code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxCrossAttnUpBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
FlaxUpBlockaD,
)
@flax.struct.dataclass
class lowercase_ (lowercase__ ):
snake_case =42
@flax_register_to_config
class lowercase_ (nn.Module , lowercase__ , lowercase__ ):
snake_case =32
snake_case =4
snake_case =4
snake_case =(
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
snake_case =("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
snake_case =False
snake_case =(320, 640, 1280, 1280)
snake_case =2
snake_case =8
snake_case =None
snake_case =1280
snake_case =0.0
snake_case =False
snake_case =jnp.floataa
snake_case =True
snake_case =0
snake_case =False
def __UpperCamelCase ( self , lowercase_) -> FrozenDict:
# init input tensors
a__ =(1, self.in_channels, self.sample_size, self.sample_size)
a__ =jnp.zeros(lowercase_ , dtype=jnp.floataa)
a__ =jnp.ones((1,) , dtype=jnp.intaa)
a__ =jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa)
a__ , a__ =jax.random.split(lowercase_)
a__ ={'params': params_rng, 'dropout': dropout_rng}
return self.init(lowercase_ , lowercase_ , lowercase_ , lowercase_)["params"]
def __UpperCamelCase ( self) -> Union[str, Any]:
a__ =self.block_out_channels
a__ =block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.')
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
a__ =self.num_attention_heads or self.attention_head_dim
# input
a__ =nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
a__ =FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift)
a__ =FlaxTimestepEmbedding(lowercase_ , dtype=self.dtype)
a__ =self.only_cross_attention
if isinstance(lowercase_ , lowercase_):
a__ =(only_cross_attention,) * len(self.down_block_types)
if isinstance(lowercase_ , lowercase_):
a__ =(num_attention_heads,) * len(self.down_block_types)
# down
a__ =[]
a__ =block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types):
a__ =output_channel
a__ =block_out_channels[i]
a__ =i == len(lowercase_) - 1
if down_block_type == "CrossAttnDownBlock2D":
a__ =FlaxCrossAttnDownBlockaD(
in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
a__ =FlaxDownBlockaD(
in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(lowercase_)
a__ =down_blocks
# mid
a__ =FlaxUNetMidBlockaDCrossAttn(
in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
# up
a__ =[]
a__ =list(reversed(lowercase_))
a__ =list(reversed(lowercase_))
a__ =list(reversed(lowercase_))
a__ =reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types):
a__ =output_channel
a__ =reversed_block_out_channels[i]
a__ =reversed_block_out_channels[min(i + 1 , len(lowercase_) - 1)]
a__ =i == len(lowercase_) - 1
if up_block_type == "CrossAttnUpBlock2D":
a__ =FlaxCrossAttnUpBlockaD(
in_channels=lowercase_ , out_channels=lowercase_ , prev_output_channel=lowercase_ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
a__ =FlaxUpBlockaD(
in_channels=lowercase_ , out_channels=lowercase_ , prev_output_channel=lowercase_ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , )
up_blocks.append(lowercase_)
a__ =output_channel
a__ =up_blocks
# out
a__ =nn.GroupNorm(num_groups=32 , epsilon=1e-5)
a__ =nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_ = True , lowercase_ = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]:
# 1. time
if not isinstance(lowercase_ , jnp.ndarray):
a__ =jnp.array([timesteps] , dtype=jnp.intaa)
elif isinstance(lowercase_ , jnp.ndarray) and len(timesteps.shape) == 0:
a__ =timesteps.astype(dtype=jnp.floataa)
a__ =jnp.expand_dims(lowercase_ , 0)
a__ =self.time_proj(lowercase_)
a__ =self.time_embedding(lowercase_)
# 2. pre-process
a__ =jnp.transpose(lowercase_ , (0, 2, 3, 1))
a__ =self.conv_in(lowercase_)
# 3. down
a__ =(sample,)
for down_block in self.down_blocks:
if isinstance(lowercase_ , lowercase_):
a__ , a__ =down_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train)
else:
a__ , a__ =down_block(lowercase_ , lowercase_ , deterministic=not train)
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
a__ =()
for down_block_res_sample, down_block_additional_residual in zip(
lowercase_ , lowercase_):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
a__ =new_down_block_res_samples
# 4. mid
a__ =self.mid_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train)
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
a__ =down_block_res_samples[-(self.layers_per_block + 1) :]
a__ =down_block_res_samples[: -(self.layers_per_block + 1)]
if isinstance(lowercase_ , lowercase_):
a__ =up_block(
lowercase_ , temb=lowercase_ , encoder_hidden_states=lowercase_ , res_hidden_states_tuple=lowercase_ , deterministic=not train , )
else:
a__ =up_block(lowercase_ , temb=lowercase_ , res_hidden_states_tuple=lowercase_ , deterministic=not train)
# 6. post-process
a__ =self.conv_norm_out(lowercase_)
a__ =nn.silu(lowercase_)
a__ =self.conv_out(lowercase_)
a__ =jnp.transpose(lowercase_ , (0, 3, 1, 2))
if not return_dict:
return (sample,)
return FlaxUNetaDConditionOutput(sample=lowercase_)
| 20 |
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'''huggingface/informer-tourism-monthly''': (
'''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json'''
),
# See all Informer models at https://huggingface.co/models?filter=informer
}
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = "informer"
SCREAMING_SNAKE_CASE : int = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__( self : Dict , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "student_t" , _UpperCamelCase : str = "nll" , _UpperCamelCase : int = 1 , _UpperCamelCase : List[int] = None , _UpperCamelCase : Optional[Union[str, bool]] = "mean" , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : int = 6_4 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.05 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : Dict=True , _UpperCamelCase : str = "prob" , _UpperCamelCase : int = 5 , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Optional[int]:
# time series specific configuration
snake_case_ = prediction_length
snake_case_ = context_length or prediction_length
snake_case_ = distribution_output
snake_case_ = loss
snake_case_ = input_size
snake_case_ = num_time_features
snake_case_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7]
snake_case_ = scaling
snake_case_ = num_dynamic_real_features
snake_case_ = num_static_real_features
snake_case_ = num_static_categorical_features
# set cardinality
if cardinality and num_static_categorical_features > 0:
if len(_UpperCamelCase ) != num_static_categorical_features:
raise ValueError(
'''The cardinality should be a list of the same length as `num_static_categorical_features`''' )
snake_case_ = cardinality
else:
snake_case_ = [0]
# set embedding_dimension
if embedding_dimension and num_static_categorical_features > 0:
if len(_UpperCamelCase ) != num_static_categorical_features:
raise ValueError(
'''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' )
snake_case_ = embedding_dimension
else:
snake_case_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
snake_case_ = num_parallel_samples
# Transformer architecture configuration
snake_case_ = input_size * len(self.lags_sequence ) + self._number_of_features
snake_case_ = d_model
snake_case_ = encoder_attention_heads
snake_case_ = decoder_attention_heads
snake_case_ = encoder_ffn_dim
snake_case_ = decoder_ffn_dim
snake_case_ = encoder_layers
snake_case_ = decoder_layers
snake_case_ = dropout
snake_case_ = attention_dropout
snake_case_ = activation_dropout
snake_case_ = encoder_layerdrop
snake_case_ = decoder_layerdrop
snake_case_ = activation_function
snake_case_ = init_std
snake_case_ = use_cache
# Informer
snake_case_ = attention_type
snake_case_ = sampling_factor
snake_case_ = distil
super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase )
@property
def snake_case__( self : Optional[Any] ) ->int:
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
) | 39 | 0 |
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
UpperCAmelCase_ : Tuple = logging.get_logger(__name__)
class __A ( UpperCamelCase__ ):
def __init__( self :int , *__snake_case :int , **__snake_case :Optional[Any] ):
'''simple docstring'''
warnings.warn(
"""The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use SegformerImageProcessor instead.""" , __snake_case , )
super().__init__(*__snake_case , **__snake_case )
| 21 |
import cmath
import math
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ )
snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ )
# Convert voltage and current to rectangular form
snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod() | 39 | 0 |
'''simple docstring'''
from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : str=1e-12 ):
'''simple docstring'''
_a = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase , axis=1 ) , a_min=UpperCamelCase ) ).T
_a = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase , axis=1 ) , a_min=UpperCamelCase ) ).T
return jnp.matmul(UpperCamelCase , norm_emb_a.T )
class A ( nn.Module ):
lowercase_ = 42
lowercase_ = jnp.floataa
def __lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
_a = FlaxCLIPVisionModule(self.config.vision_config )
_a = nn.Dense(self.config.projection_dim , use_bias=lowerCAmelCase_ , dtype=self.dtype )
_a = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) )
_a = self.param(
'''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) )
_a = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) )
_a = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) )
def __call__( self : Any , lowerCAmelCase_ : int ) -> List[str]:
"""simple docstring"""
_a = self.vision_model(lowerCAmelCase_ )[1]
_a = self.visual_projection(lowerCAmelCase_ )
_a = jax_cosine_distance(lowerCAmelCase_ , self.special_care_embeds )
_a = jax_cosine_distance(lowerCAmelCase_ , self.concept_embeds )
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
_a = 0.0
_a = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
_a = jnp.round(lowerCAmelCase_ , 3 )
_a = jnp.any(special_scores > 0 , axis=1 , keepdims=lowerCAmelCase_ )
# Use a lower threshold if an image has any special care concept
_a = is_special_care * 0.0_1
_a = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
_a = jnp.round(lowerCAmelCase_ , 3 )
_a = jnp.any(concept_scores > 0 , axis=1 )
return has_nsfw_concepts
class A ( _a ):
lowercase_ = CLIPConfig
lowercase_ = 'clip_input'
lowercase_ = FlaxStableDiffusionSafetyCheckerModule
def __init__( self : Optional[int] , lowerCAmelCase_ : CLIPConfig , lowerCAmelCase_ : Optional[Tuple] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : jnp.dtype = jnp.floataa , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Union[str, Any] , ) -> Optional[Any]:
"""simple docstring"""
if input_shape is None:
_a = (1, 2_24, 2_24, 3)
_a = self.module_class(config=lowerCAmelCase_ , dtype=lowerCAmelCase_ , **lowerCAmelCase_ )
super().__init__(lowerCAmelCase_ , lowerCAmelCase_ , input_shape=lowerCAmelCase_ , seed=lowerCAmelCase_ , dtype=lowerCAmelCase_ , _do_init=_do_init )
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : jax.random.KeyArray , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : FrozenDict = None ) -> FrozenDict:
"""simple docstring"""
_a = jax.random.normal(lowerCAmelCase_ , lowerCAmelCase_ )
_a , _a = jax.random.split(lowerCAmelCase_ )
_a = {'''params''': params_rng, '''dropout''': dropout_rng}
_a = self.module.init(lowerCAmelCase_ , lowerCAmelCase_ )['''params''']
return random_params
def __call__( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : dict = None , ) -> int:
"""simple docstring"""
_a = jnp.transpose(lowerCAmelCase_ , (0, 2, 3, 1) )
return self.module.apply(
{'''params''': params or self.params} , jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) , rngs={} , )
| 22 |
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class snake_case_ :
'''simple docstring'''
def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=1_3 , _UpperCamelCase : str=7 , _UpperCamelCase : int=True , _UpperCamelCase : Dict=True , _UpperCamelCase : int=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : str=3_2 , _UpperCamelCase : str=5 , _UpperCamelCase : str=4 , _UpperCamelCase : int=3_7 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : str=5_1_2 , _UpperCamelCase : Optional[int]=1_6 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Any=0.02 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : str=None , ) ->Dict:
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = num_choices
snake_case_ = scope
def snake_case__( self : str ) ->List[Any]:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = None
if self.use_input_mask:
snake_case_ = random_attention_mask([self.batch_size, self.seq_length] )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = ids_tensor([self.batch_size] , self.num_choices )
snake_case_ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case__( self : List[str] ) ->Tuple:
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , )
def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) ->Dict:
snake_case_ = BioGptModel(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )
snake_case_ = model(_UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , ) ->Optional[int]:
snake_case_ = BioGptForCausalLM(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , *_UpperCamelCase : List[Any] ) ->Union[str, Any]:
snake_case_ = BioGptModel(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
# create attention mask
snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase )
snake_case_ = self.seq_length // 2
snake_case_ = 0
# first forward pass
snake_case_, snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).to_tuple()
# create hypothetical next token and extent to next_input_ids
snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
snake_case_ = ids_tensor((1,) , _UpperCamelCase ).item() + 1
snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
snake_case_ = random_other_next_tokens
# append to next input_ids and attn_mask
snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case_ = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCamelCase )] , dim=1 , )
# get two different outputs
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state''']
snake_case_ = model(_UpperCamelCase , past_key_values=_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state''']
# select random slice
snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach()
snake_case_ = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) )
def snake_case__( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , *_UpperCamelCase : List[Any] ) ->int:
snake_case_ = BioGptModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval()
snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase )
# first forward pass
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase )
snake_case_, snake_case_ = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case_ = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state''']
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[
'''last_hidden_state'''
]
# select random slice
snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach()
snake_case_ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) )
def snake_case__( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , *_UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=False ) ->Dict:
snake_case_ = BioGptForCausalLM(_UpperCamelCase )
model.to(_UpperCamelCase )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def snake_case__( self : List[Any] , _UpperCamelCase : Optional[int] , *_UpperCamelCase : Dict ) ->Dict:
snake_case_ = BioGptModel(_UpperCamelCase )
snake_case_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 )
def snake_case__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , *_UpperCamelCase : List[str] ) ->int:
snake_case_ = self.num_labels
snake_case_ = BioGptForTokenClassification(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def snake_case__( self : Optional[Any] ) ->int:
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
),
) = config_and_inputs
snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class snake_case_ ( __A , __A , __A , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE : Tuple = (BioGptForCausalLM,) if is_torch_available() else ()
SCREAMING_SNAKE_CASE : Optional[Any] = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE : Tuple = False
def snake_case__( self : List[str] ) ->Union[str, Any]:
snake_case_ = BioGptModelTester(self )
snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 )
def snake_case__( self : str ) ->int:
self.config_tester.run_common_tests()
def snake_case__( self : str ) ->Tuple:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase )
def snake_case__( self : Tuple ) ->List[Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*_UpperCamelCase )
def snake_case__( self : Tuple ) ->str:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCamelCase )
def snake_case__( self : Union[str, Any] ) ->Dict:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*_UpperCamelCase , gradient_checkpointing=_UpperCamelCase )
def snake_case__( self : Optional[int] ) ->List[Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCamelCase )
def snake_case__( self : List[Any] ) ->Union[str, Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCamelCase )
def snake_case__( self : Optional[int] ) ->Optional[int]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCamelCase )
@slow
def snake_case__( self : int ) ->Optional[Any]:
snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(_UpperCamelCase )
snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
snake_case_ = '''left'''
# Define PAD Token = EOS Token = 50256
snake_case_ = tokenizer.eos_token
snake_case_ = model.config.eos_token_id
# use different length sentences to test batching
snake_case_ = [
'''Hello, my dog is a little''',
'''Today, I''',
]
snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase )
snake_case_ = inputs['''input_ids'''].to(_UpperCamelCase )
snake_case_ = model.generate(
input_ids=_UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(_UpperCamelCase ) , )
snake_case_ = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase )
snake_case_ = model.generate(input_ids=_UpperCamelCase )
snake_case_ = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
snake_case_ = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase )
snake_case_ = model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings )
snake_case_ = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase )
snake_case_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase )
snake_case_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase )
snake_case_ = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] )
@slow
def snake_case__( self : Optional[int] ) ->List[str]:
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = BioGptModel.from_pretrained(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase )
def snake_case__( self : Optional[int] ) ->str:
snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = 3
snake_case_ = input_dict['''input_ids''']
snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase )
snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
snake_case_ = BioGptForSequenceClassification(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def snake_case__( self : str ) ->str:
snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = 3
snake_case_ = '''multi_label_classification'''
snake_case_ = input_dict['''input_ids''']
snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase )
snake_case_ = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
snake_case_ = BioGptForSequenceClassification(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def snake_case__( self : int ) ->Any:
snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
snake_case_ = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] )
snake_case_ = model(_UpperCamelCase )[0]
snake_case_ = 4_2_3_8_4
snake_case_ = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , _UpperCamelCase )
snake_case_ = torch.tensor(
[[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) )
@slow
def snake_case__( self : List[str] ) ->Optional[int]:
snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(_UpperCamelCase )
torch.manual_seed(0 )
snake_case_ = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_UpperCamelCase )
snake_case_ = model.generate(
**_UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=_UpperCamelCase , )
snake_case_ = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCamelCase )
snake_case_ = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(_UpperCamelCase , _UpperCamelCase ) | 39 | 0 |
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
)
@flax.struct.dataclass
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = 42
A_ = 42
class _a ( nn.Module ):
"""simple docstring"""
A_ = 42
A_ = (16, 32, 96, 256)
A_ = jnp.floataa
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = nn.Conv(
self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
UpperCamelCase_ = []
for i in range(len(self.block_out_channels ) - 1 ):
UpperCamelCase_ = self.block_out_channels[i]
UpperCamelCase_ = self.block_out_channels[i + 1]
UpperCamelCase_ = nn.Conv(
_UpperCAmelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
blocks.append(_UpperCAmelCase )
UpperCamelCase_ = nn.Conv(
_UpperCAmelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
blocks.append(_UpperCAmelCase )
UpperCamelCase_ = blocks
UpperCamelCase_ = nn.Conv(
self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
def __call__( self , _UpperCAmelCase ) -> Any:
UpperCamelCase_ = self.conv_in(_UpperCAmelCase )
UpperCamelCase_ = nn.silu(_UpperCAmelCase )
for block in self.blocks:
UpperCamelCase_ = block(_UpperCAmelCase )
UpperCamelCase_ = nn.silu(_UpperCAmelCase )
UpperCamelCase_ = self.conv_out(_UpperCAmelCase )
return embedding
@flax_register_to_config
class _a ( nn.Module , UpperCAmelCase__ , UpperCAmelCase__ ):
"""simple docstring"""
A_ = 32
A_ = 4
A_ = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
A_ = False
A_ = (320, 640, 1_280, 1_280)
A_ = 2
A_ = 8
A_ = None
A_ = 1_280
A_ = 0.0
A_ = False
A_ = jnp.floataa
A_ = True
A_ = 0
A_ = "rgb"
A_ = (16, 32, 96, 256)
def _UpperCAmelCase ( self , _UpperCAmelCase ) -> FrozenDict:
# init input tensors
UpperCamelCase_ = (1, self.in_channels, self.sample_size, self.sample_size)
UpperCamelCase_ = jnp.zeros(_UpperCAmelCase , dtype=jnp.floataa )
UpperCamelCase_ = jnp.ones((1,) , dtype=jnp.intaa )
UpperCamelCase_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
UpperCamelCase_ = (1, 3, self.sample_size * 8, self.sample_size * 8)
UpperCamelCase_ = jnp.zeros(_UpperCAmelCase , dtype=jnp.floataa )
UpperCamelCase_ , UpperCamelCase_ = jax.random.split(_UpperCAmelCase )
UpperCamelCase_ = {'params': params_rng, 'dropout': dropout_rng}
return self.init(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )["params"]
def _UpperCAmelCase ( self ) -> List[str]:
UpperCamelCase_ = self.block_out_channels
UpperCamelCase_ = block_out_channels[0] * 4
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
UpperCamelCase_ = self.num_attention_heads or self.attention_head_dim
# input
UpperCamelCase_ = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
UpperCamelCase_ = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
UpperCamelCase_ = FlaxTimestepEmbedding(_UpperCAmelCase , dtype=self.dtype )
UpperCamelCase_ = FlaxControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , )
UpperCamelCase_ = self.only_cross_attention
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
UpperCamelCase_ = (only_cross_attention,) * len(self.down_block_types )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
UpperCamelCase_ = (num_attention_heads,) * len(self.down_block_types )
# down
UpperCamelCase_ = []
UpperCamelCase_ = []
UpperCamelCase_ = block_out_channels[0]
UpperCamelCase_ = nn.Conv(
_UpperCAmelCase , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(_UpperCAmelCase )
for i, down_block_type in enumerate(self.down_block_types ):
UpperCamelCase_ = output_channel
UpperCamelCase_ = block_out_channels[i]
UpperCamelCase_ = i == len(_UpperCAmelCase ) - 1
if down_block_type == "CrossAttnDownBlock2D":
UpperCamelCase_ = FlaxCrossAttnDownBlockaD(
in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , )
else:
UpperCamelCase_ = FlaxDownBlockaD(
in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(_UpperCAmelCase )
for _ in range(self.layers_per_block ):
UpperCamelCase_ = nn.Conv(
_UpperCAmelCase , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(_UpperCAmelCase )
if not is_final_block:
UpperCamelCase_ = nn.Conv(
_UpperCAmelCase , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(_UpperCAmelCase )
UpperCamelCase_ = down_blocks
UpperCamelCase_ = controlnet_down_blocks
# mid
UpperCamelCase_ = block_out_channels[-1]
UpperCamelCase_ = FlaxUNetMidBlockaDCrossAttn(
in_channels=_UpperCAmelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , )
UpperCamelCase_ = nn.Conv(
_UpperCAmelCase , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1.0 , _UpperCAmelCase = True , _UpperCAmelCase = False , ) -> Union[FlaxControlNetOutput, Tuple]:
UpperCamelCase_ = self.controlnet_conditioning_channel_order
if channel_order == "bgr":
UpperCamelCase_ = jnp.flip(_UpperCAmelCase , axis=1 )
# 1. time
if not isinstance(_UpperCAmelCase , jnp.ndarray ):
UpperCamelCase_ = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(_UpperCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0:
UpperCamelCase_ = timesteps.astype(dtype=jnp.floataa )
UpperCamelCase_ = jnp.expand_dims(_UpperCAmelCase , 0 )
UpperCamelCase_ = self.time_proj(_UpperCAmelCase )
UpperCamelCase_ = self.time_embedding(_UpperCAmelCase )
# 2. pre-process
UpperCamelCase_ = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) )
UpperCamelCase_ = self.conv_in(_UpperCAmelCase )
UpperCamelCase_ = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) )
UpperCamelCase_ = self.controlnet_cond_embedding(_UpperCAmelCase )
sample += controlnet_cond
# 3. down
UpperCamelCase_ = (sample,)
for down_block in self.down_blocks:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
UpperCamelCase_ , UpperCamelCase_ = down_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train )
else:
UpperCamelCase_ , UpperCamelCase_ = down_block(_UpperCAmelCase , _UpperCAmelCase , deterministic=not train )
down_block_res_samples += res_samples
# 4. mid
UpperCamelCase_ = self.mid_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train )
# 5. contronet blocks
UpperCamelCase_ = ()
for down_block_res_sample, controlnet_block in zip(_UpperCAmelCase , self.controlnet_down_blocks ):
UpperCamelCase_ = controlnet_block(_UpperCAmelCase )
controlnet_down_block_res_samples += (down_block_res_sample,)
UpperCamelCase_ = controlnet_down_block_res_samples
UpperCamelCase_ = self.controlnet_mid_block(_UpperCAmelCase )
# 6. scaling
UpperCamelCase_ = [sample * conditioning_scale for sample in down_block_res_samples]
mid_block_res_sample *= conditioning_scale
if not return_dict:
return (down_block_res_samples, mid_block_res_sample)
return FlaxControlNetOutput(
down_block_res_samples=_UpperCAmelCase , mid_block_res_sample=_UpperCAmelCase )
| 23 |
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
snake_case_ = (boundary[1] - boundary[0]) / steps
snake_case_ = boundary[0]
snake_case_ = boundary[1]
snake_case_ = make_points(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
snake_case_ = 0.0
y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ )
for i in x_i:
# print(i)
y += h * f(SCREAMING_SNAKE_CASE__ )
y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ )
return y
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = a + h
while x < (b - h):
yield x
snake_case_ = x + h
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # enter your function here
snake_case_ = (x - 0) * (x - 0)
return y
def __SCREAMING_SNAKE_CASE ():
snake_case_ = 0.0 # Lower bound of integration
snake_case_ = 1.0 # Upper bound of integration
snake_case_ = 10.0 # define number of steps or resolution
snake_case_ = [a, b] # define boundary of integration
snake_case_ = method_a(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
print(F'''y = {y}''' )
if __name__ == "__main__":
main() | 39 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class lowerCAmelCase ( unittest.TestCase):
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=18 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> Union[str, Any]:
'''simple docstring'''
__snake_case = parent
__snake_case = batch_size
__snake_case = num_channels
__snake_case = image_size
__snake_case = min_resolution
__snake_case = max_resolution
__snake_case = do_resize
__snake_case = size if size is not None else {'''height''': 18, '''width''': 20}
__snake_case = do_thumbnail
__snake_case = do_align_axis
__snake_case = do_pad
__snake_case = do_normalize
__snake_case = image_mean
__snake_case = image_std
def lowerCAmelCase ( self ) -> Dict:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class lowerCAmelCase ( __lowerCAmelCase , unittest.TestCase):
__lowercase : Optional[Any] = DonutImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case = DonutImageProcessingTester(self )
@property
def lowerCAmelCase ( self ) -> Tuple:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_thumbnail''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_align_long_axis''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_pad''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_mean''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_std''' ) )
def lowerCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} )
__snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
# Previous config had dimensions in (width, height) order
__snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} )
def lowerCAmelCase ( self ) -> Any:
'''simple docstring'''
pass
@is_flaky()
def lowerCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
__snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
__snake_case = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
@is_flaky()
def lowerCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
__snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
__snake_case = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
@is_flaky()
def lowerCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
__snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
__snake_case = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
| 24 |
import os
import re
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Optional, Union
from uuid import uuida
from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami
from huggingface_hub.file_download import REGEX_COMMIT_HASH
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
is_jinja_available,
)
from packaging import version
from requests import HTTPError
from .. import __version__
from .constants import (
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
)
from .import_utils import (
ENV_VARS_TRUE_VALUES,
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_onnx_available,
is_torch_available,
)
from .logging import get_logger
lowerCAmelCase_ = get_logger(__name__)
lowerCAmelCase_ = Path(__file__).parent / '''model_card_template.md'''
lowerCAmelCase_ = uuida().hex
lowerCAmelCase_ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES
lowerCAmelCase_ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES
lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/'''
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None ):
snake_case_ = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}'''
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
return ua + "; telemetry/off"
if is_torch_available():
ua += F'''; torch/{_torch_version}'''
if is_flax_available():
ua += F'''; jax/{_jax_version}'''
ua += F'''; flax/{_flax_version}'''
if is_onnx_available():
ua += F'''; onnxruntime/{_onnxruntime_version}'''
# CI will set this value to True
if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
ua += "; " + user_agent
return ua
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ):
if token is None:
snake_case_ = HfFolder.get_token()
if organization is None:
snake_case_ = whoami(SCREAMING_SNAKE_CASE__ )['''name''']
return F'''{username}/{model_id}'''
else:
return F'''{organization}/{model_id}'''
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
if not is_jinja_available():
raise ValueError(
'''Modelcard rendering is based on Jinja templates.'''
''' Please make sure to have `jinja` installed before using `create_model_card`.'''
''' To install it, please run `pip install Jinja2`.''' )
if hasattr(SCREAMING_SNAKE_CASE__ , '''local_rank''' ) and args.local_rank not in [-1, 0]:
return
snake_case_ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , '''hub_token''' ) else None
snake_case_ = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ )
snake_case_ = ModelCard.from_template(
card_data=ModelCardData( # Card metadata object that will be converted to YAML block
language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=(
args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''gradient_accumulation_steps''' ) else None
) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , )
snake_case_ = os.path.join(args.output_dir , '''README.md''' )
model_card.save(SCREAMING_SNAKE_CASE__ )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ):
if resolved_file is None or commit_hash is not None:
return commit_hash
snake_case_ = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() )
snake_case_ = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE__ )
if search is None:
return None
snake_case_ = search.groups()[0]
return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
lowerCAmelCase_ = os.path.expanduser(
os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface'''))
)
lowerCAmelCase_ = os.path.join(hf_cache_home, '''diffusers''')
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ):
if new_cache_dir is None:
snake_case_ = DIFFUSERS_CACHE
if old_cache_dir is None:
snake_case_ = old_diffusers_cache
snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser()
snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser()
for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ):
if old_blob_path.is_file() and not old_blob_path.is_symlink():
snake_case_ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ )
new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
try:
os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
except OSError:
logger.warning(
'''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' )
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''')
if not os.path.isfile(cache_version_file):
lowerCAmelCase_ = 0
else:
with open(cache_version_file) as f:
try:
lowerCAmelCase_ = int(f.read())
except ValueError:
lowerCAmelCase_ = 0
if cache_version < 1:
lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
if old_cache_is_not_empty:
logger.warning(
'''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your '''
'''existing cached models. This is a one-time operation, you can interrupt it or run it '''
'''later by calling `diffusers.utils.hub_utils.move_cache()`.'''
)
try:
move_cache()
except Exception as e:
lowerCAmelCase_ = '''\n'''.join(traceback.format_tb(e.__traceback__))
logger.error(
f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """
'''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole '''
'''message and we will do our best to help.'''
)
if cache_version < 1:
try:
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
with open(cache_version_file, '''w''') as f:
f.write('''1''')
except Exception:
logger.warning(
f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """
'''the directory exists and can be written to.'''
)
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ):
if variant is not None:
snake_case_ = weights_name.split('''.''' )
snake_case_ = splits[:-1] + [variant] + splits[-1:]
snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ )
return weights_name
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , *,
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ):
snake_case_ = str(SCREAMING_SNAKE_CASE__ )
if os.path.isfile(SCREAMING_SNAKE_CASE__ ):
return pretrained_model_name_or_path
elif os.path.isdir(SCREAMING_SNAKE_CASE__ ):
if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ):
# Load from a PyTorch checkpoint
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return model_file
elif subfolder is not None and os.path.isfile(
os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ):
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return model_file
else:
raise EnvironmentError(
F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' )
else:
# 1. First check if deprecated way of loading from branches is used
if (
revision in DEPRECATED_REVISION_ARGS
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('''0.20.0''' )
):
try:
snake_case_ = hf_hub_download(
SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , )
warnings.warn(
F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , )
return model_file
except: # noqa: E722
warnings.warn(
F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , )
try:
# 2. Load model file as usual
snake_case_ = hf_hub_download(
SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , )
return model_file
except RepositoryNotFoundError:
raise EnvironmentError(
F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier '''
'''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a '''
'''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli '''
'''login`.''' )
except RevisionNotFoundError:
raise EnvironmentError(
F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for '''
'''this model name. Check the model page at '''
F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' )
except EntryNotFoundError:
raise EnvironmentError(
F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' )
except HTTPError as err:
raise EnvironmentError(
F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' )
except ValueError:
raise EnvironmentError(
F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it'''
F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a'''
F''' directory containing a file named {weights_name} or'''
''' \nCheckout your internet connection or see how to run the library in'''
''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' )
except EnvironmentError:
raise EnvironmentError(
F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from '''
'''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. '''
F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory '''
F'''containing a file named {weights_name}''' ) | 39 | 0 |
import copy
import tempfile
import unittest
from transformers import MaMaaaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer
from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder
def lowerCamelCase__ ( _a , _a , _a , _a=None , _a=None , _a=None , _a=None , _a=None , ):
if attention_mask is None:
SCREAMING_SNAKE_CASE : Optional[int] = input_ids.ne(config.pad_token_id)
if decoder_attention_mask is None:
SCREAMING_SNAKE_CASE : Tuple = decoder_input_ids.ne(config.pad_token_id)
if head_mask is None:
SCREAMING_SNAKE_CASE : str = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=_a)
if decoder_head_mask is None:
SCREAMING_SNAKE_CASE : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_a)
if cross_attn_head_mask is None:
SCREAMING_SNAKE_CASE : List[Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_a)
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class _UpperCamelCase :
'''simple docstring'''
def __init__( self : List[Any] , a : Optional[Any] , a : Any=13 , a : Optional[int]=7 , a : Optional[Any]=True , a : Dict=False , a : List[str]=99 , a : Any=16 , a : Optional[int]=2 , a : Union[str, Any]=4 , a : List[Any]=4 , a : Dict="relu" , a : Any=0.1 , a : Optional[Any]=0.1 , a : str=0.0 , a : List[Any]=0.0 , a : Dict=20 , a : Optional[int]=2 , a : Optional[Any]=1 , a : Any=0 , ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = parent
SCREAMING_SNAKE_CASE : Optional[Any] = batch_size
SCREAMING_SNAKE_CASE : str = seq_length
SCREAMING_SNAKE_CASE : str = is_training
SCREAMING_SNAKE_CASE : List[Any] = use_labels
SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size
SCREAMING_SNAKE_CASE : Dict = hidden_size
SCREAMING_SNAKE_CASE : Dict = num_hidden_layers
SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads
SCREAMING_SNAKE_CASE : int = intermediate_size
SCREAMING_SNAKE_CASE : Dict = hidden_act
SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Tuple = encoder_layerdrop
SCREAMING_SNAKE_CASE : int = decoder_layerdrop
SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings
SCREAMING_SNAKE_CASE : List[str] = eos_token_id
SCREAMING_SNAKE_CASE : Optional[Any] = pad_token_id
SCREAMING_SNAKE_CASE : Optional[Any] = bos_token_id
def __UpperCamelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE : Any = self.eos_token_id # Eos Token
SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for M2M100 the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
SCREAMING_SNAKE_CASE : int = input_ids.clamp(self.pad_token_id + 1 )
SCREAMING_SNAKE_CASE : str = decoder_input_ids.clamp(self.pad_token_id + 1 )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config()
SCREAMING_SNAKE_CASE : str = prepare_mam_aaa_inputs_dict(a , a , a )
return config, inputs_dict
def __UpperCamelCase ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
return MaMaaaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , )
def __UpperCamelCase ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs()
return config, inputs_dict
def __UpperCamelCase ( self : Dict , a : Tuple , a : List[Any] ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = MaMaaaModel(config=a ).get_decoder().to(a ).eval()
SCREAMING_SNAKE_CASE : Optional[int] = inputs_dict["input_ids"]
SCREAMING_SNAKE_CASE : Optional[Any] = inputs_dict["attention_mask"]
SCREAMING_SNAKE_CASE : Union[str, Any] = inputs_dict["head_mask"]
# first forward pass
SCREAMING_SNAKE_CASE : Union[str, Any] = model(a , attention_mask=a , head_mask=a , use_cache=a )
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
SCREAMING_SNAKE_CASE : int = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
SCREAMING_SNAKE_CASE : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
SCREAMING_SNAKE_CASE : List[str] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
SCREAMING_SNAKE_CASE : int = model(a , attention_mask=a )["last_hidden_state"]
SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , past_key_values=a )[
"last_hidden_state"
]
# select random slice
SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
SCREAMING_SNAKE_CASE : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach()
SCREAMING_SNAKE_CASE : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(a , a , atol=1e-2 ) )
def __UpperCamelCase ( self : Any , a : Any , a : Any ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = MaMaaaModel(config=a ).to(a ).eval()
SCREAMING_SNAKE_CASE : str = model(**a )
SCREAMING_SNAKE_CASE : Dict = outputs.encoder_last_hidden_state
SCREAMING_SNAKE_CASE : Dict = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
SCREAMING_SNAKE_CASE : Optional[Any] = model.get_encoder()
encoder.save_pretrained(a )
SCREAMING_SNAKE_CASE : Dict = MaMaaaEncoder.from_pretrained(a ).to(a )
SCREAMING_SNAKE_CASE : Optional[Any] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[
0
]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
with tempfile.TemporaryDirectory() as tmpdirname:
SCREAMING_SNAKE_CASE : Optional[Any] = model.get_decoder()
decoder.save_pretrained(a )
SCREAMING_SNAKE_CASE : str = MaMaaaDecoder.from_pretrained(a ).to(a )
SCREAMING_SNAKE_CASE : Dict = decoder(
input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=a , encoder_attention_mask=inputs_dict["attention_mask"] , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class _UpperCamelCase ( __A , __A , __A , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =(
(
MaMaaaModel,
MaMaaaForConditionalGeneration,
)
if is_torch_available()
else ()
)
lowerCamelCase__ =(MaMaaaForConditionalGeneration,) if is_torch_available() else ()
lowerCamelCase__ =(
{
'conversational': MaMaaaForConditionalGeneration,
'feature-extraction': MaMaaaModel,
'summarization': MaMaaaForConditionalGeneration,
'text2text-generation': MaMaaaForConditionalGeneration,
'translation': MaMaaaForConditionalGeneration,
}
if is_torch_available()
else {}
)
lowerCamelCase__ =True
lowerCamelCase__ =True
lowerCamelCase__ =False
lowerCamelCase__ =False
def __UpperCamelCase ( self : List[Any] , a : Tuple , a : int , a : Optional[Any] , a : Optional[Any] , a : Tuple ) -> Dict:
"""simple docstring"""
if pipeline_test_casse_name == "TranslationPipelineTests":
# Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`.
# `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer.
return True
return False
def __UpperCamelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = MaMaaaModelTester(self )
SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=a )
def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def __UpperCamelCase ( self : Any ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Dict = model_class(a )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(a )
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = model_class.from_pretrained(a , output_loading_info=a )
self.assertEqual(info["missing_keys"] , [] )
def __UpperCamelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*a )
def __UpperCamelCase ( self : str ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*a )
def __UpperCamelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration):
SCREAMING_SNAKE_CASE : List[str] = model_class(a )
model.to(a )
model.eval()
SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self._prepare_for_class(a , a ) )
if not self.is_encoder_decoder:
SCREAMING_SNAKE_CASE : Optional[Any] = inputs["input_ids"]
del inputs["input_ids"]
else:
SCREAMING_SNAKE_CASE : str = inputs["input_ids"]
SCREAMING_SNAKE_CASE : Optional[Any] = inputs.get("decoder_input_ids" , a )
del inputs["input_ids"]
inputs.pop("decoder_input_ids" , a )
SCREAMING_SNAKE_CASE : Any = model.get_input_embeddings()
if not self.is_encoder_decoder:
SCREAMING_SNAKE_CASE : Tuple = wte(a )
else:
SCREAMING_SNAKE_CASE : List[str] = wte(a )
SCREAMING_SNAKE_CASE : Dict = wte(a )
with torch.no_grad():
model(**a )[0]
def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE : Optional[int] = input_dict["input_ids"]
SCREAMING_SNAKE_CASE : Optional[int] = input_ids.ne(1 ).to(a )
SCREAMING_SNAKE_CASE : str = MaMaaaForConditionalGeneration(a ).eval().to(a )
if torch_device == "cuda":
model.half()
model.generate(a , attention_mask=a )
model.generate(num_beams=4 , do_sample=a , early_stopping=a , num_return_sequences=3 )
def lowerCamelCase__ ( _a):
return torch.tensor(_a , dtype=torch.long , device=_a)
a_ = 1E-4
@require_torch
@require_sentencepiece
@require_tokenizers
@slow
class _UpperCamelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __UpperCamelCase ( self : Any ) -> Tuple:
"""simple docstring"""
return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" )
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(a )
SCREAMING_SNAKE_CASE : List[str] = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] )
SCREAMING_SNAKE_CASE : Union[str, Any] = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] )
SCREAMING_SNAKE_CASE : Any = prepare_mam_aaa_inputs_dict(model.config , a , a )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Dict = model(**a )[0]
SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 1024) )
self.assertEqual(output.shape , a )
# change to expected output here
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(
[[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=a )
self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=a ) )
def __UpperCamelCase ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(a )
# change to intended input
SCREAMING_SNAKE_CASE : str = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] )
SCREAMING_SNAKE_CASE : Dict = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] )
SCREAMING_SNAKE_CASE : Any = prepare_mam_aaa_inputs_dict(model.config , a , a )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Union[str, Any] = model(**a )[0]
SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((1, 11, model.config.vocab_size) )
self.assertEqual(output.shape , a )
# change to expected output here
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=a )
self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=a ) )
def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(a )
SCREAMING_SNAKE_CASE : Tuple = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" )
SCREAMING_SNAKE_CASE : str = [
"L'affaire NSA souligne l'absence totale de débat sur le renseignement",
"Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.",
"Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent"
" Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de"
" l'ampleur de la surveillance américaine sur l'ensemble des communications en France.",
]
# The below article tests that we don't add any hypotheses outside of the top n_beams
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(a , padding=a , return_tensors="pt" )
SCREAMING_SNAKE_CASE : Union[str, Any] = model.generate(
input_ids=dct["input_ids"].to(a ) , attention_mask=dct["attention_mask"].to(a ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , )
SCREAMING_SNAKE_CASE : str = [
"The NSA case highlights the total absence of intelligence debate",
"I think there are two levels of response from the French government.",
"When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S."
" Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all"
" communications in France.",
]
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.batch_decode(
hypotheses_batch.tolist() , clean_up_tokenization_spaces=a , skip_special_tokens=a )
assert generated == expected_en | 25 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''',
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt"
def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any:
super().__init__(**_UpperCamelCase )
snake_case_ = hidden_size
snake_case_ = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info('''Initializing the config with a `BiT` backbone.''' )
snake_case_ = {
'''global_padding''': '''same''',
'''layer_type''': '''bottleneck''',
'''depths''': [3, 4, 9],
'''out_features''': ['''stage1''', '''stage2''', '''stage3'''],
'''embedding_dynamic_padding''': True,
}
snake_case_ = BitConfig(**_UpperCamelCase )
elif isinstance(_UpperCamelCase , _UpperCamelCase ):
logger.info('''Initializing the config with a `BiT` backbone.''' )
snake_case_ = BitConfig(**_UpperCamelCase )
elif isinstance(_UpperCamelCase , _UpperCamelCase ):
snake_case_ = backbone_config
else:
raise ValueError(
f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' )
snake_case_ = backbone_featmap_shape
snake_case_ = neck_ignore_stages
if readout_type != "project":
raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' )
else:
snake_case_ = None
snake_case_ = None
snake_case_ = []
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = initializer_range
snake_case_ = layer_norm_eps
snake_case_ = image_size
snake_case_ = patch_size
snake_case_ = num_channels
snake_case_ = qkv_bias
snake_case_ = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' )
snake_case_ = readout_type
snake_case_ = reassemble_factors
snake_case_ = neck_hidden_sizes
snake_case_ = fusion_hidden_size
snake_case_ = head_in_index
snake_case_ = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
snake_case_ = use_auxiliary_head
snake_case_ = auxiliary_loss_weight
snake_case_ = semantic_loss_ignore_index
snake_case_ = semantic_classifier_dropout
def snake_case__( self : List[str] ) ->List[Any]:
snake_case_ = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
snake_case_ = self.backbone_config.to_dict()
snake_case_ = self.__class__.model_type
return output | 39 | 0 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase = logging.get_logger(__name__)
class _A ( __lowercase ):
lowercase__: Any = '''encoder-decoder'''
lowercase__: str = True
def __init__( self : str , **__magic_name__ : int ) -> str:
"""simple docstring"""
super().__init__(**__magic_name__ )
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
__snake_case : Any = kwargs.pop("""encoder""" )
__snake_case : Union[str, Any] = encoder_config.pop("""model_type""" )
__snake_case : Optional[int] = kwargs.pop("""decoder""" )
__snake_case : Dict = decoder_config.pop("""model_type""" )
from ..auto.configuration_auto import AutoConfig
__snake_case : Optional[Any] = AutoConfig.for_model(__magic_name__ , **__magic_name__ )
__snake_case : Optional[Any] = AutoConfig.for_model(__magic_name__ , **__magic_name__ )
__snake_case : List[str] = True
@classmethod
def lowercase__ ( cls : Optional[Any] , __magic_name__ : PretrainedConfig , __magic_name__ : PretrainedConfig , **__magic_name__ : Dict ) -> PretrainedConfig:
"""simple docstring"""
logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" )
__snake_case : List[Any] = True
__snake_case : Any = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__magic_name__ )
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__snake_case : Union[str, Any] = copy.deepcopy(self.__dict__ )
__snake_case : int = self.encoder.to_dict()
__snake_case : List[str] = self.decoder.to_dict()
__snake_case : Tuple = self.__class__.model_type
return output
| 26 |
import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional
import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy
lowerCAmelCase_ = logging.getLogger(__name__)
lowerCAmelCase_ = '''pytorch_model.bin'''
@dataclasses.dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = dataclasses.field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , )
@dataclasses.dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} )
SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default=__A , metadata={"help": "A csv or a json file containing the validation data."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default=__A , metadata={"help": "The name of the task to train on."} , )
SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field(
default=__A , metadata={"help": "The list of labels for the task."} )
@dataclasses.dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = dataclasses.field(
metadata={"help": "The output directory where the model predictions and checkpoints will be written."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default="accuracy" , metadata={"help": "The evaluation metric used for the task."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default="no" , metadata={
"help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]"
} , )
SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field(
default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , )
SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field(
default=0.0 , metadata={
"help": "How much the specified evaluation metric must improve to satisfy early stopping conditions."
} , )
SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field(
default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , )
SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field(
default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , )
SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field(
default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , )
SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field(
default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , )
SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field(
default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , )
SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field(
default=__A , metadata={"help": "Random seed for initialization."} , )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 )
if args.do_filter_by_confidence:
snake_case_ = dataset.filter(lambda SCREAMING_SNAKE_CASE__ : example["probability"] > args.confidence_threshold )
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
snake_case_ = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) )
print(SCREAMING_SNAKE_CASE__ )
snake_case_ = dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE__ )
snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) )
snake_case_ = dataset.remove_columns(['''label''', '''probability'''] )
snake_case_ = dataset.rename_column('''prediction''' , '''label''' )
snake_case_ = dataset.map(lambda SCREAMING_SNAKE_CASE__ : {"label": idalabel[example["label"]]} )
snake_case_ = dataset.shuffle(seed=args.seed )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' )
if args.data_file_extension == "csv":
dataset.to_csv(SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ )
else:
dataset.to_json(SCREAMING_SNAKE_CASE__ )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ):
snake_case_ = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(accelerator.state )
# Setup logging, we only want one process per machine to log things on the
# screen. accelerator.is_local_main_process is only True for one process per
# machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
snake_case_ = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ )
snake_case_ = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ , infer_file=SCREAMING_SNAKE_CASE__ )
snake_case_ = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ )
snake_case_ = argparse.Namespace()
for arg_class in (model_args, data_args, training_args):
for key, value in vars(SCREAMING_SNAKE_CASE__ ).items():
setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
for key, value in kwargs.items():
if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Sanity checks
snake_case_ = {}
snake_case_ = None
# You need to provide the training data and the data to predict on
assert args.train_file is not None
assert args.infer_file is not None
snake_case_ = args.train_file
snake_case_ = args.infer_file
if args.evaluation_strategy != IntervalStrategy.NO.value:
assert args.eval_file is not None
snake_case_ = args.eval_file
for key in data_files:
snake_case_ = data_files[key].split('''.''' )[-1]
assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.'''
if args.data_file_extension is None:
snake_case_ = extension
else:
assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.'''
assert (
args.eval_metric in datasets.list_metrics()
), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.'''
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed )
logger.info('''Creating the initial data directory for self-training...''' )
snake_case_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format
snake_case_ = data_dir_format(0 )
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ )
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
snake_case_ = None
snake_case_ = None
snake_case_ = 0
snake_case_ = False
# Show the progress bar
snake_case_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process )
# Self-train
for iteration in range(0 , int(args.max_selftrain_iterations ) ):
snake_case_ = data_dir_format(SCREAMING_SNAKE_CASE__ )
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
# Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
# iteration > 0
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-1''' )
snake_case_ = {
'''accelerator''': accelerator,
'''model_name_or_path''': args.model_name_or_path,
'''cache_dir''': args.cache_dir,
'''do_train''': True,
'''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''],
'''do_eval''': True if args.eval_file is not None else False,
'''eval_file''': data_files['''eval'''],
'''do_predict''': True,
'''infer_file''': data_files['''infer'''],
'''task_name''': args.task_name,
'''label_list''': args.label_list,
'''output_dir''': current_output_dir,
'''eval_metric''': args.eval_metric,
'''evaluation_strategy''': args.evaluation_strategy,
'''early_stopping_patience''': args.early_stopping_patience,
'''early_stopping_threshold''': args.early_stopping_threshold,
'''seed''': args.seed,
}
# Add additional training arguments
for key, value in kwargs.items():
if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
arguments_dict.update({key: value} )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ )
if os.path.exists(SCREAMING_SNAKE_CASE__ ):
logger.info(
'''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , )
else:
logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE__ )
finetune(**SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ )
if iteration > 0 and args.finetune_on_labeled_data:
# Stage 2 (optional): fine-tuning on the original labeled data
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-2''' )
# Update arguments_dict
snake_case_ = model_path
snake_case_ = data_files['''train''']
snake_case_ = current_output_dir
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ )
if os.path.exists(SCREAMING_SNAKE_CASE__ ):
logger.info(
'''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , )
else:
logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE__ )
finetune(**SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ )
snake_case_ = iteration
snake_case_ = data_dir_format(iteration + 1 )
snake_case_ = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) )
snake_case_ = config.idalabel
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-checkpoint.json''' )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''test_results_best-checkpoint.json''' )
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f:
snake_case_ = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''infer_output_best-checkpoint.csv''' )
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
# Loading the dataset from local csv or json files.
snake_case_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data''']
snake_case_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data''']
if accelerator.is_main_process:
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) )
if os.path.exists(SCREAMING_SNAKE_CASE__ ):
shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''test_results_iter-{iteration}.json''' ) )
create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' )
if args.evaluation_strategy != IntervalStrategy.NO.value:
snake_case_ = eval_result
if best_iteration is None:
snake_case_ = new_iteration
snake_case_ = new_eval_result
else:
if new_eval_result - best_eval_result > args.early_stopping_threshold:
snake_case_ = new_iteration
snake_case_ = new_eval_result
snake_case_ = 0
else:
if new_eval_result == best_eval_result:
snake_case_ = new_iteration
snake_case_ = new_eval_result
early_stopping_patience_counter += 1
if early_stopping_patience_counter >= args.early_stopping_patience:
snake_case_ = True
progress_bar.update(1 )
if should_training_stop:
break
if best_iteration is not None:
# Save the best iteration
logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE__ )
logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , )
else:
# Assume that the last iteration is the best
logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 )
logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , ) | 39 | 0 |
from math import asin, atan, cos, radians, sin, sqrt, tan
__A : int = 6_3_7_8_1_3_7.0
__A : Dict = 6_3_5_6_7_5_2.3_1_4_2_4_5
__A : List[Any] = 6_378_137
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float:
"""simple docstring"""
_A = (AXIS_A - AXIS_B) / AXIS_A
_A = atan((1 - flattening) * tan(radians(_SCREAMING_SNAKE_CASE ) ) )
_A = atan((1 - flattening) * tan(radians(_SCREAMING_SNAKE_CASE ) ) )
_A = radians(_SCREAMING_SNAKE_CASE )
_A = radians(_SCREAMING_SNAKE_CASE )
# Equation
_A = sin((phi_a - phi_a) / 2 )
_A = sin((lambda_a - lambda_a) / 2 )
# Square both values
sin_sq_phi *= sin_sq_phi
sin_sq_lambda *= sin_sq_lambda
_A = sqrt(sin_sq_phi + (cos(_SCREAMING_SNAKE_CASE ) * cos(_SCREAMING_SNAKE_CASE ) * sin_sq_lambda) )
return 2 * RADIUS * asin(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 27 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class snake_case_ ( __A , __A , __A , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = AltDiffusionPipeline
SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS
SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
def snake_case__( self : Dict ) ->int:
torch.manual_seed(0 )
snake_case_ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , )
snake_case_ = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , )
torch.manual_seed(0 )
snake_case_ = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0 )
snake_case_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , )
snake_case_ = CLIPTextModel(_UpperCamelCase )
snake_case_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
snake_case_ = 7_7
snake_case_ = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def snake_case__( self : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0 ) ->Any:
if str(_UpperCamelCase ).startswith('''mps''' ):
snake_case_ = torch.manual_seed(_UpperCamelCase )
else:
snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase )
snake_case_ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def snake_case__( self : Dict ) ->List[str]:
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 )
def snake_case__( self : List[str] ) ->Any:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def snake_case__( self : Dict ) ->Any:
snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case_ = self.get_dummy_components()
torch.manual_seed(0 )
snake_case_ = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , )
# TODO: remove after fixing the non-deterministic text encoder
snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase )
snake_case_ = text_encoder
snake_case_ = AltDiffusionPipeline(**_UpperCamelCase )
snake_case_ = alt_pipe.to(_UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = self.get_dummy_inputs(_UpperCamelCase )
snake_case_ = '''A photo of an astronaut'''
snake_case_ = alt_pipe(**_UpperCamelCase )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
snake_case_ = np.array(
[0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case__( self : Tuple ) ->Union[str, Any]:
snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case_ = self.get_dummy_components()
snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase )
torch.manual_seed(0 )
snake_case_ = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , )
# TODO: remove after fixing the non-deterministic text encoder
snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase )
snake_case_ = text_encoder
snake_case_ = AltDiffusionPipeline(**_UpperCamelCase )
snake_case_ = alt_pipe.to(_UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = self.get_dummy_inputs(_UpperCamelCase )
snake_case_ = alt_pipe(**_UpperCamelCase )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
snake_case_ = np.array(
[0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : int ) ->List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case__( self : List[str] ) ->Tuple:
# make sure here that pndm scheduler skips prk
snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_UpperCamelCase )
snake_case_ = alt_pipe.to(_UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = '''A painting of a squirrel eating a burger'''
snake_case_ = torch.manual_seed(0 )
snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='''np''' )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
snake_case_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case__( self : List[str] ) ->Optional[Any]:
snake_case_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' )
snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase )
snake_case_ = alt_pipe.to(_UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = '''A painting of a squirrel eating a burger'''
snake_case_ = torch.manual_seed(0 )
snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , num_inference_steps=2 , output_type='''numpy''' )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
snake_case_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 | 39 | 0 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise TypeError('Input value must be an \'int\' type' )
SCREAMING_SNAKE_CASE : int = 0
while number:
position += 1
number >>= 1
return position
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
from math import factorial
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
# If either of the conditions are true, the function is being asked
# to calculate a factorial of a negative number, which is not possible
if n < k or k < 0:
raise ValueError('''Please enter positive integers for n and k where n >= k''' )
return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k ))
if __name__ == "__main__":
print(
'''The number of five-card hands possible from a standard''',
f"""fifty-two card deck is: {combinations(52, 5)}\n""",
)
print(
'''If a class of 40 students must be arranged into groups of''',
f"""4 for group projects, there are {combinations(40, 4)} ways""",
'''to arrange them.\n''',
)
print(
'''If 10 teams are competing in a Formula One race, there''',
f"""are {combinations(10, 3)} ways that first, second and""",
'''third place can be awarded.''',
) | 39 | 0 |
"""simple docstring"""
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class __lowerCamelCase ( lowerCAmelCase ):
a__: Union[str, Any] = 'M-CLIP'
def __init__( self , UpperCAmelCase=1024 , UpperCAmelCase=768 , **UpperCAmelCase ):
lowerCamelCase_ = transformerDimSize
lowerCamelCase_ = imageDimSize
super().__init__(**UpperCAmelCase )
class __lowerCamelCase ( lowerCAmelCase ):
a__: Any = MCLIPConfig
def __init__( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ):
super().__init__(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase )
lowerCamelCase_ = XLMRobertaModel(UpperCAmelCase )
lowerCamelCase_ = torch.nn.Linear(
in_features=config.transformerDimensions , out_features=config.numDims )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ):
lowerCamelCase_ = self.transformer(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )[0]
lowerCamelCase_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None]
return self.LinearTransformation(UpperCAmelCase ), embs
| 29 |
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
lowerCAmelCase_ = sys.version_info >= (3, 10)
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ):
return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : float
SCREAMING_SNAKE_CASE : str
SCREAMING_SNAKE_CASE : bool
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 42
SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : bool = False
SCREAMING_SNAKE_CASE : bool = True
SCREAMING_SNAKE_CASE : Optional[bool] = None
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = "titi"
SCREAMING_SNAKE_CASE : Any = "toto"
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = "titi"
SCREAMING_SNAKE_CASE : Optional[Any] = "toto"
SCREAMING_SNAKE_CASE : Any = 42
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : BasicEnum = "toto"
def snake_case__( self : Tuple ) ->List[str]:
snake_case_ = BasicEnum(self.foo )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto"
def snake_case__( self : Union[str, Any] ) ->Dict:
snake_case_ = MixedTypeEnum(self.foo )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Optional[float] = field(default=__A , metadata={"help": "help message"} )
SCREAMING_SNAKE_CASE : Optional[str] = None
SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] )
SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] )
SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] )
SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] )
SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[int] = field()
SCREAMING_SNAKE_CASE : str = field()
SCREAMING_SNAKE_CASE : BasicEnum = field()
def snake_case__( self : Optional[Any] ) ->Tuple:
snake_case_ = BasicEnum(self.required_enum )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : "BasicEnum" = field()
SCREAMING_SNAKE_CASE : "Optional[bool]" = None
SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} )
SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] )
if is_python_no_less_than_3_10:
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : bool = False
SCREAMING_SNAKE_CASE : bool = True
SCREAMING_SNAKE_CASE : bool | None = None
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : int | None = None
SCREAMING_SNAKE_CASE : float | None = field(default=__A , metadata={"help": "help message"} )
SCREAMING_SNAKE_CASE : str | None = None
SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] )
SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] )
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : Dict , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser ) ->str:
self.assertEqual(len(a._actions ) , len(b._actions ) )
for x, y in zip(a._actions , b._actions ):
snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''}
snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get('''choices''' , _UpperCamelCase ) and yy.get('''choices''' , _UpperCamelCase ):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx['''type'''](_UpperCamelCase ) , yy['''type'''](_UpperCamelCase ) )
del xx["type"], yy["type"]
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Optional[Any] ) ->Dict:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument('''--bar''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument('''--baz''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument('''--flag''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5''']
((snake_case_), ) = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase )
self.assertFalse(example.flag )
def snake_case__( self : Tuple ) ->Optional[int]:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , default=4_2 , type=_UpperCamelCase )
expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Tuple ) ->Tuple:
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' )
expected.add_argument('''--baz''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' )
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCamelCase , dest='''baz''' )
expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase )
snake_case_ = [WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(_UpperCamelCase )
for dataclass_type in dataclass_types:
snake_case_ = HfArgumentParser(_UpperCamelCase )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
snake_case_ = parser.parse_args(['''--foo''', '''--no_baz'''] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
snake_case_ = parser.parse_args(['''--foo''', '''--baz'''] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
snake_case_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
snake_case_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
def snake_case__( self : Tuple ) ->Tuple:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument(
'''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(args.foo , '''toto''' )
snake_case_ = parser.parse_args_into_dataclasses([] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto )
snake_case_ = parser.parse_args(['''--foo''', '''titi'''] )
self.assertEqual(args.foo , '''titi''' )
snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi )
snake_case_ = parser.parse_args(['''--foo''', '''42'''] )
self.assertEqual(args.foo , 4_2 )
snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo )
def snake_case__( self : Tuple ) ->Union[str, Any]:
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto"
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument(
'''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(args.foo , '''toto''' )
snake_case_ = parser.parse_args(['''--foo''', '''titi'''] )
self.assertEqual(args.foo , '''titi''' )
snake_case_ = parser.parse_args(['''--foo''', '''42'''] )
self.assertEqual(args.foo , 4_2 )
def snake_case__( self : List[str] ) ->int:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCamelCase )
expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCamelCase )
expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase )
expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(
_UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , )
snake_case_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() )
self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) )
def snake_case__( self : Optional[Any] ) ->List[Any]:
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , default=_UpperCamelCase , type=_UpperCamelCase )
expected.add_argument('''--bar''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''help message''' )
expected.add_argument('''--baz''' , default=_UpperCamelCase , type=_UpperCamelCase )
expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCamelCase )
expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCamelCase )
snake_case_ = [OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(_UpperCamelCase )
for dataclass_type in dataclass_types:
snake_case_ = HfArgumentParser(_UpperCamelCase )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[] ) )
snake_case_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() )
self.assertEqual(_UpperCamelCase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) )
def snake_case__( self : Union[str, Any] ) ->Optional[int]:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument('''--required_str''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument(
'''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : List[str] ) ->int:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument(
'''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , )
expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase )
expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' )
expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Dict ) ->Any:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = {
'''foo''': 1_2,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
snake_case_ = parser.parse_dict(_UpperCamelCase )[0]
snake_case_ = BasicExample(**_UpperCamelCase )
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : int ) ->Dict:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = {
'''foo''': 1_2,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
'''extra''': 4_2,
}
self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase )
def snake_case__( self : str ) ->Tuple:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = {
'''foo''': 1_2,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = os.path.join(_UpperCamelCase , '''temp_json''' )
os.mkdir(_UpperCamelCase )
with open(temp_local_path + '''.json''' , '''w+''' ) as f:
json.dump(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0]
snake_case_ = BasicExample(**_UpperCamelCase )
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Optional[int] ) ->str:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = {
'''foo''': 1_2,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = os.path.join(_UpperCamelCase , '''temp_yaml''' )
os.mkdir(_UpperCamelCase )
with open(temp_local_path + '''.yaml''' , '''w+''' ) as f:
yaml.dump(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0]
snake_case_ = BasicExample(**_UpperCamelCase )
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Any ) ->Any:
snake_case_ = HfArgumentParser(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase ) | 39 | 0 |
def lowerCamelCase__ ( _lowercase ):
'''simple docstring'''
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print('Program to check whether a number is a Perfect number or not...')
__a = int(input('Enter number: ').strip())
print(F"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""") | 30 |
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
lowerCAmelCase_ = logging.get_logger(__name__)
class snake_case_ ( __A ):
'''simple docstring'''
def __init__( self : Dict , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->None:
warnings.warn(
'''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use ChineseCLIPImageProcessor instead.''' , _UpperCamelCase , )
super().__init__(*_UpperCamelCase , **_UpperCamelCase ) | 39 | 0 |
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def UpperCAmelCase_ ( __UpperCAmelCase : Any ) -> Optional[int]:
SCREAMING_SNAKE_CASE_ = {}
SCREAMING_SNAKE_CASE_ = tokenizer(example['content'] , truncation=__UpperCAmelCase )['input_ids']
SCREAMING_SNAKE_CASE_ = len(example['content'] ) / len(output['input_ids'] )
return output
lowerCamelCase__ : List[str] = HfArgumentParser(PretokenizationArguments)
lowerCamelCase__ : Any = parser.parse_args()
if args.num_workers is None:
lowerCamelCase__ : Optional[Any] = multiprocessing.cpu_count()
lowerCamelCase__ : Optional[Any] = AutoTokenizer.from_pretrained(args.tokenizer_dir)
lowerCamelCase__ : Dict = time.time()
lowerCamelCase__ : Dict = load_dataset(args.dataset_name, split='train')
print(f'''Dataset loaded in {time.time()-t_start:.2f}s''')
lowerCamelCase__ : Optional[Any] = time.time()
lowerCamelCase__ : Optional[int] = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
'repo_name',
'path',
'copies',
'size',
'content',
'license',
'hash',
'line_mean',
'line_max',
'alpha_frac',
'autogenerated',
],
)
print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''')
lowerCamelCase__ : Union[str, Any] = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''') | 31 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''',
'''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''',
'''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''',
'''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''',
'''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''',
}
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv"
SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"}
def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]:
snake_case_ = vocab_size
snake_case_ = context_length
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size
snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size
snake_case_ = layer_norm_epsilon
snake_case_ = rescale_every
snake_case_ = use_cache
snake_case_ = bos_token_id
snake_case_ = eos_token_id
super().__init__(
tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) | 39 | 0 |
import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def A__ ( ) -> None:
"""simple docstring"""
print('''Making key files...''' )
make_key_files('''rsa''' , 10_24 )
print('''Key files generation successful.''' )
def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> tuple[tuple[int, int], tuple[int, int]]:
"""simple docstring"""
print('''Generating prime p...''' )
_UpperCAmelCase = rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE_ )
print('''Generating prime q...''' )
_UpperCAmelCase = rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE_ )
_UpperCAmelCase = p * q
print('''Generating e that is relatively prime to (p - 1) * (q - 1)...''' )
while True:
_UpperCAmelCase = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) )
if cryptoMath.gcd(SCREAMING_SNAKE_CASE_ , (p - 1) * (q - 1) ) == 1:
break
print('''Calculating d that is mod inverse of e...''' )
_UpperCAmelCase = cryptoMath.find_mod_inverse(SCREAMING_SNAKE_CASE_ , (p - 1) * (q - 1) )
_UpperCAmelCase = (n, e)
_UpperCAmelCase = (n, d)
return (public_key, private_key)
def A__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int ) -> None:
"""simple docstring"""
if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ):
print('''\nWARNING:''' )
print(
F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'''
'''Use a different name or delete these files and re-run this program.''' )
sys.exit()
_UpperCAmelCase , _UpperCAmelCase = generate_key(SCREAMING_SNAKE_CASE_ )
print(F'''\nWriting public key to file {name}_pubkey.txt...''' )
with open(F'''{name}_pubkey.txt''' , '''w''' ) as out_file:
out_file.write(F'''{key_size},{public_key[0]},{public_key[1]}''' )
print(F'''Writing private key to file {name}_privkey.txt...''' )
with open(F'''{name}_privkey.txt''' , '''w''' ) as out_file:
out_file.write(F'''{key_size},{private_key[0]},{private_key[1]}''' )
if __name__ == "__main__":
main() | 32 |
import bza
import gzip
import lzma
import os
import shutil
import struct
import tarfile
import warnings
import zipfile
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List, Optional, Type, Union
from .. import config
from .filelock import FileLock
from .logging import get_logger
lowerCAmelCase_ = get_logger(__name__)
class snake_case_ :
'''simple docstring'''
def __init__( self : int , _UpperCamelCase : Optional[str] = None ) ->Tuple:
snake_case_ = (
os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH
)
snake_case_ = Extractor
def snake_case__( self : Any , _UpperCamelCase : str ) ->str:
from .file_utils import hash_url_to_filename
# Path where we extract compressed archives
# We extract in the cache dir, and get the extracted path name by hashing the original path"
snake_case_ = os.path.abspath(_UpperCamelCase )
return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) )
def snake_case__( self : int , _UpperCamelCase : str , _UpperCamelCase : bool ) ->bool:
return force_extract or (
not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase ))
)
def snake_case__( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : bool = False ) ->str:
snake_case_ = self.extractor.infer_extractor_format(_UpperCamelCase )
if not extractor_format:
return input_path
snake_case_ = self._get_output_path(_UpperCamelCase )
if self._do_extract(_UpperCamelCase , _UpperCamelCase ):
self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
return output_path
class snake_case_ ( __A ):
'''simple docstring'''
@classmethod
@abstractmethod
def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : str ) ->bool:
...
@staticmethod
@abstractmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
...
class snake_case_ ( __A , __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[bytes] = []
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->List[Any]:
with open(_UpperCamelCase , '''rb''' ) as f:
return f.read(_UpperCamelCase )
@classmethod
def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool:
if not magic_number:
snake_case_ = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers )
try:
snake_case_ = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase )
except OSError:
return False
return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers )
class snake_case_ ( __A ):
'''simple docstring'''
@classmethod
def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : Any ) ->bool:
return tarfile.is_tarfile(_UpperCamelCase )
@staticmethod
def snake_case__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) ->List[str]:
def resolved(_UpperCamelCase : str ) -> str:
return os.path.realpath(os.path.abspath(_UpperCamelCase ) )
def badpath(_UpperCamelCase : str , _UpperCamelCase : str ) -> bool:
# joinpath will ignore base if path is absolute
return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase )
def badlink(_UpperCamelCase : Tuple , _UpperCamelCase : str ) -> bool:
# Links are interpreted relative to the directory containing the link
snake_case_ = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) )
return badpath(info.linkname , base=_UpperCamelCase )
snake_case_ = resolved(_UpperCamelCase )
for finfo in members:
if badpath(finfo.name , _UpperCamelCase ):
logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' )
elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ):
logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' )
elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ):
logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' )
else:
yield finfo
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
snake_case_ = tarfile.open(_UpperCamelCase )
tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) )
tar_file.close()
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = [b"\x1F\x8B"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
with gzip.open(_UpperCamelCase , '''rb''' ) as gzip_file:
with open(_UpperCamelCase , '''wb''' ) as extracted_file:
shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase )
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = [
b"PK\x03\x04",
b"PK\x05\x06", # empty archive
b"PK\x07\x08", # spanned archive
]
@classmethod
def snake_case__( cls : List[str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool:
if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ):
return True
try:
# Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives.
# From: https://github.com/python/cpython/pull/5053
from zipfile import (
_CD_SIGNATURE,
_ECD_DISK_NUMBER,
_ECD_DISK_START,
_ECD_ENTRIES_TOTAL,
_ECD_OFFSET,
_ECD_SIZE,
_EndRecData,
sizeCentralDir,
stringCentralDir,
structCentralDir,
)
with open(_UpperCamelCase , '''rb''' ) as fp:
snake_case_ = _EndRecData(_UpperCamelCase )
if endrec:
if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0:
return True # Empty zipfiles are still zipfiles
elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]:
fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk
if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir:
snake_case_ = fp.read(_UpperCamelCase ) # CD is where we expect it to be
if len(_UpperCamelCase ) == sizeCentralDir:
snake_case_ = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size
if centdir[_CD_SIGNATURE] == stringCentralDir:
return True # First central directory entry has correct magic number
return False
except Exception: # catch all errors in case future python versions change the zipfile internals
return False
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
with zipfile.ZipFile(_UpperCamelCase , '''r''' ) as zip_file:
zip_file.extractall(_UpperCamelCase )
zip_file.close()
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = [b"\xFD\x37\x7A\x58\x5A\x00"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
with lzma.open(_UpperCamelCase ) as compressed_file:
with open(_UpperCamelCase , '''wb''' ) as extracted_file:
shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase )
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
if not config.RARFILE_AVAILABLE:
raise ImportError('''Please pip install rarfile''' )
import rarfile
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
snake_case_ = rarfile.RarFile(_UpperCamelCase )
rf.extractall(_UpperCamelCase )
rf.close()
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = [b"\x28\xb5\x2F\xFD"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
if not config.ZSTANDARD_AVAILABLE:
raise ImportError('''Please pip install zstandard''' )
import zstandard as zstd
snake_case_ = zstd.ZstdDecompressor()
with open(_UpperCamelCase , '''rb''' ) as ifh, open(_UpperCamelCase , '''wb''' ) as ofh:
dctx.copy_stream(_UpperCamelCase , _UpperCamelCase )
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = [b"\x42\x5A\x68"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
with bza.open(_UpperCamelCase , '''rb''' ) as compressed_file:
with open(_UpperCamelCase , '''wb''' ) as extracted_file:
shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase )
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = [b"\x37\x7A\xBC\xAF\x27\x1C"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
if not config.PY7ZR_AVAILABLE:
raise ImportError('''Please pip install py7zr''' )
import pyazr
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
with pyazr.SevenZipFile(_UpperCamelCase , '''r''' ) as archive:
archive.extractall(_UpperCamelCase )
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = [b"\x04\x22\x4D\x18"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
if not config.LZ4_AVAILABLE:
raise ImportError('''Please pip install lz4''' )
import lza.frame
with lza.frame.open(_UpperCamelCase , '''rb''' ) as compressed_file:
with open(_UpperCamelCase , '''wb''' ) as extracted_file:
shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase )
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict[str, Type[BaseExtractor]] = {
"tar": TarExtractor,
"gzip": GzipExtractor,
"zip": ZipExtractor,
"xz": XzExtractor,
"rar": RarExtractor,
"zstd": ZstdExtractor,
"bz2": BzipaExtractor,
"7z": SevenZipExtractor, # <Added version="2.4.0"/>
"lz4": LzaExtractor, # <Added version="2.4.0"/>
}
@classmethod
def snake_case__( cls : List[Any] ) ->List[str]:
return max(
len(_UpperCamelCase )
for extractor in cls.extractors.values()
if issubclass(_UpperCamelCase , _UpperCamelCase )
for extractor_magic_number in extractor.magic_numbers )
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->Tuple:
try:
return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase )
except OSError:
return b""
@classmethod
def snake_case__( cls : Optional[Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bool = False ) ->bool:
warnings.warn(
'''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. '''
'''Use \'infer_extractor_format\' instead.''' , category=_UpperCamelCase , )
snake_case_ = cls.infer_extractor_format(_UpperCamelCase )
if extractor_format:
return True if not return_extractor else (True, cls.extractors[extractor_format])
return False if not return_extractor else (False, None)
@classmethod
def snake_case__( cls : int , _UpperCamelCase : Union[Path, str] ) ->str: # <Added version="2.4.0"/>
snake_case_ = cls._get_magic_number_max_length()
snake_case_ = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase )
for extractor_format, extractor in cls.extractors.items():
if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ):
return extractor_format
@classmethod
def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[BaseExtractor] = "deprecated" , ) ->None:
os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase )
# Prevent parallel extractions
snake_case_ = str(Path(_UpperCamelCase ).with_suffix('''.lock''' ) )
with FileLock(_UpperCamelCase ):
shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase )
if extractor_format or extractor != "deprecated":
if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg
warnings.warn(
'''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. '''
'''Use \'extractor_format\' instead.''' , category=_UpperCamelCase , )
snake_case_ = extractor if extractor != '''deprecated''' else extractor_format
else:
snake_case_ = cls.extractors[extractor_format]
return extractor.extract(_UpperCamelCase , _UpperCamelCase )
else:
warnings.warn(
'''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an '''
'''exception in 3.0.0.''' , category=_UpperCamelCase , )
for extractor in cls.extractors.values():
if extractor.is_extractable(_UpperCamelCase ):
return extractor.extract(_UpperCamelCase , _UpperCamelCase ) | 39 | 0 |
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __magic_name__ (snake_case_ ,snake_case_ ,unittest.TestCase ):
'''simple docstring'''
__lowercase : str = IFImgaImgSuperResolutionPipeline
__lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'}
__lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} )
__lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'latents'}
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
return self._get_superresolution_dummy_components()
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:Optional[Any]=0 ):
if str(_a ).startswith('''mps''' ):
snake_case__ = torch.manual_seed(_a )
else:
snake_case__ = torch.Generator(device=_a ).manual_seed(_a )
snake_case__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a )
snake_case__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_a ) ).to(_a )
snake_case__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''original_image''': original_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' )
def SCREAMING_SNAKE_CASE__ ( self:Dict ):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def SCREAMING_SNAKE_CASE__ ( self:str ):
self._test_save_load_local()
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 33 |
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ):
raise TypeError('''Sequence must be list of non-negative integers''' )
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__ , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9] | 39 | 0 |
"""simple docstring"""
from pathlib import Path
from typing import List
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import get_tests_dir, is_tool_test
from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
SCREAMING_SNAKE_CASE_ = ['text', 'image', 'audio']
def __snake_case ( _lowercase ):
"""simple docstring"""
UpperCamelCase = []
for input_type in input_types:
if input_type == "text":
inputs.append('''Text input''' )
elif input_type == "image":
inputs.append(
Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((512, 512) ) )
elif input_type == "audio":
inputs.append(torch.ones(3000 ) )
elif isinstance(_lowercase ,_lowercase ):
inputs.append(create_inputs(_lowercase ) )
else:
raise ValueError(f'Invalid type requested: {input_type}' )
return inputs
def __snake_case ( _lowercase ):
"""simple docstring"""
UpperCamelCase = []
for output in outputs:
if isinstance(_lowercase ,(str, AgentText) ):
output_types.append('''text''' )
elif isinstance(_lowercase ,(Image.Image, AgentImage) ):
output_types.append('''image''' )
elif isinstance(_lowercase ,(torch.Tensor, AgentAudio) ):
output_types.append('''audio''' )
else:
raise ValueError(f'Invalid output: {output}' )
return output_types
@is_tool_test
class snake_case_ :
"""simple docstring"""
def UpperCAmelCase__ ( self) -> List[Any]:
self.assertTrue(hasattr(self.tool , '''inputs'''))
self.assertTrue(hasattr(self.tool , '''outputs'''))
UpperCamelCase = self.tool.inputs
for _input in inputs:
if isinstance(_input , lowerCamelCase_):
for __input in _input:
self.assertTrue(__input in authorized_types)
else:
self.assertTrue(_input in authorized_types)
UpperCamelCase = self.tool.outputs
for _output in outputs:
self.assertTrue(_output in authorized_types)
def UpperCAmelCase__ ( self) -> Union[str, Any]:
UpperCamelCase = create_inputs(self.tool.inputs)
UpperCamelCase = self.tool(*lowerCamelCase_)
# There is a single output
if len(self.tool.outputs) == 1:
UpperCamelCase = [outputs]
self.assertListEqual(output_types(lowerCamelCase_) , self.tool.outputs)
def UpperCAmelCase__ ( self) -> str:
self.assertTrue(hasattr(self.tool , '''description'''))
self.assertTrue(hasattr(self.tool , '''default_checkpoint'''))
self.assertTrue(self.tool.description.startswith('''This is a tool that'''))
def UpperCAmelCase__ ( self) -> Any:
UpperCamelCase = create_inputs(self.tool.inputs)
UpperCamelCase = self.tool(*lowerCamelCase_)
if not isinstance(lowerCamelCase_ , lowerCamelCase_):
UpperCamelCase = [outputs]
self.assertEqual(len(lowerCamelCase_) , len(self.tool.outputs))
for output, output_type in zip(lowerCamelCase_ , self.tool.outputs):
UpperCamelCase = AGENT_TYPE_MAPPING[output_type]
self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_))
def UpperCAmelCase__ ( self) -> List[Any]:
UpperCamelCase = create_inputs(self.tool.inputs)
UpperCamelCase = []
for _input, input_type in zip(lowerCamelCase_ , self.tool.inputs):
if isinstance(lowerCamelCase_ , lowerCamelCase_):
_inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type])
else:
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input))
# Should not raise an error
UpperCamelCase = self.tool(*lowerCamelCase_)
if not isinstance(lowerCamelCase_ , lowerCamelCase_):
UpperCamelCase = [outputs]
self.assertEqual(len(lowerCamelCase_) , len(self.tool.outputs)) | 34 |
import re
from filelock import FileLock
try:
import nltk
lowerCAmelCase_ = True
except (ImportError, ModuleNotFoundError):
lowerCAmelCase_ = False
if NLTK_AVAILABLE:
with FileLock('''.lock''') as lock:
nltk.download('''punkt''', quiet=True)
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
re.sub('''<n>''' , '''''' , SCREAMING_SNAKE_CASE__ ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE__ ) ) | 39 | 0 |
from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowercase ( _UpperCAmelCase ):
def __init__( self : Union[str, Any] , _lowercase : Tuple , _lowercase : Any ):
super().__init__()
# make sure scheduler can always be converted to DDIM
SCREAMING_SNAKE_CASE__ : List[Any] = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=_lowercase , scheduler=_lowercase )
@torch.no_grad()
def __call__( self : Any , _lowercase : int = 1 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : float = 0.0 , _lowercase : int = 50 , _lowercase : Optional[bool] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ):
# Sample gaussian noise to begin loop
if isinstance(self.unet.config.sample_size , _lowercase ):
SCREAMING_SNAKE_CASE__ : Tuple = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
SCREAMING_SNAKE_CASE__ : Dict = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size:
raise ValueError(
f"""You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch"""
f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
SCREAMING_SNAKE_CASE__ : List[str] = randn_tensor(_lowercase , generator=_lowercase , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(_lowercase )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
SCREAMING_SNAKE_CASE__ : str = self.unet(_lowercase , _lowercase ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
SCREAMING_SNAKE_CASE__ : int = self.scheduler.step(
_lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase ).prev_sample
SCREAMING_SNAKE_CASE__ : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 )
SCREAMING_SNAKE_CASE__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.numpy_to_pil(_lowercase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_lowercase )
| 35 |
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = [0 for i in range(r + 1 )]
# nc0 = 1
snake_case_ = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
snake_case_ = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5)) | 39 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__lowercase : List[Any] = logging.get_logger(__name__)
__lowercase : Tuple = {
'''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''',
'''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''',
'''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''',
'''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''',
'''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''',
'''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''',
'''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''',
'''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''',
'''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''',
'''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''',
}
class _A ( snake_case ):
'''simple docstring'''
__lowerCamelCase : List[str] = '''xlm'''
__lowerCamelCase : Any = {
'''hidden_size''': '''emb_dim''',
'''num_attention_heads''': '''n_heads''',
'''num_hidden_layers''': '''n_layers''',
'''n_words''': '''vocab_size''', # For backward compatibility
}
def __init__( self ,SCREAMING_SNAKE_CASE_=30145 ,SCREAMING_SNAKE_CASE_=2048 ,SCREAMING_SNAKE_CASE_=12 ,SCREAMING_SNAKE_CASE_=16 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=False ,SCREAMING_SNAKE_CASE_=False ,SCREAMING_SNAKE_CASE_=False ,SCREAMING_SNAKE_CASE_=1 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=512 ,SCREAMING_SNAKE_CASE_=2048**-0.5 ,SCREAMING_SNAKE_CASE_=1E-12 ,SCREAMING_SNAKE_CASE_=0.02 ,SCREAMING_SNAKE_CASE_=0 ,SCREAMING_SNAKE_CASE_=1 ,SCREAMING_SNAKE_CASE_=2 ,SCREAMING_SNAKE_CASE_=3 ,SCREAMING_SNAKE_CASE_=5 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_="first" ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=5 ,SCREAMING_SNAKE_CASE_=5 ,SCREAMING_SNAKE_CASE_=0 ,SCREAMING_SNAKE_CASE_=0 ,SCREAMING_SNAKE_CASE_=2 ,SCREAMING_SNAKE_CASE_=0 ,**SCREAMING_SNAKE_CASE_ ,):
'''simple docstring'''
snake_case : Optional[int] = vocab_size
snake_case : Optional[int] = emb_dim
snake_case : Optional[Any] = n_layers
snake_case : Dict = n_heads
snake_case : Union[str, Any] = dropout
snake_case : Dict = attention_dropout
snake_case : Tuple = gelu_activation
snake_case : Tuple = sinusoidal_embeddings
snake_case : Optional[Any] = causal
snake_case : int = asm
snake_case : Any = n_langs
snake_case : str = use_lang_emb
snake_case : Optional[int] = layer_norm_eps
snake_case : Optional[Any] = bos_index
snake_case : List[str] = eos_index
snake_case : Optional[int] = pad_index
snake_case : Optional[Any] = unk_index
snake_case : Union[str, Any] = mask_index
snake_case : Any = is_encoder
snake_case : Dict = max_position_embeddings
snake_case : Optional[int] = embed_init_std
snake_case : Dict = init_std
snake_case : List[Any] = summary_type
snake_case : List[Any] = summary_use_proj
snake_case : List[str] = summary_activation
snake_case : Dict = summary_proj_to_labels
snake_case : Union[str, Any] = summary_first_dropout
snake_case : str = start_n_top
snake_case : Tuple = end_n_top
snake_case : str = mask_token_id
snake_case : Tuple = lang_id
if "n_words" in kwargs:
snake_case : Dict = kwargs["""n_words"""]
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ ,bos_token_id=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ )
class _A ( snake_case ):
'''simple docstring'''
@property
def snake_case_ ( self ):
'''simple docstring'''
if self.task == "multiple-choice":
snake_case : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
snake_case : Any = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 36 |
import argparse
import math
import os
from copy import deepcopy
import torch
from audio_diffusion.models import DiffusionAttnUnetaD
from diffusion import sampling
from torch import nn
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
lowerCAmelCase_ = {
'''gwf-440k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''',
'''sample_rate''': 4_80_00,
'''sample_size''': 6_55_36,
},
'''jmann-small-190k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''',
'''sample_rate''': 4_80_00,
'''sample_size''': 6_55_36,
},
'''jmann-large-580k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''',
'''sample_rate''': 4_80_00,
'''sample_size''': 13_10_72,
},
'''maestro-uncond-150k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''',
'''sample_rate''': 1_60_00,
'''sample_size''': 6_55_36,
},
'''unlocked-uncond-250k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''',
'''sample_rate''': 1_60_00,
'''sample_size''': 6_55_36,
},
'''honk-140k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''',
'''sample_rate''': 1_60_00,
'''sample_size''': 6_55_36,
},
}
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
return torch.atana(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / math.pi * 2
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
snake_case_ = torch.sin(t * math.pi / 2 ) ** 2
snake_case_ = (1 - sigma**2) ** 0.5
return alpha_sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
class snake_case_ ( __A ):
'''simple docstring'''
pass
class snake_case_ ( nn.Module ):
'''simple docstring'''
def __init__( self : List[Any] , _UpperCamelCase : int ) ->Optional[int]:
super().__init__()
snake_case_ = DiffusionAttnUnetaD(_UpperCamelCase , n_attn_layers=4 )
snake_case_ = deepcopy(self.diffusion )
snake_case_ = torch.quasirandom.SobolEngine(1 , scramble=_UpperCamelCase )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
snake_case_ = MODELS_MAP[model_name]['''url''']
os.system(F'''wget {url} ./''' )
return F'''./{model_name}.ckpt'''
lowerCAmelCase_ = {
'''1''': '''resnets.0''',
'''2''': '''attentions.0''',
'''3''': '''resnets.1''',
'''4''': '''attentions.1''',
'''5''': '''resnets.2''',
'''6''': '''attentions.2''',
}
lowerCAmelCase_ = {
'''8''': '''resnets.0''',
'''9''': '''attentions.0''',
'''10''': '''resnets.1''',
'''11''': '''attentions.1''',
'''12''': '''resnets.2''',
'''13''': '''attentions.2''',
}
lowerCAmelCase_ = {
'''1''': '''resnets.0''',
'''2''': '''attentions.0''',
'''3''': '''resnets.1''',
'''4''': '''attentions.1''',
'''5''': '''resnets.2''',
'''6''': '''attentions.2''',
'''8''': '''resnets.3''',
'''9''': '''attentions.3''',
'''10''': '''resnets.4''',
'''11''': '''attentions.4''',
'''12''': '''resnets.5''',
'''13''': '''attentions.5''',
}
lowerCAmelCase_ = {
'''0''': '''resnets.0''',
'''1''': '''resnets.1''',
'''2''': '''resnets.2''',
'''4''': '''resnets.0''',
'''5''': '''resnets.1''',
'''6''': '''resnets.2''',
}
lowerCAmelCase_ = {
'''skip''': '''conv_skip''',
'''main.0''': '''conv_1''',
'''main.1''': '''group_norm_1''',
'''main.3''': '''conv_2''',
'''main.4''': '''group_norm_2''',
}
lowerCAmelCase_ = {
'''norm''': '''group_norm''',
'''qkv_proj''': ['''query''', '''key''', '''value'''],
'''out_proj''': ['''proj_attn'''],
}
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
if name.startswith('''skip''' ):
return name.replace('''skip''' , RES_CONV_MAP['''skip'''] )
# name has to be of format main.{digit}
if not name.startswith('''main.''' ):
raise ValueError(F'''ResConvBlock error with {name}''' )
return name.replace(name[:6] , RES_CONV_MAP[name[:6]] )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
for key, value in ATTN_MAP.items():
if name.startswith(SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
return name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif name.startswith(SCREAMING_SNAKE_CASE__ ):
return [name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for v in value]
raise ValueError(F'''Attn error with {name}''' )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 ):
snake_case_ = input_string
if string.split('''.''' )[0] == "timestep_embed":
return string.replace('''timestep_embed''' , '''time_proj''' )
snake_case_ = 0
if string.startswith('''net.3.''' ):
depth += 1
snake_case_ = string[6:]
elif string.startswith('''net.''' ):
snake_case_ = string[4:]
while string.startswith('''main.7.''' ):
depth += 1
snake_case_ = string[7:]
if string.startswith('''main.''' ):
snake_case_ = string[5:]
# mid block
if string[:2].isdigit():
snake_case_ = string[:2]
snake_case_ = string[2:]
else:
snake_case_ = string[0]
snake_case_ = string[1:]
if depth == max_depth:
snake_case_ = MID_NUM_TO_LAYER[layer_num]
snake_case_ = '''mid_block'''
elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) < 7:
snake_case_ = DOWN_NUM_TO_LAYER[layer_num]
snake_case_ = F'''down_blocks.{depth}'''
elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) > 7:
snake_case_ = UP_NUM_TO_LAYER[layer_num]
snake_case_ = F'''up_blocks.{max_depth - depth - 1}'''
elif depth == 0:
snake_case_ = DEPTH_0_TO_LAYER[layer_num]
snake_case_ = F'''up_blocks.{max_depth - 1}''' if int(SCREAMING_SNAKE_CASE__ ) > 3 else '''down_blocks.0'''
if not string_left.startswith('''.''' ):
raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' )
snake_case_ = string_left[1:]
if "resnets" in new_layer:
snake_case_ = convert_resconv_naming(SCREAMING_SNAKE_CASE__ )
elif "attentions" in new_layer:
snake_case_ = convert_attn_naming(SCREAMING_SNAKE_CASE__ )
snake_case_ = new_string_left
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = prefix + '''.''' + new_layer + '''.''' + string_left
else:
snake_case_ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left]
return new_string
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
snake_case_ = {}
for k, v in state_dict.items():
if k.endswith('''kernel''' ):
# up- and downsample layers, don't have trainable weights
continue
snake_case_ = rename(SCREAMING_SNAKE_CASE__ )
# check if we need to transform from Conv => Linear for attention
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = transform_conv_attns(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
snake_case_ = v
return new_state_dict
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
if len(SCREAMING_SNAKE_CASE__ ) == 1:
if len(v.shape ) == 3:
# weight
snake_case_ = v[:, :, 0]
else:
# bias
snake_case_ = v
else:
# qkv matrices
snake_case_ = v.shape[0]
snake_case_ = trippled_shape // 3
for i in range(3 ):
if len(v.shape ) == 3:
snake_case_ = v[i * single_shape : (i + 1) * single_shape, :, 0]
else:
snake_case_ = v[i * single_shape : (i + 1) * single_shape]
return new_state_dict
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' )
snake_case_ = args.model_path.split('''/''' )[-1].split('''.''' )[0]
if not os.path.isfile(args.model_path ):
assert (
model_name == args.model_path
), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}'''
snake_case_ = download(SCREAMING_SNAKE_CASE__ )
snake_case_ = MODELS_MAP[model_name]['''sample_rate''']
snake_case_ = MODELS_MAP[model_name]['''sample_size''']
snake_case_ = Object()
snake_case_ = sample_size
snake_case_ = sample_rate
snake_case_ = 0
snake_case_ = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE__ , sample_rate=SCREAMING_SNAKE_CASE__ )
snake_case_ = diffusers_model.state_dict()
snake_case_ = DiffusionUncond(SCREAMING_SNAKE_CASE__ )
orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE__ )['''state_dict'''] )
snake_case_ = orig_model.diffusion_ema.eval()
snake_case_ = orig_model.state_dict()
snake_case_ = rename_orig_weights(SCREAMING_SNAKE_CASE__ )
snake_case_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() )
snake_case_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() )
assert len(SCREAMING_SNAKE_CASE__ ) == 0, F'''Problem with {renamed_minus_diffusers}'''
assert all(k.endswith('''kernel''' ) for k in list(SCREAMING_SNAKE_CASE__ ) ), F'''Problem with {diffusers_minus_renamed}'''
for key, value in renamed_state_dict.items():
assert (
diffusers_state_dict[key].squeeze().shape == value.squeeze().shape
), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}'''
if key == "time_proj.weight":
snake_case_ = value.squeeze()
snake_case_ = value
diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE__ )
snake_case_ = 100
snake_case_ = 33
snake_case_ = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE__ )
snake_case_ = torch.manual_seed(SCREAMING_SNAKE_CASE__ )
snake_case_ = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ )
snake_case_ = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE__ )[:-1]
snake_case_ = get_crash_schedule(SCREAMING_SNAKE_CASE__ )
snake_case_ = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
snake_case_ = torch.manual_seed(33 )
snake_case_ = pipe(num_inference_steps=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).audios
snake_case_ = sampling.iplms_sample(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {} )
snake_case_ = generated.clamp(-1 , 1 )
snake_case_ = (generated - audio).abs().sum()
snake_case_ = (generated - audio).abs().max()
if args.save:
pipe.save_pretrained(args.checkpoint_path )
print('''Diff sum''' , SCREAMING_SNAKE_CASE__ )
print('''Diff max''' , SCREAMING_SNAKE_CASE__ )
assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/'''
print(F'''Conversion for {model_name} successful!''' )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''')
parser.add_argument(
'''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.'''
