define PAD Token = EOS Token = 50256 snake_case_ = tokenizer.eos_token snake_case_ = model.config.eos_token_id # use different length sentences to test batching snake_case_ = [ '''Hello, my dog is a little''', '''Today, I''', ] snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase ) snake_case_ = inputs['''input_ids'''].to(_UpperCamelCase ) snake_case_ = model.generate( input_ids=_UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(_UpperCamelCase ) , ) snake_case_ = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase ) snake_case_ = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() snake_case_ = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings ) snake_case_ = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] ) @slow def snake_case__( self : Optional[int] ) ->List[str]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = BioGptModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__( self : str ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = '''multi_label_classification''' snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__( self : int ) ->Any: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) snake_case_ = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) snake_case_ = model(_UpperCamelCase )[0] snake_case_ = 4_2_3_8_4 snake_case_ = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def snake_case__( self : List[str] ) ->Optional[int]: snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_UpperCamelCase ) snake_case_ = model.generate( **_UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=_UpperCamelCase , ) snake_case_ = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(_UpperCamelCase , _UpperCamelCase )
39
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
90
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) snake_case_ = (boundary[1] - boundary[0]) / steps snake_case_ = boundary[0] snake_case_ = boundary[1] snake_case_ = make_points(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = 0.0 y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) for i in x_i: # print(i) y += h * f(SCREAMING_SNAKE_CASE__ ) y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) return y def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = a + h while x < (b - h): yield x snake_case_ = x + h def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # enter your function here snake_case_ = (x - 0) * (x - 0) return y def __SCREAMING_SNAKE_CASE (): snake_case_ = 0.0 # Lower bound of integration snake_case_ = 1.0 # Upper bound of integration snake_case_ = 10.0 # define number of steps or resolution snake_case_ = [a, b] # define boundary of integration snake_case_ = method_a(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
39
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
91
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / '''model_card_template.md''' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None ): snake_case_ = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if token is None: snake_case_ = HfFolder.get_token() if organization is None: snake_case_ = whoami(SCREAMING_SNAKE_CASE__ )['''name'''] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(SCREAMING_SNAKE_CASE__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , '''hub_token''' ) else None snake_case_ = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) snake_case_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ = os.path.join(args.output_dir , '''README.md''' ) model_card.save(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) snake_case_ = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE__ ) if search is None: return None snake_case_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, '''diffusers''') def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if new_cache_dir is None: snake_case_ = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ = old_diffusers_cache snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ '''the directory exists and can be written to.''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if variant is not None: snake_case_ = weights_name.split('''.''' ) snake_case_ = splits[:-1] + [variant] + splits[-1:] snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ ) return weights_name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ): snake_case_ = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' '''this model name. Check the model page at ''' F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
39
0
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowerCAmelCase ( __magic_name__ : List[str] ) -> Any: lowercase : Optional[int] =VideoMAEConfig() set_architecture_configs(__magic_name__ , __magic_name__ ) if "finetuned" not in model_name: lowercase : str =False if "finetuned" in model_name: lowercase : Optional[int] ='''huggingface/label-files''' if "kinetics" in model_name: lowercase : Union[str, Any] =400 lowercase : List[Any] ='''kinetics400-id2label.json''' elif "ssv2" in model_name: lowercase : Union[str, Any] =174 lowercase : str ='''something-something-v2-id2label.json''' else: raise ValueError('''Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.''' ) lowercase : str =json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type='''dataset''' ) , '''r''' ) ) lowercase : str ={int(__magic_name__ ): v for k, v in idalabel.items()} lowercase : Any =idalabel lowercase : Any ={v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( __magic_name__ : List[Any] , __magic_name__ : List[Any] ) -> Optional[int]: if "small" in model_name: lowercase : Any =384 lowercase : Any =1536 lowercase : Dict =12 lowercase : Union[str, Any] =16 lowercase : Dict =12 lowercase : Any =3 lowercase : Optional[Any] =192 lowercase : Optional[int] =768 elif "large" in model_name: lowercase : Any =1024 lowercase : int =4096 lowercase : Any =24 lowercase : Any =16 lowercase : List[str] =12 lowercase : Any =8 lowercase : List[str] =512 lowercase : List[str] =2048 elif "huge" in model_name: lowercase : int =1280 lowercase : Any =5120 lowercase : int =32 lowercase : List[Any] =16 lowercase : List[Any] =12 lowercase : Optional[Any] =8 lowercase : Dict =640 lowercase : int =2560 elif "base" not in model_name: raise ValueError('''Model name should include either "small", "base", "large", or "huge"''' ) def _lowerCAmelCase ( __magic_name__ : int ) -> Optional[int]: if "encoder." in name: lowercase : List[str] =name.replace('''encoder.''' , '''''' ) if "cls_token" in name: lowercase : List[str] =name.replace('''cls_token''' , '''videomae.embeddings.cls_token''' ) if "decoder_pos_embed" in name: lowercase : Union[str, Any] =name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: lowercase : str =name.replace('''pos_embed''' , '''videomae.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: lowercase : int =name.replace('''patch_embed.proj''' , '''videomae.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase : Optional[Any] =name.replace('''patch_embed.norm''' , '''videomae.embeddings.norm''' ) if "decoder.blocks" in name: lowercase : List[Any] =name.replace('''decoder.blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: lowercase : Dict =name.replace('''blocks''' , '''videomae.encoder.layer''' ) if "attn.proj" in name: lowercase : Tuple =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "bias" not in name: lowercase : List[Any] =name.replace('''attn''' , '''attention.self''' ) if "attn" in name: lowercase : List[str] =name.replace('''attn''' , '''attention.attention''' ) if "norm1" in name: lowercase : Any =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase : Union[str, Any] =name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase : Dict =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase : Optional[int] =name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: lowercase : Union[str, Any] =name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: lowercase : List[str] =name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: lowercase : Dict =name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: lowercase : Tuple =name.replace('''norm.weight''' , '''videomae.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: lowercase : Any =name.replace('''norm.bias''' , '''videomae.layernorm.bias''' ) if "head" in name and "decoder" not in name: lowercase : int =name.replace('''head''' , '''classifier''' ) return name def _lowerCAmelCase ( __magic_name__ : List[Any] , __magic_name__ : Optional[Any] ) -> str: for key in orig_state_dict.copy().keys(): lowercase : int =orig_state_dict.pop(__magic_name__ ) if key.startswith('''encoder.''' ): lowercase : Optional[Any] =key.replace('''encoder.''' , '''''' ) if "qkv" in key: lowercase : Union[str, Any] =key.split('''.''' ) if key.startswith('''decoder.blocks''' ): lowercase : Optional[int] =config.decoder_hidden_size lowercase : Optional[int] =int(key_split[2] ) lowercase : List[Any] ='''decoder.decoder_layers.''' if "weight" in key: lowercase : Any =val[:dim, :] lowercase : Optional[Any] =val[dim : dim * 2, :] lowercase : int =val[-dim:, :] else: lowercase : Union[str, Any] =config.hidden_size lowercase : List[Any] =int(key_split[1] ) lowercase : List[str] ='''videomae.encoder.layer.''' if "weight" in key: lowercase : str =val[:dim, :] lowercase : str =val[dim : dim * 2, :] lowercase : List[Any] =val[-dim:, :] else: lowercase : Any =val return orig_state_dict def _lowerCAmelCase ( ) -> Dict: lowercase : int =hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) lowercase : List[str] =np.load(__magic_name__ ) return list(__magic_name__ ) def _lowerCAmelCase ( __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : str , __magic_name__ : Optional[Any] ) -> Any: lowercase : Any =get_videomae_config(__magic_name__ ) if "finetuned" in model_name: lowercase : Union[str, Any] =VideoMAEForVideoClassification(__magic_name__ ) else: lowercase : Tuple =VideoMAEForPreTraining(__magic_name__ ) # download original checkpoint, hosted on Google Drive lowercase : List[str] ='''pytorch_model.bin''' gdown.cached_download(__magic_name__ , __magic_name__ , quiet=__magic_name__ ) lowercase : int =torch.load(__magic_name__ , map_location='''cpu''' ) if "model" in files: lowercase : str =files['''model'''] else: lowercase : List[Any] =files['''module'''] lowercase : Optional[Any] =convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() # verify model on basic input lowercase : Optional[int] =VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) lowercase : Any =prepare_video() lowercase : Tuple =image_processor(__magic_name__ , return_tensors='''pt''' ) if "finetuned" not in model_name: lowercase : Union[str, Any] =hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) lowercase : Optional[int] =torch.load(__magic_name__ ) lowercase : Optional[int] =model(**__magic_name__ ) lowercase : Optional[Any] =outputs.logits lowercase : Tuple =[ '''videomae-small-finetuned-kinetics''', '''videomae-small-finetuned-ssv2''', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) '''videomae-base-short''', '''videomae-base-short-finetuned-kinetics''', '''videomae-base''', '''videomae-base-finetuned-kinetics''', '''videomae-large''', '''videomae-large-finetuned-kinetics''', '''videomae-huge-finetuned-kinetics''', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) '''videomae-base-short-ssv2''', '''videomae-base-short-finetuned-ssv2''', '''videomae-base-ssv2''', '''videomae-base-finetuned-ssv2''', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": lowercase : List[Any] =torch.Size([1, 400] ) lowercase : Optional[Any] =torch.tensor([-0.9_2_9_1, -0.4_0_6_1, -0.9_3_0_7] ) elif model_name == "videomae-small-finetuned-ssv2": lowercase : Union[str, Any] =torch.Size([1, 174] ) lowercase : List[str] =torch.tensor([0.2_6_7_1, -0.4_6_8_9, -0.8_2_3_5] ) elif model_name == "videomae-base": lowercase : List[Any] =torch.Size([1, 1408, 1536] ) lowercase : Optional[Any] =torch.tensor([[0.7_7_3_9, 0.7_9_6_8, 0.7_0_8_9], [0.6_7_0_1, 0.7_4_8_7, 0.6_2_0_9], [0.4_2_8_7, 0.5_1_5_8, 0.4_7_7_3]] ) elif model_name == "videomae-base-short": lowercase : Dict =torch.Size([1, 1408, 1536] ) lowercase : int =torch.tensor([[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ) # we verified the loss both for normalized and unnormalized targets for this one lowercase : Any =torch.tensor([0.5_1_4_2] ) if config.norm_pix_loss else torch.tensor([0.6_4_6_9] ) elif model_name == "videomae-large": lowercase : Tuple =torch.Size([1, 1408, 1536] ) lowercase : List[Any] =torch.tensor([[0.7_1_4_9, 0.7_9_9_7, 0.6_9_6_6], [0.6_7_6_8, 0.7_8_6_9, 0.6_9_4_8], [0.5_1_3_9, 0.6_2_2_1, 0.5_6_0_5]] ) elif model_name == "videomae-large-finetuned-kinetics": lowercase : str =torch.Size([1, 400] ) lowercase : Any =torch.tensor([0.0_7_7_1, 0.0_0_1_1, -0.3_6_2_5] ) elif model_name == "videomae-huge-finetuned-kinetics": lowercase : Optional[int] =torch.Size([1, 400] ) lowercase : Optional[Any] =torch.tensor([0.2_4_3_3, 0.1_6_3_2, -0.4_8_9_4] ) elif model_name == "videomae-base-short-finetuned-kinetics": lowercase : List[str] =torch.Size([1, 400] ) lowercase : List[Any] =torch.tensor([0.6_5_8_8, 0.0_9_9_0, -0.2_4_9_3] ) elif model_name == "videomae-base-finetuned-kinetics": lowercase : Any =torch.Size([1, 400] ) lowercase : Optional[int] =torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ) elif model_name == "videomae-base-short-ssv2": lowercase : int =torch.Size([1, 1408, 1536] ) lowercase : Union[str, Any] =torch.tensor([[0.4_7_1_2, 0.5_2_9_6, 0.5_7_8_6], [0.2_2_7_8, 0.2_7_2_9, 0.4_0_2_6], [0.0_3_5_2, 0.0_7_3_0, 0.2_5_0_6]] ) elif model_name == "videomae-base-short-finetuned-ssv2": lowercase : Tuple =torch.Size([1, 174] ) lowercase : Union[str, Any] =torch.tensor([-0.0_5_3_7, -0.1_5_3_9, -0.3_2_6_6] ) elif model_name == "videomae-base-ssv2": lowercase : List[Any] =torch.Size([1, 1408, 1536] ) lowercase : Dict =torch.tensor([[0.8_1_3_1, 0.8_7_2_7, 0.8_5_4_6], [0.7_3_6_6, 0.9_3_7_7, 0.8_8_7_0], [0.5_9_3_5, 0.8_8_7_4, 0.8_5_6_4]] ) elif model_name == "videomae-base-finetuned-ssv2": lowercase : Optional[Any] =torch.Size([1, 174] ) lowercase : List[str] =torch.tensor([0.1_9_6_1, -0.8_3_3_7, -0.6_3_8_9] ) else: raise ValueError(f'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , __magic_name__ , atol=1E-4 ) else: print('''Logits:''' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , __magic_name__ , atol=1E-4 ) print('''Logits ok!''' ) # verify loss, if applicable if model_name == "videomae-base-short": lowercase : Optional[Any] =outputs.loss assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-4 ) print('''Loss ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__magic_name__ ) model.save_pretrained(__magic_name__ ) if push_to_hub: print('''Pushing to the hub...''' ) model.push_to_hub(__magic_name__ , organization='''nielsr''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCamelCase_ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
92
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt" def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) snake_case_ = backbone_featmap_shape snake_case_ = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: snake_case_ = None snake_case_ = None snake_case_ = [] snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) snake_case_ = readout_type snake_case_ = reassemble_factors snake_case_ = neck_hidden_sizes snake_case_ = fusion_hidden_size snake_case_ = head_in_index snake_case_ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = semantic_loss_ignore_index snake_case_ = semantic_classifier_dropout def snake_case__( self : List[str] ) ->List[Any]: snake_case_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
39