)
parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''')
lowerCAmelCase_ = parser.parse_args()
main(args) | 39 | 0 |
def UpperCamelCase_ ( __a ) -> bool:
a__ : List[Any] = 0
for ch in input_str:
a__ : str = ord(__a )
a__ : Any = pow(2 , __a )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 37 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTMSNModel''',
'''ViTMSNForImageClassification''',
'''ViTMSNPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 39 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
A_ : Optional[Any] = {
"configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Optional[Any] = ["VisionEncoderDecoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : int = ["TFVisionEncoderDecoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Any = ["FlaxVisionEncoderDecoderModel"]
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
A_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 38 |
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : Optional[Any] ) ->Any:
snake_case_ = tf.convert_to_tensor(
[
[
8.2220991, # 3rd highest value; idx. 0
-0.5620044,
5.23229752,
4.0386393,
-6.8798378,
-0.54785802,
-3.2012153,
2.92777176,
1.88171953,
7.35341276, # 5th highest value; idx. 9
8.43207833, # 2nd highest value; idx. 10
-9.85711836,
-5.96209236,
-1.13039161,
-7.1115294,
-0.8369633,
-5.3186408,
7.06427407,
0.81369344,
-0.82023817,
-5.9179796,
0.58813443,
-6.99778438,
4.71551189,
-0.18771637,
7.44020759, # 4th highest value; idx. 25
9.38450987, # 1st highest value; idx. 26
2.12662941,
-9.32562038,
2.35652522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58425518,
4.53139238,
-5.57510464,
-6.28030699,
-7.19529503,
-4.02122551,
1.39337037,
-6.06707057,
1.59480517,
-9.643119,
0.03907799,
0.67231762,
-8.88206726,
6.27115922, # 4th highest value; idx. 13
2.28520723,
4.82767506,
4.30421368,
8.8275313, # 2nd highest value; idx. 17
5.44029958, # 5th highest value; idx. 18
-4.4735794,
7.38579536, # 3rd highest value; idx. 20
-2.91051663,
2.61946077,
-2.5674762,
-9.48959302,
-4.02922645,
-1.35416918,
9.67702323, # 1st highest value; idx. 27
-5.89478553,
1.85370467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
snake_case_ = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
snake_case_ = tf.convert_to_tensor(
[8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above
snake_case_ = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 )
snake_case_ = output[output != -float('''inf''' )]
snake_case_ = tf.cast(
tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-12 )
tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase )
@require_tf
class snake_case_ ( unittest.TestCase , __A ):
'''simple docstring'''
if is_tf_available():
SCREAMING_SNAKE_CASE : Optional[int] = {
"AutoModelForCausalLM": TFAutoModelForCausalLM,
"AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq,
"AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM,
"AutoModelForVision2Seq": TFAutoModelForVisionaSeq,
"LogitsProcessorList": TFLogitsProcessorList,
"MinLengthLogitsProcessor": TFMinLengthLogitsProcessor,
"create_tensor_fn": tf.convert_to_tensor,
"floats_tensor": floats_tensor,
"return_tensors": "tf",
}
@slow
def snake_case__( self : List[Any] ) ->Optional[int]:
# TF-only test: tf.saved_model export
snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
snake_case_ = 2
snake_case_ = 2
class snake_case_ ( tf.Module ):
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->List[Any]:
super(_UpperCamelCase , self ).__init__()
snake_case_ = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ),
tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ),
) , jit_compile=_UpperCamelCase , )
def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) ->List[Any]:
snake_case_ = self.model.generate(
input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , )
return {"sequences": outputs["sequences"]}
snake_case_ = [[2, 0], [1_0_2, 1_0_3]]
snake_case_ = [[1, 0], [1, 1]]
snake_case_ = DummyModel(model=_UpperCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} )
snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default''']
for batch_size in range(1 , len(_UpperCamelCase ) + 1 ):
snake_case_ = {
'''input_ids''': tf.constant(dummy_input_ids[:batch_size] ),
'''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ),
}
snake_case_ = serving_func(**_UpperCamelCase )['''sequences''']
snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase )
tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase )
@slow
def snake_case__( self : List[str] ) ->int:
# TF-only test: tf.saved_model export
snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
snake_case_ = 1
snake_case_ = 2
class snake_case_ ( tf.Module ):
'''simple docstring'''
def __init__( self : str , _UpperCamelCase : Any ) ->List[str]:
super(_UpperCamelCase , self ).__init__()
snake_case_ = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ),
tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ),
) , jit_compile=_UpperCamelCase , )
def snake_case__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) ->Optional[int]:
snake_case_ = self.model.generate(
input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , )
return {"sequences": outputs["sequences"]}
snake_case_ = [[2], [1_0_2, 1_0_3]]
snake_case_ = [[1], [1, 1]]
snake_case_ = DummyModel(model=_UpperCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} )
snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default''']
for input_row in range(len(_UpperCamelCase ) ):
snake_case_ = {
'''input_ids''': tf.constant([dummy_input_ids[input_row]] ),
'''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ),
}
snake_case_ = serving_func(**_UpperCamelCase )['''sequences''']
snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase )
tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase )
@slow
@require_tensorflow_text
def snake_case__( self : Optional[Any] ) ->List[Any]:
# TF-only test: tf.saved_model export
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_UpperCamelCase )
class snake_case_ ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Tuple ) ->List[Any]:
super().__init__()
snake_case_ = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , '''spiece.model''' ) , '''rb''' ).read() )
snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' )
def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->List[Any]:
snake_case_ = self.tokenizer.tokenize(_UpperCamelCase )
snake_case_, snake_case_ = text.pad_model_inputs(
_UpperCamelCase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id )
snake_case_ = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase )
return self.tokenizer.detokenize(_UpperCamelCase )
snake_case_ = CompleteSentenceTransformer()
snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' )
snake_case_ = complete_model(_UpperCamelCase )
snake_case_ = tf.keras.Model(_UpperCamelCase , _UpperCamelCase )
keras_model.save(_UpperCamelCase )
def snake_case__( self : Any ) ->List[Any]:
# Has PT equivalent: this test relies on random sampling
snake_case_ = {
'''do_sample''': True,
'''num_beams''': 1,
'''top_p''': 0.7,
'''top_k''': 1_0,
'''temperature''': 0.7,
}
snake_case_ = 1_4
snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
snake_case_ = '''Hello, my dog is cute and'''
snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''tf''' )
snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
snake_case_ = 6_3_8
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(''':/CPU:0''' ):
tf.random.set_seed(0 )
snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
self.assertTrue(expectation == len(generated_tokens[0] ) )
snake_case_ = [6_3_8, 1_9_8]
with tf.device(''':/CPU:0''' ):
tf.random.set_seed(0 )
snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def snake_case__( self : str ) ->Dict:
# Has PT equivalent: ample use of framework-specific code
snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' )
snake_case_ = '''Hugging Face is a technology company based in New York and Paris.'''
snake_case_ = bart_tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids
snake_case_ = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' )
snake_case_ = bart_model.generate(_UpperCamelCase ).numpy()
class snake_case_ ( __A ):
'''simple docstring'''
def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Optional[int] ) ->List[str]:
return super().call(_UpperCamelCase , **_UpperCamelCase )
snake_case_ = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' )
snake_case_ = bart_model.generate(_UpperCamelCase , foo='''bar''' ).numpy()
self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) )
class snake_case_ ( bart_model.model.encoder.__class__ ):
'''simple docstring'''
def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , **_UpperCamelCase : Tuple ) ->Optional[Any]:
return super().call(_UpperCamelCase , **_UpperCamelCase )
snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared )
snake_case_ = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
snake_case_ = bart_model.generate(_UpperCamelCase ).numpy()
with self.assertRaises(_UpperCamelCase ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(_UpperCamelCase , foo='''bar''' ) | 39 | 0 |
def UpperCamelCase ( ) -> Any:
for n in range(1 , 1000000 ):
yield n * (n + 1) // 2
def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> Any:
UpperCamelCase : str = 1
UpperCamelCase : Optional[Any] = 2
while i * i <= n:
UpperCamelCase : List[str] = 0
while n % i == 0:
n //= i
multiplicity += 1
divisors_count *= multiplicity + 1
i += 1
if n > 1:
divisors_count *= 2
return divisors_count
def UpperCamelCase ( ) -> List[str]:
return next(i for i in triangle_number_generator() if count_divisors(snake_case__ ) > 500 )
if __name__ == "__main__":
print(solution())
| 40 |
import unittest
from transformers import DonutProcessor
lowerCAmelCase_ = '''naver-clova-ix/donut-base'''
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : Union[str, Any] ) ->Any:
snake_case_ = DonutProcessor.from_pretrained(_UpperCamelCase )
def snake_case__( self : Dict ) ->str:
snake_case_ = {
'''name''': '''John Doe''',
'''age''': '''99''',
'''city''': '''Atlanta''',
'''state''': '''GA''',
'''zip''': '''30301''',
'''phone''': '''123-4567''',
'''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}],
}
snake_case_ = (
'''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>'''
'''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>'''
'''<s_nicknames><s_nickname>Johnny</s_nickname>'''
'''<sep/><s_nickname>JD</s_nickname></s_nicknames>'''
)
snake_case_ = self.processor.tokenajson(_UpperCamelCase )
self.assertDictEqual(_UpperCamelCase , _UpperCamelCase ) | 39 | 0 |
'''simple docstring'''
def _A ( A__ ):
"""simple docstring"""
__lowercase = ''''''
for ch in key:
if ch == " " or ch not in key_no_dups and ch.isalpha():
key_no_dups += ch
return key_no_dups
def _A ( A__ ):
"""simple docstring"""
__lowercase = [chr(i + 65 ) for i in range(26 )]
# Remove duplicate characters from key
__lowercase = remove_duplicates(key.upper() )
__lowercase = len(A__ )
# First fill cipher with key characters
__lowercase = {alphabet[i]: char for i, char in enumerate(A__ )}
# Then map remaining characters in alphabet to
# the alphabet from the beginning
for i in range(len(A__ ) , 26 ):
__lowercase = alphabet[i - offset]
# Ensure we are not mapping letters to letters previously mapped
while char in key:
offset -= 1
__lowercase = alphabet[i - offset]
__lowercase = char
return cipher_alphabet
def _A ( A__ , A__ ):
"""simple docstring"""
return "".join(cipher_map.get(A__ , A__ ) for ch in message.upper() )
def _A ( A__ , A__ ):
"""simple docstring"""
__lowercase = {v: k for k, v in cipher_map.items()}
return "".join(rev_cipher_map.get(A__ , A__ ) for ch in message.upper() )
def _A ( ):
"""simple docstring"""
__lowercase = input('''Enter message to encode or decode: ''' ).strip()
__lowercase = input('''Enter keyword: ''' ).strip()
__lowercase = input('''Encipher or decipher? E/D:''' ).strip()[0].lower()
try:
__lowercase = {'''e''': encipher, '''d''': decipher}[option]
except KeyError:
raise KeyError('''invalid input option''' )
__lowercase = create_cipher_map(A__ )
print(func(A__ , A__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 41 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
if not nums:
raise ValueError('''List is empty''' )
return sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 39 | 0 |
'''simple docstring'''
from math import pow
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> tuple[int, int]:
if current_sum == needed_sum:
# If the sum of the powers is equal to needed_sum, then we have a solution.
solutions_count += 1
return current_sum, solutions_count
lowerCamelCase_ = int(pow(__UpperCamelCase ,__UpperCamelCase ) )
if current_sum + i_to_n <= needed_sum:
# If the sum of the powers is less than needed_sum, then continue adding powers.
current_sum += i_to_n
lowerCamelCase_ ,lowerCamelCase_ = backtrack(
__UpperCamelCase ,__UpperCamelCase ,current_number + 1 ,__UpperCamelCase ,__UpperCamelCase )
current_sum -= i_to_n
if i_to_n < needed_sum:
# If the power of i is less than needed_sum, then try with the next power.
lowerCamelCase_ ,lowerCamelCase_ = backtrack(
__UpperCamelCase ,__UpperCamelCase ,current_number + 1 ,__UpperCamelCase ,__UpperCamelCase )
return current_sum, solutions_count
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> int:
if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10):
raise ValueError(
'Invalid input\n'
'needed_sum must be between 1 and 1000, power between 2 and 10.' )
return backtrack(__UpperCamelCase ,__UpperCamelCase ,1 ,0 ,0 )[1] # Return the solutions_count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 42 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : List[str] ) ->str:
snake_case_ = inspect.getfile(accelerate.test_utils )
snake_case_ = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
snake_case_ = test_metrics
@require_cpu
def snake_case__( self : str ) ->int:
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def snake_case__( self : Union[str, Any] ) ->Any:
debug_launcher(self.test_metrics.main )
@require_single_gpu
def snake_case__( self : List[Any] ) ->Tuple:
self.test_metrics.main()
@require_multi_gpu
def snake_case__( self : Any ) ->Union[str, Any]:
print(f'''Found {torch.cuda.device_count()} devices.''' )
snake_case_ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) | 39 | 0 |
import gc
import unittest
import numpy as np
import torch
from diffusers import (
AudioDiffusionPipeline,
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
DiffusionPipeline,
Mel,
UNetaDConditionModel,
UNetaDModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class _a ( unittest.TestCase ):
def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowerCamelCase_ ( self: Any ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
lowercase__ = UNetaDModel(
sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , )
return model
@property
def lowerCamelCase_ ( self: str ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
lowercase__ = UNetaDConditionModel(
sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , )
return model
@property
def lowerCamelCase_ ( self: str ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
lowercase__ = AutoencoderKL(
sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , )
lowercase__ = UNetaDModel(
sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , )
return vqvae, unet
@slow
def lowerCamelCase_ ( self: Any ) -> Dict:
"""simple docstring"""
lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowercase__ = Mel(
x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , )
lowercase__ = DDPMScheduler()
lowercase__ = AudioDiffusionPipeline(vqvae=UpperCamelCase_ , unet=self.dummy_unet , mel=UpperCamelCase_ , scheduler=UpperCamelCase_ )
lowercase__ = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(42 )
lowercase__ = pipe(generator=UpperCamelCase_ , steps=4 )
lowercase__ = output.audios[0]
lowercase__ = output.images[0]
lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(42 )
lowercase__ = pipe(generator=UpperCamelCase_ , steps=4 , return_dict=UpperCamelCase_ )
lowercase__ = output[0][0]
assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length)
assert (
image.height == self.dummy_unet.config.sample_size[0]
and image.width == self.dummy_unet.config.sample_size[1]
)
lowercase__ = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10]
lowercase__ = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10]
lowercase__ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0
lowercase__ = Mel(
x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , )
lowercase__ = DDIMScheduler()
lowercase__ = self.dummy_vqvae_and_unet
lowercase__ = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=UpperCamelCase_ , scheduler=UpperCamelCase_ )
lowercase__ = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
np.random.seed(0 )
lowercase__ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) )
lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(42 )
lowercase__ = pipe(raw_audio=UpperCamelCase_ , generator=UpperCamelCase_ , start_step=5 , steps=10 )
lowercase__ = output.images[0]
assert (
image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0]
and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1]
)
lowercase__ = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10]
lowercase__ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
lowercase__ = self.dummy_unet_condition
lowercase__ = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=UpperCamelCase_ , mel=UpperCamelCase_ , scheduler=UpperCamelCase_ )
lowercase__ = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
np.random.seed(0 )
lowercase__ = torch.rand((1, 1, 10) )
lowercase__ = pipe(generator=UpperCamelCase_ , encoding=UpperCamelCase_ )
lowercase__ = output.images[0]
lowercase__ = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10]
lowercase__ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
@slow
@require_torch_gpu
class _a ( unittest.TestCase ):
def lowerCamelCase_ ( self: Optional[int] ) -> int:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]:
"""simple docstring"""
lowercase__ = torch_device
lowercase__ = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' )
lowercase__ = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(42 )
lowercase__ = pipe(generator=UpperCamelCase_ )
lowercase__ = output.audios[0]
lowercase__ = output.images[0]
assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length)
assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1]
lowercase__ = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10]
lowercase__ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
| 43 |
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'''huggingface/informer-tourism-monthly''': (
'''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json'''
),
# See all Informer models at https://huggingface.co/models?filter=informer
}
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = "informer"
SCREAMING_SNAKE_CASE : int = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__( self : Dict , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "student_t" , _UpperCamelCase : str = "nll" , _UpperCamelCase : int = 1 , _UpperCamelCase : List[int] = None , _UpperCamelCase : Optional[Union[str, bool]] = "mean" , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : int = 6_4 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.05 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : Dict=True , _UpperCamelCase : str = "prob" , _UpperCamelCase : int = 5 , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Optional[int]:
# time series specific configuration
snake_case_ = prediction_length
snake_case_ = context_length or prediction_length
snake_case_ = distribution_output
snake_case_ = loss
snake_case_ = input_size
snake_case_ = num_time_features
snake_case_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7]
snake_case_ = scaling
snake_case_ = num_dynamic_real_features
snake_case_ = num_static_real_features
snake_case_ = num_static_categorical_features
# set cardinality
if cardinality and num_static_categorical_features > 0:
if len(_UpperCamelCase ) != num_static_categorical_features:
raise ValueError(
'''The cardinality should be a list of the same length as `num_static_categorical_features`''' )
snake_case_ = cardinality
else:
snake_case_ = [0]
# set embedding_dimension
if embedding_dimension and num_static_categorical_features > 0:
if len(_UpperCamelCase ) != num_static_categorical_features:
raise ValueError(
'''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' )
snake_case_ = embedding_dimension
else:
snake_case_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
snake_case_ = num_parallel_samples
# Transformer architecture configuration
snake_case_ = input_size * len(self.lags_sequence ) + self._number_of_features
snake_case_ = d_model
snake_case_ = encoder_attention_heads
snake_case_ = decoder_attention_heads
snake_case_ = encoder_ffn_dim
snake_case_ = decoder_ffn_dim
snake_case_ = encoder_layers
snake_case_ = decoder_layers
snake_case_ = dropout
snake_case_ = attention_dropout
snake_case_ = activation_dropout
snake_case_ = encoder_layerdrop
snake_case_ = decoder_layerdrop
snake_case_ = activation_function
snake_case_ = init_std
snake_case_ = use_cache
# Informer
snake_case_ = attention_type
snake_case_ = sampling_factor
snake_case_ = distil
super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase )
@property
def snake_case__( self : Optional[Any] ) ->int:
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
) | 39 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class UpperCAmelCase__ ( unittest.TestCase ):
def __init__( self : Optional[int],__A : Any,__A : Tuple=7,__A : List[Any]=3,__A : str=1_8,__A : Tuple=3_0,__A : Dict=4_0_0,__A : int=True,__A : List[Any]=None,__A : Any=True,__A : int=False,__A : str=True,__A : int=True,__A : Any=[0.5, 0.5, 0.5],__A : Dict=[0.5, 0.5, 0.5],):
_lowerCamelCase : str = parent
_lowerCamelCase : Dict = batch_size
_lowerCamelCase : List[Any] = num_channels
_lowerCamelCase : Dict = image_size
_lowerCamelCase : Tuple = min_resolution
_lowerCamelCase : List[str] = max_resolution
_lowerCamelCase : str = do_resize
_lowerCamelCase : int = size if size is not None else {"height": 1_8, "width": 2_0}
_lowerCamelCase : Union[str, Any] = do_thumbnail
_lowerCamelCase : Optional[int] = do_align_axis
_lowerCamelCase : Any = do_pad
_lowerCamelCase : Tuple = do_normalize
_lowerCamelCase : str = image_mean
_lowerCamelCase : int = image_std
def lowerCamelCase_ ( self : List[Any] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class UpperCAmelCase__ ( A , unittest.TestCase ):
lowerCAmelCase_ = DonutImageProcessor if is_vision_available() else None
def lowerCamelCase_ ( self : Dict ):
_lowerCamelCase : int = DonutImageProcessingTester(self )
@property
def lowerCamelCase_ ( self : Any ):
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase_ ( self : Tuple ):
_lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__A,"do_resize" ) )
self.assertTrue(hasattr(__A,"size" ) )
self.assertTrue(hasattr(__A,"do_thumbnail" ) )
self.assertTrue(hasattr(__A,"do_align_long_axis" ) )
self.assertTrue(hasattr(__A,"do_pad" ) )
self.assertTrue(hasattr(__A,"do_normalize" ) )
self.assertTrue(hasattr(__A,"image_mean" ) )
self.assertTrue(hasattr(__A,"image_std" ) )
def lowerCamelCase_ ( self : Tuple ):
_lowerCamelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size,{"height": 1_8, "width": 2_0} )
_lowerCamelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict,size=4_2 )
self.assertEqual(image_processor.size,{"height": 4_2, "width": 4_2} )
# Previous config had dimensions in (width, height) order
_lowerCamelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict,size=(4_2, 8_4) )
self.assertEqual(image_processor.size,{"height": 8_4, "width": 4_2} )
def lowerCamelCase_ ( self : List[Any] ):
pass
@is_flaky()
def lowerCamelCase_ ( self : Dict ):
# Initialize image_processing
_lowerCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCamelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester,equal_resolution=__A )
for image in image_inputs:
self.assertIsInstance(__A,Image.Image )
# Test not batched input
_lowerCamelCase : Union[str, Any] = image_processing(image_inputs[0],return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
),)
# Test batched
_lowerCamelCase : int = image_processing(__A,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
),)
@is_flaky()
def lowerCamelCase_ ( self : List[str] ):
# Initialize image_processing
_lowerCamelCase : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester,equal_resolution=__A,numpify=__A )
for image in image_inputs:
self.assertIsInstance(__A,np.ndarray )
# Test not batched input
_lowerCamelCase : List[Any] = image_processing(image_inputs[0],return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
),)
# Test batched
_lowerCamelCase : List[Any] = image_processing(__A,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
),)
@is_flaky()
def lowerCamelCase_ ( self : Optional[Any] ):
# Initialize image_processing
_lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester,equal_resolution=__A,torchify=__A )
for image in image_inputs:
self.assertIsInstance(__A,torch.Tensor )
# Test not batched input
_lowerCamelCase : Tuple = image_processing(image_inputs[0],return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
),)
# Test batched
_lowerCamelCase : int = image_processing(__A,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
),) | 44 |
import cmath
import math
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ )
snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ )
# Convert voltage and current to rectangular form
snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod() | 39 | 0 |
def A ( ) -> int:
return 1
def A ( lowercase__ : int ) -> int:
return 0 if x < 0 else two_pence(x - 2 ) + one_pence()
def A ( lowercase__ : int ) -> int:
return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowercase__ )
def A ( lowercase__ : int ) -> int:
return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowercase__ )
def A ( lowercase__ : int ) -> int:
return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowercase__ )
def A ( lowercase__ : int ) -> int:
return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowercase__ )
def A ( lowercase__ : int ) -> int:
return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowercase__ )
def A ( lowercase__ : int ) -> int:
return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowercase__ )
def A ( lowercase__ : int = 200 ) -> int:
return two_pound(lowercase__ )
if __name__ == "__main__":
print(solution(int(input().strip()))) | 45 |
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class snake_case_ :
'''simple docstring'''
def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=1_3 , _UpperCamelCase : str=7 , _UpperCamelCase : int=True , _UpperCamelCase : Dict=True , _UpperCamelCase : int=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : str=3_2 , _UpperCamelCase : str=5 , _UpperCamelCase : str=4 , _UpperCamelCase : int=3_7 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : str=5_1_2 , _UpperCamelCase : Optional[int]=1_6 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Any=0.02 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : str=None , ) ->Dict:
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = num_choices
snake_case_ = scope
def snake_case__( self : str ) ->List[Any]:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = None
if self.use_input_mask:
snake_case_ = random_attention_mask([self.batch_size, self.seq_length] )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = ids_tensor([self.batch_size] , self.num_choices )
snake_case_ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case__( self : List[str] ) ->Tuple:
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , )
def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) ->Dict:
snake_case_ = BioGptModel(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )
snake_case_ = model(_UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , ) ->Optional[int]:
snake_case_ = BioGptForCausalLM(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , *_UpperCamelCase : List[Any] ) ->Union[str, Any]:
snake_case_ = BioGptModel(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
# create attention mask
snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase )
snake_case_ = self.seq_length // 2
snake_case_ = 0
# first forward pass
snake_case_, snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).to_tuple()
# create hypothetical next token and extent to next_input_ids
snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
snake_case_ = ids_tensor((1,) , _UpperCamelCase ).item() + 1
snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
snake_case_ = random_other_next_tokens
# append to next input_ids and attn_mask
snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case_ = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCamelCase )] , dim=1 , )
# get two different outputs
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state''']
snake_case_ = model(_UpperCamelCase , past_key_values=_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state''']
# select random slice
snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach()
snake_case_ = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) )
def snake_case__( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , *_UpperCamelCase : List[Any] ) ->int:
snake_case_ = BioGptModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval()
snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase )
# first forward pass
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase )
snake_case_, snake_case_ = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case_ = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state''']
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[
'''last_hidden_state'''
]
# select random slice
snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach()
snake_case_ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) )
def snake_case__( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , *_UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=False ) ->Dict:
snake_case_ = BioGptForCausalLM(_UpperCamelCase )
model.to(_UpperCamelCase )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def snake_case__( self : List[Any] , _UpperCamelCase : Optional[int] , *_UpperCamelCase : Dict ) ->Dict:
snake_case_ = BioGptModel(_UpperCamelCase )
snake_case_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 )
def snake_case__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , *_UpperCamelCase : List[str] ) ->int:
snake_case_ = self.num_labels
snake_case_ = BioGptForTokenClassification(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def snake_case__( self : Optional[Any] ) ->int:
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
),
) = config_and_inputs
snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class snake_case_ ( __A , __A , __A , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE : Tuple = (BioGptForCausalLM,) if is_torch_available() else ()
SCREAMING_SNAKE_CASE : Optional[Any] = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE : Tuple = False
def snake_case__( self : List[str] ) ->Union[str, Any]:
snake_case_ = BioGptModelTester(self )
snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 )
def snake_case__( self : str ) ->int:
self.config_tester.run_common_tests()
def snake_case__( self : str ) ->Tuple:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase )
def snake_case__( self : Tuple ) ->List[Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*_UpperCamelCase )
def snake_case__( self : Tuple ) ->str:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCamelCase )
def snake_case__( self : Union[str, Any] ) ->Dict:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*_UpperCamelCase , gradient_checkpointing=_UpperCamelCase )
def snake_case__( self : Optional[int] ) ->List[Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCamelCase )
def snake_case__( self : List[Any] ) ->Union[str, Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCamelCase )
def snake_case__( self : Optional[int] ) ->Optional[int]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCamelCase )
@slow
def snake_case__( self : int ) ->Optional[Any]:
snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(_UpperCamelCase )
snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
snake_case_ = '''left'''
# Define PAD Token = EOS Token = 50256
snake_case_ = tokenizer.eos_token
snake_case_ = model.config.eos_token_id
# use different length sentences to test batching
snake_case_ = [
'''Hello, my dog is a little''',
'''Today, I''',
]
snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase )
snake_case_ = inputs['''input_ids'''].to(_UpperCamelCase )
snake_case_ = model.generate(
input_ids=_UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(_UpperCamelCase ) , )
snake_case_ = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase )
snake_case_ = model.generate(input_ids=_UpperCamelCase )
snake_case_ = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
snake_case_ = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase )
snake_case_ = model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings )
snake_case_ = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase )
snake_case_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase )
snake_case_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase )
snake_case_ = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] )
@slow
def snake_case__( self : Optional[int] ) ->List[str]:
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = BioGptModel.from_pretrained(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase )
def snake_case__( self : Optional[int] ) ->str:
snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = 3
snake_case_ = input_dict['''input_ids''']
snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase )
snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
snake_case_ = BioGptForSequenceClassification(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def snake_case__( self : str ) ->str:
snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = 3
snake_case_ = '''multi_label_classification'''
snake_case_ = input_dict['''input_ids''']
snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase )
snake_case_ = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
snake_case_ = BioGptForSequenceClassification(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def snake_case__( self : int ) ->Any:
snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
snake_case_ = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] )
snake_case_ = model(_UpperCamelCase )[0]
snake_case_ = 4_2_3_8_4
snake_case_ = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , _UpperCamelCase )
snake_case_ = torch.tensor(
[[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) )
@slow
def snake_case__( self : List[str] ) ->Optional[int]:
snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(_UpperCamelCase )
torch.manual_seed(0 )
snake_case_ = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_UpperCamelCase )
snake_case_ = model.generate(
**_UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=_UpperCamelCase , )
snake_case_ = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCamelCase )
snake_case_ = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(_UpperCamelCase , _UpperCamelCase ) | 39 | 0 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
_lowerCAmelCase : Union[str, Any] = {
'''microsoft/unispeech-sat-base-100h-libri-ft''': (
'''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'''
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class A_ ( _a ):
lowerCAmelCase__ = 'unispeech-sat'
def __init__( self: List[str] ,__lowerCAmelCase: Any=32 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[Any]=0.1 ,__lowerCAmelCase: Tuple=0.1 ,__lowerCAmelCase: str=0.0 ,__lowerCAmelCase: int=0.0 ,__lowerCAmelCase: List[Any]=0.1 ,__lowerCAmelCase: List[Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Tuple=1e-5 ,__lowerCAmelCase: Tuple="group" ,__lowerCAmelCase: Optional[Any]="gelu" ,__lowerCAmelCase: List[Any]=(512, 512, 512, 512, 512, 512, 512) ,__lowerCAmelCase: Dict=(5, 2, 2, 2, 2, 2, 2) ,__lowerCAmelCase: Any=(10, 3, 3, 3, 3, 2, 2) ,__lowerCAmelCase: int=False ,__lowerCAmelCase: Union[str, Any]=128 ,__lowerCAmelCase: Optional[Any]=16 ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Optional[int]=0.05 ,__lowerCAmelCase: str=10 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Optional[int]=0.0 ,__lowerCAmelCase: Dict=10 ,__lowerCAmelCase: Dict=0 ,__lowerCAmelCase: int=320 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Any=100 ,__lowerCAmelCase: List[Any]=256 ,__lowerCAmelCase: Any=256 ,__lowerCAmelCase: Optional[int]=0.1 ,__lowerCAmelCase: List[str]="mean" ,__lowerCAmelCase: str=False ,__lowerCAmelCase: Optional[Any]=False ,__lowerCAmelCase: Any=256 ,__lowerCAmelCase: Optional[int]=(512, 512, 512, 512, 1_500) ,__lowerCAmelCase: Optional[Any]=(5, 3, 3, 1, 1) ,__lowerCAmelCase: Optional[Any]=(1, 2, 3, 1, 1) ,__lowerCAmelCase: Dict=512 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Optional[int]=504 ,**__lowerCAmelCase: Optional[Any] ,):
'''simple docstring'''
super().__init__(**__lowerCAmelCase ,pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase )
_lowerCamelCase : Optional[int] = hidden_size
_lowerCamelCase : str = feat_extract_norm
_lowerCamelCase : int = feat_extract_activation
_lowerCamelCase : int = list(__lowerCAmelCase )
_lowerCamelCase : List[Any] = list(__lowerCAmelCase )
_lowerCamelCase : str = list(__lowerCAmelCase )
_lowerCamelCase : Dict = conv_bias
_lowerCamelCase : List[Any] = num_conv_pos_embeddings
_lowerCamelCase : int = num_conv_pos_embedding_groups
_lowerCamelCase : List[Any] = len(self.conv_dim )
_lowerCamelCase : List[str] = num_hidden_layers
_lowerCamelCase : Dict = intermediate_size
_lowerCamelCase : List[Any] = hidden_act
_lowerCamelCase : Tuple = num_attention_heads
_lowerCamelCase : List[Any] = hidden_dropout
_lowerCamelCase : int = attention_dropout
_lowerCamelCase : List[Any] = activation_dropout
_lowerCamelCase : Union[str, Any] = feat_proj_dropout
_lowerCamelCase : List[Any] = final_dropout
_lowerCamelCase : Union[str, Any] = layerdrop
_lowerCamelCase : Any = layer_norm_eps
_lowerCamelCase : Union[str, Any] = initializer_range
_lowerCamelCase : Any = vocab_size
_lowerCamelCase : Any = num_clusters
_lowerCamelCase : int = do_stable_layer_norm
_lowerCamelCase : Dict = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_lowerCamelCase : List[Any] = apply_spec_augment
_lowerCamelCase : List[str] = mask_time_prob
_lowerCamelCase : Optional[int] = mask_time_length
_lowerCamelCase : str = mask_time_min_masks
_lowerCamelCase : Optional[int] = mask_feature_prob
_lowerCamelCase : Any = mask_feature_length
_lowerCamelCase : Optional[int] = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
_lowerCamelCase : int = num_codevectors_per_group
_lowerCamelCase : List[Any] = num_codevector_groups
_lowerCamelCase : List[str] = contrastive_logits_temperature
_lowerCamelCase : List[Any] = feat_quantizer_dropout
_lowerCamelCase : List[Any] = num_negatives
_lowerCamelCase : Dict = codevector_dim
_lowerCamelCase : List[Any] = proj_codevector_dim
_lowerCamelCase : int = diversity_loss_weight
# ctc loss
_lowerCamelCase : Tuple = ctc_loss_reduction
_lowerCamelCase : List[Any] = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_lowerCamelCase : Any = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_lowerCamelCase : Any = list(__lowerCAmelCase )
_lowerCamelCase : Any = list(__lowerCAmelCase )
_lowerCamelCase : List[str] = list(__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = xvector_output_dim
@property
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
return functools.reduce(operator.mul ,self.conv_stride ,1 ) | 46 |
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
snake_case_ = (boundary[1] - boundary[0]) / steps
snake_case_ = boundary[0]
snake_case_ = boundary[1]
snake_case_ = make_points(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
snake_case_ = 0.0
y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ )
for i in x_i:
# print(i)
y += h * f(SCREAMING_SNAKE_CASE__ )
y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ )
return y
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = a + h
while x < (b - h):
yield x
snake_case_ = x + h
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # enter your function here
snake_case_ = (x - 0) * (x - 0)
return y
def __SCREAMING_SNAKE_CASE ():
snake_case_ = 0.0 # Lower bound of integration
snake_case_ = 1.0 # Upper bound of integration
snake_case_ = 10.0 # define number of steps or resolution
snake_case_ = [a, b] # define boundary of integration
snake_case_ = method_a(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
print(F'''y = {y}''' )
if __name__ == "__main__":
main() | 39 | 0 |
import heapq as hq
import math
from collections.abc import Iterator
class _UpperCamelCase:
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
__a : str = str(id_ )
__a : Optional[int] = None
__a : Any = None
__a : List[Any] = []
__a : Dict = {} # {vertex:distance}
def __lt__( self : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
return self.key < other.key
def __repr__( self : Tuple ):
'''simple docstring'''
return self.id
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
self.neighbors.append(SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
__a : Any = weight
def UpperCAmelCase__ ( lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple ):
# add the neighbors:
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] , lowerCamelCase_ )
graph[b - 1].add_edge(graph[a - 1] , lowerCamelCase_ )
def UpperCAmelCase__ ( lowerCamelCase_ : list , lowerCamelCase_ : Vertex ):
__a : Optional[int] = []
for u in graph:
__a : Union[str, Any] = math.inf
__a : Optional[int] = None
__a : List[Any] = 0
__a : Union[str, Any] = graph[:]
while q:
__a : Optional[Any] = min(lowerCamelCase_ )
q.remove(lowerCamelCase_ )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
__a : Dict = u
__a : Dict = u.edges[v.id]
for i in range(1 , len(lowerCamelCase_ ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def UpperCAmelCase__ ( lowerCamelCase_ : list , lowerCamelCase_ : Vertex ):
for u in graph:
__a : Optional[int] = math.inf
__a : Dict = None
__a : Tuple = 0
__a : Union[str, Any] = list(lowerCamelCase_ )
hq.heapify(lowerCamelCase_ )
while h:
__a : int = hq.heappop(lowerCamelCase_ )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
__a : List[str] = u
__a : Optional[Any] = u.edges[v.id]
hq.heapify(lowerCamelCase_ )
for i in range(1 , len(lowerCamelCase_ ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def UpperCAmelCase__ ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 47 |
import os
import re
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Optional, Union
from uuid import uuida
from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami
from huggingface_hub.file_download import REGEX_COMMIT_HASH
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
is_jinja_available,
)
from packaging import version
from requests import HTTPError
from .. import __version__
from .constants import (
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
)
from .import_utils import (
ENV_VARS_TRUE_VALUES,
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_onnx_available,
is_torch_available,
)
from .logging import get_logger
lowerCAmelCase_ = get_logger(__name__)
lowerCAmelCase_ = Path(__file__).parent / '''model_card_template.md'''
lowerCAmelCase_ = uuida().hex
lowerCAmelCase_ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES
lowerCAmelCase_ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES
lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/'''
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None ):
snake_case_ = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}'''
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
return ua + "; telemetry/off"
if is_torch_available():
ua += F'''; torch/{_torch_version}'''
if is_flax_available():
ua += F'''; jax/{_jax_version}'''
ua += F'''; flax/{_flax_version}'''
if is_onnx_available():
ua += F'''; onnxruntime/{_onnxruntime_version}'''
# CI will set this value to True
if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
ua += "; " + user_agent
return ua
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ):
if token is None:
snake_case_ = HfFolder.get_token()
if organization is None:
snake_case_ = whoami(SCREAMING_SNAKE_CASE__ )['''name''']
return F'''{username}/{model_id}'''
else:
return F'''{organization}/{model_id}'''
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
if not is_jinja_available():
raise ValueError(
'''Modelcard rendering is based on Jinja templates.'''
''' Please make sure to have `jinja` installed before using `create_model_card`.'''
''' To install it, please run `pip install Jinja2`.''' )
if hasattr(SCREAMING_SNAKE_CASE__ , '''local_rank''' ) and args.local_rank not in [-1, 0]:
return
snake_case_ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , '''hub_token''' ) else None
snake_case_ = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ )
snake_case_ = ModelCard.from_template(
card_data=ModelCardData( # Card metadata object that will be converted to YAML block
language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=(
args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''gradient_accumulation_steps''' ) else None
) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , )
snake_case_ = os.path.join(args.output_dir , '''README.md''' )
model_card.save(SCREAMING_SNAKE_CASE__ )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ):
if resolved_file is None or commit_hash is not None:
return commit_hash
snake_case_ = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() )
snake_case_ = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE__ )
if search is None:
return None
snake_case_ = search.groups()[0]
return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
lowerCAmelCase_ = os.path.expanduser(
os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface'''))
)
lowerCAmelCase_ = os.path.join(hf_cache_home, '''diffusers''')
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ):
if new_cache_dir is None:
snake_case_ = DIFFUSERS_CACHE
if old_cache_dir is None:
snake_case_ = old_diffusers_cache
snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser()
snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser()
for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ):
if old_blob_path.is_file() and not old_blob_path.is_symlink():
snake_case_ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ )
new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
try:
os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
except OSError:
logger.warning(
'''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' )
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''')
if not os.path.isfile(cache_version_file):
lowerCAmelCase_ = 0
else:
with open(cache_version_file) as f:
try:
lowerCAmelCase_ = int(f.read())
except ValueError:
lowerCAmelCase_ = 0
if cache_version < 1:
lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
if old_cache_is_not_empty:
logger.warning(
'''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your '''
'''existing cached models. This is a one-time operation, you can interrupt it or run it '''
'''later by calling `diffusers.utils.hub_utils.move_cache()`.'''
)
try:
move_cache()
except Exception as e:
lowerCAmelCase_ = '''\n'''.join(traceback.format_tb(e.__traceback__))
logger.error(
f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """
'''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole '''
'''message and we will do our best to help.'''
)
if cache_version < 1:
try:
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
with open(cache_version_file, '''w''') as f:
f.write('''1''')
except Exception:
logger.warning(
f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """
'''the directory exists and can be written to.'''
)
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ):
if variant is not None:
snake_case_ = weights_name.split('''.''' )
snake_case_ = splits[:-1] + [variant] + splits[-1:]
snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ )
return weights_name
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , *,
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ):
snake_case_ = str(SCREAMING_SNAKE_CASE__ )
if os.path.isfile(SCREAMING_SNAKE_CASE__ ):
return pretrained_model_name_or_path
elif os.path.isdir(SCREAMING_SNAKE_CASE__ ):
if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ):
# Load from a PyTorch checkpoint
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return model_file
elif subfolder is not None and os.path.isfile(
os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ):
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return model_file
else:
raise EnvironmentError(
F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' )
else:
# 1. First check if deprecated way of loading from branches is used
if (
revision in DEPRECATED_REVISION_ARGS
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('''0.20.0''' )
):
try:
snake_case_ = hf_hub_download(
SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , )
warnings.warn(
F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , )
return model_file
except: # noqa: E722
warnings.warn(
F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , )
try:
# 2. Load model file as usual
snake_case_ = hf_hub_download(
SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , )
return model_file
except RepositoryNotFoundError:
raise EnvironmentError(
F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier '''
'''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a '''
'''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli '''
'''login`.''' )
except RevisionNotFoundError:
raise EnvironmentError(
F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for '''
'''this model name. Check the model page at '''
F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' )
except EntryNotFoundError:
raise EnvironmentError(
F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' )
except HTTPError as err:
raise EnvironmentError(
F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' )
except ValueError:
raise EnvironmentError(
F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it'''
F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a'''
F''' directory containing a file named {weights_name} or'''
''' \nCheckout your internet connection or see how to run the library in'''
''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' )
except EnvironmentError:
raise EnvironmentError(
F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from '''
'''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. '''
F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory '''
F'''containing a file named {weights_name}''' ) | 39 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase__ : List[Any] = logging.get_logger(__name__)
UpperCAmelCase__ : List[str] = "▁"
UpperCAmelCase__ : Dict = {"vocab_file": "sentencepiece.bpe.model"}
UpperCAmelCase__ : int = {
"vocab_file": {
"facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model",
}
}
UpperCAmelCase__ : Dict = {
"facebook/xglm-564M": 20_48,
}
class A ( SCREAMING_SNAKE_CASE__ ):
snake_case__ :List[Any] = VOCAB_FILES_NAMES
snake_case__ :Any = PRETRAINED_VOCAB_FILES_MAP
snake_case__ :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ :Tuple = ['input_ids', 'attention_mask']
def __init__( self : int , __magic_name__ : str , __magic_name__ : Optional[int]="<s>" , __magic_name__ : int="</s>" , __magic_name__ : Optional[Any]="</s>" , __magic_name__ : List[Any]="<s>" , __magic_name__ : List[str]="<unk>" , __magic_name__ : Optional[int]="<pad>" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Optional[Any] , ):
"""simple docstring"""
lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
lowerCAmelCase__ = 7
lowerCAmelCase__ = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )]
lowerCAmelCase__ = kwargs.get("additional_special_tokens" , [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__magic_name__ ) )
lowerCAmelCase__ = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
lowerCAmelCase__ = 1
# Mimic fairseq token-to-id alignment for the first 4 token
lowerCAmelCase__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
lowerCAmelCase__ = len(self.sp_model )
lowerCAmelCase__ = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(__magic_name__ )
lowerCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = self.__dict__.copy()
lowerCAmelCase__ = None
lowerCAmelCase__ = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : List[str] , __magic_name__ : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
lowerCAmelCase__ = {}
lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ):
"""simple docstring"""
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
lowerCAmelCase__ = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ )
if token_ids_a is None:
return [1] + ([0] * len(__magic_name__ ))
return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ ))
def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ):
"""simple docstring"""
lowerCAmelCase__ = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def __SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str ):
"""simple docstring"""
return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Dict ):
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowerCAmelCase__ = self.sp_model.PieceToId(__magic_name__ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Tuple ):
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = "".join(__magic_name__ ).replace(__magic_name__ , " " ).strip()
return out_string
def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(__magic_name__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowerCAmelCase__ = os.path.join(
__magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __magic_name__ )
elif not os.path.isfile(self.vocab_file ):
with open(__magic_name__ , "wb" ) as fi:
lowerCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (out_vocab_file,)
| 48 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''',
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt"
def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any:
super().__init__(**_UpperCamelCase )
snake_case_ = hidden_size
snake_case_ = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info('''Initializing the config with a `BiT` backbone.''' )
snake_case_ = {
'''global_padding''': '''same''',
'''layer_type''': '''bottleneck''',
'''depths''': [3, 4, 9],
'''out_features''': ['''stage1''', '''stage2''', '''stage3'''],
'''embedding_dynamic_padding''': True,
}
snake_case_ = BitConfig(**_UpperCamelCase )
elif isinstance(_UpperCamelCase , _UpperCamelCase ):
logger.info('''Initializing the config with a `BiT` backbone.''' )
snake_case_ = BitConfig(**_UpperCamelCase )
elif isinstance(_UpperCamelCase , _UpperCamelCase ):
snake_case_ = backbone_config
else:
raise ValueError(
f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' )
snake_case_ = backbone_featmap_shape
snake_case_ = neck_ignore_stages
if readout_type != "project":
raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' )
else:
snake_case_ = None
snake_case_ = None
snake_case_ = []
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = initializer_range
snake_case_ = layer_norm_eps
snake_case_ = image_size
snake_case_ = patch_size
snake_case_ = num_channels
snake_case_ = qkv_bias
snake_case_ = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' )
snake_case_ = readout_type
snake_case_ = reassemble_factors
snake_case_ = neck_hidden_sizes
snake_case_ = fusion_hidden_size
snake_case_ = head_in_index
snake_case_ = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
snake_case_ = use_auxiliary_head
snake_case_ = auxiliary_loss_weight
snake_case_ = semantic_loss_ignore_index
snake_case_ = semantic_classifier_dropout
def snake_case__( self : List[str] ) ->List[Any]:
snake_case_ = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
snake_case_ = self.backbone_config.to_dict()
snake_case_ = self.__class__.model_type
return output | 39 | 0 |
"""simple docstring"""
from collections import defaultdict
from math import gcd
def lowercase__ ( snake_case_ :int = 1_500_000 ):
__UpperCAmelCase = defaultdict(snake_case_ )
__UpperCAmelCase = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , snake_case_ , 2 ):
if gcd(snake_case_ , snake_case_ ) > 1:
continue
__UpperCAmelCase = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(snake_case_ , limit + 1 , snake_case_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 49 |
import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional
import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy
lowerCAmelCase_ = logging.getLogger(__name__)
lowerCAmelCase_ = '''pytorch_model.bin'''
@dataclasses.dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = dataclasses.field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , )
@dataclasses.dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} )
SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default=__A , metadata={"help": "A csv or a json file containing the validation data."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default=__A , metadata={"help": "The name of the task to train on."} , )
SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field(
default=__A , metadata={"help": "The list of labels for the task."} )
@dataclasses.dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = dataclasses.field(
metadata={"help": "The output directory where the model predictions and checkpoints will be written."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default="accuracy" , metadata={"help": "The evaluation metric used for the task."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default="no" , metadata={
"help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]"
} , )
SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field(
default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , )
SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field(
default=0.0 , metadata={
"help": "How much the specified evaluation metric must improve to satisfy early stopping conditions."
} , )
SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field(
default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , )
SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field(
default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , )
SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field(
default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , )
SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field(
default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , )
SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field(
default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , )
SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field(
default=__A , metadata={"help": "Random seed for initialization."} , )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 )
if args.do_filter_by_confidence:
snake_case_ = dataset.filter(lambda SCREAMING_SNAKE_CASE__ : example["probability"] > args.confidence_threshold )
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
snake_case_ = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) )
print(SCREAMING_SNAKE_CASE__ )
snake_case_ = dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE__ )
snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) )
snake_case_ = dataset.remove_columns(['''label''', '''probability'''] )
snake_case_ = dataset.rename_column('''prediction''' , '''label''' )
snake_case_ = dataset.map(lambda SCREAMING_SNAKE_CASE__ : {"label": idalabel[example["label"]]} )
snake_case_ = dataset.shuffle(seed=args.seed )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' )
if args.data_file_extension == "csv":
dataset.to_csv(SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ )
else:
dataset.to_json(SCREAMING_SNAKE_CASE__ )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ):
snake_case_ = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(accelerator.state )
# Setup logging, we only want one process per machine to log things on the
# screen. accelerator.is_local_main_process is only True for one process per
# machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
snake_case_ = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ )
snake_case_ = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ , infer_file=SCREAMING_SNAKE_CASE__ )
snake_case_ = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ )
snake_case_ = argparse.Namespace()
for arg_class in (model_args, data_args, training_args):
for key, value in vars(SCREAMING_SNAKE_CASE__ ).items():
setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
for key, value in kwargs.items():
if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Sanity checks
snake_case_ = {}
snake_case_ = None
# You need to provide the training data and the data to predict on
assert args.train_file is not None
assert args.infer_file is not None
snake_case_ = args.train_file
snake_case_ = args.infer_file
if args.evaluation_strategy != IntervalStrategy.NO.value:
assert args.eval_file is not None
snake_case_ = args.eval_file
for key in data_files:
snake_case_ = data_files[key].split('''.''' )[-1]
assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.'''
if args.data_file_extension is None:
snake_case_ = extension
else:
assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.'''
assert (
args.eval_metric in datasets.list_metrics()
), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.'''
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed )
logger.info('''Creating the initial data directory for self-training...''' )
snake_case_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format
snake_case_ = data_dir_format(0 )
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ )
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
snake_case_ = None
snake_case_ = None
snake_case_ = 0
snake_case_ = False
# Show the progress bar
snake_case_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process )
# Self-train
for iteration in range(0 , int(args.max_selftrain_iterations ) ):
snake_case_ = data_dir_format(SCREAMING_SNAKE_CASE__ )
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
# Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
# iteration > 0
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-1''' )
snake_case_ = {
'''accelerator''': accelerator,
'''model_name_or_path''': args.model_name_or_path,
'''cache_dir''': args.cache_dir,
'''do_train''': True,
'''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''],
'''do_eval''': True if args.eval_file is not None else False,
'''eval_file''': data_files['''eval'''],
'''do_predict''': True,
'''infer_file''': data_files['''infer'''],
'''task_name''': args.task_name,
'''label_list''': args.label_list,
'''output_dir''': current_output_dir,
'''eval_metric''': args.eval_metric,
'''evaluation_strategy''': args.evaluation_strategy,
'''early_stopping_patience''': args.early_stopping_patience,
'''early_stopping_threshold''': args.early_stopping_threshold,
'''seed''': args.seed,
}
# Add additional training arguments
for key, value in kwargs.items():
if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
arguments_dict.update({key: value} )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ )
if os.path.exists(SCREAMING_SNAKE_CASE__ ):
logger.info(
'''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , )
else:
logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE__ )
finetune(**SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ )
if iteration > 0 and args.finetune_on_labeled_data:
# Stage 2 (optional): fine-tuning on the original labeled data
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-2''' )
# Update arguments_dict
snake_case_ = model_path
snake_case_ = data_files['''train''']
snake_case_ = current_output_dir
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ )
if os.path.exists(SCREAMING_SNAKE_CASE__ ):
logger.info(
'''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , )
else:
logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE__ )
finetune(**SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ )
snake_case_ = iteration
snake_case_ = data_dir_format(iteration + 1 )
snake_case_ = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) )
snake_case_ = config.idalabel
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-checkpoint.json''' )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''test_results_best-checkpoint.json''' )
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f:
snake_case_ = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''infer_output_best-checkpoint.csv''' )
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
# Loading the dataset from local csv or json files.
snake_case_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data''']
snake_case_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data''']
if accelerator.is_main_process:
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) )
if os.path.exists(SCREAMING_SNAKE_CASE__ ):
shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''test_results_iter-{iteration}.json''' ) )
create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' )
if args.evaluation_strategy != IntervalStrategy.NO.value:
snake_case_ = eval_result
if best_iteration is None:
snake_case_ = new_iteration
snake_case_ = new_eval_result
else:
if new_eval_result - best_eval_result > args.early_stopping_threshold:
snake_case_ = new_iteration
snake_case_ = new_eval_result
snake_case_ = 0
else:
if new_eval_result == best_eval_result:
snake_case_ = new_iteration
snake_case_ = new_eval_result
early_stopping_patience_counter += 1
if early_stopping_patience_counter >= args.early_stopping_patience:
snake_case_ = True
progress_bar.update(1 )
if should_training_stop:
break
if best_iteration is not None:
# Save the best iteration
logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE__ )
logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , )
else:
# Assume that the last iteration is the best
logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 )
logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , ) | 39 | 0 |
'''simple docstring'''
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ,_lowerCAmelCase ):
lowerCamelCase__ = 3
lowerCamelCase__ = 2_50
lowerCamelCase__ = ids_tensor((batch_size, length) ,_lowerCAmelCase )
lowerCamelCase__ = torch.ones((batch_size, length) ,device=_lowerCAmelCase ,dtype=torch.float ) / length
return input_ids, scores
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self._get_tensors(5 )
lowerCamelCase__ = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=10 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ , lowerCamelCase__ = self._get_tensors(9 )
self.assertFalse(criteria(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ , lowerCamelCase__ = self._get_tensors(10 )
self.assertTrue(criteria(_lowerCAmelCase ,_lowerCAmelCase ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = MaxLengthCriteria(max_length=10 )
lowerCamelCase__ , lowerCamelCase__ = self._get_tensors(5 )
self.assertFalse(criteria(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ , lowerCamelCase__ = self._get_tensors(9 )
self.assertFalse(criteria(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ , lowerCamelCase__ = self._get_tensors(10 )
self.assertTrue(criteria(_lowerCAmelCase ,_lowerCAmelCase ) )
def UpperCamelCase_ ( self ):
lowerCamelCase__ = MaxNewTokensCriteria(start_length=5 ,max_new_tokens=5 )
lowerCamelCase__ , lowerCamelCase__ = self._get_tensors(5 )
self.assertFalse(criteria(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ , lowerCamelCase__ = self._get_tensors(9 )
self.assertFalse(criteria(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ , lowerCamelCase__ = self._get_tensors(10 )
self.assertTrue(criteria(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length ,10 )
def UpperCamelCase_ ( self ):
lowerCamelCase__ , lowerCamelCase__ = self._get_tensors(5 )
lowerCamelCase__ = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(_lowerCAmelCase ,_lowerCAmelCase ) )
lowerCamelCase__ = MaxTimeCriteria(max_time=0.1 ,initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(_lowerCAmelCase ,_lowerCAmelCase ) )
def UpperCamelCase_ ( self ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) ,10 )
with self.assertWarns(_lowerCAmelCase ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) ,11 )
lowerCamelCase__ = validate_stopping_criteria(StoppingCriteriaList() ,11 )
self.assertEqual(len(_lowerCAmelCase ) ,1 )
| 50 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class snake_case_ ( __A , __A , __A , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = AltDiffusionPipeline
SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS
SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
def snake_case__( self : Dict ) ->int:
torch.manual_seed(0 )
snake_case_ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , )
snake_case_ = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , )
torch.manual_seed(0 )
snake_case_ = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0 )
snake_case_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , )
snake_case_ = CLIPTextModel(_UpperCamelCase )
snake_case_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
snake_case_ = 7_7
snake_case_ = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def snake_case__( self : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0 ) ->Any:
if str(_UpperCamelCase ).startswith('''mps''' ):
snake_case_ = torch.manual_seed(_UpperCamelCase )
else:
snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase )
snake_case_ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def snake_case__( self : Dict ) ->List[str]:
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 )
def snake_case__( self : List[str] ) ->Any:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def snake_case__( self : Dict ) ->Any:
snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case_ = self.get_dummy_components()
torch.manual_seed(0 )
snake_case_ = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , )
# TODO: remove after fixing the non-deterministic text encoder
snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase )
snake_case_ = text_encoder
snake_case_ = AltDiffusionPipeline(**_UpperCamelCase )
snake_case_ = alt_pipe.to(_UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = self.get_dummy_inputs(_UpperCamelCase )
snake_case_ = '''A photo of an astronaut'''
snake_case_ = alt_pipe(**_UpperCamelCase )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
snake_case_ = np.array(
[0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case__( self : Tuple ) ->Union[str, Any]:
snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case_ = self.get_dummy_components()
snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase )
torch.manual_seed(0 )
snake_case_ = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , )
# TODO: remove after fixing the non-deterministic text encoder
snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase )
snake_case_ = text_encoder
snake_case_ = AltDiffusionPipeline(**_UpperCamelCase )
snake_case_ = alt_pipe.to(_UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = self.get_dummy_inputs(_UpperCamelCase )
snake_case_ = alt_pipe(**_UpperCamelCase )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
snake_case_ = np.array(
[0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : int ) ->List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case__( self : List[str] ) ->Tuple:
# make sure here that pndm scheduler skips prk
snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_UpperCamelCase )
snake_case_ = alt_pipe.to(_UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = '''A painting of a squirrel eating a burger'''
snake_case_ = torch.manual_seed(0 )
snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='''np''' )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
snake_case_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case__( self : List[str] ) ->Optional[Any]:
snake_case_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' )
snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase )
snake_case_ = alt_pipe.to(_UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = '''A painting of a squirrel eating a burger'''
snake_case_ = torch.manual_seed(0 )
snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , num_inference_steps=2 , output_type='''numpy''' )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
snake_case_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 | 39 | 0 |
'''simple docstring'''
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from random import randint
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import DatasetDict, load_dataset
import transformers
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoModelForAudioClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
a__ : Optional[int] = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
require_version('datasets>=1.14.0', 'To fix: pip install -r examples/pytorch/audio-classification/requirements.txt')
def __snake_case ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : int = 16_000 ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase = int(round(sample_rate * max_length ) )
if len(SCREAMING_SNAKE_CASE_ ) <= sample_length:
return wav
UpperCAmelCase = randint(0 , len(SCREAMING_SNAKE_CASE_ ) - sample_length - 1 )
return wav[random_offset : random_offset + sample_length]
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =field(default=UpperCAmelCase_ , metadata={"help": "Name of a dataset from the datasets package"} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "A file containing the training audio paths and labels."} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "A file containing the validation audio paths and labels."} )
_lowerCamelCase =field(
default="train" , metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
} , )
_lowerCamelCase =field(
default="validation" , metadata={
"help": (
"The name of the training data set split to use (via the datasets library). Defaults to 'validation'"
)
} , )
_lowerCamelCase =field(
default="audio" , metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} , )
_lowerCamelCase =field(
default="label" , metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
_lowerCamelCase =field(
default=20 , metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} , )
@dataclass
class lowerCAmelCase__ :
'''simple docstring'''
_lowerCamelCase =field(
default="facebook/wav2vec2-base" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} )
_lowerCamelCase =field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Name or path of preprocessor config."} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether to freeze the feature encoder layers of the model."} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether to generate an attention mask in the feature extractor."} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} )
_lowerCamelCase =field(
default=UpperCAmelCase_ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , )
def __snake_case ( self : Union[str, Any] ):
if not self.freeze_feature_extractor and self.freeze_feature_encoder:
warnings.warn(
'''The argument `--freeze_feature_extractor` is deprecated and '''
'''will be removed in a future version. Use `--freeze_feature_encoder`'''
'''instead. Setting `freeze_feature_encoder==True`.''' , a__ , )
if self.freeze_feature_extractor and not self.freeze_feature_encoder:
raise ValueError(
'''The argument `--freeze_feature_extractor` is deprecated and '''
'''should not be used in combination with `--freeze_feature_encoder`.'''
'''Only make use of `--freeze_feature_encoder`.''' )
def __snake_case ( ) -> int:
"""simple docstring"""
UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_audio_classification''' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
UpperCAmelCase = training_args.get_process_log_level()
logger.setLevel(SCREAMING_SNAKE_CASE_ )
transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} "
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Detecting last checkpoint.
UpperCAmelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
UpperCAmelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
'''Use --overwrite_output_dir to train from scratch.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Initialize our dataset and prepare it for the audio classification task.
UpperCAmelCase = DatasetDict()
UpperCAmelCase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , )
UpperCAmelCase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , )
if data_args.audio_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. "
'''Make sure to set `--audio_column_name` to the correct audio column - one of '''
f"{', '.join(raw_datasets['train'].column_names )}." )
if data_args.label_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. "
'''Make sure to set `--label_column_name` to the correct text column - one of '''
f"{', '.join(raw_datasets['train'].column_names )}." )
# Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
# transformer outputs in the classifier, but it doesn't always lead to better accuracy
UpperCAmelCase = AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# `datasets` takes care of automatically loading and resampling the audio,
# so we just need to set the correct target sampling rate.
UpperCAmelCase = raw_datasets.cast_column(
data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) )
UpperCAmelCase = feature_extractor.model_input_names[0]
def train_transforms(SCREAMING_SNAKE_CASE_ : int ):
UpperCAmelCase = []
for audio in batch[data_args.audio_column_name]:
UpperCAmelCase = random_subsample(
audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate )
subsampled_wavs.append(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=feature_extractor.sampling_rate )
UpperCAmelCase = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE_ )}
UpperCAmelCase = list(batch[data_args.label_column_name] )
return output_batch
def val_transforms(SCREAMING_SNAKE_CASE_ : List[Any] ):
UpperCAmelCase = [audio['''array'''] for audio in batch[data_args.audio_column_name]]
UpperCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=feature_extractor.sampling_rate )
UpperCAmelCase = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE_ )}
UpperCAmelCase = list(batch[data_args.label_column_name] )
return output_batch
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
UpperCAmelCase = raw_datasets['''train'''].features[data_args.label_column_name].names
UpperCAmelCase, UpperCAmelCase = {}, {}
for i, label in enumerate(SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase = label
# Load the accuracy metric from the datasets package
UpperCAmelCase = evaluate.load('''accuracy''' )
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
# `predictions` and `label_ids` fields) and has to return a dictionary string to float.
def compute_metrics(SCREAMING_SNAKE_CASE_ : Dict ):
UpperCAmelCase = np.argmax(eval_pred.predictions , axis=1 )
return metric.compute(predictions=SCREAMING_SNAKE_CASE_ , references=eval_pred.label_ids )
UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path , num_labels=len(SCREAMING_SNAKE_CASE_ ) , labelaid=SCREAMING_SNAKE_CASE_ , idalabel=SCREAMING_SNAKE_CASE_ , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
UpperCAmelCase = AutoModelForAudioClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
# freeze the convolutional waveform encoder
if model_args.freeze_feature_encoder:
model.freeze_feature_encoder()
if training_args.do_train:
if data_args.max_train_samples is not None:
UpperCAmelCase = (
raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
)
# Set the training transforms
raw_datasets["train"].set_transform(SCREAMING_SNAKE_CASE_ , output_all_columns=SCREAMING_SNAKE_CASE_ )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
UpperCAmelCase = (
raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
raw_datasets["eval"].set_transform(SCREAMING_SNAKE_CASE_ , output_all_columns=SCREAMING_SNAKE_CASE_ )
# Initialize our trainer
UpperCAmelCase = Trainer(
model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , )
# Training
if training_args.do_train:
UpperCAmelCase = None
if training_args.resume_from_checkpoint is not None:
UpperCAmelCase = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
UpperCAmelCase = last_checkpoint
UpperCAmelCase = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE_ )
trainer.save_model()
trainer.log_metrics('''train''' , train_result.metrics )
trainer.save_metrics('''train''' , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
UpperCAmelCase = trainer.evaluate()
trainer.log_metrics('''eval''' , SCREAMING_SNAKE_CASE_ )
trainer.save_metrics('''eval''' , SCREAMING_SNAKE_CASE_ )
# Write model card and (optionally) push to hub
UpperCAmelCase = {
'''finetuned_from''': model_args.model_name_or_path,
'''tasks''': '''audio-classification''',
'''dataset''': data_args.dataset_name,
'''tags''': ['''audio-classification'''],
}
if training_args.push_to_hub:
trainer.push_to_hub(**SCREAMING_SNAKE_CASE_ )
else:
trainer.create_model_card(**SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
main()
| 51 |
from math import factorial
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
# If either of the conditions are true, the function is being asked
# to calculate a factorial of a negative number, which is not possible
if n < k or k < 0:
raise ValueError('''Please enter positive integers for n and k where n >= k''' )
return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k ))
if __name__ == "__main__":
print(
'''The number of five-card hands possible from a standard''',
f"""fifty-two card deck is: {combinations(52, 5)}\n""",
)
print(
'''If a class of 40 students must be arranged into groups of''',
f"""4 for group projects, there are {combinations(40, 4)} ways""",
'''to arrange them.\n''',
)
print(
'''If 10 teams are competing in a Formula One race, there''',
f"""are {combinations(10, 3)} ways that first, second and""",
'''third place can be awarded.''',
) | 39 | 0 |
"""simple docstring"""
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
A = TypeVar('''KEY''')
A = TypeVar('''VAL''')
@dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase )
class __lowercase ( Generic[KEY, VAL] ):
'''simple docstring'''
__lowerCAmelCase = 42
__lowerCAmelCase = 42
class __lowercase ( _Item ):
'''simple docstring'''
def __init__( self ):
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __bool__( self ):
return False
A = _DeletedItem()
class __lowercase ( MutableMapping[KEY, VAL] ):
'''simple docstring'''
def __init__( self , _UpperCAmelCase = 8 , _UpperCAmelCase = 0.7_5 ):
__a : Union[str, Any] = initial_block_size
__a : list[_Item | None] = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__a : Optional[Any] = capacity_factor
__a : Union[str, Any] = 0
def _lowerCamelCase ( self , _UpperCAmelCase ):
return hash(_UpperCAmelCase ) % len(self._buckets )
def _lowerCamelCase ( self , _UpperCAmelCase ):
return (ind + 1) % len(self._buckets )
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
__a : List[str] = self._buckets[ind]
if not stored:
__a : int = _Item(_UpperCAmelCase , _UpperCAmelCase )
self._len += 1
return True
elif stored.key == key:
__a : Dict = _Item(_UpperCAmelCase , _UpperCAmelCase )
return True
else:
return False
def _lowerCamelCase ( self ):
__a : Optional[int] = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(_UpperCAmelCase )
def _lowerCamelCase ( self ):
if len(self._buckets ) <= self._initial_block_size:
return False
__a : Optional[Any] = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def _lowerCamelCase ( self , _UpperCAmelCase ):
__a : List[str] = self._buckets
__a : List[Any] = [None] * new_size
__a : int = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def _lowerCamelCase ( self ):
self._resize(len(self._buckets ) * 2 )
def _lowerCamelCase ( self ):
self._resize(len(self._buckets ) // 2 )
def _lowerCamelCase ( self , _UpperCAmelCase ):
__a : int = self._get_bucket_index(_UpperCAmelCase )
for _ in range(len(self._buckets ) ):
yield ind
__a : Dict = self._get_next_ind(_UpperCAmelCase )
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ):
for ind in self._iterate_buckets(_UpperCAmelCase ):
if self._try_set(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
break
def __setitem__( self , _UpperCAmelCase , _UpperCAmelCase ):
if self._is_full():
self._size_up()
self._add_item(_UpperCAmelCase , _UpperCAmelCase )
def __delitem__( self , _UpperCAmelCase ):
for ind in self._iterate_buckets(_UpperCAmelCase ):
__a : List[str] = self._buckets[ind]
if item is None:
raise KeyError(_UpperCAmelCase )
if item is _deleted:
continue
if item.key == key:
__a : Dict = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self , _UpperCAmelCase ):
for ind in self._iterate_buckets(_UpperCAmelCase ):
__a : List[str] = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(_UpperCAmelCase )
def __len__( self ):
return self._len
def __iter__( self ):
yield from (item.key for item in self._buckets if item)
def __repr__( self ):
__a : List[str] = ''' ,'''.join(
f"""{item.key}: {item.val}""" for item in self._buckets if item )
return f"""HashMap({val_string})""" | 52 |
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
lowerCAmelCase_ = sys.version_info >= (3, 10)
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ):
return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : float
SCREAMING_SNAKE_CASE : str
SCREAMING_SNAKE_CASE : bool
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 42
SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : bool = False
SCREAMING_SNAKE_CASE : bool = True
SCREAMING_SNAKE_CASE : Optional[bool] = None
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = "titi"
SCREAMING_SNAKE_CASE : Any = "toto"
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = "titi"
SCREAMING_SNAKE_CASE : Optional[Any] = "toto"
SCREAMING_SNAKE_CASE : Any = 42
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : BasicEnum = "toto"
def snake_case__( self : Tuple ) ->List[str]:
snake_case_ = BasicEnum(self.foo )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto"
def snake_case__( self : Union[str, Any] ) ->Dict:
snake_case_ = MixedTypeEnum(self.foo )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Optional[float] = field(default=__A , metadata={"help": "help message"} )
SCREAMING_SNAKE_CASE : Optional[str] = None
SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] )
SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] )
SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] )
SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] )
SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[int] = field()
SCREAMING_SNAKE_CASE : str = field()
SCREAMING_SNAKE_CASE : BasicEnum = field()
def snake_case__( self : Optional[Any] ) ->Tuple:
snake_case_ = BasicEnum(self.required_enum )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : "BasicEnum" = field()
SCREAMING_SNAKE_CASE : "Optional[bool]" = None
SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} )
SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] )
if is_python_no_less_than_3_10:
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : bool = False
SCREAMING_SNAKE_CASE : bool = True
SCREAMING_SNAKE_CASE : bool | None = None
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : int | None = None
SCREAMING_SNAKE_CASE : float | None = field(default=__A , metadata={"help": "help message"} )
SCREAMING_SNAKE_CASE : str | None = None
SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] )
SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] )
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : Dict , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser ) ->str:
self.assertEqual(len(a._actions ) , len(b._actions ) )
for x, y in zip(a._actions , b._actions ):
snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''}
snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get('''choices''' , _UpperCamelCase ) and yy.get('''choices''' , _UpperCamelCase ):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx['''type'''](_UpperCamelCase ) , yy['''type'''](_UpperCamelCase ) )
del xx["type"], yy["type"]
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Optional[Any] ) ->Dict:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument('''--bar''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument('''--baz''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument('''--flag''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5''']
((snake_case_), ) = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase )
self.assertFalse(example.flag )
def snake_case__( self : Tuple ) ->Optional[int]:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , default=4_2 , type=_UpperCamelCase )
expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Tuple ) ->Tuple:
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' )
expected.add_argument('''--baz''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' )
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCamelCase , dest='''baz''' )
expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase )
snake_case_ = [WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(_UpperCamelCase )
for dataclass_type in dataclass_types:
snake_case_ = HfArgumentParser(_UpperCamelCase )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
snake_case_ = parser.parse_args(['''--foo''', '''--no_baz'''] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
snake_case_ = parser.parse_args(['''--foo''', '''--baz'''] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
snake_case_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
snake_case_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
def snake_case__( self : Tuple ) ->Tuple:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument(
'''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(args.foo , '''toto''' )
snake_case_ = parser.parse_args_into_dataclasses([] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto )
snake_case_ = parser.parse_args(['''--foo''', '''titi'''] )
self.assertEqual(args.foo , '''titi''' )
snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi )
snake_case_ = parser.parse_args(['''--foo''', '''42'''] )
self.assertEqual(args.foo , 4_2 )
snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo )
def snake_case__( self : Tuple ) ->Union[str, Any]:
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto"
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument(
'''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(args.foo , '''toto''' )
snake_case_ = parser.parse_args(['''--foo''', '''titi'''] )
self.assertEqual(args.foo , '''titi''' )
snake_case_ = parser.parse_args(['''--foo''', '''42'''] )
self.assertEqual(args.foo , 4_2 )
def snake_case__( self : List[str] ) ->int:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCamelCase )
expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCamelCase )
expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase )
expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(
_UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , )
snake_case_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() )
self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) )
def snake_case__( self : Optional[Any] ) ->List[Any]:
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , default=_UpperCamelCase , type=_UpperCamelCase )
expected.add_argument('''--bar''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''help message''' )
expected.add_argument('''--baz''' , default=_UpperCamelCase , type=_UpperCamelCase )
expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCamelCase )
expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCamelCase )
snake_case_ = [OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(_UpperCamelCase )
for dataclass_type in dataclass_types:
snake_case_ = HfArgumentParser(_UpperCamelCase )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[] ) )
snake_case_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() )
self.assertEqual(_UpperCamelCase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) )
def snake_case__( self : Union[str, Any] ) ->Optional[int]:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument('''--required_str''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument(
'''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : List[str] ) ->int:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument(
'''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , )
expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase )
expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' )
expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Dict ) ->Any:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = {
'''foo''': 1_2,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
snake_case_ = parser.parse_dict(_UpperCamelCase )[0]
snake_case_ = BasicExample(**_UpperCamelCase )
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : int ) ->Dict:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = {
'''foo''': 1_2,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
'''extra''': 4_2,
}
self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase )
def snake_case__( self : str ) ->Tuple:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = {
'''foo''': 1_2,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = os.path.join(_UpperCamelCase , '''temp_json''' )
os.mkdir(_UpperCamelCase )
with open(temp_local_path + '''.json''' , '''w+''' ) as f:
json.dump(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0]
snake_case_ = BasicExample(**_UpperCamelCase )
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Optional[int] ) ->str:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = {
'''foo''': 1_2,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = os.path.join(_UpperCamelCase , '''temp_yaml''' )
os.mkdir(_UpperCamelCase )
with open(temp_local_path + '''.yaml''' , '''w+''' ) as f:
yaml.dump(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0]
snake_case_ = BasicExample(**_UpperCamelCase )
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Any ) ->Any:
snake_case_ = HfArgumentParser(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase ) | 39 | 0 |
import pytest
import datasets
# Import fixture modules as plugins
_snake_case : List[str] = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec']
def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : List[str] ):
# Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit")
for item in items:
if any(marker in item.keywords for marker in ['integration', 'unit'] ):
continue
item.add_marker(pytest.mark.unit )
def a_ ( lowerCAmelCase_ : int ):
config.addinivalue_line('markers', 'torchaudio_latest: mark test to run with torchaudio>=0.12' )
@pytest.fixture(autouse=lowerCAmelCase_ )
def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Dict ):