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=1_8 , __UpperCAmelCase=3_0 , __UpperCAmelCase=4_0_0 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , ): '''simple docstring''' lowerCAmelCase__ :List[str] = size if size is not None else {'height': 1_8, 'width': 1_8} lowerCAmelCase__ :Optional[int] = parent lowerCAmelCase__ :Optional[int] = batch_size lowerCAmelCase__ :Optional[int] = num_channels lowerCAmelCase__ :Dict = image_size lowerCAmelCase__ :List[Any] = min_resolution lowerCAmelCase__ :int = max_resolution lowerCAmelCase__ :Union[str, Any] = do_resize lowerCAmelCase__ :Optional[int] = size lowerCAmelCase__ :Any = apply_ocr def snake_case ( self ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :Tuple = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = LayoutLMvaImageProcessingTester(self ) @property def snake_case ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(__UpperCAmelCase , 'apply_ocr' ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} ) lowerCAmelCase__ :Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input lowerCAmelCase__ :Any = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , __UpperCAmelCase ) self.assertIsInstance(encoding.boxes , __UpperCAmelCase ) # Test batched lowerCAmelCase__ :int = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ :Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input lowerCAmelCase__ :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowerCAmelCase__ :List[Any] = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ :Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input lowerCAmelCase__ :int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowerCAmelCase__ :Optional[int] = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = LayoutLMvaImageProcessor() from datasets import load_dataset lowerCAmelCase__ :Optional[Any] = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) lowerCAmelCase__ :str = Image.open(ds[0]['file'] ).convert('RGB' ) lowerCAmelCase__ :str = image_processing(__UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowerCAmelCase__ :int = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 lowerCAmelCase__ :str = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __UpperCAmelCase ) self.assertListEqual(encoding.boxes , __UpperCAmelCase ) # with apply_OCR = False lowerCAmelCase__ :List[Any] = LayoutLMvaImageProcessor(apply_ocr=__UpperCAmelCase ) lowerCAmelCase__ :Dict = image_processing(__UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
93
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = '''pytorch_model.bin''' @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "A csv or a json file containing the validation data."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "The name of the task to train on."} , ) SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field( default=__A , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=__A , metadata={"help": "Random seed for initialization."} , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case_ = dataset.filter(lambda SCREAMING_SNAKE_CASE__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case_ = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) ) print(SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = dataset.remove_columns(['''label''', '''probability'''] ) snake_case_ = dataset.rename_column('''prediction''' , '''label''' ) snake_case_ = dataset.map(lambda SCREAMING_SNAKE_CASE__ : {"label": idalabel[example["label"]]} ) snake_case_ = dataset.shuffle(seed=args.seed ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) else: dataset.to_json(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): snake_case_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case_ = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ ) snake_case_ = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ , infer_file=SCREAMING_SNAKE_CASE__ ) snake_case_ = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ ) snake_case_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(SCREAMING_SNAKE_CASE__ ).items(): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Sanity checks snake_case_ = {} snake_case_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case_ = args.train_file snake_case_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case_ = args.eval_file for key in data_files: snake_case_ = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: snake_case_ = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) snake_case_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format snake_case_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = None snake_case_ = None snake_case_ = 0 snake_case_ = False # Show the progress bar snake_case_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case_ = data_dir_format(SCREAMING_SNAKE_CASE__ ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-1''' ) snake_case_ = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): arguments_dict.update({key: value} ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-2''' ) # Update arguments_dict snake_case_ = model_path snake_case_ = data_files['''train'''] snake_case_ = current_output_dir snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = iteration snake_case_ = data_dir_format(iteration + 1 ) snake_case_ = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) ) snake_case_ = config.idalabel snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-checkpoint.json''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: snake_case_ = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Loading the dataset from local csv or json files. snake_case_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] snake_case_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case_ = eval_result if best_iteration is None: snake_case_ = new_iteration snake_case_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case_ = new_iteration snake_case_ = new_eval_result snake_case_ = 0 else: if new_eval_result == best_eval_result: snake_case_ = new_iteration snake_case_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE__ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , )
39
0
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict=13 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : Dict=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : int=5 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : List[str]=512 , UpperCAmelCase : List[str]=16 , UpperCAmelCase : str=2 , UpperCAmelCase : int=0.0_2 , UpperCAmelCase : int=4 , ) -> Optional[Any]: '''simple docstring''' lowercase : int =parent lowercase : Tuple =batch_size lowercase : List[Any] =seq_length lowercase : List[Any] =is_training lowercase : str =use_attention_mask lowercase : str =use_token_type_ids lowercase : Optional[Any] =use_labels lowercase : Optional[Any] =vocab_size lowercase : Dict =hidden_size lowercase : Optional[int] =num_hidden_layers lowercase : Any =num_attention_heads lowercase : Dict =intermediate_size lowercase : int =hidden_act lowercase : List[str] =hidden_dropout_prob lowercase : Optional[Any] =attention_probs_dropout_prob lowercase : Any =max_position_embeddings lowercase : Any =type_vocab_size lowercase : Tuple =type_sequence_label_size lowercase : int =initializer_range lowercase : int =num_choices def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Optional[Any] =None if self.use_attention_mask: lowercase : Tuple =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] =None if self.use_token_type_ids: lowercase : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : Union[str, Any] =AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def A__ ( self : Dict ) -> List[Any]: '''simple docstring''' lowercase : Optional[int] =self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase : int =config_and_inputs lowercase : int ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' lowercase : Optional[int] =FlaxAlbertModelTester(self ) @slow def A__ ( self : Dict ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: lowercase : int =model_class_name.from_pretrained('''albert-base-v2''' ) lowercase : Optional[Any] =model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase ) @require_flax class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' lowercase : List[str] =FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) lowercase : Tuple =np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowercase : str =np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase : Dict =model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] lowercase : Any =(1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase ) lowercase : int =np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1e-4 ) )
94
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AltDiffusionPipeline SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__( self : Dict ) ->int: torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) snake_case_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) snake_case_ = CLIPTextModel(_UpperCamelCase ) snake_case_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) snake_case_ = 7_7 snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__( self : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0 ) ->Any: if str(_UpperCamelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCamelCase ) else: snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case__( self : Dict ) ->List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def snake_case__( self : List[str] ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case__( self : Dict ) ->Any: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = '''A photo of an astronaut''' snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : Tuple ) ->Union[str, Any]: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : int ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self : List[str] ) ->Tuple: # make sure here that pndm scheduler skips prk snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='''np''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : List[str] ) ->Optional[Any]: snake_case_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , num_inference_steps=2 , output_type='''numpy''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
0
"""simple docstring""" import math import os import sys def snake_case ( A__ ): UpperCAmelCase_ : Tuple = "" try: with open(A__ ,"rb" ) as binary_file: UpperCAmelCase_ : Tuple = binary_file.read() for dat in data: UpperCAmelCase_ : str = F"""{dat:08b}""" result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def snake_case ( A__ ,A__ ,A__ ,A__ ): lexicon.pop(A__ ) UpperCAmelCase_ : List[str] = last_match_id if math.loga(A__ ).is_integer(): for curr_key in lexicon: UpperCAmelCase_ : Optional[Any] = "0" + lexicon[curr_key] UpperCAmelCase_ : Dict = bin(A__ )[2:] def snake_case ( A__ ): UpperCAmelCase_ : Tuple = {"0": "0", "1": "1"} UpperCAmelCase_ , UpperCAmelCase_ : Any = "", "" UpperCAmelCase_ : Dict = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCAmelCase_ : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(A__ ,A__ ,A__ ,A__ ) index += 1 UpperCAmelCase_ : List[str] = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": UpperCAmelCase_ : Union[str, Any] = lexicon[curr_string] result += last_match_id return result def snake_case ( A__ ,A__ ): UpperCAmelCase_ : Dict = os.path.getsize(A__ ) UpperCAmelCase_ : int = bin(A__ )[2:] UpperCAmelCase_ : Optional[int] = len(A__ ) return "0" * (length_length - 1) + file_length_binary + compressed def snake_case ( A__ ,A__ ): UpperCAmelCase_ : Optional[int] = 8 try: with open(A__ ,"wb" ) as opened_file: UpperCAmelCase_ : Optional[Any] = [ to_write[i : i + byte_length] for i in range(0 ,len(A__ ) ,A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(A__ ,2 ).to_bytes(1 ,byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def snake_case ( A__ ,A__ ): UpperCAmelCase_ : List[Any] = read_file_binary(A__ ) UpperCAmelCase_ : List[str] = compress_data(A__ ) UpperCAmelCase_ : Tuple = add_file_length(A__ ,A__ ) write_file_binary(A__ ,A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
95
from math import factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( '''If a class of 40 students must be arranged into groups of''', f"""4 for group projects, there are {combinations(40, 4)} ways""", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f"""are {combinations(10, 3)} ways that first, second and""", '''third place can be awarded.''', )
39
0
"""simple docstring""" def a ( __UpperCAmelCase : str , __UpperCAmelCase : str = " " ) -> list: __magic_name__: List[Any] = [] __magic_name__: Optional[int] = 0 for index, char in enumerate(__UpperCAmelCase ): if char == separator: split_words.append(string[last_index:index] ) __magic_name__: str = index + 1 elif index + 1 == len(__UpperCAmelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
96
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCAmelCase_ = sys.version_info >= (3, 10) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ): return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : bool @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int = 42 SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : Optional[bool] = None class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = "titi" SCREAMING_SNAKE_CASE : Any = "toto" class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = "titi" SCREAMING_SNAKE_CASE : Optional[Any] = "toto" SCREAMING_SNAKE_CASE : Any = 42 @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : BasicEnum = "toto" def snake_case__( self : Tuple ) ->List[str]: snake_case_ = BasicEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto" def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = MixedTypeEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[float] = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : Optional[str] = None SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] ) SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] ) SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] ) SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = field() SCREAMING_SNAKE_CASE : str = field() SCREAMING_SNAKE_CASE : BasicEnum = field() def snake_case__( self : Optional[Any] ) ->Tuple: snake_case_ = BasicEnum(self.required_enum ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : "BasicEnum" = field() SCREAMING_SNAKE_CASE : "Optional[bool]" = None SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : bool | None = None @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int | None = None SCREAMING_SNAKE_CASE : float | None = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : str | None = None SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] ) SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] ) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Dict , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser ) ->str: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _UpperCamelCase ) and yy.get('''choices''' , _UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_UpperCamelCase ) , yy['''type'''](_UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--bar''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--baz''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--flag''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((snake_case_), ) = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase ) self.assertFalse(example.flag ) def snake_case__( self : Tuple ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) snake_case_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case__( self : Tuple ) ->Union[str, Any]: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto" snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual( _UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def snake_case__( self : Optional[Any] ) ->List[Any]: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--bar''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) snake_case_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[] ) ) snake_case_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def snake_case__( self : Union[str, Any] ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--required_str''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Dict ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } snake_case_ = parser.parse_dict(_UpperCamelCase )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : int ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase ) def snake_case__( self : str ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_json''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_yaml''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Any ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase )
39
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def a ( snake_case__: Optional[int] ): '''simple docstring''' lowercase_ = 384 lowercase_ = 7 if "tiny" in model_name: lowercase_ = 96 lowercase_ = (2, 2, 6, 2) lowercase_ = (3, 6, 12, 24) elif "small" in model_name: lowercase_ = 96 lowercase_ = (2, 2, 18, 2) lowercase_ = (3, 6, 12, 24) elif "base" in model_name: lowercase_ = 128 lowercase_ = (2, 2, 18, 2) lowercase_ = (4, 8, 16, 32) lowercase_ = 12 lowercase_ = 512 elif "large" in model_name: lowercase_ = 192 lowercase_ = (2, 2, 18, 2) lowercase_ = (6, 12, 24, 48) lowercase_ = 12 lowercase_ = 768 # set label information lowercase_ = 150 lowercase_ = '''huggingface/label-files''' lowercase_ = '''ade20k-id2label.json''' lowercase_ = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) ) lowercase_ = {int(snake_case__ ): v for k, v in idalabel.items()} lowercase_ = {v: k for k, v in idalabel.items()} lowercase_ = SwinConfig( embed_dim=snake_case__ , depths=snake_case__ , num_heads=snake_case__ , window_size=snake_case__ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) lowercase_ = UperNetConfig( backbone_config=snake_case__ , auxiliary_in_channels=snake_case__ , num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ , ) return config def a ( snake_case__: Tuple ): '''simple docstring''' lowercase_ = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.stages.{i}.downsample.reduction.weight''', F'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.weight''', F'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.bias''', F'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def a ( snake_case__: Optional[Any] , snake_case__: Dict , snake_case__: Optional[int] ): '''simple docstring''' lowercase_ = dct.pop(snake_case__ ) lowercase_ = val def a ( snake_case__: Dict , snake_case__: Optional[int] ): '''simple docstring''' lowercase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowercase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowercase_ = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) lowercase_ = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ = in_proj_weight[:dim, :] lowercase_ = in_proj_bias[: dim] lowercase_ = in_proj_weight[ dim : dim * 2, : ] lowercase_ = in_proj_bias[ dim : dim * 2 ] lowercase_ = in_proj_weight[ -dim :, : ] lowercase_ = in_proj_bias[-dim :] # fmt: on def a ( snake_case__: List[Any] ): '''simple docstring''' lowercase_ , lowercase_ = x.shape lowercase_ = x.reshape(snake_case__ , 4 , in_channel // 4 ) lowercase_ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(snake_case__ , snake_case__ ) return x def a ( snake_case__: Tuple ): '''simple docstring''' lowercase_ , lowercase_ = x.shape lowercase_ = x.reshape(snake_case__ , in_channel // 4 , 4 ) lowercase_ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(snake_case__ , snake_case__ ) return x def a ( snake_case__: List[Any] ): '''simple docstring''' lowercase_ = x.shape[0] lowercase_ = x.reshape(4 , in_channel // 4 ) lowercase_ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(snake_case__ ) return x def a ( snake_case__: Any ): '''simple docstring''' lowercase_ = x.shape[0] lowercase_ = x.reshape(in_channel // 4 , 4 ) lowercase_ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(snake_case__ ) return x def a ( snake_case__: Dict , snake_case__: Dict , snake_case__: str ): '''simple docstring''' lowercase_ = { '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } lowercase_ = model_name_to_url[model_name] lowercase_ = torch.hub.load_state_dict_from_url(snake_case__ , map_location='''cpu''' , file_name=snake_case__ )[ '''state_dict''' ] for name, param in state_dict.items(): print(snake_case__ , param.shape ) lowercase_ = get_upernet_config(snake_case__ ) lowercase_ = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowercase_ = state_dict.pop(snake_case__ ) if "bn" in key: lowercase_ = key.replace('''bn''' , '''batch_norm''' ) lowercase_ = val # rename keys lowercase_ = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) read_in_q_k_v(snake_case__ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowercase_ = reverse_correct_unfold_reduction_order(snake_case__ ) if "norm" in key: lowercase_ = reverse_correct_unfold_norm_order(snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image lowercase_ = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' lowercase_ = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('''RGB''' ) lowercase_ = SegformerImageProcessor() lowercase_ = processor(snake_case__ , return_tensors='''pt''' ).pixel_values with torch.no_grad(): lowercase_ = model(snake_case__ ) lowercase_ = outputs.logits print(logits.shape ) print('''First values of logits:''' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": lowercase_ = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ) elif model_name == "upernet-swin-small": lowercase_ = torch.tensor( [[-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.0_9_0_8, -7.0_9_0_8, -6.8_5_3_4]] ) elif model_name == "upernet-swin-base": lowercase_ = torch.tensor( [[-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.4_7_6_3, -6.4_7_6_3, -6.3_2_5_4]] ) elif model_name == "upernet-swin-large": lowercase_ = torch.tensor( [[-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.4_0_4_4, -7.4_0_4_4, -7.2_5_8_6]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-swin-tiny', type=str, choices=[f"upernet-swin-{size}" for size in ['tiny', 'small', 'base', 'large']], help='Name of the Swin + UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __a = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
97
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Dict , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
39
0
'''simple docstring''' import doctest from collections import deque import numpy as np class __lowerCAmelCase : """simple docstring""" def __init__( self : Tuple ) -> None: '''simple docstring''' _UpperCamelCase = [2, 1, 2, -1] _UpperCamelCase = [1, 2, 3, 4] def snake_case__ ( self : Optional[int] ) -> list[float]: '''simple docstring''' _UpperCamelCase = len(self.first_signal ) _UpperCamelCase = len(self.second_signal ) _UpperCamelCase = max(lowerCAmelCase__ , lowerCAmelCase__ ) # create a zero matrix of max_length x max_length _UpperCamelCase = [[0] * max_length for i in range(lowerCAmelCase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__ ): _UpperCamelCase = deque(self.second_signal ) rotated_signal.rotate(lowerCAmelCase__ ) for j, item in enumerate(lowerCAmelCase__ ): matrix[i][j] += item # multiply the matrix with the first signal _UpperCamelCase = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
98
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv" SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]: snake_case_ = vocab_size snake_case_ = context_length snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case_ = layer_norm_epsilon snake_case_ = rescale_every snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
39
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = (DEISMultistepScheduler,) _lowerCamelCase = (("""num_inference_steps""", 25),) def snake_case_ ( self , **__A ): __a = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, } config.update(**__A ) return config def snake_case_ ( self , __A=0 , **__A ): __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __A ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config(**__A ) __a = scheduler_class(**__A ) scheduler.set_timesteps(__A ) # copy over dummy past residuals __a = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__A ) __a = scheduler_class.from_pretrained(__A ) new_scheduler.set_timesteps(__A ) # copy over dummy past residuals __a = dummy_past_residuals[: new_scheduler.config.solver_order] __a , __a = sample, sample for t in range(__A , time_step + scheduler.config.solver_order + 1 ): __a = scheduler.step(__A , __A , __A , **__A ).prev_sample __a = new_scheduler.step(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case_ ( self ): pass def snake_case_ ( self , __A=0 , **__A ): __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __A ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__A ) scheduler.set_timesteps(__A ) # copy over dummy past residuals (must be after setting timesteps) __a = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__A ) __a = scheduler_class.from_pretrained(__A ) # copy over dummy past residuals new_scheduler.set_timesteps(__A ) # copy over dummy past residual (must be after setting timesteps) __a = dummy_past_residuals[: new_scheduler.config.solver_order] __a = scheduler.step(__A , __A , __A , **__A ).prev_sample __a = new_scheduler.step(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case_ ( self , __A=None , **__A ): if scheduler is None: __a = self.scheduler_classes[0] __a = self.get_scheduler_config(**__A ) __a = scheduler_class(**__A ) __a = self.scheduler_classes[0] __a = self.get_scheduler_config(**__A ) __a = scheduler_class(**__A ) __a = 10 __a = self.dummy_model() __a = self.dummy_sample_deter scheduler.set_timesteps(__A ) for i, t in enumerate(scheduler.timesteps ): __a = model(__A , __A ) __a = scheduler.step(__A , __A , __A ).prev_sample return sample def snake_case_ ( self ): __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __A ) for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__A ) __a = self.dummy_sample __a = 0.1 * sample if num_inference_steps is not None and hasattr(__A , """set_timesteps""" ): scheduler.set_timesteps(__A ) elif num_inference_steps is not None and not hasattr(__A , """set_timesteps""" ): __a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __a = [residual + 0.2, residual + 0.15, residual + 0.10] __a = dummy_past_residuals[: scheduler.config.solver_order] __a = scheduler.timesteps[5] __a = scheduler.timesteps[6] __a = scheduler.step(__A , __A , __A , **__A ).prev_sample __a = scheduler.step(__A , __A , __A , **__A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ): # make sure that iterating over schedulers with same config names gives same results # for defaults __a = DEISMultistepScheduler(**self.get_scheduler_config() ) __a = self.full_loop(scheduler=__A ) __a = torch.mean(torch.abs(__A ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 __a = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __a = DPMSolverMultistepScheduler.from_config(scheduler.config ) __a = UniPCMultistepScheduler.from_config(scheduler.config ) __a = DEISMultistepScheduler.from_config(scheduler.config ) __a = self.full_loop(scheduler=__A ) __a = torch.mean(torch.abs(__A ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 def snake_case_ ( self ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__A ) def snake_case_ ( self ): self.check_over_configs(thresholding=__A ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__A , prediction_type=__A , sample_max_value=__A , algorithm_type="""deis""" , solver_order=__A , solver_type=__A , ) def snake_case_ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def snake_case_ ( self ): for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__A , solver_type=__A , prediction_type=__A , algorithm_type=__A , ) __a = self.full_loop( solver_order=__A , solver_type=__A , prediction_type=__A , algorithm_type=__A , ) assert not torch.isnan(__A ).any(), "Samples have nan numbers" def snake_case_ ( self ): self.check_over_configs(lower_order_final=__A ) self.check_over_configs(lower_order_final=__A ) def snake_case_ ( self ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__A , time_step=0 ) def snake_case_ ( self ): __a = self.full_loop() __a = torch.mean(torch.abs(__A ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 def snake_case_ ( self ): __a = self.full_loop(prediction_type="""v_prediction""" ) __a = torch.mean(torch.abs(__A ) ) assert abs(result_mean.item() - 0.091 ) < 1E-3 def snake_case_ ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config(thresholding=__A , dynamic_thresholding_ratio=0 ) __a = scheduler_class(**__A ) __a = 10 __a = self.dummy_model() __a = self.dummy_sample_deter.half() scheduler.set_timesteps(__A ) for i, t in enumerate(scheduler.timesteps ): __a = model(__A , __A ) __a = scheduler.step(__A , __A , __A ).prev_sample assert sample.dtype == torch.floataa
99
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) class snake_case_ : '''simple docstring''' def __init__( self : int , _UpperCamelCase : Optional[str] = None ) ->Tuple: snake_case_ = ( os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) snake_case_ = Extractor def snake_case__( self : Any , _UpperCamelCase : str ) ->str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" snake_case_ = os.path.abspath(_UpperCamelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) ) def snake_case__( self : int , _UpperCamelCase : str , _UpperCamelCase : bool ) ->bool: return force_extract or ( not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase )) ) def snake_case__( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : bool = False ) ->str: snake_case_ = self.extractor.infer_extractor_format(_UpperCamelCase ) if not extractor_format: return input_path snake_case_ = self._get_output_path(_UpperCamelCase ) if self._do_extract(_UpperCamelCase , _UpperCamelCase ): self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return output_path class snake_case_ ( __A ): '''simple docstring''' @classmethod @abstractmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : str ) ->bool: ... @staticmethod @abstractmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: ... class snake_case_ ( __A , __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[bytes] = [] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->List[Any]: with open(_UpperCamelCase , '''rb''' ) as f: return f.read(_UpperCamelCase ) @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if not magic_number: snake_case_ = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) try: snake_case_ = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase ) except OSError: return False return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) class snake_case_ ( __A ): '''simple docstring''' @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : Any ) ->bool: return tarfile.is_tarfile(_UpperCamelCase ) @staticmethod def snake_case__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) ->List[str]: def resolved(_UpperCamelCase : str ) -> str: return os.path.realpath(os.path.abspath(_UpperCamelCase ) ) def badpath(_UpperCamelCase : str , _UpperCamelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase ) def badlink(_UpperCamelCase : Tuple , _UpperCamelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link snake_case_ = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCamelCase ) snake_case_ = resolved(_UpperCamelCase ) for finfo in members: if badpath(finfo.name , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = tarfile.open(_UpperCamelCase ) tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) ) tar_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [b"\x1F\x8B"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with gzip.open(_UpperCamelCase , '''rb''' ) as gzip_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def snake_case__( cls : List[str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCamelCase , '''rb''' ) as fp: snake_case_ = _EndRecData(_UpperCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: snake_case_ = fp.read(_UpperCamelCase ) # CD is where we expect it to be if len(_UpperCamelCase ) == sizeCentralDir: snake_case_ = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with zipfile.ZipFile(_UpperCamelCase , '''r''' ) as zip_file: zip_file.extractall(_UpperCamelCase ) zip_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with lzma.open(_UpperCamelCase ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = rarfile.RarFile(_UpperCamelCase ) rf.extractall(_UpperCamelCase ) rf.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [b"\x28\xb5\x2F\xFD"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd snake_case_ = zstd.ZstdDecompressor() with open(_UpperCamelCase , '''rb''' ) as ifh, open(_UpperCamelCase , '''wb''' ) as ofh: dctx.copy_stream(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"\x42\x5A\x68"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with bza.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with pyazr.SevenZipFile(_UpperCamelCase , '''r''' ) as archive: archive.extractall(_UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x04\x22\x4D\x18"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def snake_case__( cls : List[Any] ) ->List[str]: return max( len(_UpperCamelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCamelCase , _UpperCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->Tuple: try: return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase ) except OSError: return b"" @classmethod def snake_case__( cls : Optional[Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bool = False ) ->bool: warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = cls.infer_extractor_format(_UpperCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def snake_case__( cls : int , _UpperCamelCase : Union[Path, str] ) ->str: # <Added version="2.4.0"/> snake_case_ = cls._get_magic_number_max_length() snake_case_ = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return extractor_format @classmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[BaseExtractor] = "deprecated" , ) ->None: os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase ) # Prevent parallel extractions snake_case_ = str(Path(_UpperCamelCase ).with_suffix('''.lock''' ) ) with FileLock(_UpperCamelCase ): shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = extractor if extractor != '''deprecated''' else extractor_format else: snake_case_ = cls.extractors[extractor_format] return extractor.extract(_UpperCamelCase , _UpperCamelCase ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=_UpperCamelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCamelCase ): return extractor.extract(_UpperCamelCase , _UpperCamelCase )