# test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work?
__lowerCAmelCase = tmp_path_factory.getbasetemp() / 'cache'
__lowerCAmelCase = test_hf_cache_home / 'datasets'
__lowerCAmelCase = test_hf_cache_home / 'metrics'
__lowerCAmelCase = test_hf_cache_home / 'modules'
monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE', str(lowerCAmelCase_ ) )
monkeypatch.setattr('datasets.config.HF_METRICS_CACHE', str(lowerCAmelCase_ ) )
monkeypatch.setattr('datasets.config.HF_MODULES_CACHE', str(lowerCAmelCase_ ) )
__lowerCAmelCase = test_hf_datasets_cache / 'downloads'
monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH', str(lowerCAmelCase_ ) )
__lowerCAmelCase = test_hf_datasets_cache / 'downloads' / 'extracted'
monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH', str(lowerCAmelCase_ ) )
@pytest.fixture(autouse=lowerCAmelCase_, scope='session' )
def a_ ( ):
datasets.disable_progress_bar()
@pytest.fixture(autouse=lowerCAmelCase_ )
def a_ ( lowerCAmelCase_ : str ):
# don't take tests into account when counting downloads
monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS', lowerCAmelCase_ )
@pytest.fixture
def a_ ( lowerCAmelCase_ : List[str] ):
# Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0
# To be removed once SQLAlchemy 2.0 supported
monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING', lowerCAmelCase_ )
| 53 |
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
lowerCAmelCase_ = logging.get_logger(__name__)
class snake_case_ ( __A ):
'''simple docstring'''
def __init__( self : Dict , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->None:
warnings.warn(
'''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use ChineseCLIPImageProcessor instead.''' , _UpperCamelCase , )
super().__init__(*_UpperCamelCase , **_UpperCamelCase ) | 39 | 0 |
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class A ( __lowercase ):
_snake_case =DistilBertTokenizer
_snake_case =DistilBertTokenizerFast
_snake_case =True
@slow
def lowerCAmelCase__ ( self: int ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =DistilBertTokenizer.from_pretrained("distilbert-base-uncased" )
UpperCAmelCase_ =tokenizer.encode("sequence builders" , add_special_tokens=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.encode("multi-sequence build" , add_special_tokens=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 54 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''',
'''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''',
'''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''',
'''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''',
'''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''',
}
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv"
SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"}
def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]:
snake_case_ = vocab_size
snake_case_ = context_length
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size
snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size
snake_case_ = layer_norm_epsilon
snake_case_ = rescale_every
snake_case_ = use_cache
snake_case_ = bos_token_id
snake_case_ = eos_token_id
super().__init__(
tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) | 39 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_funnel import FunnelTokenizer
SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
SCREAMING_SNAKE_CASE :str = [
'small',
'small-base',
'medium',
'medium-base',
'intermediate',
'intermediate-base',
'large',
'large-base',
'xlarge',
'xlarge-base',
]
SCREAMING_SNAKE_CASE :Dict = {
'vocab_file': {
'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt',
'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt',
'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt',
'funnel-transformer/medium-base': (
'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt'
),
'funnel-transformer/intermediate': (
'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt'
),
'funnel-transformer/intermediate-base': (
'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt'
),
'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt',
'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt',
'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt',
'funnel-transformer/xlarge-base': (
'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json',
'funnel-transformer/small-base': (
'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json'
),
'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json',
'funnel-transformer/medium-base': (
'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json'
),
'funnel-transformer/intermediate': (
'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json'
),
'funnel-transformer/intermediate-base': (
'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json'
),
'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json',
'funnel-transformer/large-base': (
'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json'
),
'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json',
'funnel-transformer/xlarge-base': (
'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json'
),
},
}
SCREAMING_SNAKE_CASE :Union[str, Any] = {f'''funnel-transformer/{name}''': 512 for name in _model_names}
SCREAMING_SNAKE_CASE :Union[str, Any] = {f'''funnel-transformer/{name}''': {'do_lower_case': True} for name in _model_names}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_INIT_CONFIGURATION
snake_case_ = FunnelTokenizer
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = 2
def __init__( self : List[Any] ,A : Optional[int]=None ,A : List[str]=None ,A : Tuple=True ,A : str="<unk>" ,A : int="<sep>" ,A : Any="<pad>" ,A : List[str]="<cls>" ,A : str="<mask>" ,A : Any="<s>" ,A : int="</s>" ,A : Union[str, Any]=True ,A : List[str]=True ,A : Optional[int]=None ,A : Optional[int]="##" ,**A : str ,):
super().__init__(
A ,tokenizer_file=A ,do_lower_case=A ,unk_token=A ,sep_token=A ,pad_token=A ,cls_token=A ,mask_token=A ,bos_token=A ,eos_token=A ,clean_text=A ,tokenize_chinese_chars=A ,strip_accents=A ,wordpieces_prefix=A ,**A ,)
__A = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" ,A ) != do_lower_case
or normalizer_state.get("strip_accents" ,A ) != strip_accents
or normalizer_state.get("handle_chinese_chars" ,A ) != tokenize_chinese_chars
):
__A = getattr(A ,normalizer_state.pop("type" ) )
__A = do_lower_case
__A = strip_accents
__A = tokenize_chinese_chars
__A = normalizer_class(**A )
__A = do_lower_case
def UpperCamelCase_ ( self : str ,A : Any ,A : List[Any]=None ):
__A = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self : Optional[int] ,A : List[int] ,A : Optional[List[int]] = None ):
__A = [self.sep_token_id]
__A = [self.cls_token_id]
if token_ids_a is None:
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0]
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self : int ,A : str ,A : Optional[str] = None ):
__A = self._tokenizer.model.save(A ,name=A )
return tuple(A )
| 55 |
import bza
import gzip
import lzma
import os
import shutil
import struct
import tarfile
import warnings
import zipfile
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List, Optional, Type, Union
from .. import config
from .filelock import FileLock
from .logging import get_logger
lowerCAmelCase_ = get_logger(__name__)
class snake_case_ :
'''simple docstring'''
def __init__( self : int , _UpperCamelCase : Optional[str] = None ) ->Tuple:
snake_case_ = (
os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH
)
snake_case_ = Extractor
def snake_case__( self : Any , _UpperCamelCase : str ) ->str:
from .file_utils import hash_url_to_filename
# Path where we extract compressed archives
# We extract in the cache dir, and get the extracted path name by hashing the original path"
snake_case_ = os.path.abspath(_UpperCamelCase )
return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) )
def snake_case__( self : int , _UpperCamelCase : str , _UpperCamelCase : bool ) ->bool:
return force_extract or (
not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase ))
)
def snake_case__( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : bool = False ) ->str:
snake_case_ = self.extractor.infer_extractor_format(_UpperCamelCase )
if not extractor_format:
return input_path
snake_case_ = self._get_output_path(_UpperCamelCase )
if self._do_extract(_UpperCamelCase , _UpperCamelCase ):
self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
return output_path
class snake_case_ ( __A ):
'''simple docstring'''
@classmethod
@abstractmethod
def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : str ) ->bool:
...
@staticmethod
@abstractmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
...
class snake_case_ ( __A , __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[bytes] = []
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->List[Any]:
with open(_UpperCamelCase , '''rb''' ) as f:
return f.read(_UpperCamelCase )
@classmethod
def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool:
if not magic_number:
snake_case_ = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers )
try:
snake_case_ = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase )
except OSError:
return False
return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers )
class snake_case_ ( __A ):
'''simple docstring'''
@classmethod
def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : Any ) ->bool:
return tarfile.is_tarfile(_UpperCamelCase )
@staticmethod
def snake_case__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) ->List[str]:
def resolved(_UpperCamelCase : str ) -> str:
return os.path.realpath(os.path.abspath(_UpperCamelCase ) )
def badpath(_UpperCamelCase : str , _UpperCamelCase : str ) -> bool:
# joinpath will ignore base if path is absolute
return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase )
def badlink(_UpperCamelCase : Tuple , _UpperCamelCase : str ) -> bool:
# Links are interpreted relative to the directory containing the link
snake_case_ = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) )
return badpath(info.linkname , base=_UpperCamelCase )
snake_case_ = resolved(_UpperCamelCase )
for finfo in members:
if badpath(finfo.name , _UpperCamelCase ):
logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' )
elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ):
logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' )
elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ):
logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' )
else:
yield finfo
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
snake_case_ = tarfile.open(_UpperCamelCase )
tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) )
tar_file.close()
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = [b"\x1F\x8B"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
with gzip.open(_UpperCamelCase , '''rb''' ) as gzip_file:
with open(_UpperCamelCase , '''wb''' ) as extracted_file:
shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase )
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = [
b"PK\x03\x04",
b"PK\x05\x06", # empty archive
b"PK\x07\x08", # spanned archive
]
@classmethod
def snake_case__( cls : List[str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool:
if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ):
return True
try:
# Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives.
# From: https://github.com/python/cpython/pull/5053
from zipfile import (
_CD_SIGNATURE,
_ECD_DISK_NUMBER,
_ECD_DISK_START,
_ECD_ENTRIES_TOTAL,
_ECD_OFFSET,
_ECD_SIZE,
_EndRecData,
sizeCentralDir,
stringCentralDir,
structCentralDir,
)
with open(_UpperCamelCase , '''rb''' ) as fp:
snake_case_ = _EndRecData(_UpperCamelCase )
if endrec:
if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0:
return True # Empty zipfiles are still zipfiles
elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]:
fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk
if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir:
snake_case_ = fp.read(_UpperCamelCase ) # CD is where we expect it to be
if len(_UpperCamelCase ) == sizeCentralDir:
snake_case_ = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size
if centdir[_CD_SIGNATURE] == stringCentralDir:
return True # First central directory entry has correct magic number
return False
except Exception: # catch all errors in case future python versions change the zipfile internals
return False
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
with zipfile.ZipFile(_UpperCamelCase , '''r''' ) as zip_file:
zip_file.extractall(_UpperCamelCase )
zip_file.close()
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = [b"\xFD\x37\x7A\x58\x5A\x00"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
with lzma.open(_UpperCamelCase ) as compressed_file:
with open(_UpperCamelCase , '''wb''' ) as extracted_file:
shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase )
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
if not config.RARFILE_AVAILABLE:
raise ImportError('''Please pip install rarfile''' )
import rarfile
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
snake_case_ = rarfile.RarFile(_UpperCamelCase )
rf.extractall(_UpperCamelCase )
rf.close()
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = [b"\x28\xb5\x2F\xFD"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
if not config.ZSTANDARD_AVAILABLE:
raise ImportError('''Please pip install zstandard''' )
import zstandard as zstd
snake_case_ = zstd.ZstdDecompressor()
with open(_UpperCamelCase , '''rb''' ) as ifh, open(_UpperCamelCase , '''wb''' ) as ofh:
dctx.copy_stream(_UpperCamelCase , _UpperCamelCase )
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = [b"\x42\x5A\x68"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
with bza.open(_UpperCamelCase , '''rb''' ) as compressed_file:
with open(_UpperCamelCase , '''wb''' ) as extracted_file:
shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase )
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = [b"\x37\x7A\xBC\xAF\x27\x1C"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
if not config.PY7ZR_AVAILABLE:
raise ImportError('''Please pip install py7zr''' )
import pyazr
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
with pyazr.SevenZipFile(_UpperCamelCase , '''r''' ) as archive:
archive.extractall(_UpperCamelCase )
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = [b"\x04\x22\x4D\x18"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
if not config.LZ4_AVAILABLE:
raise ImportError('''Please pip install lz4''' )
import lza.frame
with lza.frame.open(_UpperCamelCase , '''rb''' ) as compressed_file:
with open(_UpperCamelCase , '''wb''' ) as extracted_file:
shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase )
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict[str, Type[BaseExtractor]] = {
"tar": TarExtractor,
"gzip": GzipExtractor,
"zip": ZipExtractor,
"xz": XzExtractor,
"rar": RarExtractor,
"zstd": ZstdExtractor,
"bz2": BzipaExtractor,
"7z": SevenZipExtractor, # <Added version="2.4.0"/>
"lz4": LzaExtractor, # <Added version="2.4.0"/>
}
@classmethod
def snake_case__( cls : List[Any] ) ->List[str]:
return max(
len(_UpperCamelCase )
for extractor in cls.extractors.values()
if issubclass(_UpperCamelCase , _UpperCamelCase )
for extractor_magic_number in extractor.magic_numbers )
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->Tuple:
try:
return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase )
except OSError:
return b""
@classmethod
def snake_case__( cls : Optional[Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bool = False ) ->bool:
warnings.warn(
'''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. '''
'''Use \'infer_extractor_format\' instead.''' , category=_UpperCamelCase , )
snake_case_ = cls.infer_extractor_format(_UpperCamelCase )
if extractor_format:
return True if not return_extractor else (True, cls.extractors[extractor_format])
return False if not return_extractor else (False, None)
@classmethod
def snake_case__( cls : int , _UpperCamelCase : Union[Path, str] ) ->str: # <Added version="2.4.0"/>
snake_case_ = cls._get_magic_number_max_length()
snake_case_ = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase )
for extractor_format, extractor in cls.extractors.items():
if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ):
return extractor_format
@classmethod
def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[BaseExtractor] = "deprecated" , ) ->None:
os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase )
# Prevent parallel extractions
snake_case_ = str(Path(_UpperCamelCase ).with_suffix('''.lock''' ) )
with FileLock(_UpperCamelCase ):
shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase )
if extractor_format or extractor != "deprecated":
if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg
warnings.warn(
'''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. '''
'''Use \'extractor_format\' instead.''' , category=_UpperCamelCase , )
snake_case_ = extractor if extractor != '''deprecated''' else extractor_format
else:
snake_case_ = cls.extractors[extractor_format]
return extractor.extract(_UpperCamelCase , _UpperCamelCase )
else:
warnings.warn(
'''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an '''
'''exception in 3.0.0.''' , category=_UpperCamelCase , )
for extractor in cls.extractors.values():
if extractor.is_extractable(_UpperCamelCase ):
return extractor.extract(_UpperCamelCase , _UpperCamelCase ) | 39 | 0 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
_a : List[Any] = logging.get_logger(__name__)
_a : str = {
"Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json",
}
class _lowercase ( __lowercase ):
_SCREAMING_SNAKE_CASE : Any = "instructblip_vision_model"
def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=1408 , SCREAMING_SNAKE_CASE_ : str=6144 , SCREAMING_SNAKE_CASE_ : List[Any]=39 , SCREAMING_SNAKE_CASE_ : List[str]=16 , SCREAMING_SNAKE_CASE_ : Optional[int]=224 , SCREAMING_SNAKE_CASE_ : List[str]=14 , SCREAMING_SNAKE_CASE_ : Dict="gelu" , SCREAMING_SNAKE_CASE_ : Any=1e-6 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Any=1e-10 , SCREAMING_SNAKE_CASE_ : Any=True , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> int:
super().__init__(**SCREAMING_SNAKE_CASE_ )
__snake_case = hidden_size
__snake_case = intermediate_size
__snake_case = num_hidden_layers
__snake_case = num_attention_heads
__snake_case = patch_size
__snake_case = image_size
__snake_case = initializer_range
__snake_case = attention_dropout
__snake_case = layer_norm_eps
__snake_case = hidden_act
__snake_case = qkv_bias
@classmethod
def a ( cls : Any , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> "PretrainedConfig":
cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ )
__snake_case , __snake_case = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
__snake_case = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
class _lowercase ( __lowercase ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = "instructblip_qformer"
def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : List[Any]=3_0522 , SCREAMING_SNAKE_CASE_ : str=768 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : Optional[Any]=12 , SCREAMING_SNAKE_CASE_ : Dict=3072 , SCREAMING_SNAKE_CASE_ : Dict="gelu" , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=512 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.0_2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1e-12 , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : int="absolute" , SCREAMING_SNAKE_CASE_ : Tuple=2 , SCREAMING_SNAKE_CASE_ : str=1408 , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> Any:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__snake_case = vocab_size
__snake_case = hidden_size
__snake_case = num_hidden_layers
__snake_case = num_attention_heads
__snake_case = hidden_act
__snake_case = intermediate_size
__snake_case = hidden_dropout_prob
__snake_case = attention_probs_dropout_prob
__snake_case = max_position_embeddings
__snake_case = initializer_range
__snake_case = layer_norm_eps
__snake_case = position_embedding_type
__snake_case = cross_attention_frequency
__snake_case = encoder_hidden_size
@classmethod
def a ( cls : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE_ : Dict ) -> "PretrainedConfig":
cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ )
__snake_case , __snake_case = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
__snake_case = config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
class _lowercase ( __lowercase ):
_SCREAMING_SNAKE_CASE : Dict = "instructblip"
_SCREAMING_SNAKE_CASE : str = True
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : List[str]=32 , **SCREAMING_SNAKE_CASE_ : str ) -> int:
super().__init__(**SCREAMING_SNAKE_CASE_ )
if vision_config is None:
__snake_case = {}
logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' )
if qformer_config is None:
__snake_case = {}
logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' )
if text_config is None:
__snake_case = {}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
__snake_case = InstructBlipVisionConfig(**SCREAMING_SNAKE_CASE_ )
__snake_case = InstructBlipQFormerConfig(**SCREAMING_SNAKE_CASE_ )
__snake_case = text_config['model_type'] if 'model_type' in text_config else 'opt'
__snake_case = CONFIG_MAPPING[text_model_type](**SCREAMING_SNAKE_CASE_ )
__snake_case = self.text_config.tie_word_embeddings
__snake_case = self.text_config.is_encoder_decoder
__snake_case = num_query_tokens
__snake_case = self.vision_config.hidden_size
__snake_case = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
__snake_case = 1.0
__snake_case = 0.0_2
@classmethod
def a ( cls : Union[str, Any] , SCREAMING_SNAKE_CASE_ : InstructBlipVisionConfig , SCREAMING_SNAKE_CASE_ : InstructBlipQFormerConfig , SCREAMING_SNAKE_CASE_ : PretrainedConfig , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> Optional[Any]:
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **SCREAMING_SNAKE_CASE_ , )
def a ( self : Optional[int] ) -> Any:
__snake_case = copy.deepcopy(self.__dict__ )
__snake_case = self.vision_config.to_dict()
__snake_case = self.qformer_config.to_dict()
__snake_case = self.text_config.to_dict()
__snake_case = self.__class__.model_type
return output
| 56 |
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ):
raise TypeError('''Sequence must be list of non-negative integers''' )
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__ , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9] | 39 | 0 |
import argparse
from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird
from transformers.utils import logging
logging.set_verbosity_info()
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any:
# Initialise PyTorch model
UpperCamelCase_: Union[str, Any] = BigBirdConfig.from_json_file(UpperCAmelCase__ )
print(F'''Building PyTorch model from configuration: {config}''' )
if is_trivia_qa:
UpperCamelCase_: List[Any] = BigBirdForQuestionAnswering(UpperCAmelCase__ )
else:
UpperCamelCase_: str = BigBirdForPreTraining(UpperCAmelCase__ )
# Load weights from tf checkpoint
load_tf_weights_in_big_bird(UpperCAmelCase__ , UpperCAmelCase__ , is_trivia_qa=UpperCAmelCase__ )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
model.save_pretrained(UpperCAmelCase__ )
if __name__ == "__main__":
A_ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--big_bird_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained BERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.'
)
A_ : List[Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa
) | 57 |
import re
from filelock import FileLock
try:
import nltk
lowerCAmelCase_ = True
except (ImportError, ModuleNotFoundError):
lowerCAmelCase_ = False
if NLTK_AVAILABLE:
with FileLock('''.lock''') as lock:
nltk.download('''punkt''', quiet=True)
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
re.sub('''<n>''' , '''''' , SCREAMING_SNAKE_CASE__ ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE__ ) ) | 39 | 0 |
"""simple docstring"""
import argparse
import json
import os
from collections import OrderedDict
import numpy as np
import tensorflow as tf
import torch
def __lowerCAmelCase ( __UpperCamelCase : Tuple ):
'''simple docstring'''
snake_case_ : Any = os.path.join(args.tf_model_dir , """parameters.json""" )
snake_case_ : List[str] = json.loads(open(__UpperCamelCase ).read() )
if not params:
raise ValueError(
F'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' )
if not args.output.endswith(""".pt""" ):
snake_case_ : Optional[Any] = args.output + """.pt"""
snake_case_ : List[Any] = OrderedDict()
with tf.device("""/CPU:0""" ):
snake_case_ : Any = tf.train.load_checkpoint(args.tf_model_dir )
snake_case_ : Tuple = reader.get_variable_to_shape_map()
for key_name in shapes.keys():
snake_case_ : Union[str, Any] = reader.get_tensor(__UpperCamelCase ).astype(np.floataa )
if key_name.endswith("""/adam_m""" ) or key_name.endswith("""/adam_v""" ):
continue
if key_name.startswith("""pasts/""" ):
if key_name.startswith("""pasts/mlp""" ):
snake_case_ : Any = int(key_name[9] )
elif key_name.startswith("""pasts/out""" ):
snake_case_ : Union[str, Any] = 8
snake_case_ : Optional[Any] = """model.sqout.%d.weight""" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time
snake_case_ : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
snake_case_ : Dict = torch.tensor(__UpperCamelCase )
elif key_name.startswith("""model/moe""" ):
snake_case_ : Optional[int] = int(key_name[9:].split("""/""" )[0] )
if key_name.endswith("""/switch_gating/kernel""" ):
snake_case_ : Dict = """model.blocks.%d.feed_forward.mlp.router.classifier.weight""" % player
snake_case_ : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
snake_case_ : Union[str, Any] = torch.tensor(__UpperCamelCase )
elif key_name.endswith("""/softmlp/kernel""" ):
snake_case_ : Tuple = """model.blocks.%d.feed_forward.soft_bypass_mlp.weight""" % player
snake_case_ : Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
snake_case_ : List[str] = torch.tensor(__UpperCamelCase )
elif key_name.endswith("""/wo/kernel""" ) or key_name.endswith("""/wi/kernel""" ):
snake_case_ : List[Any] = key_name[-9:-7]
for i in range(1_6 ):
snake_case_ : int = """model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight""" % (player, i, nlayer)
snake_case_ : Union[str, Any] = (
vnp[i].transpose([1, 0] ).copy()
) # In Mesh-Tensorflow, it is one array, so it is divided
snake_case_ : Optional[Any] = torch.tensor(__UpperCamelCase )
elif key_name.startswith("""model/mlp""" ):
snake_case_ : int = int(key_name[9:].split("""/""" )[0] )
if key_name.endswith("""/p1/kernel""" ):
snake_case_ : Optional[int] = """model.blocks.%d.feed_forward.mlp.wi.weight""" % player
snake_case_ : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
snake_case_ : Optional[int] = torch.tensor(__UpperCamelCase )
elif key_name.endswith("""/p1/bias""" ):
snake_case_ : str = """model.blocks.%d.feed_forward.mlp.wi.bias""" % player
snake_case_ : Optional[int] = vnp.copy() # same because it is one dimensional
snake_case_ : Any = torch.tensor(__UpperCamelCase )
elif key_name.endswith("""/p2/kernel""" ):
snake_case_ : Any = """model.blocks.%d.feed_forward.mlp.wo.weight""" % player
snake_case_ : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
snake_case_ : str = torch.tensor(__UpperCamelCase )
elif key_name.endswith("""/p2/bias""" ):
snake_case_ : List[Any] = """model.blocks.%d.feed_forward.mlp.wo.bias""" % player
snake_case_ : List[str] = vnp.copy() # same because it is one dimensional
snake_case_ : Tuple = torch.tensor(__UpperCamelCase )
elif key_name.startswith("""model/ln""" ):
snake_case_ : Optional[Any] = int(key_name[8:].split("""/""" )[0] )
if key_name.endswith("""/b""" ):
snake_case_ : Optional[int] = """model.blocks.%d.feed_forward.norm.bias""" % player
snake_case_ : Tuple = vnp.copy() # same because it is one dimensional
snake_case_ : Optional[Any] = torch.tensor(__UpperCamelCase )
elif key_name.endswith("""/g""" ):
snake_case_ : List[Any] = """model.blocks.%d.feed_forward.norm.weight""" % player
snake_case_ : Dict = vnp.copy() # same because it is one dimensional
snake_case_ : Optional[int] = torch.tensor(__UpperCamelCase )
elif key_name.startswith("""model/att""" ):
snake_case_ : List[Any] = int(key_name[9:].split("""/""" )[0] )
if key_name.endswith("""/qkv/kernel""" ):
snake_case_ : Tuple = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum
snake_case_ : str = state[:, 0, :, :]
snake_case_ : str = state[:, 1, :, :]
snake_case_ : Optional[Any] = state[:, 2, :, :]
snake_case_ : Any = (
state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
snake_case_ : str = (
state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
snake_case_ : List[str] = (
state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
snake_case_ : str = """model.blocks.%d.self_attn.self_attn.q_proj.weight""" % player
snake_case_ : Optional[Any] = torch.tensor(__UpperCamelCase )
snake_case_ : Dict = """model.blocks.%d.self_attn.self_attn.k_proj.weight""" % player
snake_case_ : int = torch.tensor(__UpperCamelCase )
snake_case_ : Tuple = """model.blocks.%d.self_attn.self_attn.v_proj.weight""" % player
snake_case_ : Tuple = torch.tensor(__UpperCamelCase )
elif key_name.endswith("""/o/kernel""" ):
snake_case_ : List[str] = """model.blocks.%d.self_attn.self_attn.out_proj.weight""" % player
snake_case_ : Dict = (
vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy()
) # Mesh-Tensorflow is a diagonal matrix
snake_case_ : Union[str, Any] = torch.tensor(__UpperCamelCase )
elif key_name.startswith("""model/an""" ):
snake_case_ : Optional[int] = int(key_name[8:].split("""/""" )[0] )
if key_name.endswith("""/b""" ):
snake_case_ : Optional[int] = """model.blocks.%d.self_attn.norm.bias""" % player
snake_case_ : Optional[Any] = vnp.copy() # same because it is one dimensional
snake_case_ : Optional[Any] = torch.tensor(__UpperCamelCase )
elif key_name.endswith("""/g""" ):
snake_case_ : str = """model.blocks.%d.self_attn.norm.weight""" % player
snake_case_ : str = vnp.copy() # same because it is one dimensional
snake_case_ : Dict = torch.tensor(__UpperCamelCase )
elif (
key_name.startswith("""model/wte""" )
or key_name.startswith("""model/wpe""" )
or key_name.startswith("""model/ete""" )
):
snake_case_ : Optional[int] = {"""wte""": """embed_tokens""", """wpe""": """position_embeddings""", """ete""": """extra_position_embeddings"""}[
key_name[-3:]
]
snake_case_ : Union[str, Any] = """model.%s.weight""" % nlayer
snake_case_ : Optional[Any] = vnp.copy() # same in embedded
snake_case_ : str = torch.tensor(__UpperCamelCase )
if key_name.startswith("""model/wte""" ):
snake_case_ : Optional[int] = """lm_head.weight"""
snake_case_ : Tuple = vnp.copy() # same in embedded
snake_case_ : Union[str, Any] = torch.tensor(__UpperCamelCase )
elif key_name.startswith("""model/wob""" ):
snake_case_ : List[str] = """final_logits_bias"""
snake_case_ : Optional[int] = vnp.copy() # same in embedded
snake_case_ : List[str] = state.reshape((1, -1) )
snake_case_ : str = torch.tensor(__UpperCamelCase )
elif key_name == "model/dense/kernel":
snake_case_ : Tuple = """model.last_project.weight"""
snake_case_ : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
snake_case_ : Tuple = torch.tensor(__UpperCamelCase )
elif key_name == "model/dense_1/bias":
snake_case_ : Tuple = """model.last_project.bias"""
snake_case_ : Tuple = vnp.copy() # same because it is one dimensional
snake_case_ : int = torch.tensor(__UpperCamelCase )
torch.save(__UpperCamelCase , args.output )
if __name__ == "__main__":
__lowerCAmelCase : Dict = argparse.ArgumentParser(
description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''')
parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''')
__lowerCAmelCase : Dict = parser.parse_args()
convert_tf_gptsan_to_pt(args)
| 58 |
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = [0 for i in range(r + 1 )]
# nc0 = 1
snake_case_ = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
snake_case_ = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5)) | 39 | 0 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
__A = logging.get_logger(__name__)
__A = {
"Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json",
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "dpt"
def __init__(self : Optional[int] , UpperCAmelCase_ : Any=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Any=1E-1_2 , UpperCAmelCase_ : Tuple=384 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=[2, 5, 8, 11] , UpperCAmelCase_ : List[str]="project" , UpperCAmelCase_ : Dict=[4, 2, 1, 0.5] , UpperCAmelCase_ : Dict=[96, 192, 384, 768] , UpperCAmelCase_ : Dict=256 , UpperCAmelCase_ : List[Any]=-1 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=0.4 , UpperCAmelCase_ : str=255 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=[1, 1_024, 24, 24] , UpperCAmelCase_ : Dict=[0, 1] , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : Optional[Any] , ) ->Tuple:
'''simple docstring'''
super().__init__(**UpperCAmelCase_)
lowerCamelCase__: Optional[int] =hidden_size
lowerCamelCase__: List[str] =is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info("Initializing the config with a `BiT` backbone.")
lowerCamelCase__: str ={
"global_padding": "same",
"layer_type": "bottleneck",
"depths": [3, 4, 9],
"out_features": ["stage1", "stage2", "stage3"],
"embedding_dynamic_padding": True,
}
lowerCamelCase__: Union[str, Any] =BitConfig(**UpperCAmelCase_)
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_):
logger.info("Initializing the config with a `BiT` backbone.")
lowerCamelCase__: Optional[Any] =BitConfig(**UpperCAmelCase_)
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_):
lowerCamelCase__: int =backbone_config
else:
raise ValueError(
F"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""")
lowerCamelCase__: Optional[int] =backbone_featmap_shape
lowerCamelCase__: Optional[Any] =neck_ignore_stages
if readout_type != "project":
raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode.")
else:
lowerCamelCase__: List[Any] =None
lowerCamelCase__: Optional[int] =None
lowerCamelCase__: Optional[Any] =[]
lowerCamelCase__: Union[str, Any] =num_hidden_layers
lowerCamelCase__: List[str] =num_attention_heads
lowerCamelCase__: Any =intermediate_size
lowerCamelCase__: Dict =hidden_act
lowerCamelCase__: Optional[int] =hidden_dropout_prob
lowerCamelCase__: Dict =attention_probs_dropout_prob
lowerCamelCase__: Any =initializer_range
lowerCamelCase__: Optional[int] =layer_norm_eps
lowerCamelCase__: Dict =image_size
lowerCamelCase__: str =patch_size
lowerCamelCase__: Any =num_channels
lowerCamelCase__: Dict =qkv_bias
lowerCamelCase__: Dict =backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']")
lowerCamelCase__: int =readout_type
lowerCamelCase__: str =reassemble_factors
lowerCamelCase__: int =neck_hidden_sizes
lowerCamelCase__: Dict =fusion_hidden_size
lowerCamelCase__: List[str] =head_in_index
lowerCamelCase__: Dict =use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
lowerCamelCase__: Dict =use_auxiliary_head
lowerCamelCase__: List[str] =auxiliary_loss_weight
lowerCamelCase__: Union[str, Any] =semantic_loss_ignore_index
lowerCamelCase__: int =semantic_classifier_dropout
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Tuple:
'''simple docstring'''
lowerCamelCase__: List[str] =copy.deepcopy(self.__dict__)
if output["backbone_config"] is not None:
lowerCamelCase__: List[Any] =self.backbone_config.to_dict()
lowerCamelCase__: Union[str, Any] =self.__class__.model_type
return output
| 59 |
import argparse
import math
import os
from copy import deepcopy
import torch
from audio_diffusion.models import DiffusionAttnUnetaD
from diffusion import sampling
from torch import nn
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
lowerCAmelCase_ = {
'''gwf-440k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''',
'''sample_rate''': 4_80_00,
'''sample_size''': 6_55_36,
},
'''jmann-small-190k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''',
'''sample_rate''': 4_80_00,
'''sample_size''': 6_55_36,
},
'''jmann-large-580k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''',
'''sample_rate''': 4_80_00,
'''sample_size''': 13_10_72,
},
'''maestro-uncond-150k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''',
'''sample_rate''': 1_60_00,
'''sample_size''': 6_55_36,
},
'''unlocked-uncond-250k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''',
'''sample_rate''': 1_60_00,
'''sample_size''': 6_55_36,
},
'''honk-140k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''',
'''sample_rate''': 1_60_00,
'''sample_size''': 6_55_36,
},
}
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
return torch.atana(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / math.pi * 2
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
snake_case_ = torch.sin(t * math.pi / 2 ) ** 2
snake_case_ = (1 - sigma**2) ** 0.5
return alpha_sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
class snake_case_ ( __A ):
'''simple docstring'''
pass
class snake_case_ ( nn.Module ):
'''simple docstring'''
def __init__( self : List[Any] , _UpperCamelCase : int ) ->Optional[int]:
super().__init__()
snake_case_ = DiffusionAttnUnetaD(_UpperCamelCase , n_attn_layers=4 )
snake_case_ = deepcopy(self.diffusion )
snake_case_ = torch.quasirandom.SobolEngine(1 , scramble=_UpperCamelCase )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
snake_case_ = MODELS_MAP[model_name]['''url''']
os.system(F'''wget {url} ./''' )
return F'''./{model_name}.ckpt'''
lowerCAmelCase_ = {
'''1''': '''resnets.0''',
'''2''': '''attentions.0''',
'''3''': '''resnets.1''',
'''4''': '''attentions.1''',
'''5''': '''resnets.2''',
'''6''': '''attentions.2''',
}
lowerCAmelCase_ = {
'''8''': '''resnets.0''',
'''9''': '''attentions.0''',
'''10''': '''resnets.1''',
'''11''': '''attentions.1''',
'''12''': '''resnets.2''',
'''13''': '''attentions.2''',
}
lowerCAmelCase_ = {
'''1''': '''resnets.0''',
'''2''': '''attentions.0''',
'''3''': '''resnets.1''',
'''4''': '''attentions.1''',
'''5''': '''resnets.2''',
'''6''': '''attentions.2''',
'''8''': '''resnets.3''',
'''9''': '''attentions.3''',
'''10''': '''resnets.4''',
'''11''': '''attentions.4''',
'''12''': '''resnets.5''',
'''13''': '''attentions.5''',
}
lowerCAmelCase_ = {
'''0''': '''resnets.0''',
'''1''': '''resnets.1''',
'''2''': '''resnets.2''',
'''4''': '''resnets.0''',
'''5''': '''resnets.1''',
'''6''': '''resnets.2''',
}
lowerCAmelCase_ = {
'''skip''': '''conv_skip''',
'''main.0''': '''conv_1''',
'''main.1''': '''group_norm_1''',
'''main.3''': '''conv_2''',
'''main.4''': '''group_norm_2''',
}
lowerCAmelCase_ = {
'''norm''': '''group_norm''',
'''qkv_proj''': ['''query''', '''key''', '''value'''],
'''out_proj''': ['''proj_attn'''],
}
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
if name.startswith('''skip''' ):
return name.replace('''skip''' , RES_CONV_MAP['''skip'''] )
# name has to be of format main.{digit}
if not name.startswith('''main.''' ):
raise ValueError(F'''ResConvBlock error with {name}''' )
return name.replace(name[:6] , RES_CONV_MAP[name[:6]] )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
for key, value in ATTN_MAP.items():
if name.startswith(SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
return name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif name.startswith(SCREAMING_SNAKE_CASE__ ):
return [name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for v in value]
raise ValueError(F'''Attn error with {name}''' )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 ):
snake_case_ = input_string
if string.split('''.''' )[0] == "timestep_embed":
return string.replace('''timestep_embed''' , '''time_proj''' )
snake_case_ = 0
if string.startswith('''net.3.''' ):
depth += 1
snake_case_ = string[6:]
elif string.startswith('''net.''' ):
snake_case_ = string[4:]
while string.startswith('''main.7.''' ):
depth += 1
snake_case_ = string[7:]
if string.startswith('''main.''' ):
snake_case_ = string[5:]
# mid block
if string[:2].isdigit():
snake_case_ = string[:2]
snake_case_ = string[2:]
else:
snake_case_ = string[0]
snake_case_ = string[1:]
if depth == max_depth:
snake_case_ = MID_NUM_TO_LAYER[layer_num]
snake_case_ = '''mid_block'''
elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) < 7:
snake_case_ = DOWN_NUM_TO_LAYER[layer_num]
snake_case_ = F'''down_blocks.{depth}'''
elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) > 7:
snake_case_ = UP_NUM_TO_LAYER[layer_num]
snake_case_ = F'''up_blocks.{max_depth - depth - 1}'''
elif depth == 0:
snake_case_ = DEPTH_0_TO_LAYER[layer_num]
snake_case_ = F'''up_blocks.{max_depth - 1}''' if int(SCREAMING_SNAKE_CASE__ ) > 3 else '''down_blocks.0'''
if not string_left.startswith('''.''' ):
raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' )
snake_case_ = string_left[1:]
if "resnets" in new_layer:
snake_case_ = convert_resconv_naming(SCREAMING_SNAKE_CASE__ )
elif "attentions" in new_layer:
snake_case_ = convert_attn_naming(SCREAMING_SNAKE_CASE__ )
snake_case_ = new_string_left
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = prefix + '''.''' + new_layer + '''.''' + string_left
else:
snake_case_ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left]
return new_string
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
snake_case_ = {}
for k, v in state_dict.items():
if k.endswith('''kernel''' ):
# up- and downsample layers, don't have trainable weights
continue
snake_case_ = rename(SCREAMING_SNAKE_CASE__ )
# check if we need to transform from Conv => Linear for attention
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = transform_conv_attns(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
snake_case_ = v
return new_state_dict
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
if len(SCREAMING_SNAKE_CASE__ ) == 1:
if len(v.shape ) == 3:
# weight
snake_case_ = v[:, :, 0]
else:
# bias
snake_case_ = v
else:
# qkv matrices
snake_case_ = v.shape[0]
snake_case_ = trippled_shape // 3
for i in range(3 ):
if len(v.shape ) == 3:
snake_case_ = v[i * single_shape : (i + 1) * single_shape, :, 0]
else:
snake_case_ = v[i * single_shape : (i + 1) * single_shape]
return new_state_dict
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' )
snake_case_ = args.model_path.split('''/''' )[-1].split('''.''' )[0]
if not os.path.isfile(args.model_path ):
assert (
model_name == args.model_path
), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}'''
snake_case_ = download(SCREAMING_SNAKE_CASE__ )
snake_case_ = MODELS_MAP[model_name]['''sample_rate''']
snake_case_ = MODELS_MAP[model_name]['''sample_size''']
snake_case_ = Object()
snake_case_ = sample_size
snake_case_ = sample_rate
snake_case_ = 0
snake_case_ = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE__ , sample_rate=SCREAMING_SNAKE_CASE__ )
snake_case_ = diffusers_model.state_dict()
snake_case_ = DiffusionUncond(SCREAMING_SNAKE_CASE__ )
orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE__ )['''state_dict'''] )
snake_case_ = orig_model.diffusion_ema.eval()
snake_case_ = orig_model.state_dict()
snake_case_ = rename_orig_weights(SCREAMING_SNAKE_CASE__ )
snake_case_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() )
snake_case_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() )
assert len(SCREAMING_SNAKE_CASE__ ) == 0, F'''Problem with {renamed_minus_diffusers}'''
assert all(k.endswith('''kernel''' ) for k in list(SCREAMING_SNAKE_CASE__ ) ), F'''Problem with {diffusers_minus_renamed}'''
for key, value in renamed_state_dict.items():
assert (
diffusers_state_dict[key].squeeze().shape == value.squeeze().shape
), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}'''
if key == "time_proj.weight":
snake_case_ = value.squeeze()
snake_case_ = value
diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE__ )
snake_case_ = 100
snake_case_ = 33
snake_case_ = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE__ )
snake_case_ = torch.manual_seed(SCREAMING_SNAKE_CASE__ )
snake_case_ = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ )
snake_case_ = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE__ )[:-1]
snake_case_ = get_crash_schedule(SCREAMING_SNAKE_CASE__ )
snake_case_ = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
snake_case_ = torch.manual_seed(33 )
snake_case_ = pipe(num_inference_steps=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).audios
snake_case_ = sampling.iplms_sample(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {} )
snake_case_ = generated.clamp(-1 , 1 )
snake_case_ = (generated - audio).abs().sum()
snake_case_ = (generated - audio).abs().max()
if args.save:
pipe.save_pretrained(args.checkpoint_path )
print('''Diff sum''' , SCREAMING_SNAKE_CASE__ )
print('''Diff max''' , SCREAMING_SNAKE_CASE__ )
assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/'''
print(F'''Conversion for {model_name} successful!''' )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''')
parser.add_argument(
'''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.'''