39
0
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class __snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = parent def lowercase_ ( self ): '''simple docstring''' return {} def __snake_case ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' SCREAMING_SNAKE_CASE__ = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = MarkupLMFeatureExtractor if is_bsa_available() else None def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = MarkupLMFeatureExtractionTester(self ) @property def lowercase_ ( self ): '''simple docstring''' return self.feature_extract_tester.prepare_feat_extract_dict() def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.feature_extraction_class() # Test not batched input SCREAMING_SNAKE_CASE__ = get_html_strings()[0] SCREAMING_SNAKE_CASE__ = feature_extractor(A_ ) # fmt: off SCREAMING_SNAKE_CASE__ = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] SCREAMING_SNAKE_CASE__ = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , A_ ) self.assertEqual(encoding.xpaths , A_ ) # Test batched SCREAMING_SNAKE_CASE__ = get_html_strings() SCREAMING_SNAKE_CASE__ = feature_extractor(A_ ) # fmt: off SCREAMING_SNAKE_CASE__ = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] SCREAMING_SNAKE_CASE__ = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , A_ ) self.assertEqual(encoding.xpaths , A_ )
100
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
39
0
from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase__ : Any =logging.get_logger(__name__) lowerCAmelCase__ : Tuple ={ 'Visual-Attention-Network/van-base': ( 'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json' ), } class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """van""" def __init__( self , lowerCAmelCase__=2_2_4 , lowerCAmelCase__=3 , lowerCAmelCase__=[7, 3, 3, 3] , lowerCAmelCase__=[4, 2, 2, 2] , lowerCAmelCase__=[6_4, 1_2_8, 3_2_0, 5_1_2] , lowerCAmelCase__=[3, 3, 1_2, 3] , lowerCAmelCase__=[8, 8, 4, 4] , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-6 , lowerCAmelCase__=1E-2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , **lowerCAmelCase__ , ): """simple docstring""" super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = image_size SCREAMING_SNAKE_CASE_ : str = num_channels SCREAMING_SNAKE_CASE_ : Optional[Any] = patch_sizes SCREAMING_SNAKE_CASE_ : str = strides SCREAMING_SNAKE_CASE_ : Tuple = hidden_sizes SCREAMING_SNAKE_CASE_ : Tuple = depths SCREAMING_SNAKE_CASE_ : Any = mlp_ratios SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Tuple = layer_scale_init_value SCREAMING_SNAKE_CASE_ : Union[str, Any] = drop_path_rate SCREAMING_SNAKE_CASE_ : str = dropout_rate
101
import re from filelock import FileLock try: import nltk lowerCAmelCase_ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): re.sub('''<n>''' , '''''' , SCREAMING_SNAKE_CASE__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE__ ) )
39
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __magic_name__ : Optional[Any] = { """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase : Tuple = """facebook/nllb-200-distilled-600M""" __lowerCAmelCase : str = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) __lowerCAmelCase : List[str] = """translator""" __lowerCAmelCase : Union[str, Any] = AutoTokenizer __lowerCAmelCase : List[Any] = AutoModelForSeqaSeqLM __lowerCAmelCase : List[Any] = LANGUAGE_CODES __lowerCAmelCase : Union[str, Any] = ["""text""", """text""", """text"""] __lowerCAmelCase : Optional[Any] = ["""text"""] def _a ( self , _A , _A , _A ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) UpperCamelCase : Dict = self.lang_to_code[src_lang] UpperCamelCase : Tuple = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( _A , return_tensors="""pt""" , src_lang=_A , tgt_lang=_A ) def _a ( self , _A ): '''simple docstring''' return self.model.generate(**_A ) def _a ( self , _A ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=_A )
102
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [0 for i in range(r + 1 )] # nc0 = 1 snake_case_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case_ = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
39
0
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping snake_case = tuple[int, int] class UpperCAmelCase : def __init__( self : List[Any] , __lowerCamelCase : set[int] , __lowerCamelCase : Mapping[EdgeT, int] ): """simple docstring""" _snake_case = vertices _snake_case = { (min(__lowerCamelCase ), max(__lowerCamelCase )): weight for edge, weight in edges.items() } def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : EdgeT , __lowerCamelCase : int ): """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) _snake_case = weight def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = Graph({min(self.vertices )} , {} ) _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = 42 while len(subgraph.vertices ) < len(self.vertices ): _snake_case = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: _snake_case = edge _snake_case = weight subgraph.add_edge(__lowerCamelCase , __lowerCamelCase ) return subgraph def snake_case ( lowerCAmelCase_ = "p107_network.txt" ) -> int: _snake_case = os.path.abspath(os.path.dirname(lowerCAmelCase_ ) ) _snake_case = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = {} _snake_case = 42 _snake_case = 42 _snake_case = 42 with open(lowerCAmelCase_ ) as f: _snake_case = f.read().strip().split('''\n''' ) _snake_case = [line.split(''',''' ) for line in data] for edgea in range(1 , len(lowerCAmelCase_ ) ): for edgea in range(lowerCAmelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": _snake_case = int(adjaceny_matrix[edgea][edgea] ) _snake_case = Graph(set(range(len(lowerCAmelCase_ ) ) ) , lowerCAmelCase_ ) _snake_case = graph.prims_algorithm() _snake_case = sum(graph.edges.values() ) _snake_case = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
103
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCAmelCase_ = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 13_10_72, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return torch.atana(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / math.pi * 2 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.sin(t * math.pi / 2 ) ** 2 snake_case_ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class snake_case_ ( __A ): '''simple docstring''' pass class snake_case_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : int ) ->Optional[int]: super().__init__() snake_case_ = DiffusionAttnUnetaD(_UpperCamelCase , n_attn_layers=4 ) snake_case_ = deepcopy(self.diffusion ) snake_case_ = torch.quasirandom.SobolEngine(1 , scramble=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = MODELS_MAP[model_name]['''url'''] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCAmelCase_ = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCAmelCase_ = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCAmelCase_ = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCAmelCase_ = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif name.startswith(SCREAMING_SNAKE_CASE__ ): return [name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 ): snake_case_ = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) snake_case_ = 0 if string.startswith('''net.3.''' ): depth += 1 snake_case_ = string[6:] elif string.startswith('''net.''' ): snake_case_ = string[4:] while string.startswith('''main.7.''' ): depth += 1 snake_case_ = string[7:] if string.startswith('''main.''' ): snake_case_ = string[5:] # mid block if string[:2].isdigit(): snake_case_ = string[:2] snake_case_ = string[2:] else: snake_case_ = string[0] snake_case_ = string[1:] if depth == max_depth: snake_case_ = MID_NUM_TO_LAYER[layer_num] snake_case_ = '''mid_block''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) < 7: snake_case_ = DOWN_NUM_TO_LAYER[layer_num] snake_case_ = F'''down_blocks.{depth}''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) > 7: snake_case_ = UP_NUM_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: snake_case_ = DEPTH_0_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - 1}''' if int(SCREAMING_SNAKE_CASE__ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) snake_case_ = string_left[1:] if "resnets" in new_layer: snake_case_ = convert_resconv_naming(SCREAMING_SNAKE_CASE__ ) elif "attentions" in new_layer: snake_case_ = convert_attn_naming(SCREAMING_SNAKE_CASE__ ) snake_case_ = new_string_left if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = prefix + '''.''' + new_layer + '''.''' + string_left else: snake_case_ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue snake_case_ = rename(SCREAMING_SNAKE_CASE__ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = transform_conv_attns(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ = v return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) == 1: if len(v.shape ) == 3: # weight snake_case_ = v[:, :, 0] else: # bias snake_case_ = v else: # qkv matrices snake_case_ = v.shape[0] snake_case_ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: snake_case_ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: snake_case_ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) snake_case_ = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' snake_case_ = download(SCREAMING_SNAKE_CASE__ ) snake_case_ = MODELS_MAP[model_name]['''sample_rate'''] snake_case_ = MODELS_MAP[model_name]['''sample_size'''] snake_case_ = Object() snake_case_ = sample_size snake_case_ = sample_rate snake_case_ = 0 snake_case_ = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE__ , sample_rate=SCREAMING_SNAKE_CASE__ ) snake_case_ = diffusers_model.state_dict() snake_case_ = DiffusionUncond(SCREAMING_SNAKE_CASE__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE__ )['''state_dict'''] ) snake_case_ = orig_model.diffusion_ema.eval() snake_case_ = orig_model.state_dict() snake_case_ = rename_orig_weights(SCREAMING_SNAKE_CASE__ ) snake_case_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) snake_case_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE__ ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith('''kernel''' ) for k in list(SCREAMING_SNAKE_CASE__ ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": snake_case_ = value.squeeze() snake_case_ = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = 100 snake_case_ = 33 snake_case_ = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE__ )[:-1] snake_case_ = get_crash_schedule(SCREAMING_SNAKE_CASE__ ) snake_case_ = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(33 ) snake_case_ = pipe(num_inference_steps=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).audios snake_case_ = sampling.iplms_sample(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {} ) snake_case_ = generated.clamp(-1 , 1 ) snake_case_ = (generated - audio).abs().sum() snake_case_ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , SCREAMING_SNAKE_CASE__ ) print('''Diff max''' , SCREAMING_SNAKE_CASE__ ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCAmelCase_ = parser.parse_args() main(args)
39
0
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowerCamelCase ( UpperCAmelCase_ : str, UpperCAmelCase_ : Dict=0.999, UpperCAmelCase_ : Tuple="cosine", ) -> List[str]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCAmelCase_ : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCAmelCase_ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) A__ = [] for i in range(UpperCAmelCase_ ): A__ = i / num_diffusion_timesteps A__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCAmelCase_ ) / alpha_bar_fn(UpperCAmelCase_ ), UpperCAmelCase_ ) ) return torch.tensor(UpperCAmelCase_, dtype=torch.floataa ) class UpperCamelCase__ ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" A__ : Optional[Any] = [e.name for e in KarrasDiffusionSchedulers] A__ : str = 2 @register_to_config def __init__( self , SCREAMING_SNAKE_CASE__ = 1000 , SCREAMING_SNAKE_CASE__ = 0.0_0_0_8_5 , SCREAMING_SNAKE_CASE__ = 0.0_1_2 , SCREAMING_SNAKE_CASE__ = "linear" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "epsilon" , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = 1.0 , SCREAMING_SNAKE_CASE__ = "linspace" , SCREAMING_SNAKE_CASE__ = 0 , ) -> Optional[int]: if trained_betas is not None: A__ = torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) elif beta_schedule == "linear": A__ = torch.linspace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A__ = betas_for_alpha_bar(SCREAMING_SNAKE_CASE__ , alpha_transform_type="cosine" ) elif beta_schedule == "exp": A__ = betas_for_alpha_bar(SCREAMING_SNAKE_CASE__ , alpha_transform_type="exp" ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) A__ = 1.0 - self.betas A__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = use_karras_sigmas def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> Optional[int]: if schedule_timesteps is None: A__ = self.timesteps A__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: A__ = 1 if len(SCREAMING_SNAKE_CASE__ ) > 1 else 0 else: A__ = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE__ ) else timestep A__ = self._index_counter[timestep_int] return indices[pos].item() @property def snake_case__ ( self ) -> Any: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> torch.FloatTensor: A__ = self.index_for_timestep(SCREAMING_SNAKE_CASE__ ) A__ = self.sigmas[step_index] A__ = sample / ((sigma**2 + 1) ** 0.5) return sample def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ) -> Dict: A__ = num_inference_steps A__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": A__ = np.linspace(0 , num_train_timesteps - 1 , SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ )[::-1].copy() elif self.config.timestep_spacing == "leading": A__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A__ = (np.arange(0 , SCREAMING_SNAKE_CASE__ ) * step_ratio).round()[::-1].copy().astype(SCREAMING_SNAKE_CASE__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": A__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A__ = (np.arange(SCREAMING_SNAKE_CASE__ , 0 , -step_ratio )).round().copy().astype(SCREAMING_SNAKE_CASE__ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) A__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) A__ = np.log(SCREAMING_SNAKE_CASE__ ) A__ = np.interp(SCREAMING_SNAKE_CASE__ , np.arange(0 , len(SCREAMING_SNAKE_CASE__ ) ) , SCREAMING_SNAKE_CASE__ ) if self.config.use_karras_sigmas: A__ = self._convert_to_karras(in_sigmas=SCREAMING_SNAKE_CASE__ , num_inference_steps=self.num_inference_steps ) A__ = np.array([self._sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for sigma in sigmas] ) A__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) A__ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(device=SCREAMING_SNAKE_CASE__ ) A__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) A__ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) A__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(SCREAMING_SNAKE_CASE__ ).startswith("mps" ): # mps does not support float64 A__ = timesteps.to(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) else: A__ = timesteps.to(device=SCREAMING_SNAKE_CASE__ ) # empty dt and derivative A__ = None A__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter A__ = defaultdict(SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: # get log sigma A__ = np.log(SCREAMING_SNAKE_CASE__ ) # get distribution A__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range A__ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) A__ = low_idx + 1 A__ = log_sigmas[low_idx] A__ = log_sigmas[high_idx] # interpolate sigmas A__ = (low - log_sigma) / (low - high) A__ = np.clip(SCREAMING_SNAKE_CASE__ , 0 , 1 ) # transform interpolation to time range A__ = (1 - w) * low_idx + w * high_idx A__ = t.reshape(sigma.shape ) return t def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> torch.FloatTensor: A__ = in_sigmas[-1].item() A__ = in_sigmas[0].item() A__ = 7.0 # 7.0 is the value used in the paper A__ = np.linspace(0 , 1 , SCREAMING_SNAKE_CASE__ ) A__ = sigma_min ** (1 / rho) A__ = sigma_max ** (1 / rho) A__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def snake_case__ ( self ) -> Optional[Any]: return self.dt is None def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = True , ) -> Union[SchedulerOutput, Tuple]: A__ = self.index_for_timestep(SCREAMING_SNAKE_CASE__ ) # advance index counter by 1 A__ = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: A__ = self.sigmas[step_index] A__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method A__ = self.sigmas[step_index - 1] A__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API A__ = 0 A__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": A__ = sigma_hat if self.state_in_first_order else sigma_next A__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": A__ = sigma_hat if self.state_in_first_order else sigma_next A__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": A__ = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: A__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order A__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep A__ = sigma_next - sigma_hat # store for 2nd order step A__ = derivative A__ = dt A__ = sample else: # 2. 2nd order / Heun's method A__ = (sample - pred_original_sample) / sigma_next A__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample A__ = self.dt A__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" A__ = None A__ = None A__ = None A__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples A__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(SCREAMING_SNAKE_CASE__ ): # mps does not support float64 A__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) A__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: A__ = self.timesteps.to(original_samples.device ) A__ = timesteps.to(original_samples.device ) A__ = [self.index_for_timestep(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for t in timesteps] A__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): A__ = sigma.unsqueeze(-1 ) A__ = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Tuple: return self.config.num_train_timesteps
104
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
0
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor UpperCamelCase__ : List[Any] = logging.get_logger(__name__) class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,*snake_case__ ,**snake_case__ ): warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' ,snake_case__ ,) super().__init__(*snake_case__ ,**snake_case__ )
105
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->Any: snake_case_ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case_ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case_ = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case_ = output[output != -float('''inf''' )] snake_case_ = tf.cast( tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-12 ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @require_tf class snake_case_ ( unittest.TestCase , __A ): '''simple docstring''' if is_tf_available(): SCREAMING_SNAKE_CASE : Optional[int] = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def snake_case__( self : List[Any] ) ->Optional[int]: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 2 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->List[Any]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) ->List[Any]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2, 0], [1_0_2, 1_0_3]] snake_case_ = [[1, 0], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for batch_size in range(1 , len(_UpperCamelCase ) + 1 ): snake_case_ = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow def snake_case__( self : List[str] ) ->int: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 1 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : Any ) ->List[str]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) ->Optional[int]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2], [1_0_2, 1_0_3]] snake_case_ = [[1], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for input_row in range(len(_UpperCamelCase ) ): snake_case_ = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow @require_tensorflow_text def snake_case__( self : Optional[Any] ) ->List[Any]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_UpperCamelCase ) class snake_case_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ) ->List[Any]: super().__init__() snake_case_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , '''spiece.model''' ) , '''rb''' ).read() ) snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->List[Any]: snake_case_ = self.tokenizer.tokenize(_UpperCamelCase ) snake_case_, snake_case_ = text.pad_model_inputs( _UpperCamelCase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) snake_case_ = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) return self.tokenizer.detokenize(_UpperCamelCase ) snake_case_ = CompleteSentenceTransformer() snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) snake_case_ = complete_model(_UpperCamelCase ) snake_case_ = tf.keras.Model(_UpperCamelCase , _UpperCamelCase ) keras_model.save(_UpperCamelCase ) def snake_case__( self : Any ) ->List[Any]: # Has PT equivalent: this test relies on random sampling snake_case_ = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 1_0, '''temperature''': 0.7, } snake_case_ = 1_4 snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = '''Hello, my dog is cute and''' snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''tf''' ) snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case_ = [6_3_8, 1_9_8] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def snake_case__( self : str ) ->Dict: # Has PT equivalent: ample use of framework-specific code snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = '''Hugging Face is a technology company based in New York and Paris.''' snake_case_ = bart_tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids snake_case_ = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Optional[int] ) ->List[str]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) ) class snake_case_ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , **_UpperCamelCase : Tuple ) ->Optional[Any]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() with self.assertRaises(_UpperCamelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_UpperCamelCase , foo='''bar''' )
39
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __snake_case :List[str] ={'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class lowerCAmelCase__ ( unittest.TestCase ): A_ : Any = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A_ : List[Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: A_ : Dict = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: A_ : int = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict ) -> Any: A = ZeroShotClassificationPipeline( model=__UpperCamelCase , tokenizer=__UpperCamelCase , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def __UpperCamelCase ( self : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] ) -> int: A = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(__UpperCamelCase , {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase )]} ) # No kwarg A = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(__UpperCamelCase , {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase )]} ) A = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(__UpperCamelCase , {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase )]} ) A = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( __UpperCamelCase , {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) A = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( __UpperCamelCase , {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) A = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(__UpperCamelCase , {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 A = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( __UpperCamelCase , [ {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} for i in range(1 ) ] , ) A = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( __UpperCamelCase , [ {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} for i in range(2 ) ] , ) with self.assertRaises(__UpperCamelCase ): classifier('' , candidate_labels='politics' ) with self.assertRaises(__UpperCamelCase ): classifier(__UpperCamelCase , candidate_labels='politics' ) with self.assertRaises(__UpperCamelCase ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(__UpperCamelCase ): classifier('Who are you voting for in 2020?' , candidate_labels=__UpperCamelCase ) with self.assertRaises(__UpperCamelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(__UpperCamelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=__UpperCamelCase , ) self.run_entailment_id(__UpperCamelCase ) def __UpperCamelCase ( self : int , __UpperCamelCase : Pipeline ) -> Any: A = zero_shot_classifier.model.config A = config.labelaid A = zero_shot_classifier.entailment_id A = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) A = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) A = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) A = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) A = original_labelaid self.assertEqual(__UpperCamelCase , zero_shot_classifier.entailment_id ) @require_torch def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: A = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: A = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) A = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def __UpperCamelCase ( self : int ) -> Dict: A = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) A = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: A = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) A = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) A = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=__UpperCamelCase , ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def __UpperCamelCase ( self : List[str] ) -> Any: A = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) A = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) A = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=__UpperCamelCase , ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
106
import unittest from transformers import DonutProcessor lowerCAmelCase_ = '''naver-clova-ix/donut-base''' class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = DonutProcessor.from_pretrained(_UpperCamelCase ) def snake_case__( self : Dict ) ->str: snake_case_ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } snake_case_ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) snake_case_ = self.processor.tokenajson(_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , _UpperCamelCase )
39
0
'''simple docstring''' from __future__ import annotations _UpperCAmelCase : Optional[int] = [] def _SCREAMING_SNAKE_CASE ( __snake_case : list[list[int]] , __snake_case : int , __snake_case : int ): for i in range(len(__snake_case ) ): if board[row][i] == 1: return False for i in range(len(__snake_case ) ): if board[i][column] == 1: return False for i, j in zip(range(__snake_case , -1 , -1 ) , range(__snake_case , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__snake_case , -1 , -1 ) , range(__snake_case , len(__snake_case ) ) ): if board[i][j] == 1: return False return True def _SCREAMING_SNAKE_CASE ( __snake_case : list[list[int]] , __snake_case : int ): if row >= len(__snake_case ): solution.append(__snake_case ) printboard(__snake_case ) print() return True for i in range(len(__snake_case ) ): if is_safe(__snake_case , __snake_case , __snake_case ): _A = 1 solve(__snake_case , row + 1 ) _A = 0 return False def _SCREAMING_SNAKE_CASE ( __snake_case : list[list[int]] ): for i in range(len(__snake_case ) ): for j in range(len(__snake_case ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) _UpperCAmelCase : Any = 8 _UpperCAmelCase : Dict = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
107
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not nums: raise ValueError('''List is empty''' ) return sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
39
0
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __a: str = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __a: List[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"{len(upper_files)} files contain uppercase characters:") print('''\n'''.join(upper_files) + '''\n''') __a: str = [file for file in filepaths if ''' ''' in file] if space_files: print(F"{len(space_files)} files contain space characters:") print('''\n'''.join(space_files) + '''\n''') __a: Dict = [file for file in filepaths if '''-''' in file] if hyphen_files: print(F"{len(hyphen_files)} files contain hyphen characters:") print('''\n'''.join(hyphen_files) + '''\n''') __a: Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"{len(nodir_files)} files are not in a directory:") print('''\n'''.join(nodir_files) + '''\n''') __a: Tuple = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
108
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : List[str] ) ->str: snake_case_ = inspect.getfile(accelerate.test_utils ) snake_case_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 snake_case_ = test_metrics @require_cpu def snake_case__( self : str ) ->int: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case__( self : Union[str, Any] ) ->Any: debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case__( self : List[Any] ) ->Tuple: self.test_metrics.main() @require_multi_gpu def snake_case__( self : Any ) ->Union[str, Any]: print(f'''Found {torch.cuda.device_count()} devices.''' ) snake_case_ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
39
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase = 200 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = [1, 2, 5, 10, 20, 50, 100, 200] __SCREAMING_SNAKE_CASE = [0] * (pence + 1) __SCREAMING_SNAKE_CASE = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__UpperCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
109