)
parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''')
lowerCAmelCase_ = parser.parse_args()
main(args) | 39 | 0 |
from typing import List
import jiwer
import jiwer.transforms as tr
from packaging import version
import datasets
from datasets.config import PY_VERSION
if PY_VERSION < version.parse('''3.8'''):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
lowerCAmelCase_ = ''''''
if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''):
class __lowerCAmelCase ( tr.AbstractTransform ):
def __init__(self , __magic_name__ = " " ) -> int:
'''simple docstring'''
snake_case_ : Dict = sentence_delimiter
def lowerCamelCase (self , __magic_name__ ) -> Dict:
'''simple docstring'''
return list(__magic_name__ )
def lowerCamelCase (self , __magic_name__ ) -> Tuple:
'''simple docstring'''
snake_case_ : Any = []
for sent_idx, sentence in enumerate(__magic_name__ ):
chars.extend(self.process_string(__magic_name__ ) )
if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__magic_name__ ) - 1:
chars.append(self.sentence_delimiter )
return chars
lowerCAmelCase_ = tr.Compose(
[tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)]
)
else:
lowerCAmelCase_ = tr.Compose(
[
tr.RemoveMultipleSpaces(),
tr.Strip(),
tr.ReduceToSingleSentence(SENTENCE_DELIMITER),
tr.ReduceToListOfListOfChars(),
]
)
lowerCAmelCase_ = '''\
@inproceedings{inproceedings,
author = {Morris, Andrew and Maier, Viktoria and Green, Phil},
year = {2004},
month = {01},
pages = {},
title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}
}
'''
lowerCAmelCase_ = '''\
Character error rate (CER) is a common metric of the performance of an automatic speech recognition system.
CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.
Character error rate can be computed as:
CER = (S + D + I) / N = (S + D + I) / (S + D + C)
where
S is the number of substitutions,
D is the number of deletions,
I is the number of insertions,
C is the number of correct characters,
N is the number of characters in the reference (N=S+D+C).
CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the
performance of the ASR system with a CER of 0 being a perfect score.
'''
lowerCAmelCase_ = '''
Computes CER score of transcribed segments against references.
Args:
references: list of references for each speech input.
predictions: list of transcribtions to score.
concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.
Returns:
(float): the character error rate
Examples:
>>> predictions = ["this is the prediction", "there is an other sample"]
>>> references = ["this is the reference", "there is another one"]
>>> cer = datasets.load_metric("cer")
>>> cer_score = cer.compute(predictions=predictions, references=references)
>>> print(cer_score)
0.34146341463414637
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION )
class __lowerCAmelCase ( datasets.Metric ):
def lowerCamelCase (self ) -> List[str]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/Word_error_rate''',
'''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''',
] , )
def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__=False ) -> Dict:
'''simple docstring'''
if concatenate_texts:
return jiwer.compute_measures(
__magic_name__ , __magic_name__ , truth_transform=__magic_name__ , hypothesis_transform=__magic_name__ , )["wer"]
snake_case_ : List[Any] = 0
snake_case_ : int = 0
for prediction, reference in zip(__magic_name__ , __magic_name__ ):
snake_case_ : Dict = jiwer.compute_measures(
__magic_name__ , __magic_name__ , truth_transform=__magic_name__ , hypothesis_transform=__magic_name__ , )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 60 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTMSNModel''',
'''ViTMSNForImageClassification''',
'''ViTMSNPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 39 | 0 |
import re
def _A ( lowerCAmelCase_ : str ):
"""simple docstring"""
if len(re.findall("[ATCG]" , lowerCAmelCase_ ) ) != len(lowerCAmelCase_ ):
raise ValueError("Invalid Strand" )
return dna.translate(dna.maketrans("ATCG" , "TAGC" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 61 |
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : Optional[Any] ) ->Any:
snake_case_ = tf.convert_to_tensor(
[
[
8.2220991, # 3rd highest value; idx. 0
-0.5620044,
5.23229752,
4.0386393,
-6.8798378,
-0.54785802,
-3.2012153,
2.92777176,
1.88171953,
7.35341276, # 5th highest value; idx. 9
8.43207833, # 2nd highest value; idx. 10
-9.85711836,
-5.96209236,
-1.13039161,
-7.1115294,
-0.8369633,
-5.3186408,
7.06427407,
0.81369344,
-0.82023817,
-5.9179796,
0.58813443,
-6.99778438,
4.71551189,
-0.18771637,
7.44020759, # 4th highest value; idx. 25
9.38450987, # 1st highest value; idx. 26
2.12662941,
-9.32562038,
2.35652522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58425518,
4.53139238,
-5.57510464,
-6.28030699,
-7.19529503,
-4.02122551,
1.39337037,
-6.06707057,
1.59480517,
-9.643119,
0.03907799,
0.67231762,
-8.88206726,
6.27115922, # 4th highest value; idx. 13
2.28520723,
4.82767506,
4.30421368,
8.8275313, # 2nd highest value; idx. 17
5.44029958, # 5th highest value; idx. 18
-4.4735794,
7.38579536, # 3rd highest value; idx. 20
-2.91051663,
2.61946077,
-2.5674762,
-9.48959302,
-4.02922645,
-1.35416918,
9.67702323, # 1st highest value; idx. 27
-5.89478553,
1.85370467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
snake_case_ = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
snake_case_ = tf.convert_to_tensor(
[8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above
snake_case_ = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 )
snake_case_ = output[output != -float('''inf''' )]
snake_case_ = tf.cast(
tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-12 )
tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase )
@require_tf
class snake_case_ ( unittest.TestCase , __A ):
'''simple docstring'''
if is_tf_available():
SCREAMING_SNAKE_CASE : Optional[int] = {
"AutoModelForCausalLM": TFAutoModelForCausalLM,
"AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq,
"AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM,
"AutoModelForVision2Seq": TFAutoModelForVisionaSeq,
"LogitsProcessorList": TFLogitsProcessorList,
"MinLengthLogitsProcessor": TFMinLengthLogitsProcessor,
"create_tensor_fn": tf.convert_to_tensor,
"floats_tensor": floats_tensor,
"return_tensors": "tf",
}
@slow
def snake_case__( self : List[Any] ) ->Optional[int]:
# TF-only test: tf.saved_model export
snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
snake_case_ = 2
snake_case_ = 2
class snake_case_ ( tf.Module ):
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->List[Any]:
super(_UpperCamelCase , self ).__init__()
snake_case_ = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ),
tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ),
) , jit_compile=_UpperCamelCase , )
def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) ->List[Any]:
snake_case_ = self.model.generate(
input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , )
return {"sequences": outputs["sequences"]}
snake_case_ = [[2, 0], [1_0_2, 1_0_3]]
snake_case_ = [[1, 0], [1, 1]]
snake_case_ = DummyModel(model=_UpperCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} )
snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default''']
for batch_size in range(1 , len(_UpperCamelCase ) + 1 ):
snake_case_ = {
'''input_ids''': tf.constant(dummy_input_ids[:batch_size] ),
'''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ),
}
snake_case_ = serving_func(**_UpperCamelCase )['''sequences''']
snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase )
tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase )
@slow
def snake_case__( self : List[str] ) ->int:
# TF-only test: tf.saved_model export
snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
snake_case_ = 1
snake_case_ = 2
class snake_case_ ( tf.Module ):
'''simple docstring'''
def __init__( self : str , _UpperCamelCase : Any ) ->List[str]:
super(_UpperCamelCase , self ).__init__()
snake_case_ = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ),
tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ),
) , jit_compile=_UpperCamelCase , )
def snake_case__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) ->Optional[int]:
snake_case_ = self.model.generate(
input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , )
return {"sequences": outputs["sequences"]}
snake_case_ = [[2], [1_0_2, 1_0_3]]
snake_case_ = [[1], [1, 1]]
snake_case_ = DummyModel(model=_UpperCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} )
snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default''']
for input_row in range(len(_UpperCamelCase ) ):
snake_case_ = {
'''input_ids''': tf.constant([dummy_input_ids[input_row]] ),
'''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ),
}
snake_case_ = serving_func(**_UpperCamelCase )['''sequences''']
snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase )
tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase )
@slow
@require_tensorflow_text
def snake_case__( self : Optional[Any] ) ->List[Any]:
# TF-only test: tf.saved_model export
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_UpperCamelCase )
class snake_case_ ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Tuple ) ->List[Any]:
super().__init__()
snake_case_ = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , '''spiece.model''' ) , '''rb''' ).read() )
snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' )
def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->List[Any]:
snake_case_ = self.tokenizer.tokenize(_UpperCamelCase )
snake_case_, snake_case_ = text.pad_model_inputs(
_UpperCamelCase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id )
snake_case_ = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase )
return self.tokenizer.detokenize(_UpperCamelCase )
snake_case_ = CompleteSentenceTransformer()
snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' )
snake_case_ = complete_model(_UpperCamelCase )
snake_case_ = tf.keras.Model(_UpperCamelCase , _UpperCamelCase )
keras_model.save(_UpperCamelCase )
def snake_case__( self : Any ) ->List[Any]:
# Has PT equivalent: this test relies on random sampling
snake_case_ = {
'''do_sample''': True,
'''num_beams''': 1,
'''top_p''': 0.7,
'''top_k''': 1_0,
'''temperature''': 0.7,
}
snake_case_ = 1_4
snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
snake_case_ = '''Hello, my dog is cute and'''
snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''tf''' )
snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
snake_case_ = 6_3_8
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(''':/CPU:0''' ):
tf.random.set_seed(0 )
snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
self.assertTrue(expectation == len(generated_tokens[0] ) )
snake_case_ = [6_3_8, 1_9_8]
with tf.device(''':/CPU:0''' ):
tf.random.set_seed(0 )
snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def snake_case__( self : str ) ->Dict:
# Has PT equivalent: ample use of framework-specific code
snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' )
snake_case_ = '''Hugging Face is a technology company based in New York and Paris.'''
snake_case_ = bart_tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids
snake_case_ = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' )
snake_case_ = bart_model.generate(_UpperCamelCase ).numpy()
class snake_case_ ( __A ):
'''simple docstring'''
def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Optional[int] ) ->List[str]:
return super().call(_UpperCamelCase , **_UpperCamelCase )
snake_case_ = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' )
snake_case_ = bart_model.generate(_UpperCamelCase , foo='''bar''' ).numpy()
self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) )
class snake_case_ ( bart_model.model.encoder.__class__ ):
'''simple docstring'''
def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , **_UpperCamelCase : Tuple ) ->Optional[Any]:
return super().call(_UpperCamelCase , **_UpperCamelCase )
snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared )
snake_case_ = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
snake_case_ = bart_model.generate(_UpperCamelCase ).numpy()
with self.assertRaises(_UpperCamelCase ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(_UpperCamelCase , foo='''bar''' ) | 39 | 0 |
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
snake_case = logging.get_logger(__name__)
def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ):
"""simple docstring"""
def constraint_to_multiple_of(lowercase , lowercase , lowercase=0 , lowercase=None ):
SCREAMING_SNAKE_CASE : Any = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
SCREAMING_SNAKE_CASE : Optional[int] = math.floor(val / multiple ) * multiple
if x < min_val:
SCREAMING_SNAKE_CASE : int = math.ceil(val / multiple ) * multiple
return x
SCREAMING_SNAKE_CASE : Tuple = (output_size, output_size) if isinstance(lowercase , lowercase ) else output_size
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = get_image_size(lowercase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = output_size
# determine new height and width
SCREAMING_SNAKE_CASE : Tuple = output_height / input_height
SCREAMING_SNAKE_CASE : List[Any] = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
SCREAMING_SNAKE_CASE : List[str] = scale_width
else:
# fit height
SCREAMING_SNAKE_CASE : Optional[Any] = scale_height
SCREAMING_SNAKE_CASE : int = constraint_to_multiple_of(scale_height * input_height , multiple=lowercase )
SCREAMING_SNAKE_CASE : Dict = constraint_to_multiple_of(scale_width * input_width , multiple=lowercase )
return (new_height, new_width)
class SCREAMING_SNAKE_CASE ( lowerCAmelCase ):
'''simple docstring'''
UpperCamelCase_ : Any = ['''pixel_values''']
def __init__( self : Any , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 255 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase_ : str , ):
super().__init__(**UpperCAmelCase_ )
SCREAMING_SNAKE_CASE : Dict = size if size is not None else {"height": 384, "width": 384}
SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE : List[str] = do_resize
SCREAMING_SNAKE_CASE : Optional[Any] = size
SCREAMING_SNAKE_CASE : str = keep_aspect_ratio
SCREAMING_SNAKE_CASE : int = ensure_multiple_of
SCREAMING_SNAKE_CASE : Any = resample
SCREAMING_SNAKE_CASE : List[str] = do_rescale
SCREAMING_SNAKE_CASE : Tuple = rescale_factor
SCREAMING_SNAKE_CASE : Union[str, Any] = do_normalize
SCREAMING_SNAKE_CASE : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
SCREAMING_SNAKE_CASE : int = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _A ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : int , ):
SCREAMING_SNAKE_CASE : List[str] = get_size_dict(UpperCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' )
SCREAMING_SNAKE_CASE : Optional[Any] = get_resize_output_image_size(
UpperCAmelCase_ , output_size=(size["height"], size["width"]) , keep_aspect_ratio=UpperCAmelCase_ , multiple=UpperCAmelCase_ , )
return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ )
def _A ( self : Optional[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Dict , ):
return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ )
def _A ( self : Dict , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[str] , ):
return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ )
def _A ( self : Optional[Any] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : float = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : Optional[Any] , ):
SCREAMING_SNAKE_CASE : Optional[int] = do_resize if do_resize is not None else self.do_resize
SCREAMING_SNAKE_CASE : Dict = size if size is not None else self.size
SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
SCREAMING_SNAKE_CASE : Optional[Any] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
SCREAMING_SNAKE_CASE : Any = resample if resample is not None else self.resample
SCREAMING_SNAKE_CASE : Dict = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize
SCREAMING_SNAKE_CASE : int = image_mean if image_mean is not None else self.image_mean
SCREAMING_SNAKE_CASE : Tuple = image_std if image_std is not None else self.image_std
SCREAMING_SNAKE_CASE : List[str] = make_list_of_images(UpperCAmelCase_ )
if not valid_images(UpperCAmelCase_ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE : Any = [to_numpy_array(UpperCAmelCase_ ) for image in images]
if do_resize:
SCREAMING_SNAKE_CASE : Tuple = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ ) for image in images]
if do_rescale:
SCREAMING_SNAKE_CASE : Tuple = [self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_ ) for image in images]
if do_normalize:
SCREAMING_SNAKE_CASE : Optional[Any] = [self.normalize(image=UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ ) for image in images]
SCREAMING_SNAKE_CASE : Optional[Any] = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images]
SCREAMING_SNAKE_CASE : Optional[Any] = {"pixel_values": images}
return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ )
def _A ( self : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Tuple] = None ):
SCREAMING_SNAKE_CASE : int = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits" )
if is_torch_tensor(UpperCAmelCase_ ):
SCREAMING_SNAKE_CASE : List[Any] = target_sizes.numpy()
SCREAMING_SNAKE_CASE : str = []
for idx in range(len(UpperCAmelCase_ ) ):
SCREAMING_SNAKE_CASE : Dict = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=UpperCAmelCase_ )
SCREAMING_SNAKE_CASE : str = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(UpperCAmelCase_ )
else:
SCREAMING_SNAKE_CASE : str = logits.argmax(dim=1 )
SCREAMING_SNAKE_CASE : str = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 62 |
import unittest
from transformers import DonutProcessor
lowerCAmelCase_ = '''naver-clova-ix/donut-base'''
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : Union[str, Any] ) ->Any:
snake_case_ = DonutProcessor.from_pretrained(_UpperCamelCase )
def snake_case__( self : Dict ) ->str:
snake_case_ = {
'''name''': '''John Doe''',
'''age''': '''99''',
'''city''': '''Atlanta''',
'''state''': '''GA''',
'''zip''': '''30301''',
'''phone''': '''123-4567''',
'''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}],
}
snake_case_ = (
'''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>'''
'''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>'''
'''<s_nicknames><s_nickname>Johnny</s_nickname>'''
'''<sep/><s_nickname>JD</s_nickname></s_nicknames>'''
)
snake_case_ = self.processor.tokenajson(_UpperCamelCase )
self.assertDictEqual(_UpperCamelCase , _UpperCamelCase ) | 39 | 0 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def lowerCamelCase__ ( __lowerCamelCase : Tuple ):
__UpperCAmelCase : str = [2, 2, 6, 2] if """tiny""" in model_name else [2, 2, 18, 2]
__UpperCAmelCase : Any = True if """large""" in model_name or """huge""" in model_name else False
__UpperCAmelCase : int = True if """large""" in model_name or """huge""" in model_name else False
__UpperCAmelCase : Optional[int] = True if """large""" in model_name or """huge""" in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
__UpperCAmelCase : Union[str, Any] = [3, 3, 3, 3]
__UpperCAmelCase : Union[str, Any] = [5, 5, 5, 5]
elif "fl4" in model_name:
__UpperCAmelCase : str = [4, 4, 4, 4]
__UpperCAmelCase : Optional[Any] = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
__UpperCAmelCase : Dict = [3, 3, 3, 3]
if "lrf" in model_name:
__UpperCAmelCase : Optional[Any] = [3, 3, 3, 3]
else:
__UpperCAmelCase : Optional[int] = [2, 2, 2, 2]
if "tiny" in model_name:
__UpperCAmelCase : List[str] = 96
elif "small" in model_name:
__UpperCAmelCase : Dict = 96
elif "base" in model_name:
__UpperCAmelCase : List[Any] = 128
elif "large" in model_name:
__UpperCAmelCase : Any = 192
elif "xlarge" in model_name:
__UpperCAmelCase : Tuple = 256
elif "huge" in model_name:
__UpperCAmelCase : int = 352
# set label information
__UpperCAmelCase : Tuple = """huggingface/label-files"""
if "large" in model_name or "huge" in model_name:
__UpperCAmelCase : Any = """imagenet-22k-id2label.json"""
else:
__UpperCAmelCase : Dict = """imagenet-1k-id2label.json"""
__UpperCAmelCase : str = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) )
__UpperCAmelCase : Optional[int] = {int(__lowerCamelCase ): v for k, v in idalabel.items()}
__UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()}
__UpperCAmelCase : List[str] = FocalNetConfig(
embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , )
return config
def lowerCamelCase__ ( __lowerCamelCase : Tuple ):
if "patch_embed.proj" in name:
__UpperCAmelCase : List[Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
__UpperCAmelCase : Dict = name.replace("""patch_embed.norm""" , """embeddings.norm""" )
if "layers" in name:
__UpperCAmelCase : int = """encoder.""" + name
if "encoder.layers" in name:
__UpperCAmelCase : Optional[int] = name.replace("""encoder.layers""" , """encoder.stages""" )
if "downsample.proj" in name:
__UpperCAmelCase : Optional[Any] = name.replace("""downsample.proj""" , """downsample.projection""" )
if "blocks" in name:
__UpperCAmelCase : Union[str, Any] = name.replace("""blocks""" , """layers""" )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
__UpperCAmelCase : List[str] = name.replace("""modulation.f""" , """modulation.projection_in""" )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
__UpperCAmelCase : List[Any] = name.replace("""modulation.h""" , """modulation.projection_context""" )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
__UpperCAmelCase : str = name.replace("""modulation.proj""" , """modulation.projection_out""" )
if name == "norm.weight":
__UpperCAmelCase : Optional[Any] = """layernorm.weight"""
if name == "norm.bias":
__UpperCAmelCase : Dict = """layernorm.bias"""
if "head" in name:
__UpperCAmelCase : Tuple = name.replace("""head""" , """classifier""" )
else:
__UpperCAmelCase : int = """focalnet.""" + name
return name
def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str]=False ):
# fmt: off
__UpperCAmelCase : Dict = {
"""focalnet-tiny""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth""",
"""focalnet-tiny-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth""",
"""focalnet-small""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth""",
"""focalnet-small-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth""",
"""focalnet-base""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth""",
"""focalnet-base-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth""",
"""focalnet-large-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth""",
"""focalnet-large-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth""",
"""focalnet-xlarge-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth""",
"""focalnet-xlarge-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth""",
}
# fmt: on
__UpperCAmelCase : int = model_name_to_url[model_name]
print("""Checkpoint URL: """ , __lowerCamelCase )
__UpperCAmelCase : Dict = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""model"""]
# rename keys
for key in state_dict.copy().keys():
__UpperCAmelCase : Tuple = state_dict.pop(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = val
__UpperCAmelCase : Optional[Any] = get_focalnet_config(__lowerCamelCase )
__UpperCAmelCase : Any = FocalNetForImageClassification(__lowerCamelCase )
model.eval()
# load state dict
model.load_state_dict(__lowerCamelCase )
# verify conversion
__UpperCAmelCase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__UpperCAmelCase : Union[str, Any] = BitImageProcessor(
do_resize=__lowerCamelCase , size={"""shortest_edge""": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=224 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , )
__UpperCAmelCase : Optional[Any] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw )
__UpperCAmelCase : List[Any] = processor(images=__lowerCamelCase , return_tensors="""pt""" )
__UpperCAmelCase : str = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ),
] )
__UpperCAmelCase : List[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 )
__UpperCAmelCase : Dict = model(**__lowerCamelCase )
__UpperCAmelCase : Any = outputs.logits.argmax(-1 ).item()
print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] )
print("""First values of logits:""" , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
__UpperCAmelCase : Union[str, Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] )
elif model_name == "focalnet-tiny-lrf":
__UpperCAmelCase : Dict = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] )
elif model_name == "focalnet-small":
__UpperCAmelCase : int = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] )
elif model_name == "focalnet-small-lrf":
__UpperCAmelCase : int = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] )
elif model_name == "focalnet-base":
__UpperCAmelCase : Optional[int] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] )
elif model_name == "focalnet-base-lrf":
__UpperCAmelCase : Optional[Any] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] )
assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowerCamelCase )
processor.save_pretrained(__lowerCamelCase )
if push_to_hub:
print(f"""Pushing model and processor of {model_name} to the hub...""" )
model.push_to_hub(f"""{model_name}""" )
processor.push_to_hub(f"""{model_name}""" )
if __name__ == "__main__":
a : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="focalnet-tiny",
type=str,
help="Name of the FocalNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model and processor to the hub.",
)
a : Any = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 63 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
if not nums:
raise ValueError('''List is empty''' )
return sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 39 | 0 |
def A__ ( snake_case_ : int = 1_000 ):
SCREAMING_SNAKE_CASE__: Optional[int]= -1
SCREAMING_SNAKE_CASE__: Optional[Any]= 0
for a in range(1 , n // 3 ):
# Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c
SCREAMING_SNAKE_CASE__: Dict= (n * n - 2 * a * n) // (2 * n - 2 * a)
SCREAMING_SNAKE_CASE__: str= n - a - b
if c * c == (a * a + b * b):
SCREAMING_SNAKE_CASE__: List[Any]= a * b * c
if candidate >= product:
SCREAMING_SNAKE_CASE__: Union[str, Any]= candidate
return product
if __name__ == "__main__":
print(f'''{solution() = }''')
| 64 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : List[str] ) ->str:
snake_case_ = inspect.getfile(accelerate.test_utils )
snake_case_ = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
snake_case_ = test_metrics
@require_cpu
def snake_case__( self : str ) ->int:
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def snake_case__( self : Union[str, Any] ) ->Any:
debug_launcher(self.test_metrics.main )
@require_single_gpu
def snake_case__( self : List[Any] ) ->Tuple:
self.test_metrics.main()
@require_multi_gpu
def snake_case__( self : Any ) ->Union[str, Any]:
print(f'''Found {torch.cuda.device_count()} devices.''' )
snake_case_ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) | 39 | 0 |
"""simple docstring"""
import math
class __lowercase :
def __lowercase ( self : Any ,A : list[list[float]] ,A : list[int] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = 0.0
UpperCAmelCase__ : Any = 0.0
for i in range(len(A ) ):
da += math.pow((sample[i] - weights[0][i]) ,2 )
da += math.pow((sample[i] - weights[1][i]) ,2 )
return 0 if da > da else 1
return 0
def __lowercase ( self : Union[str, Any] ,A : list[list[int | float]] ,A : list[int] ,A : int ,A : float ):
'''simple docstring'''
for i in range(len(A ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def lowerCAmelCase ( ):
'''simple docstring'''
UpperCAmelCase__ : int = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
UpperCAmelCase__ : Union[str, Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
UpperCAmelCase__ : int = SelfOrganizingMap()
UpperCAmelCase__ : Any = 3
UpperCAmelCase__ : Optional[int] = 0.5
for _ in range(__UpperCamelCase ):
for j in range(len(__UpperCamelCase ) ):
# training sample
UpperCAmelCase__ : int = training_samples[j]
# Compute the winning vector
UpperCAmelCase__ : List[str] = self_organizing_map.get_winner(__UpperCamelCase , __UpperCamelCase )
# Update the winning vector
UpperCAmelCase__ : Optional[Any] = self_organizing_map.update(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
# classify test sample
UpperCAmelCase__ : List[str] = [0, 0, 0, 1]
UpperCAmelCase__ : Optional[int] = self_organizing_map.get_winner(__UpperCamelCase , __UpperCamelCase )
# results
print(F"Clusters that the test sample belongs to : {winner}" )
print(F"Weights that have been trained : {weights}" )
# running the main() function
if __name__ == "__main__":
main()
| 65 |
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'''huggingface/informer-tourism-monthly''': (
'''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json'''
),
# See all Informer models at https://huggingface.co/models?filter=informer
}
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = "informer"
SCREAMING_SNAKE_CASE : int = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__( self : Dict , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "student_t" , _UpperCamelCase : str = "nll" , _UpperCamelCase : int = 1 , _UpperCamelCase : List[int] = None , _UpperCamelCase : Optional[Union[str, bool]] = "mean" , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : int = 6_4 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.05 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : Dict=True , _UpperCamelCase : str = "prob" , _UpperCamelCase : int = 5 , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Optional[int]:
# time series specific configuration
snake_case_ = prediction_length
snake_case_ = context_length or prediction_length
snake_case_ = distribution_output
snake_case_ = loss
snake_case_ = input_size
snake_case_ = num_time_features
snake_case_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7]
snake_case_ = scaling
snake_case_ = num_dynamic_real_features
snake_case_ = num_static_real_features
snake_case_ = num_static_categorical_features
# set cardinality
if cardinality and num_static_categorical_features > 0:
if len(_UpperCamelCase ) != num_static_categorical_features:
raise ValueError(
'''The cardinality should be a list of the same length as `num_static_categorical_features`''' )
snake_case_ = cardinality
else:
snake_case_ = [0]
# set embedding_dimension
if embedding_dimension and num_static_categorical_features > 0:
if len(_UpperCamelCase ) != num_static_categorical_features:
raise ValueError(
'''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' )
snake_case_ = embedding_dimension
else:
snake_case_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
snake_case_ = num_parallel_samples
# Transformer architecture configuration
snake_case_ = input_size * len(self.lags_sequence ) + self._number_of_features
snake_case_ = d_model
snake_case_ = encoder_attention_heads
snake_case_ = decoder_attention_heads
snake_case_ = encoder_ffn_dim
snake_case_ = decoder_ffn_dim
snake_case_ = encoder_layers
snake_case_ = decoder_layers
snake_case_ = dropout
snake_case_ = attention_dropout
snake_case_ = activation_dropout
snake_case_ = encoder_layerdrop
snake_case_ = decoder_layerdrop
snake_case_ = activation_function
snake_case_ = init_std
snake_case_ = use_cache
# Informer
snake_case_ = attention_type
snake_case_ = sampling_factor
snake_case_ = distil
super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase )
@property
def snake_case__( self : Optional[Any] ) ->int:
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
) | 39 | 0 |
from collections import defaultdict
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool:
_lowercase : Union[str, Any] = first_str.lower().strip()
_lowercase : Tuple = second_str.lower().strip()
# Remove whitespace
_lowercase : Dict = first_str.replace(' ' , '' )
_lowercase : str = second_str.replace(' ' , '' )
# Strings of different lengths are not anagrams
if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ):
return False
# Default values for count should be 0
_lowercase : defaultdict[str, int] = defaultdict(SCREAMING_SNAKE_CASE )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(SCREAMING_SNAKE_CASE ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
UpperCamelCase = input("Enter the first string ").strip()
UpperCamelCase = input("Enter the second string ").strip()
UpperCamelCase = check_anagrams(input_a, input_b)
print(f'''{input_a} and {input_b} are {"" if status else "not "}anagrams.''')
| 66 |
import cmath
import math
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ )
snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ )
# Convert voltage and current to rectangular form
snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod() | 39 | 0 |
import copy
from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
if TYPE_CHECKING:
from ... import PreTrainedTokenizerBase, TensorType
snake_case = logging.get_logger(__name__)
class A_ ( UpperCAmelCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = '''vision-encoder-decoder'''
SCREAMING_SNAKE_CASE_ : Any = True
def __init__( self : List[Any] ,**__A : List[str] ) -> Optional[Any]:
super().__init__(**__A )
if "encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError(
F"""A configuraton of type {self.model_type} cannot be instantiated because """
F"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" )
_lowercase = kwargs.pop('encoder' )
_lowercase = encoder_config.pop('model_type' )
_lowercase = kwargs.pop('decoder' )
_lowercase = decoder_config.pop('model_type' )
_lowercase = AutoConfig.for_model(__A ,**__A )
_lowercase = AutoConfig.for_model(__A ,**__A )
_lowercase = True
@classmethod
def __UpperCAmelCase ( cls : Any ,__A : PretrainedConfig ,__A : PretrainedConfig ,**__A : List[str] ) -> PretrainedConfig:
logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' )
_lowercase = True
_lowercase = True
return cls(encoder=encoder_config.to_dict() ,decoder=decoder_config.to_dict() ,**__A )
def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]:
_lowercase = copy.deepcopy(self.__dict__ )
_lowercase = self.encoder.to_dict()
_lowercase = self.decoder.to_dict()
_lowercase = self.__class__.model_type
return output
class A_ ( UpperCAmelCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = version.parse('''1.11''' )
@property
def __UpperCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def __UpperCAmelCase ( self : int ) -> float:
return 1e-4
@property
def __UpperCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} )
class A_ ( UpperCAmelCase ):
"""simple docstring"""
@property
def __UpperCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
_lowercase = OrderedDict()
_lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
_lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
_lowercase = {0: 'batch', 1: 'encoder_sequence'}
return common_inputs
def __UpperCAmelCase ( self : List[str] ,__A : "PreTrainedTokenizerBase" ,__A : int = -1 ,__A : int = -1 ,__A : bool = False ,__A : Optional["TensorType"] = None ,) -> Mapping[str, Any]:
import torch
_lowercase = OrderedDict()
_lowercase = super().generate_dummy_inputs(
__A ,batch_size=__A ,seq_length=__A ,is_pair=__A ,framework=__A )
_lowercase , _lowercase = dummy_input['input_ids'].shape
_lowercase = (batch, encoder_sequence, self._config.encoder_hidden_size)
_lowercase = dummy_input.pop('input_ids' )
_lowercase = dummy_input.pop('attention_mask' )
_lowercase = torch.zeros(__A )
return common_inputs
class A_ ( UpperCAmelCase ):
"""simple docstring"""
@property
def __UpperCAmelCase ( self : List[str] ) -> None:
pass
def __UpperCAmelCase ( self : List[str] ,__A : PretrainedConfig ) -> OnnxConfig:
return VisionEncoderDecoderEncoderOnnxConfig(__A )
def __UpperCAmelCase ( self : Dict ,__A : PretrainedConfig ,__A : PretrainedConfig ,__A : str = "default" ) -> OnnxConfig:
_lowercase = encoder_config.hidden_size
return VisionEncoderDecoderDecoderOnnxConfig(__A ,__A ) | 67 |
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class snake_case_ :
'''simple docstring'''
def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=1_3 , _UpperCamelCase : str=7 , _UpperCamelCase : int=True , _UpperCamelCase : Dict=True , _UpperCamelCase : int=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : str=3_2 , _UpperCamelCase : str=5 , _UpperCamelCase : str=4 , _UpperCamelCase : int=3_7 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : str=5_1_2 , _UpperCamelCase : Optional[int]=1_6 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Any=0.02 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : str=None , ) ->Dict:
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = num_choices
snake_case_ = scope
def snake_case__( self : str ) ->List[Any]:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = None
if self.use_input_mask:
snake_case_ = random_attention_mask([self.batch_size, self.seq_length] )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = ids_tensor([self.batch_size] , self.num_choices )
snake_case_ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case__( self : List[str] ) ->Tuple:
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , )
def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) ->Dict:
snake_case_ = BioGptModel(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )
snake_case_ = model(_UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , ) ->Optional[int]:
snake_case_ = BioGptForCausalLM(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , *_UpperCamelCase : List[Any] ) ->Union[str, Any]:
snake_case_ = BioGptModel(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
# create attention mask
snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase )
snake_case_ = self.seq_length // 2
snake_case_ = 0
# first forward pass
snake_case_, snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).to_tuple()
# create hypothetical next token and extent to next_input_ids
snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
snake_case_ = ids_tensor((1,) , _UpperCamelCase ).item() + 1
snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
snake_case_ = random_other_next_tokens
# append to next input_ids and attn_mask
snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case_ = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCamelCase )] , dim=1 , )
# get two different outputs
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state''']
snake_case_ = model(_UpperCamelCase , past_key_values=_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state''']
# select random slice
snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach()
snake_case_ = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) )
def snake_case__( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , *_UpperCamelCase : List[Any] ) ->int:
snake_case_ = BioGptModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval()
snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase )
# first forward pass
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase )
snake_case_, snake_case_ = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case_ = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state''']
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[
'''last_hidden_state'''
]
# select random slice
snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach()
snake_case_ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) )
def snake_case__( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , *_UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=False ) ->Dict:
snake_case_ = BioGptForCausalLM(_UpperCamelCase )
model.to(_UpperCamelCase )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def snake_case__( self : List[Any] , _UpperCamelCase : Optional[int] , *_UpperCamelCase : Dict ) ->Dict:
snake_case_ = BioGptModel(_UpperCamelCase )
snake_case_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 )
def snake_case__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , *_UpperCamelCase : List[str] ) ->int:
snake_case_ = self.num_labels
snake_case_ = BioGptForTokenClassification(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def snake_case__( self : Optional[Any] ) ->int:
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
),
) = config_and_inputs
snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class snake_case_ ( __A , __A , __A , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE : Tuple = (BioGptForCausalLM,) if is_torch_available() else ()
SCREAMING_SNAKE_CASE : Optional[Any] = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE : Tuple = False
def snake_case__( self : List[str] ) ->Union[str, Any]:
snake_case_ = BioGptModelTester(self )
snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 )
def snake_case__( self : str ) ->int:
self.config_tester.run_common_tests()
def snake_case__( self : str ) ->Tuple:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase )
def snake_case__( self : Tuple ) ->List[Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*_UpperCamelCase )
def snake_case__( self : Tuple ) ->str:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCamelCase )
def snake_case__( self : Union[str, Any] ) ->Dict:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*_UpperCamelCase , gradient_checkpointing=_UpperCamelCase )
def snake_case__( self : Optional[int] ) ->List[Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCamelCase )
def snake_case__( self : List[Any] ) ->Union[str, Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCamelCase )
def snake_case__( self : Optional[int] ) ->Optional[int]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCamelCase )
@slow
def snake_case__( self : int ) ->Optional[Any]:
snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(_UpperCamelCase )
snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
snake_case_ = '''left'''
# Define PAD Token = EOS Token = 50256
snake_case_ = tokenizer.eos_token
snake_case_ = model.config.eos_token_id
# use different length sentences to test batching
snake_case_ = [
'''Hello, my dog is a little''',
'''Today, I''',
]
snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase )
snake_case_ = inputs['''input_ids'''].to(_UpperCamelCase )
snake_case_ = model.generate(
input_ids=_UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(_UpperCamelCase ) , )
snake_case_ = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase )
snake_case_ = model.generate(input_ids=_UpperCamelCase )
snake_case_ = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
snake_case_ = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase )
snake_case_ = model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings )
snake_case_ = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase )
snake_case_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase )
snake_case_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase )
snake_case_ = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] )
@slow
def snake_case__( self : Optional[int] ) ->List[str]:
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = BioGptModel.from_pretrained(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase )
def snake_case__( self : Optional[int] ) ->str:
snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = 3
snake_case_ = input_dict['''input_ids''']
snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase )
snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
snake_case_ = BioGptForSequenceClassification(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def snake_case__( self : str ) ->str:
snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = 3
snake_case_ = '''multi_label_classification'''
snake_case_ = input_dict['''input_ids''']
snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase )
snake_case_ = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
snake_case_ = BioGptForSequenceClassification(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def snake_case__( self : int ) ->Any:
snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
snake_case_ = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] )
snake_case_ = model(_UpperCamelCase )[0]
snake_case_ = 4_2_3_8_4
snake_case_ = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , _UpperCamelCase )
snake_case_ = torch.tensor(
[[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) )
@slow
def snake_case__( self : List[str] ) ->Optional[int]:
snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(_UpperCamelCase )
torch.manual_seed(0 )
snake_case_ = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_UpperCamelCase )
snake_case_ = model.generate(
**_UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=_UpperCamelCase , )
snake_case_ = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCamelCase )
snake_case_ = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(_UpperCamelCase , _UpperCamelCase ) | 39 | 0 |
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class _A ( unittest.TestCase ):
"""simple docstring"""
def _a ( self : Dict ) -> List[Any]:
__UpperCAmelCase =[
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE ) )
def _a ( self : Tuple ) -> Dict:
__UpperCAmelCase =[
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE ) )
def _a ( self : Any ) -> List[Any]:
__UpperCAmelCase =[
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
"""unet/diffusion_pytorch_model.bin""",
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE ) )
def _a ( self : Union[str, Any] ) -> Any:
__UpperCAmelCase =[
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE ) )
def _a ( self : Tuple ) -> Any:
__UpperCAmelCase =[
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
# Removed: 'text_encoder/model.safetensors',
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE ) )
def _a ( self : List[str] ) -> str:
__UpperCAmelCase =[
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
__UpperCAmelCase ="""fp16"""
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE ) )
def _a ( self : Any ) -> int:
__UpperCAmelCase =[
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
__UpperCAmelCase ="""fp16"""
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE ) )
def _a ( self : Dict ) -> Any:
# pass variant but use the non-variant filenames
__UpperCAmelCase =[
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
__UpperCAmelCase ="""fp16"""
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE ) )
def _a ( self : str ) -> Any:
__UpperCAmelCase =[
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
"""unet/diffusion_pytorch_model.fp16.bin""",
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
__UpperCAmelCase ="""fp16"""
self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE ) )
def _a ( self : Optional[Any] ) -> int:
__UpperCAmelCase =[
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
]
__UpperCAmelCase ="""fp16"""
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE ) )
def _a ( self : Any ) -> Union[str, Any]:
# pass variant but use the non-variant filenames
__UpperCAmelCase =[
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
]
__UpperCAmelCase ="""fp16"""
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE ) )
def _a ( self : Optional[Any] ) -> int:
__UpperCAmelCase =[
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
# 'text_encoder/model.fp16.safetensors',
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
__UpperCAmelCase ="""fp16"""
self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE ) )
| 68 |
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
snake_case_ = (boundary[1] - boundary[0]) / steps
snake_case_ = boundary[0]
snake_case_ = boundary[1]
snake_case_ = make_points(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
snake_case_ = 0.0
y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ )
for i in x_i:
# print(i)
y += h * f(SCREAMING_SNAKE_CASE__ )
y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ )
return y
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = a + h
while x < (b - h):
yield x
snake_case_ = x + h
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # enter your function here
snake_case_ = (x - 0) * (x - 0)
return y
def __SCREAMING_SNAKE_CASE ():
snake_case_ = 0.0 # Lower bound of integration
snake_case_ = 1.0 # Upper bound of integration
snake_case_ = 10.0 # define number of steps or resolution
snake_case_ = [a, b] # define boundary of integration
snake_case_ = method_a(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
print(F'''y = {y}''' )
if __name__ == "__main__":
main() | 39 | 0 |
'''simple docstring'''
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def __UpperCAmelCase ( _UpperCAmelCase : int = 3 ) -> qiskit.result.counts.Counts:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise TypeError("number of qubits must be a integer." )
if number_of_qubits <= 0:
raise ValueError("number of qubits must be > 0." )
if math.floor(_UpperCAmelCase ) != number_of_qubits:
raise ValueError("number of qubits must be exact integer." )
if number_of_qubits > 10:
raise ValueError("number of qubits too large to simulate(>10)." )
__snake_case = QuantumRegister(_UpperCAmelCase , "qr" )
__snake_case = ClassicalRegister(_UpperCAmelCase , "cr" )
__snake_case = QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase )
__snake_case = number_of_qubits
for i in range(_UpperCAmelCase ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(_UpperCAmelCase ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , _UpperCAmelCase , _UpperCAmelCase )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(_UpperCAmelCase , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(_UpperCAmelCase , _UpperCAmelCase )
# simulate with 10000 shots
__snake_case = Aer.get_backend("qasm_simulator" )
__snake_case = execute(_UpperCAmelCase , _UpperCAmelCase , shots=1_00_00 )
return job.result().get_counts(_UpperCAmelCase )
if __name__ == "__main__":
print(
F'''Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}'''
)
| 69 |
import os
import re
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Optional, Union
from uuid import uuida
from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami
from huggingface_hub.file_download import REGEX_COMMIT_HASH
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
is_jinja_available,
)
from packaging import version
from requests import HTTPError
from .. import __version__
from .constants import (
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
)
from .import_utils import (
ENV_VARS_TRUE_VALUES,
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_onnx_available,
is_torch_available,
)
from .logging import get_logger
lowerCAmelCase_ = get_logger(__name__)
lowerCAmelCase_ = Path(__file__).parent / '''model_card_template.md'''
lowerCAmelCase_ = uuida().hex
lowerCAmelCase_ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES
lowerCAmelCase_ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES
lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/'''
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None ):
snake_case_ = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}'''
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
return ua + "; telemetry/off"
if is_torch_available():
ua += F'''; torch/{_torch_version}'''
if is_flax_available():
ua += F'''; jax/{_jax_version}'''
ua += F'''; flax/{_flax_version}'''
if is_onnx_available():
ua += F'''; onnxruntime/{_onnxruntime_version}'''
# CI will set this value to True
if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
ua += "; " + user_agent
return ua
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ):
if token is None:
snake_case_ = HfFolder.get_token()
if organization is None:
snake_case_ = whoami(SCREAMING_SNAKE_CASE__ )['''name''']
return F'''{username}/{model_id}'''
else:
return F'''{organization}/{model_id}'''
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
if not is_jinja_available():
raise ValueError(
'''Modelcard rendering is based on Jinja templates.'''