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = "informer" SCREAMING_SNAKE_CASE : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Dict , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "student_t" , _UpperCamelCase : str = "nll" , _UpperCamelCase : int = 1 , _UpperCamelCase : List[int] = None , _UpperCamelCase : Optional[Union[str, bool]] = "mean" , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : int = 6_4 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.05 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : Dict=True , _UpperCamelCase : str = "prob" , _UpperCamelCase : int = 5 , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Optional[int]: # time series specific configuration snake_case_ = prediction_length snake_case_ = context_length or prediction_length snake_case_ = distribution_output snake_case_ = loss snake_case_ = input_size snake_case_ = num_time_features snake_case_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case_ = scaling snake_case_ = num_dynamic_real_features snake_case_ = num_static_real_features snake_case_ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = cardinality else: snake_case_ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = embedding_dimension else: snake_case_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ = num_parallel_samples # Transformer architecture configuration snake_case_ = input_size * len(self.lags_sequence ) + self._number_of_features snake_case_ = d_model snake_case_ = encoder_attention_heads snake_case_ = decoder_attention_heads snake_case_ = encoder_ffn_dim snake_case_ = decoder_ffn_dim snake_case_ = encoder_layers snake_case_ = decoder_layers snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = activation_function snake_case_ = init_std snake_case_ = use_cache # Informer snake_case_ = attention_type snake_case_ = sampling_factor snake_case_ = distil super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def snake_case__( self : Optional[Any] ) ->int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
39
0
"""simple docstring""" from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase ( ): UpperCAmelCase__ , UpperCAmelCase__ : str = 9, 14 # noqa: F841 UpperCAmelCase__ : Union[str, Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCAmelCase__ : Dict = defaultdict(_snake_case ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) UpperCAmelCase__ : List[Any] = mst(_snake_case ) UpperCAmelCase__ : Tuple = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: UpperCAmelCase__ : Optional[Any] = tuple(answer[:2] ) UpperCAmelCase__ : Dict = tuple(edge[::-1] ) assert edge in result or reverse in result
110
import cmath import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) # Convert voltage and current to rectangular form snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
39
0
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __snake_case( self ): _UpperCAmelCase : List[str] = inspect.getfile(accelerate.test_utils ) _UpperCAmelCase : Union[str, Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 _UpperCAmelCase : List[str] = test_metrics @require_cpu def __snake_case( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __snake_case( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def __snake_case( self ): self.test_metrics.main() @require_multi_gpu def __snake_case( self ): print(F'''Found {torch.cuda.device_count()} devices.''' ) _UpperCAmelCase : Union[str, Any] = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
643
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=1_3 , _UpperCamelCase : str=7 , _UpperCamelCase : int=True , _UpperCamelCase : Dict=True , _UpperCamelCase : int=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : str=3_2 , _UpperCamelCase : str=5 , _UpperCamelCase : str=4 , _UpperCamelCase : int=3_7 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : str=5_1_2 , _UpperCamelCase : Optional[int]=1_6 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Any=0.02 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : str=None , ) ->Dict: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def snake_case__( self : str ) ->List[Any]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self : List[str] ) ->Tuple: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) ->Dict: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , ) ->Optional[int]: snake_case_ = BioGptForCausalLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , *_UpperCamelCase : List[Any] ) ->Union[str, Any]: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # create attention mask snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) snake_case_ = self.seq_length // 2 snake_case_ = 0 # first forward pass snake_case_, snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids snake_case_ = ids_tensor((1,) , _UpperCamelCase ).item() + 1 snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) snake_case_ = random_other_next_tokens # append to next input_ids and attn_mask snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCamelCase )] , dim=1 , ) # get two different outputs snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , past_key_values=_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , *_UpperCamelCase : List[Any] ) ->int: snake_case_ = BioGptModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval() snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) # first forward pass snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase ) snake_case_, snake_case_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[ '''last_hidden_state''' ] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , *_UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=False ) ->Dict: snake_case_ = BioGptForCausalLM(_UpperCamelCase ) model.to(_UpperCamelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def snake_case__( self : List[Any] , _UpperCamelCase : Optional[int] , *_UpperCamelCase : Dict ) ->Dict: snake_case_ = BioGptModel(_UpperCamelCase ) snake_case_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def snake_case__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , *_UpperCamelCase : List[str] ) ->int: snake_case_ = self.num_labels snake_case_ = BioGptForTokenClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = (BioGptForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Optional[Any] = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Tuple = False def snake_case__( self : List[str] ) ->Union[str, Any]: snake_case_ = BioGptModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : str ) ->int: self.config_tester.run_common_tests() def snake_case__( self : str ) ->Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_UpperCamelCase , gradient_checkpointing=_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCamelCase ) def snake_case__( self : List[Any] ) ->Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCamelCase ) @slow def snake_case__( self : int ) ->Optional[Any]: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = '''left''' # Define PAD Token = EOS Token = 50256 snake_case_ = tokenizer.eos_token snake_case_ = model.config.eos_token_id # use different length sentences to test batching snake_case_ = [ '''Hello, my dog is a little''', '''Today, I''', ] snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase ) snake_case_ = inputs['''input_ids'''].to(_UpperCamelCase ) snake_case_ = model.generate( input_ids=_UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(_UpperCamelCase ) , ) snake_case_ = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase ) snake_case_ = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() snake_case_ = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings ) snake_case_ = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] ) @slow def snake_case__( self : Optional[int] ) ->List[str]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = BioGptModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__( self : str ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = '''multi_label_classification''' snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__( self : int ) ->Any: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) snake_case_ = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) snake_case_ = model(_UpperCamelCase )[0] snake_case_ = 4_2_3_8_4 snake_case_ = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def snake_case__( self : List[str] ) ->Optional[int]: snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_UpperCamelCase ) snake_case_ = model.generate( **_UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=_UpperCamelCase , ) snake_case_ = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(_UpperCamelCase , _UpperCamelCase )
39
0
import argparse import struct import unittest class _UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : bytes ): A = data # Initialize hash values A = [ 0X6a_09e_667, 0Xbb_67a_e85, 0X3c_6ef_372, 0Xa5_4ff_53a, 0X51_0e5_27f, 0X9b_056_88c, 0X1f_83d_9ab, 0X5b_e0c_d19, ] # Initialize round constants A = [ 0X42_8a2_f98, 0X71_374_491, 0Xb5_c0f_bcf, 0Xe9_b5d_ba5, 0X39_56c_25b, 0X59_f11_1f1, 0X92_3f8_2a4, 0Xab_1c5_ed5, 0Xd8_07a_a98, 0X12_835_b01, 0X24_318_5be, 0X55_0c7_dc3, 0X72_be5_d74, 0X80_deb_1fe, 0X9b_dc0_6a7, 0Xc1_9bf_174, 0Xe4_9b6_9c1, 0Xef_be4_786, 0X0f_c19_dc6, 0X24_0ca_1cc, 0X2d_e92_c6f, 0X4a_748_4aa, 0X5c_b0a_9dc, 0X76_f98_8da, 0X98_3e5_152, 0Xa8_31c_66d, 0Xb0_032_7c8, 0Xbf_597_fc7, 0Xc6_e00_bf3, 0Xd5_a79_147, 0X06_ca6_351, 0X14_292_967, 0X27_b70_a85, 0X2e_1b2_138, 0X4d_2c6_dfc, 0X53_380_d13, 0X65_0a7_354, 0X76_6a0_abb, 0X81_c2c_92e, 0X92_722_c85, 0Xa2_bfe_8a1, 0Xa8_1a6_64b, 0Xc2_4b8_b70, 0Xc7_6c5_1a3, 0Xd1_92e_819, 0Xd6_990_624, 0Xf4_0e3_585, 0X10_6aa_070, 0X19_a4c_116, 0X1e_376_c08, 0X27_487_74c, 0X34_b0b_cb5, 0X39_1c0_cb3, 0X4e_d8a_a4a, 0X5b_9cc_a4f, 0X68_2e6_ff3, 0X74_8f8_2ee, 0X78_a56_36f, 0X84_c87_814, 0X8c_c70_208, 0X90_bef_ffa, 0Xa4_506_ceb, 0Xbe_f9a_3f7, 0Xc6_717_8f2, ] A = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCamelCase ( UpperCamelCase__ : bytes ): A = B'\x80' + (B'\x00' * (63 - (len(_UpperCamelCase ) + 8) % 64)) A = struct.pack('>Q' , (len(_UpperCamelCase ) * 8) ) return data + padding + big_endian_integer def UpperCamelCase ( self : Optional[Any] ): # Convert into blocks of 64 bytes A = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A = list(struct.unpack('>16L' , _UpperCamelCase ) ) # add 48 0-ed integers words += [0] * 48 A , A , A , A , A , A , A , A = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array A = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) A = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) A = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression A = self.ror(_UpperCamelCase , 6 ) ^ self.ror(_UpperCamelCase , 11 ) ^ self.ror(_UpperCamelCase , 25 ) A = (e & f) ^ ((~e & 0Xff_fff_fff) & g) A = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 A = self.ror(_UpperCamelCase , 2 ) ^ self.ror(_UpperCamelCase , 13 ) ^ self.ror(_UpperCamelCase , 22 ) A = (a & b) ^ (a & c) ^ (b & c) A = (sa + maj) % 0X100_000_000 A , A , A , A , A , A , A , A = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) A = [a, b, c, d, e, f, g, h] # Modify final values A = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes ) ] A = ''.join([hex(_UpperCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def UpperCamelCase ( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ): return 0Xff_fff_fff & (value << (32 - rotations)) | (value >> rotations) class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self : Any ): import hashlib A = bytes('Test String' , 'utf-8' ) self.assertEqual(SHAaaa(_UpperCamelCase ).hash , hashlib.shaaaa(_UpperCamelCase ).hexdigest() ) def __UpperCamelCase () -> Any: import doctest doctest.testmod() A = argparse.ArgumentParser() parser.add_argument( '-s', '--string', dest='input_string', default='Hello World!! Welcome to Cryptography', help='Hash the string', ) parser.add_argument( '-f', '--file', dest='input_file', help='Hash contents of a file' ) A = parser.parse_args() A = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file, 'rb' ) as f: A = f.read() else: A = bytes(SCREAMING_SNAKE_CASE__, 'utf-8' ) print(SHAaaa(SCREAMING_SNAKE_CASE__ ).hash ) if __name__ == "__main__": main()
699
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) snake_case_ = (boundary[1] - boundary[0]) / steps snake_case_ = boundary[0] snake_case_ = boundary[1] snake_case_ = make_points(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = 0.0 y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) for i in x_i: # print(i) y += h * f(SCREAMING_SNAKE_CASE__ ) y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) return y def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = a + h while x < (b - h): yield x snake_case_ = x + h def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # enter your function here snake_case_ = (x - 0) * (x - 0) return y def __SCREAMING_SNAKE_CASE (): snake_case_ = 0.0 # Lower bound of integration snake_case_ = 1.0 # Upper bound of integration snake_case_ = 10.0 # define number of steps or resolution snake_case_ = [a, b] # define boundary of integration snake_case_ = method_a(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
39
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _A ( __A , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' @property def snake_case_ ( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case_ ( self ): '''simple docstring''' snake_case : List[str] = ort.SessionOptions() snake_case : Tuple = False return options def snake_case_ ( self ): '''simple docstring''' snake_case : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) snake_case : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) snake_case : Tuple = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" ,revision="""onnx""" ,safety_checker=_UpperCamelCase ,feature_extractor=_UpperCamelCase ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case : List[Any] = """A red cat sitting on a park bench""" snake_case : List[Any] = np.random.RandomState(0 ) snake_case : Optional[int] = pipe( prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=_UpperCamelCase ,output_type="""np""" ,) snake_case : Optional[Any] = output.images snake_case : Optional[Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) snake_case : Tuple = np.array([0.25_14, 0.30_07, 0.35_17, 0.17_90, 0.23_82, 0.31_67, 0.19_44, 0.22_73, 0.24_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def snake_case_ ( self ): '''simple docstring''' snake_case : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) snake_case : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) snake_case : Union[str, Any] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" ,subfolder="""scheduler""" ,revision="""onnx""" ) snake_case : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" ,revision="""onnx""" ,scheduler=_UpperCamelCase ,safety_checker=_UpperCamelCase ,feature_extractor=_UpperCamelCase ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case : Optional[Any] = """A red cat sitting on a park bench""" snake_case : Optional[Any] = np.random.RandomState(0 ) snake_case : Union[str, Any] = pipe( prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=_UpperCamelCase ,output_type="""np""" ,) snake_case : Optional[int] = output.images snake_case : Optional[Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) snake_case : Any = np.array([0.00_86, 0.00_77, 0.00_83, 0.00_93, 0.01_07, 0.01_39, 0.00_94, 0.00_97, 0.01_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
36