''' Please make sure to have `jinja` installed before using `create_model_card`.'''
''' To install it, please run `pip install Jinja2`.''' )
if hasattr(SCREAMING_SNAKE_CASE__ , '''local_rank''' ) and args.local_rank not in [-1, 0]:
return
snake_case_ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , '''hub_token''' ) else None
snake_case_ = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ )
snake_case_ = ModelCard.from_template(
card_data=ModelCardData( # Card metadata object that will be converted to YAML block
language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=(
args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''gradient_accumulation_steps''' ) else None
) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , )
snake_case_ = os.path.join(args.output_dir , '''README.md''' )
model_card.save(SCREAMING_SNAKE_CASE__ )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ):
if resolved_file is None or commit_hash is not None:
return commit_hash
snake_case_ = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() )
snake_case_ = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE__ )
if search is None:
return None
snake_case_ = search.groups()[0]
return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
lowerCAmelCase_ = os.path.expanduser(
os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface'''))
)
lowerCAmelCase_ = os.path.join(hf_cache_home, '''diffusers''')
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ):
if new_cache_dir is None:
snake_case_ = DIFFUSERS_CACHE
if old_cache_dir is None:
snake_case_ = old_diffusers_cache
snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser()
snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser()
for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ):
if old_blob_path.is_file() and not old_blob_path.is_symlink():
snake_case_ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ )
new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
try:
os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
except OSError:
logger.warning(
'''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' )
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''')
if not os.path.isfile(cache_version_file):
lowerCAmelCase_ = 0
else:
with open(cache_version_file) as f:
try:
lowerCAmelCase_ = int(f.read())
except ValueError:
lowerCAmelCase_ = 0
if cache_version < 1:
lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
if old_cache_is_not_empty:
logger.warning(
'''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your '''
'''existing cached models. This is a one-time operation, you can interrupt it or run it '''
'''later by calling `diffusers.utils.hub_utils.move_cache()`.'''
)
try:
move_cache()
except Exception as e:
lowerCAmelCase_ = '''\n'''.join(traceback.format_tb(e.__traceback__))
logger.error(
f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """
'''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole '''
'''message and we will do our best to help.'''
)
if cache_version < 1:
try:
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
with open(cache_version_file, '''w''') as f:
f.write('''1''')
except Exception:
logger.warning(
f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """
'''the directory exists and can be written to.'''
)
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ):
if variant is not None:
snake_case_ = weights_name.split('''.''' )
snake_case_ = splits[:-1] + [variant] + splits[-1:]
snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ )
return weights_name
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , *,
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ):
snake_case_ = str(SCREAMING_SNAKE_CASE__ )
if os.path.isfile(SCREAMING_SNAKE_CASE__ ):
return pretrained_model_name_or_path
elif os.path.isdir(SCREAMING_SNAKE_CASE__ ):
if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ):
# Load from a PyTorch checkpoint
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return model_file
elif subfolder is not None and os.path.isfile(
os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ):
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return model_file
else:
raise EnvironmentError(
F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' )
else:
# 1. First check if deprecated way of loading from branches is used
if (
revision in DEPRECATED_REVISION_ARGS
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('''0.20.0''' )
):
try:
snake_case_ = hf_hub_download(
SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , )
warnings.warn(
F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , )
return model_file
except: # noqa: E722
warnings.warn(
F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , )
try:
# 2. Load model file as usual
snake_case_ = hf_hub_download(
SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , )
return model_file
except RepositoryNotFoundError:
raise EnvironmentError(
F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier '''
'''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a '''
'''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli '''
'''login`.''' )
except RevisionNotFoundError:
raise EnvironmentError(
F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for '''
'''this model name. Check the model page at '''
F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' )
except EntryNotFoundError:
raise EnvironmentError(
F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' )
except HTTPError as err:
raise EnvironmentError(
F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' )
except ValueError:
raise EnvironmentError(
F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it'''
F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a'''
F''' directory containing a file named {weights_name} or'''
''' \nCheckout your internet connection or see how to run the library in'''
''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' )
except EnvironmentError:
raise EnvironmentError(
F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from '''
'''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. '''
F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory '''
F'''containing a file named {weights_name}''' ) | 39 | 0 |
import argparse
import json
from collections import OrderedDict
from functools import partial
from pathlib import Path
import timm
import torch
from huggingface_hub import hf_hub_download
from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase : Any = logging.get_logger()
def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : str , lowercase : LevitConfig , lowercase : Path , lowercase : bool = True ):
'''simple docstring'''
print(f"""Converting {name}...""" )
with torch.no_grad():
if hidden_sizes == 1_28:
if name[-1] == "S":
lowerCamelCase_ = timm.create_model('levit_128s' , pretrained=lowercase )
else:
lowerCamelCase_ = timm.create_model('levit_128' , pretrained=lowercase )
if hidden_sizes == 1_92:
lowerCamelCase_ = timm.create_model('levit_192' , pretrained=lowercase )
if hidden_sizes == 2_56:
lowerCamelCase_ = timm.create_model('levit_256' , pretrained=lowercase )
if hidden_sizes == 3_84:
lowerCamelCase_ = timm.create_model('levit_384' , pretrained=lowercase )
from_model.eval()
lowerCamelCase_ = LevitForImageClassificationWithTeacher(lowercase ).eval()
lowerCamelCase_ = OrderedDict()
lowerCamelCase_ = from_model.state_dict()
lowerCamelCase_ = list(from_model.state_dict().keys() )
lowerCamelCase_ = list(our_model.state_dict().keys() )
print(len(lowercase ) , len(lowercase ) )
for i in range(len(lowercase ) ):
lowerCamelCase_ = weights[og_keys[i]]
our_model.load_state_dict(lowercase )
lowerCamelCase_ = torch.randn((2, 3, 2_24, 2_24) )
lowerCamelCase_ = from_model(lowercase )
lowerCamelCase_ = our_model(lowercase ).logits
assert torch.allclose(lowercase , lowercase ), "The model logits don't match the original one."
lowerCamelCase_ = name
print(lowercase )
if push_to_hub:
our_model.save_pretrained(save_directory / checkpoint_name )
lowerCamelCase_ = LevitImageProcessor()
image_processor.save_pretrained(save_directory / checkpoint_name )
print(f"""Pushed {checkpoint_name}""" )
def _SCREAMING_SNAKE_CASE ( lowercase : Path , lowercase : str = None , lowercase : bool = True ):
'''simple docstring'''
lowerCamelCase_ = 'imagenet-1k-id2label.json'
lowerCamelCase_ = 10_00
lowerCamelCase_ = (1, num_labels)
lowerCamelCase_ = 'huggingface/label-files'
lowerCamelCase_ = num_labels
lowerCamelCase_ = json.load(open(hf_hub_download(lowercase , lowercase , repo_type='dataset' ) , 'r' ) )
lowerCamelCase_ = {int(lowercase ): v for k, v in idalabel.items()}
lowerCamelCase_ = idalabel
lowerCamelCase_ = {v: k for k, v in idalabel.items()}
lowerCamelCase_ = partial(lowercase , num_labels=lowercase , idalabel=lowercase , labelaid=lowercase )
lowerCamelCase_ = {
'levit-128S': 1_28,
'levit-128': 1_28,
'levit-192': 1_92,
'levit-256': 2_56,
'levit-384': 3_84,
}
lowerCamelCase_ = {
'levit-128S': ImageNetPreTrainedConfig(
hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ),
'levit-128': ImageNetPreTrainedConfig(
hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ),
'levit-192': ImageNetPreTrainedConfig(
hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ),
'levit-256': ImageNetPreTrainedConfig(
hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ),
'levit-384': ImageNetPreTrainedConfig(
hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ),
}
if model_name:
convert_weight_and_push(
names_to_hidden_sizes[model_name] , lowercase , names_to_config[model_name] , lowercase , lowercase )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(names_to_hidden_sizes[model_name] , lowercase , lowercase , lowercase , lowercase )
return config, expected_shape
if __name__ == "__main__":
lowerCamelCase : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default=None,
type=str,
help="The name of the model you wish to convert, it must be one of the supported Levit* architecture,",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="levit-dump-folder/",
type=Path,
required=False,
help="Path to the output PyTorch model directory.",
)
parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub")
parser.add_argument(
"--no-push_to_hub",
dest="push_to_hub",
action="store_false",
help="Do not push model and image processor to the hub",
)
lowerCamelCase : Optional[int] = parser.parse_args()
lowerCamelCase : Path = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 70 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''',
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt"
def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any:
super().__init__(**_UpperCamelCase )
snake_case_ = hidden_size
snake_case_ = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info('''Initializing the config with a `BiT` backbone.''' )
snake_case_ = {
'''global_padding''': '''same''',
'''layer_type''': '''bottleneck''',
'''depths''': [3, 4, 9],
'''out_features''': ['''stage1''', '''stage2''', '''stage3'''],
'''embedding_dynamic_padding''': True,
}
snake_case_ = BitConfig(**_UpperCamelCase )
elif isinstance(_UpperCamelCase , _UpperCamelCase ):
logger.info('''Initializing the config with a `BiT` backbone.''' )
snake_case_ = BitConfig(**_UpperCamelCase )
elif isinstance(_UpperCamelCase , _UpperCamelCase ):
snake_case_ = backbone_config
else:
raise ValueError(
f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' )
snake_case_ = backbone_featmap_shape
snake_case_ = neck_ignore_stages
if readout_type != "project":
raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' )
else:
snake_case_ = None
snake_case_ = None
snake_case_ = []
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = initializer_range
snake_case_ = layer_norm_eps
snake_case_ = image_size
snake_case_ = patch_size
snake_case_ = num_channels
snake_case_ = qkv_bias
snake_case_ = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' )
snake_case_ = readout_type
snake_case_ = reassemble_factors
snake_case_ = neck_hidden_sizes
snake_case_ = fusion_hidden_size
snake_case_ = head_in_index
snake_case_ = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
snake_case_ = use_auxiliary_head
snake_case_ = auxiliary_loss_weight
snake_case_ = semantic_loss_ignore_index
snake_case_ = semantic_classifier_dropout
def snake_case__( self : List[str] ) ->List[Any]:
snake_case_ = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
snake_case_ = self.backbone_config.to_dict()
snake_case_ = self.__class__.model_type
return output | 39 | 0 |
'''simple docstring'''
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class _snake_case (nn.Module):
def __init__( self ,_snake_case = 16 ,_snake_case = 88 ,_snake_case = None ,_snake_case = 1 ,_snake_case = 0.0 ,_snake_case = 32 ,_snake_case = None ,_snake_case = False ,_snake_case = None ,_snake_case = None ,_snake_case = "geglu" ,_snake_case = None ,):
super().__init__()
UpperCAmelCase_ : Optional[Any] = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=_snake_case ,attention_head_dim=_snake_case ,in_channels=_snake_case ,num_layers=_snake_case ,dropout=_snake_case ,norm_num_groups=_snake_case ,cross_attention_dim=_snake_case ,attention_bias=_snake_case ,sample_size=_snake_case ,num_vector_embeds=_snake_case ,activation_fn=_snake_case ,num_embeds_ada_norm=_snake_case ,)
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
UpperCAmelCase_ : List[str] = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
UpperCAmelCase_ : int = [77, 2_57]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
UpperCAmelCase_ : List[Any] = [1, 0]
def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case=None ,_snake_case=None ,_snake_case=None ,_snake_case = True ,):
UpperCAmelCase_ : List[str] = hidden_states
UpperCAmelCase_ : str = []
UpperCAmelCase_ : Optional[int] = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
UpperCAmelCase_ : Any = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
UpperCAmelCase_ : Any = self.transformer_index_for_condition[i]
UpperCAmelCase_ : int = self.transformers[transformer_index](
_snake_case ,encoder_hidden_states=_snake_case ,timestep=_snake_case ,cross_attention_kwargs=_snake_case ,return_dict=_snake_case ,)[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
UpperCAmelCase_ : Dict = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
UpperCAmelCase_ : List[Any] = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=_snake_case )
| 71 |
import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional
import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy
lowerCAmelCase_ = logging.getLogger(__name__)
lowerCAmelCase_ = '''pytorch_model.bin'''
@dataclasses.dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = dataclasses.field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , )
@dataclasses.dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} )
SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default=__A , metadata={"help": "A csv or a json file containing the validation data."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default=__A , metadata={"help": "The name of the task to train on."} , )
SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field(
default=__A , metadata={"help": "The list of labels for the task."} )
@dataclasses.dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = dataclasses.field(
metadata={"help": "The output directory where the model predictions and checkpoints will be written."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default="accuracy" , metadata={"help": "The evaluation metric used for the task."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default="no" , metadata={
"help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]"
} , )
SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field(
default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , )
SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field(
default=0.0 , metadata={
"help": "How much the specified evaluation metric must improve to satisfy early stopping conditions."
} , )
SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field(
default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , )
SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field(
default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , )
SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field(
default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , )
SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field(
default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , )
SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field(
default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , )
SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field(
default=__A , metadata={"help": "Random seed for initialization."} , )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 )
if args.do_filter_by_confidence:
snake_case_ = dataset.filter(lambda SCREAMING_SNAKE_CASE__ : example["probability"] > args.confidence_threshold )
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
snake_case_ = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) )
print(SCREAMING_SNAKE_CASE__ )
snake_case_ = dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE__ )
snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) )
snake_case_ = dataset.remove_columns(['''label''', '''probability'''] )
snake_case_ = dataset.rename_column('''prediction''' , '''label''' )
snake_case_ = dataset.map(lambda SCREAMING_SNAKE_CASE__ : {"label": idalabel[example["label"]]} )
snake_case_ = dataset.shuffle(seed=args.seed )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' )
if args.data_file_extension == "csv":
dataset.to_csv(SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ )
else:
dataset.to_json(SCREAMING_SNAKE_CASE__ )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ):
snake_case_ = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(accelerator.state )
# Setup logging, we only want one process per machine to log things on the
# screen. accelerator.is_local_main_process is only True for one process per
# machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
snake_case_ = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ )
snake_case_ = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ , infer_file=SCREAMING_SNAKE_CASE__ )
snake_case_ = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ )
snake_case_ = argparse.Namespace()
for arg_class in (model_args, data_args, training_args):
for key, value in vars(SCREAMING_SNAKE_CASE__ ).items():
setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
for key, value in kwargs.items():
if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Sanity checks
snake_case_ = {}
snake_case_ = None
# You need to provide the training data and the data to predict on
assert args.train_file is not None
assert args.infer_file is not None
snake_case_ = args.train_file
snake_case_ = args.infer_file
if args.evaluation_strategy != IntervalStrategy.NO.value:
assert args.eval_file is not None
snake_case_ = args.eval_file
for key in data_files:
snake_case_ = data_files[key].split('''.''' )[-1]
assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.'''
if args.data_file_extension is None:
snake_case_ = extension
else:
assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.'''
assert (
args.eval_metric in datasets.list_metrics()
), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.'''
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed )
logger.info('''Creating the initial data directory for self-training...''' )
snake_case_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format
snake_case_ = data_dir_format(0 )
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ )
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
snake_case_ = None
snake_case_ = None
snake_case_ = 0
snake_case_ = False
# Show the progress bar
snake_case_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process )
# Self-train
for iteration in range(0 , int(args.max_selftrain_iterations ) ):
snake_case_ = data_dir_format(SCREAMING_SNAKE_CASE__ )
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
# Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
# iteration > 0
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-1''' )
snake_case_ = {
'''accelerator''': accelerator,
'''model_name_or_path''': args.model_name_or_path,
'''cache_dir''': args.cache_dir,
'''do_train''': True,
'''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''],
'''do_eval''': True if args.eval_file is not None else False,
'''eval_file''': data_files['''eval'''],
'''do_predict''': True,
'''infer_file''': data_files['''infer'''],
'''task_name''': args.task_name,
'''label_list''': args.label_list,
'''output_dir''': current_output_dir,
'''eval_metric''': args.eval_metric,
'''evaluation_strategy''': args.evaluation_strategy,
'''early_stopping_patience''': args.early_stopping_patience,
'''early_stopping_threshold''': args.early_stopping_threshold,
'''seed''': args.seed,
}
# Add additional training arguments
for key, value in kwargs.items():
if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
arguments_dict.update({key: value} )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ )
if os.path.exists(SCREAMING_SNAKE_CASE__ ):
logger.info(
'''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , )
else:
logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE__ )
finetune(**SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ )
if iteration > 0 and args.finetune_on_labeled_data:
# Stage 2 (optional): fine-tuning on the original labeled data
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-2''' )
# Update arguments_dict
snake_case_ = model_path
snake_case_ = data_files['''train''']
snake_case_ = current_output_dir
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ )
if os.path.exists(SCREAMING_SNAKE_CASE__ ):
logger.info(
'''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , )
else:
logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE__ )
finetune(**SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ )
snake_case_ = iteration
snake_case_ = data_dir_format(iteration + 1 )
snake_case_ = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) )
snake_case_ = config.idalabel
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-checkpoint.json''' )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''test_results_best-checkpoint.json''' )
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f:
snake_case_ = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''infer_output_best-checkpoint.csv''' )
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
# Loading the dataset from local csv or json files.
snake_case_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data''']
snake_case_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data''']
if accelerator.is_main_process:
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) )
if os.path.exists(SCREAMING_SNAKE_CASE__ ):
shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''test_results_iter-{iteration}.json''' ) )
create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' )
if args.evaluation_strategy != IntervalStrategy.NO.value:
snake_case_ = eval_result
if best_iteration is None:
snake_case_ = new_iteration
snake_case_ = new_eval_result
else:
if new_eval_result - best_eval_result > args.early_stopping_threshold:
snake_case_ = new_iteration
snake_case_ = new_eval_result
snake_case_ = 0
else:
if new_eval_result == best_eval_result:
snake_case_ = new_iteration
snake_case_ = new_eval_result
early_stopping_patience_counter += 1
if early_stopping_patience_counter >= args.early_stopping_patience:
snake_case_ = True
progress_bar.update(1 )
if should_training_stop:
break
if best_iteration is not None:
# Save the best iteration
logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE__ )
logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , )
else:
# Assume that the last iteration is the best
logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 )
logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , ) | 39 | 0 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCAmelCase : Any = logging.get_logger(__name__)
_UpperCAmelCase : Dict = {
'''google/pix2struct-textcaps-base''': (
'''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json'''
),
}
class __magic_name__ ( __SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = 'pix2struct_text_model'
UpperCamelCase__ = ['past_key_values']
UpperCamelCase__ = {
'hidden_size': 'hidden_size',
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self , snake_case_=5_02_44 , snake_case_=7_68 , snake_case_=64 , snake_case_=20_48 , snake_case_=12 , snake_case_=12 , snake_case_=32 , snake_case_=1_28 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=1.0 , snake_case_="gelu_new" , snake_case_=0 , snake_case_=False , snake_case_=0 , snake_case_=1 , snake_case_=False , snake_case_=True , **snake_case_ , ):
lowercase =vocab_size
lowercase =hidden_size
lowercase =d_kv
lowercase =d_ff
lowercase =num_layers
lowercase =num_heads
lowercase =relative_attention_num_buckets
lowercase =relative_attention_max_distance
lowercase =dropout_rate
lowercase =layer_norm_epsilon
lowercase =initializer_factor
lowercase =use_cache
lowercase =eos_token_id
lowercase =decoder_start_token_id
# for backwards compatibility
lowercase =dense_act_fn
super().__init__(
pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , tie_word_embeddings=snake_case_ , is_decoder=snake_case_ , **snake_case_ , )
@classmethod
def _A( cls , snake_case_ , **snake_case_ ):
cls._set_token_in_kwargs(snake_case_ )
lowercase , lowercase =cls.get_config_dict(snake_case_ , **snake_case_ )
# get the text config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
lowercase =config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(snake_case_ , **snake_case_ )
class __magic_name__ ( __SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = 'pix2struct_vision_model'
def __init__( self , snake_case_=7_68 , snake_case_=7_68 , snake_case_=20_48 , snake_case_=64 , snake_case_=12 , snake_case_=12 , snake_case_="gelu_new" , snake_case_=1E-6 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=1E-10 , snake_case_=1.0 , snake_case_=40_96 , snake_case_=32 , snake_case_=1_28 , **snake_case_ , ):
super().__init__(**snake_case_ )
lowercase =hidden_size
lowercase =patch_embed_hidden_size
lowercase =d_ff
lowercase =dropout_rate
lowercase =num_hidden_layers
lowercase =num_attention_heads
lowercase =initializer_range
lowercase =initializer_factor
lowercase =attention_dropout
lowercase =layer_norm_eps
lowercase =dense_act_fn
lowercase =seq_len
lowercase =relative_attention_num_buckets
lowercase =relative_attention_max_distance
lowercase =d_kv
@classmethod
def _A( cls , snake_case_ , **snake_case_ ):
cls._set_token_in_kwargs(snake_case_ )
lowercase , lowercase =cls.get_config_dict(snake_case_ , **snake_case_ )
# get the vision config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
lowercase =config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(snake_case_ , **snake_case_ )
class __magic_name__ ( __SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = 'pix2struct'
UpperCamelCase__ = True
def __init__( self , snake_case_=None , snake_case_=None , snake_case_=1.0 , snake_case_=0.02 , snake_case_=False , snake_case_=False , snake_case_=True , **snake_case_ , ):
super().__init__(tie_word_embeddings=snake_case_ , is_encoder_decoder=snake_case_ , **snake_case_ )
if text_config is None:
lowercase ={}
logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' )
if vision_config is None:
lowercase ={}
logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' )
lowercase =PixaStructTextConfig(**snake_case_ )
lowercase =PixaStructVisionConfig(**snake_case_ )
lowercase =self.text_config.decoder_start_token_id
lowercase =self.text_config.pad_token_id
lowercase =self.text_config.eos_token_id
lowercase =initializer_factor
lowercase =initializer_range
lowercase =self.initializer_range
lowercase =self.initializer_range
lowercase =is_vqa
@classmethod
def _A( cls , snake_case_ , snake_case_ , **snake_case_ ):
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case_ )
def _A( self ):
lowercase =copy.deepcopy(self.__dict__ )
lowercase =self.text_config.to_dict()
lowercase =self.vision_config.to_dict()
lowercase =self.__class__.model_type
return output
| 72 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class snake_case_ ( __A , __A , __A , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = AltDiffusionPipeline
SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS
SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
def snake_case__( self : Dict ) ->int:
torch.manual_seed(0 )
snake_case_ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , )
snake_case_ = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , )
torch.manual_seed(0 )
snake_case_ = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0 )
snake_case_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , )
snake_case_ = CLIPTextModel(_UpperCamelCase )
snake_case_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
snake_case_ = 7_7
snake_case_ = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def snake_case__( self : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0 ) ->Any:
if str(_UpperCamelCase ).startswith('''mps''' ):
snake_case_ = torch.manual_seed(_UpperCamelCase )
else:
snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase )
snake_case_ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def snake_case__( self : Dict ) ->List[str]:
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 )
def snake_case__( self : List[str] ) ->Any:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def snake_case__( self : Dict ) ->Any:
snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case_ = self.get_dummy_components()
torch.manual_seed(0 )
snake_case_ = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , )
# TODO: remove after fixing the non-deterministic text encoder
snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase )
snake_case_ = text_encoder
snake_case_ = AltDiffusionPipeline(**_UpperCamelCase )
snake_case_ = alt_pipe.to(_UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = self.get_dummy_inputs(_UpperCamelCase )
snake_case_ = '''A photo of an astronaut'''
snake_case_ = alt_pipe(**_UpperCamelCase )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
snake_case_ = np.array(
[0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case__( self : Tuple ) ->Union[str, Any]:
snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case_ = self.get_dummy_components()
snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase )
torch.manual_seed(0 )
snake_case_ = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , )
# TODO: remove after fixing the non-deterministic text encoder
snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase )
snake_case_ = text_encoder
snake_case_ = AltDiffusionPipeline(**_UpperCamelCase )
snake_case_ = alt_pipe.to(_UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = self.get_dummy_inputs(_UpperCamelCase )
snake_case_ = alt_pipe(**_UpperCamelCase )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
snake_case_ = np.array(
[0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : int ) ->List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case__( self : List[str] ) ->Tuple:
# make sure here that pndm scheduler skips prk
snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_UpperCamelCase )
snake_case_ = alt_pipe.to(_UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = '''A painting of a squirrel eating a burger'''
snake_case_ = torch.manual_seed(0 )
snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='''np''' )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
snake_case_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case__( self : List[str] ) ->Optional[Any]:
snake_case_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' )
snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase )
snake_case_ = alt_pipe.to(_UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = '''A painting of a squirrel eating a burger'''
snake_case_ = torch.manual_seed(0 )
snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , num_inference_steps=2 , output_type='''numpy''' )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
snake_case_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 | 39 | 0 |
def lowerCamelCase__ (_UpperCAmelCase = 50):
SCREAMING_SNAKE_CASE = [[0] * 3 for _ in range(length + 1)]
for row_length in range(length + 1):
for tile_length in range(2 , 5):
for tile_start in range(row_length - tile_length + 1):
different_colour_ways_number[row_length][tile_length - 2] += (
different_colour_ways_number[row_length - tile_start - tile_length][
tile_length - 2
]
+ 1
)
return sum(different_colour_ways_number[length])
if __name__ == "__main__":
print(f"""{solution() = }""")
| 73 |
from math import factorial
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
# If either of the conditions are true, the function is being asked
# to calculate a factorial of a negative number, which is not possible
if n < k or k < 0:
raise ValueError('''Please enter positive integers for n and k where n >= k''' )
return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k ))
if __name__ == "__main__":
print(
'''The number of five-card hands possible from a standard''',
f"""fifty-two card deck is: {combinations(52, 5)}\n""",
)
print(
'''If a class of 40 students must be arranged into groups of''',
f"""4 for group projects, there are {combinations(40, 4)} ways""",
'''to arrange them.\n''',
)
print(
'''If 10 teams are competing in a Formula One race, there''',
f"""are {combinations(10, 3)} ways that first, second and""",
'''third place can be awarded.''',
) | 39 | 0 |
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
lowercase_ = """2.13.1"""
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse("""3.7"""):
raise ImportWarning(
"""To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition."""
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
"""To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n"""
"""If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`."""
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
lowercase_ = concatenate_datasets
lowercase_ = DownloadConfig
lowercase_ = DownloadManager
lowercase_ = DownloadMode
lowercase_ = DownloadConfig
lowercase_ = DownloadMode
lowercase_ = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
| 74 |
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
lowerCAmelCase_ = sys.version_info >= (3, 10)
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ):
return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : float
SCREAMING_SNAKE_CASE : str
SCREAMING_SNAKE_CASE : bool
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 42
SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : bool = False
SCREAMING_SNAKE_CASE : bool = True
SCREAMING_SNAKE_CASE : Optional[bool] = None
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = "titi"
SCREAMING_SNAKE_CASE : Any = "toto"
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = "titi"
SCREAMING_SNAKE_CASE : Optional[Any] = "toto"
SCREAMING_SNAKE_CASE : Any = 42
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : BasicEnum = "toto"
def snake_case__( self : Tuple ) ->List[str]:
snake_case_ = BasicEnum(self.foo )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto"
def snake_case__( self : Union[str, Any] ) ->Dict:
snake_case_ = MixedTypeEnum(self.foo )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Optional[float] = field(default=__A , metadata={"help": "help message"} )
SCREAMING_SNAKE_CASE : Optional[str] = None
SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] )
SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] )
SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] )
SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] )
SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[int] = field()
SCREAMING_SNAKE_CASE : str = field()
SCREAMING_SNAKE_CASE : BasicEnum = field()
def snake_case__( self : Optional[Any] ) ->Tuple:
snake_case_ = BasicEnum(self.required_enum )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : "BasicEnum" = field()
SCREAMING_SNAKE_CASE : "Optional[bool]" = None
SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} )
SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] )
if is_python_no_less_than_3_10:
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : bool = False
SCREAMING_SNAKE_CASE : bool = True
SCREAMING_SNAKE_CASE : bool | None = None
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : int | None = None
SCREAMING_SNAKE_CASE : float | None = field(default=__A , metadata={"help": "help message"} )
SCREAMING_SNAKE_CASE : str | None = None
SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] )
SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] )
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : Dict , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser ) ->str:
self.assertEqual(len(a._actions ) , len(b._actions ) )
for x, y in zip(a._actions , b._actions ):
snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''}
snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get('''choices''' , _UpperCamelCase ) and yy.get('''choices''' , _UpperCamelCase ):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx['''type'''](_UpperCamelCase ) , yy['''type'''](_UpperCamelCase ) )
del xx["type"], yy["type"]
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Optional[Any] ) ->Dict:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument('''--bar''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument('''--baz''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument('''--flag''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5''']
((snake_case_), ) = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase )
self.assertFalse(example.flag )
def snake_case__( self : Tuple ) ->Optional[int]:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , default=4_2 , type=_UpperCamelCase )
expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Tuple ) ->Tuple:
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' )
expected.add_argument('''--baz''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' )
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCamelCase , dest='''baz''' )
expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase )
snake_case_ = [WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(_UpperCamelCase )
for dataclass_type in dataclass_types:
snake_case_ = HfArgumentParser(_UpperCamelCase )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
snake_case_ = parser.parse_args(['''--foo''', '''--no_baz'''] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
snake_case_ = parser.parse_args(['''--foo''', '''--baz'''] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
snake_case_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
snake_case_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
def snake_case__( self : Tuple ) ->Tuple:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument(
'''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(args.foo , '''toto''' )
snake_case_ = parser.parse_args_into_dataclasses([] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto )
snake_case_ = parser.parse_args(['''--foo''', '''titi'''] )
self.assertEqual(args.foo , '''titi''' )
snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi )
snake_case_ = parser.parse_args(['''--foo''', '''42'''] )
self.assertEqual(args.foo , 4_2 )
snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo )
def snake_case__( self : Tuple ) ->Union[str, Any]:
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto"
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument(
'''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(args.foo , '''toto''' )
snake_case_ = parser.parse_args(['''--foo''', '''titi'''] )
self.assertEqual(args.foo , '''titi''' )
snake_case_ = parser.parse_args(['''--foo''', '''42'''] )
self.assertEqual(args.foo , 4_2 )
def snake_case__( self : List[str] ) ->int:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCamelCase )
expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCamelCase )
expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase )
expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(
_UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , )
snake_case_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() )
self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) )
def snake_case__( self : Optional[Any] ) ->List[Any]:
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , default=_UpperCamelCase , type=_UpperCamelCase )
expected.add_argument('''--bar''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''help message''' )
expected.add_argument('''--baz''' , default=_UpperCamelCase , type=_UpperCamelCase )
expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCamelCase )
expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCamelCase )
snake_case_ = [OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(_UpperCamelCase )
for dataclass_type in dataclass_types:
snake_case_ = HfArgumentParser(_UpperCamelCase )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[] ) )
snake_case_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() )
self.assertEqual(_UpperCamelCase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) )
def snake_case__( self : Union[str, Any] ) ->Optional[int]:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument('''--required_str''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument(
'''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : List[str] ) ->int:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument(
'''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , )
expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase )
expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' )
expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Dict ) ->Any:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = {
'''foo''': 1_2,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
snake_case_ = parser.parse_dict(_UpperCamelCase )[0]
snake_case_ = BasicExample(**_UpperCamelCase )
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : int ) ->Dict:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = {
'''foo''': 1_2,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
'''extra''': 4_2,
}
self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase )
def snake_case__( self : str ) ->Tuple:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = {
'''foo''': 1_2,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = os.path.join(_UpperCamelCase , '''temp_json''' )
os.mkdir(_UpperCamelCase )
with open(temp_local_path + '''.json''' , '''w+''' ) as f:
json.dump(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0]
snake_case_ = BasicExample(**_UpperCamelCase )
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Optional[int] ) ->str:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = {
'''foo''': 1_2,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = os.path.join(_UpperCamelCase , '''temp_yaml''' )
os.mkdir(_UpperCamelCase )
with open(temp_local_path + '''.yaml''' , '''w+''' ) as f:
yaml.dump(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0]
snake_case_ = BasicExample(**_UpperCamelCase )
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Any ) ->Any:
snake_case_ = HfArgumentParser(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase ) | 39 | 0 |
'''simple docstring'''
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str:
# Initialise PyTorch model
UpperCAmelCase__ : Optional[int] = BertConfig.from_json_file(lowerCAmelCase__ )
print(F"""Building PyTorch model from configuration: {config}""" )
UpperCAmelCase__ : Optional[Any] = BertForPreTraining(lowerCAmelCase__ )
# Load weights from tf checkpoint
load_tf_weights_in_bert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , lowerCAmelCase__ )
if __name__ == "__main__":
UpperCamelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--bert_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained BERT model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
UpperCamelCase__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 75 |
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
lowerCAmelCase_ = logging.get_logger(__name__)
class snake_case_ ( __A ):
'''simple docstring'''
def __init__( self : Dict , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->None:
warnings.warn(
'''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use ChineseCLIPImageProcessor instead.''' , _UpperCamelCase , )
super().__init__(*_UpperCamelCase , **_UpperCamelCase ) | 39 | 0 |
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
| 76 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''',
'''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''',
'''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''',
'''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''',
'''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''',
}
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv"
SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"}
def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]:
snake_case_ = vocab_size
snake_case_ = context_length
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size
snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size
snake_case_ = layer_norm_epsilon
snake_case_ = rescale_every
snake_case_ = use_cache
snake_case_ = bos_token_id
snake_case_ = eos_token_id
super().__init__(
tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) | 39 | 0 |
"""simple docstring"""
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class a__ ( unittest.TestCase ):
def a_ ( self : Optional[Any]):
"""simple docstring"""
__UpperCAmelCase : int = tf.convert_to_tensor(
[
[
8.2220991, # 3rd highest value; idx. 0
-0.5620044,
5.23229752,
4.0386393,
-6.8798378,
-0.54785802,
-3.2012153,
2.92777176,
1.88171953,
7.35341276, # 5th highest value; idx. 9
8.43207833, # 2nd highest value; idx. 10
-9.85711836,
-5.96209236,
-1.13039161,
-7.1115294,
-0.8369633,
-5.3186408,
7.06427407,
0.81369344,
-0.82023817,
-5.9179796,
0.58813443,
-6.99778438,
4.71551189,
-0.18771637,
7.44020759, # 4th highest value; idx. 25
9.38450987, # 1st highest value; idx. 26
2.12662941,
-9.32562038,
2.35652522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58425518,
4.53139238,
-5.57510464,
-6.28030699,
-7.19529503,
-4.02122551,
1.39337037,
-6.06707057,
1.59480517,
-9.643119,
0.03907799,
0.67231762,
-8.88206726,
6.27115922, # 4th highest value; idx. 13
2.28520723,
4.82767506,
4.30421368,
8.8275313, # 2nd highest value; idx. 17
5.44029958, # 5th highest value; idx. 18
-4.4735794,
7.38579536, # 3rd highest value; idx. 20
-2.91051663,
2.61946077,
-2.5674762,
-9.48959302,
-4.02922645,
-1.35416918,
9.67702323, # 1st highest value; idx. 27
-5.89478553,
1.85370467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
__UpperCAmelCase : Tuple = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
__UpperCAmelCase : List[str] = tf.convert_to_tensor(
[8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above
__UpperCAmelCase : Any = tf_top_k_top_p_filtering(UpperCamelCase_ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4)
__UpperCAmelCase : List[Any] = output[output != -float("inf")]
__UpperCAmelCase : Tuple = tf.cast(
tf.where(tf.not_equal(UpperCamelCase_ , tf.constant(-float("inf") , dtype=tf.floataa))) , dtype=tf.intaa , )
tf.debugging.assert_near(UpperCamelCase_ , UpperCamelCase_ , rtol=1e-12)
tf.debugging.assert_equal(UpperCamelCase_ , UpperCamelCase_)
@require_tf
class a__ ( unittest.TestCase , __magic_name__ ):
# setting framework_dependent_parameters needs to be gated, just like its contents' imports
if is_tf_available():
lowercase_ = {
"AutoModelForCausalLM": TFAutoModelForCausalLM,
"AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq,
"AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM,
"AutoModelForVision2Seq": TFAutoModelForVisionaSeq,
"LogitsProcessorList": TFLogitsProcessorList,
"MinLengthLogitsProcessor": TFMinLengthLogitsProcessor,
"create_tensor_fn": tf.convert_to_tensor,
"floats_tensor": floats_tensor,
"return_tensors": "tf",
}
@slow
def a_ ( self : int):
"""simple docstring"""
__UpperCAmelCase : int = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2")
__UpperCAmelCase : str = 2
__UpperCAmelCase : int = 2
class a__ ( tf.Module ):
def __init__( self : List[Any] , UpperCamelCase_ : Tuple):
"""simple docstring"""
super(UpperCamelCase_ , self).__init__()
__UpperCAmelCase : Optional[Any] = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids"),
tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask"),
) , jit_compile=UpperCamelCase_ , )
def a_ ( self : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : List[str]):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = self.model.generate(
input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , max_new_tokens=UpperCamelCase_ , return_dict_in_generate=UpperCamelCase_ , )
return {"sequences": outputs["sequences"]}
__UpperCAmelCase : str = [[2, 0], [102, 103]]
__UpperCAmelCase : str = [[1, 0], [1, 1]]
__UpperCAmelCase : str = DummyModel(model=UpperCamelCase_)
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(UpperCamelCase_ , UpperCamelCase_ , signatures={"serving_default": dummy_model.serving})
__UpperCAmelCase : List[str] = tf.saved_model.load(UpperCamelCase_).signatures["serving_default"]
for batch_size in range(1 , len(UpperCamelCase_) + 1):
__UpperCAmelCase : Optional[int] = {
"input_ids": tf.constant(dummy_input_ids[:batch_size]),
"attention_mask": tf.constant(dummy_attention_masks[:batch_size]),
}
__UpperCAmelCase : str = serving_func(**UpperCamelCase_)["sequences"]
__UpperCAmelCase : str = test_model.generate(**UpperCamelCase_ , max_new_tokens=UpperCamelCase_)
tf.debugging.assert_equal(UpperCamelCase_ , UpperCamelCase_)
@slow
def a_ ( self : int):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2")
__UpperCAmelCase : List[str] = 1
__UpperCAmelCase : List[Any] = 2
class a__ ( tf.Module ):
def __init__( self : Union[str, Any] , UpperCamelCase_ : Any):
"""simple docstring"""
super(UpperCamelCase_ , self).__init__()
__UpperCAmelCase : int = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids"),
tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask"),
) , jit_compile=UpperCamelCase_ , )
def a_ ( self : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any]):
"""simple docstring"""
__UpperCAmelCase : Tuple = self.model.generate(
input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , max_new_tokens=UpperCamelCase_ , return_dict_in_generate=UpperCamelCase_ , )
return {"sequences": outputs["sequences"]}
__UpperCAmelCase : Union[str, Any] = [[2], [102, 103]]
__UpperCAmelCase : str = [[1], [1, 1]]
__UpperCAmelCase : Optional[int] = DummyModel(model=UpperCamelCase_)
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(UpperCamelCase_ , UpperCamelCase_ , signatures={"serving_default": dummy_model.serving})
__UpperCAmelCase : Tuple = tf.saved_model.load(UpperCamelCase_).signatures["serving_default"]
for input_row in range(len(UpperCamelCase_)):
__UpperCAmelCase : Dict = {
"input_ids": tf.constant([dummy_input_ids[input_row]]),
"attention_mask": tf.constant([dummy_attention_masks[input_row]]),
}
__UpperCAmelCase : Dict = serving_func(**UpperCamelCase_)["sequences"]
__UpperCAmelCase : int = test_model.generate(**UpperCamelCase_ , max_new_tokens=UpperCamelCase_)
tf.debugging.assert_equal(UpperCamelCase_ , UpperCamelCase_)
@slow
@require_tensorflow_text
def a_ ( self : Any):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=UpperCamelCase_)
class a__ ( tf.keras.layers.Layer ):
def __init__( self : Tuple):
"""simple docstring"""
super().__init__()
__UpperCAmelCase : Dict = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(UpperCamelCase_ , "spiece.model") , "rb").read())
__UpperCAmelCase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5")
def a_ ( self : List[Any] , UpperCamelCase_ : Tuple , *UpperCamelCase_ : Dict , **UpperCamelCase_ : Any):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = self.tokenizer.tokenize(UpperCamelCase_)
__UpperCAmelCase , __UpperCAmelCase : List[str] = text.pad_model_inputs(
UpperCamelCase_ , max_seq_length=64 , pad_value=self.model.config.pad_token_id)
__UpperCAmelCase : int = self.model.generate(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_)
return self.tokenizer.detokenize(UpperCamelCase_)
__UpperCAmelCase : Dict = CompleteSentenceTransformer()
__UpperCAmelCase : List[str] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs")
__UpperCAmelCase : Optional[Any] = complete_model(UpperCamelCase_)
__UpperCAmelCase : Optional[Any] = tf.keras.Model(UpperCamelCase_ , UpperCamelCase_)
keras_model.save(UpperCamelCase_)
def a_ ( self : Union[str, Any]):
"""simple docstring"""
__UpperCAmelCase : Tuple = {
"do_sample": True,
"num_beams": 1,
"top_p": 0.7,
"top_k": 10,
"temperature": 0.7,
}
__UpperCAmelCase : List[str] = 14
__UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
__UpperCAmelCase : List[str] = "Hello, my dog is cute and"
__UpperCAmelCase : Optional[Any] = tokenizer(UpperCamelCase_ , return_tensors="tf")
__UpperCAmelCase : List[str] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2")
__UpperCAmelCase : Optional[int] = 638
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(":/CPU:0"):
tf.random.set_seed(0)
__UpperCAmelCase : List[Any] = model.generate(**UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_)
self.assertTrue(expectation == len(generated_tokens[0]))
__UpperCAmelCase : Dict = [638, 198]
with tf.device(":/CPU:0"):
tf.random.set_seed(0)
__UpperCAmelCase : List[Any] = model.generate(**UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_)
self.assertTrue(expectation == len(generated_tokens[0]))
def a_ ( self : Optional[Any]):
"""simple docstring"""
__UpperCAmelCase : int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
__UpperCAmelCase : Dict = "Hugging Face is a technology company based in New York and Paris."
__UpperCAmelCase : Tuple = bart_tokenizer(UpperCamelCase_ , return_tensors="tf").input_ids
__UpperCAmelCase : List[str] = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart")
__UpperCAmelCase : int = bart_model.generate(UpperCamelCase_).numpy()
class a__ ( __magic_name__ ):
def a_ ( self : Any , UpperCamelCase_ : str , UpperCamelCase_ : List[Any]=None , **UpperCamelCase_ : int):
"""simple docstring"""
return super().call(UpperCamelCase_ , **UpperCamelCase_)
__UpperCAmelCase : List[Any] = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart")
__UpperCAmelCase : Union[str, Any] = bart_model.generate(UpperCamelCase_ , foo="bar").numpy()
self.assertTrue(np.array_equal(UpperCamelCase_ , UpperCamelCase_))
class a__ ( bart_model.model.encoder.__class__ ):
def a_ ( self : Dict , UpperCamelCase_ : int , **UpperCamelCase_ : Dict):
"""simple docstring"""
return super().call(UpperCamelCase_ , **UpperCamelCase_)
__UpperCAmelCase : Dict = FakeEncoder(bart_model.config , bart_model.model.shared)
__UpperCAmelCase : str = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
__UpperCAmelCase : List[str] = bart_model.generate(UpperCamelCase_).numpy()
with self.assertRaises(UpperCamelCase_):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(UpperCamelCase_ , foo="bar")
| 77 |
import bza
import gzip
import lzma
import os
import shutil
import struct
import tarfile
import warnings
import zipfile
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List, Optional, Type, Union
from .. import config
from .filelock import FileLock
from .logging import get_logger
lowerCAmelCase_ = get_logger(__name__)
class snake_case_ :
'''simple docstring'''
def __init__( self : int , _UpperCamelCase : Optional[str] = None ) ->Tuple:
snake_case_ = (
os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH
)
snake_case_ = Extractor
def snake_case__( self : Any , _UpperCamelCase : str ) ->str:
from .file_utils import hash_url_to_filename
# Path where we extract compressed archives
# We extract in the cache dir, and get the extracted path name by hashing the original path"
snake_case_ = os.path.abspath(_UpperCamelCase )
return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) )
def snake_case__( self : int , _UpperCamelCase : str , _UpperCamelCase : bool ) ->bool:
return force_extract or (
not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase ))
)
def snake_case__( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : bool = False ) ->str:
snake_case_ = self.extractor.infer_extractor_format(_UpperCamelCase )
if not extractor_format:
return input_path
snake_case_ = self._get_output_path(_UpperCamelCase )
if self._do_extract(_UpperCamelCase , _UpperCamelCase ):
self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
return output_path
class snake_case_ ( __A ):
'''simple docstring'''
@classmethod
@abstractmethod
def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : str ) ->bool:
...