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / '''model_card_template.md''' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None ): snake_case_ = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if token is None: snake_case_ = HfFolder.get_token() if organization is None: snake_case_ = whoami(SCREAMING_SNAKE_CASE__ )['''name'''] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(SCREAMING_SNAKE_CASE__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , '''hub_token''' ) else None snake_case_ = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) snake_case_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ = os.path.join(args.output_dir , '''README.md''' ) model_card.save(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) snake_case_ = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE__ ) if search is None: return None snake_case_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, '''diffusers''') def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if new_cache_dir is None: snake_case_ = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ = old_diffusers_cache snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ '''the directory exists and can be written to.''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if variant is not None: snake_case_ = weights_name.split('''.''' ) snake_case_ = splits[:-1] + [variant] + splits[-1:] snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ ) return weights_name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ): snake_case_ = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' '''this model name. Check the model page at ''' F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
39
0
'''simple docstring''' from __future__ import annotations import requests def _lowerCAmelCase ( __magic_name__ : Optional[int] ) -> Dict: lowercase : Tuple =f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(SCREAMING_SNAKE_CASE__ ).json() def _lowerCAmelCase ( __magic_name__ : Any = 10 ) -> List[str]: lowercase : int ='''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' lowercase : Union[str, Any] =requests.get(SCREAMING_SNAKE_CASE__ ).json()[:max_stories] return [get_hackernews_story(SCREAMING_SNAKE_CASE__ ) for story_id in story_ids] def _lowerCAmelCase ( __magic_name__ : Any = 10 ) -> List[str]: lowercase : Dict =hackernews_top_stories(SCREAMING_SNAKE_CASE__ ) return "\n".join('''* [{title}]({url})'''.format(**SCREAMING_SNAKE_CASE__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
92
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt" def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) snake_case_ = backbone_featmap_shape snake_case_ = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: snake_case_ = None snake_case_ = None snake_case_ = [] snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) snake_case_ = readout_type snake_case_ = reassemble_factors snake_case_ = neck_hidden_sizes snake_case_ = fusion_hidden_size snake_case_ = head_in_index snake_case_ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = semantic_loss_ignore_index snake_case_ = semantic_classifier_dropout def snake_case__( self : List[str] ) ->List[Any]: snake_case_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
39
0
'''simple docstring''' __UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _a ( ) -> Any: """simple docstring""" __snake_case : Optional[Any] = input("""Enter message: """ ) __snake_case : Union[str, Any] = input("""Enter key [alphanumeric]: """ ) __snake_case : Dict = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __snake_case : Optional[Any] = """encrypt""" __snake_case : Optional[int] = encrypt_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif mode.lower().startswith("""d""" ): __snake_case : Any = """decrypt""" __snake_case : str = decrypt_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''\n{mode.title()}ed message:''' ) print(SCREAMING_SNAKE_CASE__ ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" return translate_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """encrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """decrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[Any] = [] __snake_case : Any = 0 __snake_case : Optional[Any] = key.upper() for symbol in message: __snake_case : Union[str, Any] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(SCREAMING_SNAKE_CASE__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(SCREAMING_SNAKE_CASE__ ): __snake_case : Union[str, Any] = 0 else: translated.append(SCREAMING_SNAKE_CASE__ ) return "".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
26
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = '''pytorch_model.bin''' @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "A csv or a json file containing the validation data."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "The name of the task to train on."} , ) SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field( default=__A , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=__A , metadata={"help": "Random seed for initialization."} , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case_ = dataset.filter(lambda SCREAMING_SNAKE_CASE__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case_ = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) ) print(SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = dataset.remove_columns(['''label''', '''probability'''] ) snake_case_ = dataset.rename_column('''prediction''' , '''label''' ) snake_case_ = dataset.map(lambda SCREAMING_SNAKE_CASE__ : {"label": idalabel[example["label"]]} ) snake_case_ = dataset.shuffle(seed=args.seed ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) else: dataset.to_json(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): snake_case_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case_ = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ ) snake_case_ = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ , infer_file=SCREAMING_SNAKE_CASE__ ) snake_case_ = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ ) snake_case_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(SCREAMING_SNAKE_CASE__ ).items(): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Sanity checks snake_case_ = {} snake_case_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case_ = args.train_file snake_case_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case_ = args.eval_file for key in data_files: snake_case_ = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: snake_case_ = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) snake_case_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format snake_case_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = None snake_case_ = None snake_case_ = 0 snake_case_ = False # Show the progress bar snake_case_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case_ = data_dir_format(SCREAMING_SNAKE_CASE__ ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-1''' ) snake_case_ = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): arguments_dict.update({key: value} ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-2''' ) # Update arguments_dict snake_case_ = model_path snake_case_ = data_files['''train'''] snake_case_ = current_output_dir snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = iteration snake_case_ = data_dir_format(iteration + 1 ) snake_case_ = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) ) snake_case_ = config.idalabel snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-checkpoint.json''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: snake_case_ = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Loading the dataset from local csv or json files. snake_case_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] snake_case_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case_ = eval_result if best_iteration is None: snake_case_ = new_iteration snake_case_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case_ = new_iteration snake_case_ = new_eval_result snake_case_ = 0 else: if new_eval_result == best_eval_result: snake_case_ = new_iteration snake_case_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE__ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , )
39
0
from math import factorial def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Union[str, Any] = 20 ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] =2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... SCREAMING_SNAKE_CASE_ : Tuple =n // 2 return int(factorial(SCREAMING_SNAKE_CASE__ ) / (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: __SCREAMING_SNAKE_CASE = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
220
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AltDiffusionPipeline SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__( self : Dict ) ->int: torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) snake_case_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) snake_case_ = CLIPTextModel(_UpperCamelCase ) snake_case_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) snake_case_ = 7_7 snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__( self : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0 ) ->Any: if str(_UpperCamelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCamelCase ) else: snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case__( self : Dict ) ->List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def snake_case__( self : List[str] ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case__( self : Dict ) ->Any: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = '''A photo of an astronaut''' snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : Tuple ) ->Union[str, Any]: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : int ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self : List[str] ) ->Tuple: # make sure here that pndm scheduler skips prk snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='''np''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : List[str] ) ->Optional[Any]: snake_case_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , num_inference_steps=2 , output_type='''numpy''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
0
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter a_ = logging.get_logger(__name__) a_ = {} a_ = {} a_ = {} def UpperCAmelCase_ ( __a : Any , __a : Optional[int] , __a : List[str] = None , ): '''simple docstring''' _lowerCamelCase : Any = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) _lowerCamelCase : int = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) _lowerCamelCase : List[str] = format_type def UpperCAmelCase_ ( __a : Optional[int] , __a : int , __a : Optional[int] = None ): '''simple docstring''' _lowerCamelCase : Any = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): _lowerCamelCase : List[Any] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["""python"""]) _register_formatter(ArrowFormatter, """arrow""", aliases=["""pa""", """pyarrow"""]) _register_formatter(NumpyFormatter, """numpy""", aliases=["""np"""]) _register_formatter(PandasFormatter, """pandas""", aliases=["""pd"""]) _register_formatter(CustomFormatter, """custom""") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, """torch""", aliases=["""pt""", """pytorch"""]) else: a_ = ValueError("""PyTorch needs to be installed to be able to return PyTorch tensors.""") _register_unavailable_formatter(_torch_error, """torch""", aliases=["""pt""", """pytorch"""]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, """tensorflow""", aliases=["""tf"""]) else: a_ = ValueError("""Tensorflow needs to be installed to be able to return Tensorflow tensors.""") _register_unavailable_formatter(_tf_error, """tensorflow""", aliases=["""tf"""]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, """jax""", aliases=[]) else: a_ = ValueError("""JAX needs to be installed to be able to return JAX arrays.""") _register_unavailable_formatter(_jax_error, """jax""", aliases=[]) def UpperCAmelCase_ ( __a : int ): '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def UpperCAmelCase_ ( __a : Any , **__a : str ): '''simple docstring''' _lowerCamelCase : Dict = get_format_type_from_alias(SCREAMING_SNAKE_CASE__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**SCREAMING_SNAKE_CASE__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'" )
437
from math import factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( '''If a class of 40 students must be arranged into groups of''', f"""4 for group projects, there are {combinations(40, 4)} ways""", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f"""are {combinations(10, 3)} ways that first, second and""", '''third place can be awarded.''', )
39
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: _UpperCamelCase : Optional[int] = tf.convert_to_tensor( [ [ 8.2_22_09_91, # 3rd highest value; idx. 0 -0.5_62_00_44, 5.23_22_97_52, 4.0_38_63_93, -6.8_79_83_78, -0.54_78_58_02, -3.2_01_21_53, 2.92_77_71_76, 1.88_17_19_53, 7.35_34_12_76, # 5th highest value; idx. 9 8.43_20_78_33, # 2nd highest value; idx. 10 -9.85_71_18_36, -5.96_20_92_36, -1.13_03_91_61, -7.1_11_52_94, -0.8_36_96_33, -5.3_18_64_08, 7.06_42_74_07, 0.81_36_93_44, -0.82_02_38_17, -5.9_17_97_96, 0.58_81_34_43, -6.99_77_84_38, 4.71_55_11_89, -0.18_77_16_37, 7.44_02_07_59, # 4th highest value; idx. 25 9.38_45_09_87, # 1st highest value; idx. 26 2.12_66_29_41, -9.32_56_20_38, 2.35_65_25_22, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_42_55_18, 4.53_13_92_38, -5.57_51_04_64, -6.28_03_06_99, -7.19_52_95_03, -4.02_12_25_51, 1.39_33_70_37, -6.06_70_70_57, 1.59_48_05_17, -9.64_31_19, 0.03_90_77_99, 0.67_23_17_62, -8.88_20_67_26, 6.27_11_59_22, # 4th highest value; idx. 13 2.28_52_07_23, 4.82_76_75_06, 4.30_42_13_68, 8.8_27_53_13, # 2nd highest value; idx. 17 5.44_02_99_58, # 5th highest value; idx. 18 -4.4_73_57_94, 7.38_57_95_36, # 3rd highest value; idx. 20 -2.91_05_16_63, 2.61_94_60_77, -2.5_67_47_62, -9.48_95_93_02, -4.02_92_26_45, -1.35_41_69_18, 9.67_70_23_23, # 1st highest value; idx. 27 -5.89_47_85_53, 1.85_37_04_67, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) _UpperCamelCase : Any = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above _UpperCamelCase : int = tf.convert_to_tensor( [8.22_20_99, 7.3_53_41_26, 8.43_20_78, 7.4_40_20_75, 9.3_84_51, 6.27_11_59, 8.82_75_31, 5.4_40_29_95, 7.3_85_79_56, 9.67_70_23] , dtype=tf.floataa , ) # expected non filtered values as noted above _UpperCamelCase : Any = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) _UpperCamelCase : Union[str, Any] = output[output != -float("inf" )] _UpperCamelCase : Dict = tf.cast( tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float("inf" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-1_2 ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase , __A ): '''simple docstring''' if is_tf_available(): SCREAMING_SNAKE_CASE__ :Optional[int] = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: # TF-only test: tf.saved_model export _UpperCamelCase : Optional[Any] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : List[Any] = 2 _UpperCamelCase : Optional[Any] = 2 class __SCREAMING_SNAKE_CASE ( tf.Module ): '''simple docstring''' def __init__( self : Optional[Any] , __a : Optional[int] ) -> List[Any]: super(_UpperCamelCase , self ).__init__() _UpperCamelCase : Tuple = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids" ), tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask" ), ) , jit_compile=_UpperCamelCase , ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : int , __a : Union[str, Any] ) -> List[Any]: _UpperCamelCase : List[Any] = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} _UpperCamelCase : Any = [[2, 0], [102, 103]] _UpperCamelCase : Any = [[1, 0], [1, 1]] _UpperCamelCase : Union[str, Any] = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={"serving_default": dummy_model.serving} ) _UpperCamelCase : Union[str, Any] = tf.saved_model.load(_UpperCamelCase ).signatures["serving_default"] for batch_size in range(1 , len(_UpperCamelCase ) + 1 ): _UpperCamelCase : str = { "input_ids": tf.constant(dummy_input_ids[:batch_size] ), "attention_mask": tf.constant(dummy_attention_masks[:batch_size] ), } _UpperCamelCase : Tuple = serving_func(**_UpperCamelCase )["sequences"] _UpperCamelCase : List[str] = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: # TF-only test: tf.saved_model export _UpperCamelCase : List[Any] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : List[str] = 1 _UpperCamelCase : int = 2 class __SCREAMING_SNAKE_CASE ( tf.Module ): '''simple docstring''' def __init__( self : str , __a : Any ) -> List[str]: super(_UpperCamelCase , self ).__init__() _UpperCamelCase : str = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask" ), ) , jit_compile=_UpperCamelCase , ) def __SCREAMING_SNAKE_CASE ( self : int , __a : Tuple , __a : List[Any] ) -> Optional[int]: _UpperCamelCase : Any = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} _UpperCamelCase : Tuple = [[2], [102, 103]] _UpperCamelCase : Union[str, Any] = [[1], [1, 1]] _UpperCamelCase : Optional[int] = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={"serving_default": dummy_model.serving} ) _UpperCamelCase : str = tf.saved_model.load(_UpperCamelCase ).signatures["serving_default"] for input_row in range(len(_UpperCamelCase ) ): _UpperCamelCase : List[str] = { "input_ids": tf.constant([dummy_input_ids[input_row]] ), "attention_mask": tf.constant([dummy_attention_masks[input_row]] ), } _UpperCamelCase : Any = serving_func(**_UpperCamelCase )["sequences"] _UpperCamelCase : Any = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow @require_tensorflow_text def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=_UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ) -> List[Any]: super().__init__() _UpperCamelCase : Union[str, Any] = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , "spiece.model" ) , "rb" ).read() ) _UpperCamelCase : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[Any] , *__a : Optional[int] , **__a : str ) -> List[Any]: _UpperCamelCase : List[str] = self.tokenizer.tokenize(_UpperCamelCase ) _UpperCamelCase, _UpperCamelCase : int = text.pad_model_inputs( _UpperCamelCase , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) _UpperCamelCase : Optional[Any] = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) return self.tokenizer.detokenize(_UpperCamelCase ) _UpperCamelCase : Any = CompleteSentenceTransformer() _UpperCamelCase : Tuple = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs" ) _UpperCamelCase : Optional[Any] = complete_model(_UpperCamelCase ) _UpperCamelCase : Optional[Any] = tf.keras.Model(_UpperCamelCase , _UpperCamelCase ) keras_model.save(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: # Has PT equivalent: this test relies on random sampling _UpperCamelCase : str = { "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 10, "temperature": 0.7, } _UpperCamelCase : Union[str, Any] = 14 _UpperCamelCase : Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Dict = "Hello, my dog is cute and" _UpperCamelCase : List[str] = tokenizer(_UpperCamelCase , return_tensors="tf" ) _UpperCamelCase : Dict = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Optional[Any] = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) _UpperCamelCase : Optional[int] = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) _UpperCamelCase : Dict = [638, 198] with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) _UpperCamelCase : List[str] = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: # Has PT equivalent: ample use of framework-specific code _UpperCamelCase : int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart" ) _UpperCamelCase : Optional[Any] = "Hugging Face is a technology company based in New York and Paris." _UpperCamelCase : Tuple = bart_tokenizer(_UpperCamelCase , return_tensors="tf" ).input_ids _UpperCamelCase : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart" ) _UpperCamelCase : str = bart_model.generate(_UpperCamelCase ).numpy() class __SCREAMING_SNAKE_CASE ( __A ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : str , __a : Any , __a : Tuple=None , **__a : Optional[int] ) -> List[str]: return super().call(_UpperCamelCase , **_UpperCamelCase ) _UpperCamelCase : Optional[Any] = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart" ) _UpperCamelCase : Optional[int] = bart_model.generate(_UpperCamelCase , foo="bar" ).numpy() self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) ) class __SCREAMING_SNAKE_CASE ( bart_model.model.encoder.__class__ ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : str , **__a : Tuple ) -> Optional[Any]: return super().call(_UpperCamelCase , **_UpperCamelCase ) _UpperCamelCase : Optional[Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) _UpperCamelCase : str = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) _UpperCamelCase : List[Any] = bart_model.generate(_UpperCamelCase ).numpy() with self.assertRaises(_UpperCamelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_UpperCamelCase , foo="bar" )
624
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCAmelCase_ = sys.version_info >= (3, 10) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ): return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : bool @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int = 42 SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : Optional[bool] = None class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = "titi" SCREAMING_SNAKE_CASE : Any = "toto" class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = "titi" SCREAMING_SNAKE_CASE : Optional[Any] = "toto" SCREAMING_SNAKE_CASE : Any = 42 @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : BasicEnum = "toto" def snake_case__( self : Tuple ) ->List[str]: snake_case_ = BasicEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto" def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = MixedTypeEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[float] = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : Optional[str] = None SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] ) SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] ) SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] ) SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = field() SCREAMING_SNAKE_CASE : str = field() SCREAMING_SNAKE_CASE : BasicEnum = field() def snake_case__( self : Optional[Any] ) ->Tuple: snake_case_ = BasicEnum(self.required_enum ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : "BasicEnum" = field() SCREAMING_SNAKE_CASE : "Optional[bool]" = None SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : bool | None = None @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int | None = None SCREAMING_SNAKE_CASE : float | None = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : str | None = None SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] ) SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] ) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Dict , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser ) ->str: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _UpperCamelCase ) and yy.get('''choices''' , _UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_UpperCamelCase ) , yy['''type'''](_UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--bar''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--baz''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--flag''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((snake_case_), ) = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase ) self.assertFalse(example.flag ) def snake_case__( self : Tuple ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) snake_case_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case__( self : Tuple ) ->Union[str, Any]: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto" snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual( _UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def snake_case__( self : Optional[Any] ) ->List[Any]: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--bar''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) snake_case_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[] ) ) snake_case_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def snake_case__( self : Union[str, Any] ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--required_str''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Dict ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } snake_case_ = parser.parse_dict(_UpperCamelCase )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : int ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase ) def snake_case__( self : str ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_json''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_yaml''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Any ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase )
39
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( __A , unittest.TestCase): """simple docstring""" lowerCAmelCase_ = LDMTextToImagePipeline lowerCAmelCase_ = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } lowerCAmelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase_ = False def UpperCamelCase__ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) _UpperCamelCase =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) _UpperCamelCase =DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , ) torch.manual_seed(0 ) _UpperCamelCase =AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCamelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _UpperCamelCase =CLIPTextModel(_UpperCamelCase ) _UpperCamelCase =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _UpperCamelCase ={ '''unet''': unet, '''scheduler''': scheduler, '''vqvae''': vae, '''bert''': text_encoder, '''tokenizer''': tokenizer, } return components def UpperCamelCase__ ( self : int , UpperCamelCase__ : int , UpperCamelCase__ : List[Any]=0 ) -> Any: if str(_UpperCamelCase ).startswith('''mps''' ): _UpperCamelCase =torch.manual_seed(_UpperCamelCase ) else: _UpperCamelCase =torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _UpperCamelCase ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase__ ( self : str ) -> List[Any]: _UpperCamelCase ='''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase =self.get_dummy_components() _UpperCamelCase =LDMTextToImagePipeline(**_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCamelCase =self.get_dummy_inputs(_UpperCamelCase ) _UpperCamelCase =pipe(**_UpperCamelCase ).images _UpperCamelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _UpperCamelCase =np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str]=torch.floataa , UpperCamelCase__ : List[str]=0 ) -> Tuple: _UpperCamelCase =torch.manual_seed(_UpperCamelCase ) _UpperCamelCase =np.random.RandomState(_UpperCamelCase ).standard_normal((1, 4, 32, 32) ) _UpperCamelCase =torch.from_numpy(_UpperCamelCase ).to(device=_UpperCamelCase , dtype=_UpperCamelCase ) _UpperCamelCase ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase__ ( self : Any ) -> int: _UpperCamelCase =LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCamelCase =self.get_inputs(_UpperCamelCase ) _UpperCamelCase =pipe(**_UpperCamelCase ).images _UpperCamelCase =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _UpperCamelCase =np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878] ) _UpperCamelCase =np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class UpperCAmelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self : Dict ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any]=torch.floataa , UpperCamelCase__ : List[str]=0 ) -> Dict: _UpperCamelCase =torch.manual_seed(_UpperCamelCase ) _UpperCamelCase =np.random.RandomState(_UpperCamelCase ).standard_normal((1, 4, 32, 32) ) _UpperCamelCase =torch.from_numpy(_UpperCamelCase ).to(device=_UpperCamelCase , dtype=_UpperCamelCase ) _UpperCamelCase ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 50, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase__ ( self : Optional[int] ) -> List[str]: _UpperCamelCase =LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCamelCase =self.get_inputs(_UpperCamelCase ) _UpperCamelCase =pipe(**_UpperCamelCase ).images[0] _UpperCamelCase =load_numpy( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy''' ) _UpperCamelCase =np.abs(expected_image - image ).max() assert max_diff < 1E-3
404
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Dict , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
39
0
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __UpperCamelCase ( _A ): lowerCAmelCase_ = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowerCAmelCase_ = json.loads(open(SCREAMING_SNAKE_CASE__ ).read() ) if not params: raise ValueError( f"It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file." ) if not args.output.endswith('''.pt''' ): lowerCAmelCase_ = args.output + '''.pt''' lowerCAmelCase_ = OrderedDict() with tf.device('''/CPU:0''' ): lowerCAmelCase_ = tf.train.load_checkpoint(args.tf_model_dir ) lowerCAmelCase_ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowerCAmelCase_ = reader.get_tensor(SCREAMING_SNAKE_CASE__ ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowerCAmelCase_ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowerCAmelCase_ = 8 lowerCAmelCase_ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.startswith('''model/moe''' ): lowerCAmelCase_ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.endswith('''/softmlp/kernel''' ): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowerCAmelCase_ = key_name[-9:-7] for i in range(16 ): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowerCAmelCase_ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.startswith('''model/mlp''' ): lowerCAmelCase_ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.endswith('''/p1/bias''' ): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.endswith('''/p2/kernel''' ): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.endswith('''/p2/bias''' ): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.startswith('''model/ln''' ): lowerCAmelCase_ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.norm.bias''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.endswith('''/g''' ): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.norm.weight''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.startswith('''model/att''' ): lowerCAmelCase_ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowerCAmelCase_ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowerCAmelCase_ = state[:, 0, :, :] lowerCAmelCase_ = state[:, 1, :, :] lowerCAmelCase_ = state[:, 2, :, :] lowerCAmelCase_ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.endswith('''/o/kernel''' ): lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowerCAmelCase_ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.startswith('''model/an''' ): lowerCAmelCase_ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowerCAmelCase_ = '''model.blocks.%d.self_attn.norm.bias''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.endswith('''/g''' ): lowerCAmelCase_ = '''model.blocks.%d.self_attn.norm.weight''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowerCAmelCase_ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowerCAmelCase_ = '''model.%s.weight''' % nlayer lowerCAmelCase_ = vnp.copy() # same in embedded lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) if key_name.startswith('''model/wte''' ): lowerCAmelCase_ = '''lm_head.weight''' lowerCAmelCase_ = vnp.copy() # same in embedded lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.startswith('''model/wob''' ): lowerCAmelCase_ = '''final_logits_bias''' lowerCAmelCase_ = vnp.copy() # same in embedded lowerCAmelCase_ = state.reshape((1, -1) ) lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name == "model/dense/kernel": lowerCAmelCase_ = '''model.last_project.weight''' lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name == "model/dense_1/bias": lowerCAmelCase_ = '''model.last_project.bias''' lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) torch.save(SCREAMING_SNAKE_CASE__ , args.output ) if __name__ == "__main__": _A = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') _A = parser.parse_args() convert_tf_gptsan_to_pt(args)
431
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv" SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]: snake_case_ = vocab_size snake_case_ = context_length snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case_ = layer_norm_epsilon snake_case_ = rescale_every snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
39
0