@staticmethod
@abstractmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
...
class snake_case_ ( __A , __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[bytes] = []
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->List[Any]:
with open(_UpperCamelCase , '''rb''' ) as f:
return f.read(_UpperCamelCase )
@classmethod
def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool:
if not magic_number:
snake_case_ = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers )
try:
snake_case_ = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase )
except OSError:
return False
return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers )
class snake_case_ ( __A ):
'''simple docstring'''
@classmethod
def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : Any ) ->bool:
return tarfile.is_tarfile(_UpperCamelCase )
@staticmethod
def snake_case__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) ->List[str]:
def resolved(_UpperCamelCase : str ) -> str:
return os.path.realpath(os.path.abspath(_UpperCamelCase ) )
def badpath(_UpperCamelCase : str , _UpperCamelCase : str ) -> bool:
# joinpath will ignore base if path is absolute
return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase )
def badlink(_UpperCamelCase : Tuple , _UpperCamelCase : str ) -> bool:
# Links are interpreted relative to the directory containing the link
snake_case_ = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) )
return badpath(info.linkname , base=_UpperCamelCase )
snake_case_ = resolved(_UpperCamelCase )
for finfo in members:
if badpath(finfo.name , _UpperCamelCase ):
logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' )
elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ):
logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' )
elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ):
logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' )
else:
yield finfo
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
snake_case_ = tarfile.open(_UpperCamelCase )
tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) )
tar_file.close()
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = [b"\x1F\x8B"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
with gzip.open(_UpperCamelCase , '''rb''' ) as gzip_file:
with open(_UpperCamelCase , '''wb''' ) as extracted_file:
shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase )
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = [
b"PK\x03\x04",
b"PK\x05\x06", # empty archive
b"PK\x07\x08", # spanned archive
]
@classmethod
def snake_case__( cls : List[str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool:
if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ):
return True
try:
# Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives.
# From: https://github.com/python/cpython/pull/5053
from zipfile import (
_CD_SIGNATURE,
_ECD_DISK_NUMBER,
_ECD_DISK_START,
_ECD_ENTRIES_TOTAL,
_ECD_OFFSET,
_ECD_SIZE,
_EndRecData,
sizeCentralDir,
stringCentralDir,
structCentralDir,
)
with open(_UpperCamelCase , '''rb''' ) as fp:
snake_case_ = _EndRecData(_UpperCamelCase )
if endrec:
if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0:
return True # Empty zipfiles are still zipfiles
elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]:
fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk
if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir:
snake_case_ = fp.read(_UpperCamelCase ) # CD is where we expect it to be
if len(_UpperCamelCase ) == sizeCentralDir:
snake_case_ = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size
if centdir[_CD_SIGNATURE] == stringCentralDir:
return True # First central directory entry has correct magic number
return False
except Exception: # catch all errors in case future python versions change the zipfile internals
return False
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
with zipfile.ZipFile(_UpperCamelCase , '''r''' ) as zip_file:
zip_file.extractall(_UpperCamelCase )
zip_file.close()
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = [b"\xFD\x37\x7A\x58\x5A\x00"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
with lzma.open(_UpperCamelCase ) as compressed_file:
with open(_UpperCamelCase , '''wb''' ) as extracted_file:
shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase )
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
if not config.RARFILE_AVAILABLE:
raise ImportError('''Please pip install rarfile''' )
import rarfile
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
snake_case_ = rarfile.RarFile(_UpperCamelCase )
rf.extractall(_UpperCamelCase )
rf.close()
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = [b"\x28\xb5\x2F\xFD"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
if not config.ZSTANDARD_AVAILABLE:
raise ImportError('''Please pip install zstandard''' )
import zstandard as zstd
snake_case_ = zstd.ZstdDecompressor()
with open(_UpperCamelCase , '''rb''' ) as ifh, open(_UpperCamelCase , '''wb''' ) as ofh:
dctx.copy_stream(_UpperCamelCase , _UpperCamelCase )
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = [b"\x42\x5A\x68"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
with bza.open(_UpperCamelCase , '''rb''' ) as compressed_file:
with open(_UpperCamelCase , '''wb''' ) as extracted_file:
shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase )
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = [b"\x37\x7A\xBC\xAF\x27\x1C"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
if not config.PY7ZR_AVAILABLE:
raise ImportError('''Please pip install py7zr''' )
import pyazr
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
with pyazr.SevenZipFile(_UpperCamelCase , '''r''' ) as archive:
archive.extractall(_UpperCamelCase )
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = [b"\x04\x22\x4D\x18"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
if not config.LZ4_AVAILABLE:
raise ImportError('''Please pip install lz4''' )
import lza.frame
with lza.frame.open(_UpperCamelCase , '''rb''' ) as compressed_file:
with open(_UpperCamelCase , '''wb''' ) as extracted_file:
shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase )
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict[str, Type[BaseExtractor]] = {
"tar": TarExtractor,
"gzip": GzipExtractor,
"zip": ZipExtractor,
"xz": XzExtractor,
"rar": RarExtractor,
"zstd": ZstdExtractor,
"bz2": BzipaExtractor,
"7z": SevenZipExtractor, # <Added version="2.4.0"/>
"lz4": LzaExtractor, # <Added version="2.4.0"/>
}
@classmethod
def snake_case__( cls : List[Any] ) ->List[str]:
return max(
len(_UpperCamelCase )
for extractor in cls.extractors.values()
if issubclass(_UpperCamelCase , _UpperCamelCase )
for extractor_magic_number in extractor.magic_numbers )
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->Tuple:
try:
return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase )
except OSError:
return b""
@classmethod
def snake_case__( cls : Optional[Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bool = False ) ->bool:
warnings.warn(
'''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. '''
'''Use \'infer_extractor_format\' instead.''' , category=_UpperCamelCase , )
snake_case_ = cls.infer_extractor_format(_UpperCamelCase )
if extractor_format:
return True if not return_extractor else (True, cls.extractors[extractor_format])
return False if not return_extractor else (False, None)
@classmethod
def snake_case__( cls : int , _UpperCamelCase : Union[Path, str] ) ->str: # <Added version="2.4.0"/>
snake_case_ = cls._get_magic_number_max_length()
snake_case_ = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase )
for extractor_format, extractor in cls.extractors.items():
if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ):
return extractor_format
@classmethod
def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[BaseExtractor] = "deprecated" , ) ->None:
os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase )
# Prevent parallel extractions
snake_case_ = str(Path(_UpperCamelCase ).with_suffix('''.lock''' ) )
with FileLock(_UpperCamelCase ):
shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase )
if extractor_format or extractor != "deprecated":
if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg
warnings.warn(
'''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. '''
'''Use \'extractor_format\' instead.''' , category=_UpperCamelCase , )
snake_case_ = extractor if extractor != '''deprecated''' else extractor_format
else:
snake_case_ = cls.extractors[extractor_format]
return extractor.extract(_UpperCamelCase , _UpperCamelCase )
else:
warnings.warn(
'''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an '''
'''exception in 3.0.0.''' , category=_UpperCamelCase , )
for extractor in cls.extractors.values():
if extractor.is_extractable(_UpperCamelCase ):
return extractor.extract(_UpperCamelCase , _UpperCamelCase ) | 39 | 0 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class __A ( UpperCamelCase__ ):
def __init__(self : Union[str, Any] ):
UpperCAmelCase_ = []
def _lowercase (self : Any , __a : int , __a : Union[str, Any] , __a : Optional[Any] , **__a : Dict ):
self.events.append("on_init_end" )
def _lowercase (self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Any , **__a : List[str] ):
self.events.append("on_train_begin" )
def _lowercase (self : Optional[Any] , __a : Union[str, Any] , __a : Optional[int] , __a : List[str] , **__a : Union[str, Any] ):
self.events.append("on_train_end" )
def _lowercase (self : Optional[Any] , __a : Optional[Any] , __a : List[Any] , __a : Union[str, Any] , **__a : Any ):
self.events.append("on_epoch_begin" )
def _lowercase (self : List[str] , __a : Union[str, Any] , __a : List[Any] , __a : Tuple , **__a : Optional[int] ):
self.events.append("on_epoch_end" )
def _lowercase (self : Any , __a : Optional[Any] , __a : Dict , __a : str , **__a : Union[str, Any] ):
self.events.append("on_step_begin" )
def _lowercase (self : int , __a : Tuple , __a : int , __a : Any , **__a : Dict ):
self.events.append("on_step_end" )
def _lowercase (self : List[Any] , __a : Dict , __a : int , __a : Dict , **__a : Optional[int] ):
self.events.append("on_evaluate" )
def _lowercase (self : int , __a : Union[str, Any] , __a : str , __a : Optional[Any] , **__a : int ):
self.events.append("on_predict" )
def _lowercase (self : int , __a : Any , __a : int , __a : List[Any] , **__a : Tuple ):
self.events.append("on_save" )
def _lowercase (self : List[Any] , __a : Any , __a : Optional[int] , __a : Tuple , **__a : Optional[Any] ):
self.events.append("on_log" )
def _lowercase (self : List[Any] , __a : Optional[Any] , __a : Optional[Any] , __a : int , **__a : int ):
self.events.append("on_prediction_step" )
@require_torch
class __A ( unittest.TestCase ):
def _lowercase (self : List[str] ):
UpperCAmelCase_ = tempfile.mkdtemp()
def _lowercase (self : Union[str, Any] ):
shutil.rmtree(self.output_dir )
def _lowercase (self : int , __a : Dict=0 , __a : str=0 , __a : Any=64 , __a : Any=64 , __a : List[str]=None , __a : Optional[int]=False , **__a : List[str] ):
# disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure
# its set to False since the tests later on depend on its value.
UpperCAmelCase_ = RegressionDataset(length=__a )
UpperCAmelCase_ = RegressionDataset(length=__a )
UpperCAmelCase_ = RegressionModelConfig(a=__a , b=__a )
UpperCAmelCase_ = RegressionPreTrainedModel(__a )
UpperCAmelCase_ = TrainingArguments(self.output_dir , disable_tqdm=__a , report_to=[] , **__a )
return Trainer(
__a , __a , train_dataset=__a , eval_dataset=__a , callbacks=__a , )
def _lowercase (self : List[Any] , __a : Dict , __a : List[Any] ):
self.assertEqual(len(__a ) , len(__a ) )
# Order doesn't matter
UpperCAmelCase_ = sorted(__a , key=lambda __a : cb.__name__ if isinstance(__a , __a ) else cb.__class__.__name__ )
UpperCAmelCase_ = sorted(__a , key=lambda __a : cb.__name__ if isinstance(__a , __a ) else cb.__class__.__name__ )
for cba, cba in zip(__a , __a ):
if isinstance(__a , __a ) and isinstance(__a , __a ):
self.assertEqual(__a , __a )
elif isinstance(__a , __a ) and not isinstance(__a , __a ):
self.assertEqual(__a , cba.__class__ )
elif not isinstance(__a , __a ) and isinstance(__a , __a ):
self.assertEqual(cba.__class__ , __a )
else:
self.assertEqual(__a , __a )
def _lowercase (self : Tuple , __a : Optional[Any] ):
UpperCAmelCase_ = ["on_init_end", "on_train_begin"]
UpperCAmelCase_ = 0
UpperCAmelCase_ = len(trainer.get_eval_dataloader() )
UpperCAmelCase_ = ["on_prediction_step"] * len(trainer.get_eval_dataloader() ) + ["on_log", "on_evaluate"]
for _ in range(trainer.state.num_train_epochs ):
expected_events.append("on_epoch_begin" )
for _ in range(__a ):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("on_log" )
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append("on_save" )
expected_events.append("on_epoch_end" )
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def _lowercase (self : List[Any] ):
UpperCAmelCase_ = self.get_trainer()
UpperCAmelCase_ = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , __a )
# Callbacks passed at init are added to the default callbacks
UpperCAmelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] )
expected_callbacks.append(__a )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __a )
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
UpperCAmelCase_ = self.get_trainer(disable_tqdm=__a )
UpperCAmelCase_ = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , __a )
def _lowercase (self : int ):
UpperCAmelCase_ = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
UpperCAmelCase_ = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(__a )
expected_callbacks.remove(__a )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __a )
UpperCAmelCase_ = self.get_trainer()
UpperCAmelCase_ = trainer.pop_callback(__a )
self.assertEqual(cb.__class__ , __a )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __a )
trainer.add_callback(__a )
expected_callbacks.insert(0 , __a )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __a )
# We can also add, pop, or remove by instance
UpperCAmelCase_ = self.get_trainer()
UpperCAmelCase_ = trainer.callback_handler.callbacks[0]
trainer.remove_callback(__a )
expected_callbacks.remove(__a )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __a )
UpperCAmelCase_ = self.get_trainer()
UpperCAmelCase_ = trainer.callback_handler.callbacks[0]
UpperCAmelCase_ = trainer.pop_callback(__a )
self.assertEqual(__a , __a )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __a )
trainer.add_callback(__a )
expected_callbacks.insert(0 , __a )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __a )
def _lowercase (self : List[Any] ):
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action="ignore" , category=__a )
UpperCAmelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] )
trainer.train()
UpperCAmelCase_ = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__a , self.get_expected_events(__a ) )
# Independent log/save/eval
UpperCAmelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 )
trainer.train()
UpperCAmelCase_ = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__a , self.get_expected_events(__a ) )
UpperCAmelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 )
trainer.train()
UpperCAmelCase_ = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__a , self.get_expected_events(__a ) )
UpperCAmelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps" )
trainer.train()
UpperCAmelCase_ = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__a , self.get_expected_events(__a ) )
UpperCAmelCase_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch" )
trainer.train()
UpperCAmelCase_ = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__a , self.get_expected_events(__a ) )
# A bit of everything
UpperCAmelCase_ = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="steps" , )
trainer.train()
UpperCAmelCase_ = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__a , self.get_expected_events(__a ) )
# warning should be emitted for duplicated callbacks
with patch("transformers.trainer_callback.logger.warning" ) as warn_mock:
UpperCAmelCase_ = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(__a ) in warn_mock.call_args[0][0]
| 78 |
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ):
raise TypeError('''Sequence must be list of non-negative integers''' )
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__ , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9] | 39 | 0 |
from __future__ import annotations
from collections.abc import Iterator
class UpperCAmelCase_ :
def __init__( self , _lowerCAmelCase ):
UpperCAmelCase__ : Union[str, Any] = value
UpperCAmelCase__ : Node | None = None
UpperCAmelCase__ : Node | None = None
class UpperCAmelCase_ :
def __init__( self , _lowerCAmelCase ):
UpperCAmelCase__ : int = tree
def __UpperCAmelCase ( self , _lowerCAmelCase ):
if node is None:
return 0
return node.value + (
self.depth_first_search(node.left ) + self.depth_first_search(node.right )
)
def __iter__( self ):
yield self.depth_first_search(self.tree )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 79 |
import re
from filelock import FileLock
try:
import nltk
lowerCAmelCase_ = True
except (ImportError, ModuleNotFoundError):
lowerCAmelCase_ = False
if NLTK_AVAILABLE:
with FileLock('''.lock''') as lock:
nltk.download('''punkt''', quiet=True)
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
re.sub('''<n>''' , '''''' , SCREAMING_SNAKE_CASE__ ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE__ ) ) | 39 | 0 |
import os
import time
import warnings
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import logging
from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors
from ..processors.utils import InputFeatures
__UpperCamelCase : List[str] = logging.get_logger(__name__)
@dataclass
class __UpperCamelCase :
__snake_case :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} )
__snake_case :str = field(
metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} )
__snake_case :int = field(
default=1_2_8 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
__snake_case :bool = field(
default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} )
def _a ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.task_name.lower()
class __UpperCamelCase ( _lowerCAmelCase ):
__snake_case :Optional[Any] = 'train'
__snake_case :int = 'dev'
__snake_case :Optional[int] = 'test'
class __UpperCamelCase ( _lowerCAmelCase ):
__snake_case :GlueDataTrainingArguments
__snake_case :str
__snake_case :List[InputFeatures]
def __init__( self : int , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ) -> str:
"""simple docstring"""
warnings.warn(
"""This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """
"""library. You can have a look at this example script for pointers: """
"""https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowerCAmelCase , )
__lowercase = args
__lowercase = glue_processors[args.task_name]()
__lowercase = glue_output_modes[args.task_name]
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
try:
__lowercase = Split[mode]
except KeyError:
raise KeyError("""mode is not a valid split name""" )
# Load data features from cache or dataset file
__lowercase = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , )
__lowercase = self.processor.get_labels()
if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
"RobertaTokenizer",
"RobertaTokenizerFast",
"XLMRobertaTokenizer",
"BartTokenizer",
"BartTokenizerFast",
):
# HACK(label indices are swapped in RoBERTa pretrained model)
__lowercase , __lowercase = label_list[2], label_list[1]
__lowercase = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
__lowercase = cached_features_file + """.lock"""
with FileLock(_lowerCAmelCase ):
if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache:
__lowercase = time.time()
__lowercase = torch.load(_lowerCAmelCase )
logger.info(
F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start )
else:
logger.info(F'Creating features from dataset file at {args.data_dir}' )
if mode == Split.dev:
__lowercase = self.processor.get_dev_examples(args.data_dir )
elif mode == Split.test:
__lowercase = self.processor.get_test_examples(args.data_dir )
else:
__lowercase = self.processor.get_train_examples(args.data_dir )
if limit_length is not None:
__lowercase = examples[:limit_length]
__lowercase = glue_convert_examples_to_features(
_lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , )
__lowercase = time.time()
torch.save(self.features , _lowerCAmelCase )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' )
def __len__( self : Any ) -> Optional[Any]:
"""simple docstring"""
return len(self.features )
def __getitem__( self : Any , _lowerCAmelCase : Optional[Any] ) -> InputFeatures:
"""simple docstring"""
return self.features[i]
def _a ( self : int ) -> Optional[Any]:
"""simple docstring"""
return self.label_list
| 80 |
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = [0 for i in range(r + 1 )]
# nc0 = 1
snake_case_ = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
snake_case_ = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5)) | 39 | 0 |
import math
import os
import unittest
from transformers import MegatronBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
class a :
"""simple docstring"""
def __init__( self : int , lowerCamelCase : Optional[int] , lowerCamelCase : int=13 , lowerCamelCase : Tuple=7 , lowerCamelCase : Optional[int]=True , lowerCamelCase : int=True , lowerCamelCase : Any=True , lowerCamelCase : int=True , lowerCamelCase : Optional[int]=99 , lowerCamelCase : Any=64 , lowerCamelCase : Dict=32 , lowerCamelCase : int=5 , lowerCamelCase : List[str]=4 , lowerCamelCase : Optional[int]=37 , lowerCamelCase : List[str]="gelu" , lowerCamelCase : int=0.1 , lowerCamelCase : Tuple=0.1 , lowerCamelCase : Dict=512 , lowerCamelCase : Tuple=16 , lowerCamelCase : int=2 , lowerCamelCase : Any=0.02 , lowerCamelCase : List[Any]=3 , lowerCamelCase : int=4 , lowerCamelCase : Optional[int]=None , ) -> Union[str, Any]:
__snake_case : Tuple = parent
__snake_case : Tuple = batch_size
__snake_case : List[str] = seq_length
__snake_case : int = is_training
__snake_case : Dict = use_input_mask
__snake_case : Optional[Any] = use_token_type_ids
__snake_case : int = use_labels
__snake_case : int = vocab_size
__snake_case : List[str] = hidden_size
__snake_case : str = embedding_size
__snake_case : Union[str, Any] = num_hidden_layers
__snake_case : Optional[Any] = num_attention_heads
__snake_case : int = intermediate_size
__snake_case : List[str] = hidden_act
__snake_case : int = hidden_dropout_prob
__snake_case : Dict = attention_probs_dropout_prob
__snake_case : Dict = max_position_embeddings
__snake_case : Any = type_vocab_size
__snake_case : Tuple = type_sequence_label_size
__snake_case : Optional[int] = initializer_range
__snake_case : Optional[Any] = num_labels
__snake_case : List[Any] = num_choices
__snake_case : Optional[int] = scope
def __snake_case ( self : List[str] ) -> int:
__snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : List[str] = None
if self.use_input_mask:
__snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : str = None
if self.use_token_type_ids:
__snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : Tuple = None
__snake_case : int = None
__snake_case : List[str] = None
if self.use_labels:
__snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : List[str] = ids_tensor([self.batch_size] , self.num_choices )
__snake_case : Optional[Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __snake_case ( self : Any ) -> int:
return MegatronBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , )
def __snake_case ( self : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Any ) -> List[str]:
__snake_case : str = MegatronBertModel(config=lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
__snake_case : List[Any] = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase )
__snake_case : Tuple = model(lowerCamelCase , token_type_ids=lowerCamelCase )
__snake_case : Optional[int] = model(lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __snake_case ( self : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : List[Any] , lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ) -> List[Any]:
__snake_case : Union[str, Any] = MegatronBertForMaskedLM(config=lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
__snake_case : Optional[int] = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __snake_case ( self : Dict , lowerCamelCase : List[str] , lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : str , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] ) -> Union[str, Any]:
__snake_case : List[str] = MegatronBertForCausalLM(config=lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
__snake_case : Tuple = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __snake_case ( self : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Dict ) -> Optional[Any]:
__snake_case : str = MegatronBertForNextSentencePrediction(config=lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
__snake_case : List[Any] = model(
lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def __snake_case ( self : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : Dict , lowerCamelCase : List[Any] , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] ) -> str:
__snake_case : str = MegatronBertForPreTraining(config=lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
__snake_case : List[Any] = model(
lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , next_sentence_label=lowerCamelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def __snake_case ( self : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : Dict , lowerCamelCase : Dict , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] ) -> Tuple:
__snake_case : str = MegatronBertForQuestionAnswering(config=lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
__snake_case : Dict = model(
lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] ) -> Tuple:
__snake_case : Optional[int] = self.num_labels
__snake_case : Union[str, Any] = MegatronBertForSequenceClassification(lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
__snake_case : Union[str, Any] = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __snake_case ( self : Any , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict ) -> Union[str, Any]:
__snake_case : Tuple = self.num_labels
__snake_case : Tuple = MegatronBertForTokenClassification(config=lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
__snake_case : List[str] = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __snake_case ( self : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Any , lowerCamelCase : Optional[Any] ) -> Dict:
__snake_case : List[str] = self.num_choices
__snake_case : Dict = MegatronBertForMultipleChoice(config=lowerCamelCase )
model.to(lowerCamelCase )
model.eval()
__snake_case : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : Dict = model(
lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __snake_case ( self : Dict ) -> Tuple:
__snake_case : Union[str, Any] = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : int = config_and_inputs
__snake_case : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = (
(
MegatronBertModel,
MegatronBertForMaskedLM,
MegatronBertForCausalLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
)
if is_torch_available()
else ()
)
__UpperCAmelCase : Optional[Any] = (
{
"feature-extraction": MegatronBertModel,
"fill-mask": MegatronBertForMaskedLM,
"question-answering": MegatronBertForQuestionAnswering,
"text-classification": MegatronBertForSequenceClassification,
"text-generation": MegatronBertForCausalLM,
"token-classification": MegatronBertForTokenClassification,
"zero-shot": MegatronBertForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase : List[str] = True
# test_resize_embeddings = False
__UpperCAmelCase : Union[str, Any] = False
def __snake_case ( self : Any , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : List[str]=False ) -> Any:
__snake_case : Tuple = super()._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase )
if return_labels:
if model_class in get_values(lowerCamelCase ):
__snake_case : str = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase )
__snake_case : List[Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase )
return inputs_dict
def __snake_case ( self : List[str] ) -> int:
__snake_case : Any = MegatronBertModelTester(self )
__snake_case : Union[str, Any] = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 )
def __snake_case ( self : str ) -> str:
self.config_tester.run_common_tests()
def __snake_case ( self : List[str] ) -> Optional[Any]:
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_model(*lowerCamelCase )
def __snake_case ( self : Optional[int] ) -> Optional[Any]:
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCamelCase )
def __snake_case ( self : str ) -> List[Any]:
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCamelCase )
def __snake_case ( self : List[Any] ) -> Optional[int]:
__snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCamelCase )
def __snake_case ( self : List[str] ) -> str:
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCamelCase )
def __snake_case ( self : List[Any] ) -> Any:
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCamelCase )
def __snake_case ( self : int ) -> List[Any]:
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCamelCase )
def __snake_case ( self : List[Any] ) -> Union[str, Any]:
__snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCamelCase )
def lowerCAmelCase_ ( __lowerCamelCase ):
return torch.tensor(
__lowerCamelCase , dtype=torch.long , device=__lowerCamelCase , )
_snake_case : Optional[Any] = 1E-4
@require_torch
@require_sentencepiece
@require_tokenizers
class a (unittest.TestCase ):
"""simple docstring"""
@slow
@unittest.skip("Model is not available." )
def __snake_case ( self : List[Any] ) -> Dict:
__snake_case : List[str] = "nvidia/megatron-bert-uncased-345m"
if "MYDIR" in os.environ:
__snake_case : str = os.path.join(os.environ["MYDIR"] , lowerCamelCase )
__snake_case : Dict = MegatronBertModel.from_pretrained(lowerCamelCase )
model.to(lowerCamelCase )
model.half()
__snake_case : int = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] )
with torch.no_grad():
__snake_case : Optional[Any] = model(lowerCamelCase )[0]
__snake_case : str = torch.Size((1, 9, 1024) )
self.assertEqual(output.shape , lowerCamelCase )
__snake_case : Any = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28]
for ii in range(3 ):
for jj in range(3 ):
__snake_case : List[Any] = output[0, ii, jj]
__snake_case : Tuple = expected[3 * ii + jj]
__snake_case : List[str] = "ii={} jj={} a={} b={}".format(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
self.assertTrue(math.isclose(lowerCamelCase , lowerCamelCase , rel_tol=lowerCamelCase , abs_tol=lowerCamelCase ) , msg=lowerCamelCase )
| 81 |
import argparse
import math
import os
from copy import deepcopy
import torch
from audio_diffusion.models import DiffusionAttnUnetaD
from diffusion import sampling
from torch import nn
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
lowerCAmelCase_ = {
'''gwf-440k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''',
'''sample_rate''': 4_80_00,
'''sample_size''': 6_55_36,
},
'''jmann-small-190k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''',
'''sample_rate''': 4_80_00,
'''sample_size''': 6_55_36,
},
'''jmann-large-580k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''',
'''sample_rate''': 4_80_00,
'''sample_size''': 13_10_72,
},
'''maestro-uncond-150k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''',
'''sample_rate''': 1_60_00,
'''sample_size''': 6_55_36,
},
'''unlocked-uncond-250k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''',
'''sample_rate''': 1_60_00,
'''sample_size''': 6_55_36,
},
'''honk-140k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''',
'''sample_rate''': 1_60_00,
'''sample_size''': 6_55_36,
},
}
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
return torch.atana(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / math.pi * 2
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
snake_case_ = torch.sin(t * math.pi / 2 ) ** 2
snake_case_ = (1 - sigma**2) ** 0.5
return alpha_sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
class snake_case_ ( __A ):
'''simple docstring'''
pass
class snake_case_ ( nn.Module ):
'''simple docstring'''
def __init__( self : List[Any] , _UpperCamelCase : int ) ->Optional[int]:
super().__init__()
snake_case_ = DiffusionAttnUnetaD(_UpperCamelCase , n_attn_layers=4 )
snake_case_ = deepcopy(self.diffusion )
snake_case_ = torch.quasirandom.SobolEngine(1 , scramble=_UpperCamelCase )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
snake_case_ = MODELS_MAP[model_name]['''url''']
os.system(F'''wget {url} ./''' )
return F'''./{model_name}.ckpt'''
lowerCAmelCase_ = {
'''1''': '''resnets.0''',
'''2''': '''attentions.0''',
'''3''': '''resnets.1''',
'''4''': '''attentions.1''',
'''5''': '''resnets.2''',
'''6''': '''attentions.2''',
}
lowerCAmelCase_ = {
'''8''': '''resnets.0''',
'''9''': '''attentions.0''',
'''10''': '''resnets.1''',
'''11''': '''attentions.1''',
'''12''': '''resnets.2''',
'''13''': '''attentions.2''',
}
lowerCAmelCase_ = {
'''1''': '''resnets.0''',
'''2''': '''attentions.0''',
'''3''': '''resnets.1''',
'''4''': '''attentions.1''',
'''5''': '''resnets.2''',
'''6''': '''attentions.2''',
'''8''': '''resnets.3''',
'''9''': '''attentions.3''',
'''10''': '''resnets.4''',
'''11''': '''attentions.4''',
'''12''': '''resnets.5''',
'''13''': '''attentions.5''',
}
lowerCAmelCase_ = {
'''0''': '''resnets.0''',
'''1''': '''resnets.1''',
'''2''': '''resnets.2''',
'''4''': '''resnets.0''',
'''5''': '''resnets.1''',
'''6''': '''resnets.2''',
}
lowerCAmelCase_ = {
'''skip''': '''conv_skip''',
'''main.0''': '''conv_1''',
'''main.1''': '''group_norm_1''',
'''main.3''': '''conv_2''',
'''main.4''': '''group_norm_2''',
}
lowerCAmelCase_ = {
'''norm''': '''group_norm''',
'''qkv_proj''': ['''query''', '''key''', '''value'''],
'''out_proj''': ['''proj_attn'''],
}
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
if name.startswith('''skip''' ):
return name.replace('''skip''' , RES_CONV_MAP['''skip'''] )
# name has to be of format main.{digit}
if not name.startswith('''main.''' ):
raise ValueError(F'''ResConvBlock error with {name}''' )
return name.replace(name[:6] , RES_CONV_MAP[name[:6]] )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
for key, value in ATTN_MAP.items():
if name.startswith(SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
return name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif name.startswith(SCREAMING_SNAKE_CASE__ ):
return [name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for v in value]
raise ValueError(F'''Attn error with {name}''' )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 ):
snake_case_ = input_string
if string.split('''.''' )[0] == "timestep_embed":
return string.replace('''timestep_embed''' , '''time_proj''' )
snake_case_ = 0
if string.startswith('''net.3.''' ):
depth += 1
snake_case_ = string[6:]
elif string.startswith('''net.''' ):
snake_case_ = string[4:]
while string.startswith('''main.7.''' ):
depth += 1
snake_case_ = string[7:]
if string.startswith('''main.''' ):
snake_case_ = string[5:]
# mid block
if string[:2].isdigit():
snake_case_ = string[:2]
snake_case_ = string[2:]
else:
snake_case_ = string[0]
snake_case_ = string[1:]
if depth == max_depth:
snake_case_ = MID_NUM_TO_LAYER[layer_num]
snake_case_ = '''mid_block'''
elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) < 7:
snake_case_ = DOWN_NUM_TO_LAYER[layer_num]
snake_case_ = F'''down_blocks.{depth}'''
elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) > 7:
snake_case_ = UP_NUM_TO_LAYER[layer_num]
snake_case_ = F'''up_blocks.{max_depth - depth - 1}'''
elif depth == 0:
snake_case_ = DEPTH_0_TO_LAYER[layer_num]
snake_case_ = F'''up_blocks.{max_depth - 1}''' if int(SCREAMING_SNAKE_CASE__ ) > 3 else '''down_blocks.0'''
if not string_left.startswith('''.''' ):
raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' )
snake_case_ = string_left[1:]
if "resnets" in new_layer:
snake_case_ = convert_resconv_naming(SCREAMING_SNAKE_CASE__ )
elif "attentions" in new_layer:
snake_case_ = convert_attn_naming(SCREAMING_SNAKE_CASE__ )
snake_case_ = new_string_left
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = prefix + '''.''' + new_layer + '''.''' + string_left
else:
snake_case_ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left]
return new_string
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
snake_case_ = {}
for k, v in state_dict.items():
if k.endswith('''kernel''' ):
# up- and downsample layers, don't have trainable weights
continue
snake_case_ = rename(SCREAMING_SNAKE_CASE__ )
# check if we need to transform from Conv => Linear for attention
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = transform_conv_attns(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
snake_case_ = v
return new_state_dict
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
if len(SCREAMING_SNAKE_CASE__ ) == 1:
if len(v.shape ) == 3:
# weight
snake_case_ = v[:, :, 0]
else:
# bias
snake_case_ = v
else:
# qkv matrices
snake_case_ = v.shape[0]
snake_case_ = trippled_shape // 3
for i in range(3 ):
if len(v.shape ) == 3:
snake_case_ = v[i * single_shape : (i + 1) * single_shape, :, 0]
else:
snake_case_ = v[i * single_shape : (i + 1) * single_shape]
return new_state_dict
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' )
snake_case_ = args.model_path.split('''/''' )[-1].split('''.''' )[0]
if not os.path.isfile(args.model_path ):
assert (
model_name == args.model_path
), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}'''
snake_case_ = download(SCREAMING_SNAKE_CASE__ )
snake_case_ = MODELS_MAP[model_name]['''sample_rate''']
snake_case_ = MODELS_MAP[model_name]['''sample_size''']
snake_case_ = Object()
snake_case_ = sample_size
snake_case_ = sample_rate
snake_case_ = 0
snake_case_ = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE__ , sample_rate=SCREAMING_SNAKE_CASE__ )
snake_case_ = diffusers_model.state_dict()
snake_case_ = DiffusionUncond(SCREAMING_SNAKE_CASE__ )
orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE__ )['''state_dict'''] )
snake_case_ = orig_model.diffusion_ema.eval()
snake_case_ = orig_model.state_dict()
snake_case_ = rename_orig_weights(SCREAMING_SNAKE_CASE__ )
snake_case_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() )
snake_case_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() )
assert len(SCREAMING_SNAKE_CASE__ ) == 0, F'''Problem with {renamed_minus_diffusers}'''
assert all(k.endswith('''kernel''' ) for k in list(SCREAMING_SNAKE_CASE__ ) ), F'''Problem with {diffusers_minus_renamed}'''
for key, value in renamed_state_dict.items():
assert (
diffusers_state_dict[key].squeeze().shape == value.squeeze().shape
), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}'''
if key == "time_proj.weight":
snake_case_ = value.squeeze()
snake_case_ = value
diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE__ )
snake_case_ = 100
snake_case_ = 33
snake_case_ = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE__ )
snake_case_ = torch.manual_seed(SCREAMING_SNAKE_CASE__ )
snake_case_ = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ )
snake_case_ = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE__ )[:-1]
snake_case_ = get_crash_schedule(SCREAMING_SNAKE_CASE__ )
snake_case_ = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
snake_case_ = torch.manual_seed(33 )
snake_case_ = pipe(num_inference_steps=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).audios
snake_case_ = sampling.iplms_sample(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {} )
snake_case_ = generated.clamp(-1 , 1 )
snake_case_ = (generated - audio).abs().sum()
snake_case_ = (generated - audio).abs().max()
if args.save:
pipe.save_pretrained(args.checkpoint_path )
print('''Diff sum''' , SCREAMING_SNAKE_CASE__ )
print('''Diff max''' , SCREAMING_SNAKE_CASE__ )
assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/'''
print(F'''Conversion for {model_name} successful!''' )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''')
parser.add_argument(
'''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.'''
)
parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''')
lowerCAmelCase_ = parser.parse_args()
main(args) | 39 | 0 |
"""simple docstring"""
from operator import delitem, getitem, setitem
import pytest
from data_structures.hashing.hash_map import HashMap
def a__ ( lowerCAmelCase__ ):
return getitem, k
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
return setitem, k, v
def a__ ( lowerCAmelCase__ ):
return delitem, k
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ ):
try:
return fun(lowerCAmelCase__ , *lowerCAmelCase__ ), None
except Exception as e:
return None, e
lowerCamelCase = (
_set("""key_a""", """val_a"""),
_set("""key_b""", """val_b"""),
)
lowerCamelCase = [
_set("""key_a""", """val_a"""),
_set("""key_a""", """val_b"""),
]
lowerCamelCase = [
_set("""key_a""", """val_a"""),
_set("""key_b""", """val_b"""),
_del("""key_a"""),
_del("""key_b"""),
_set("""key_a""", """val_a"""),
_del("""key_a"""),
]
lowerCamelCase = [
_get("""key_a"""),
_del("""key_a"""),
_set("""key_a""", """val_a"""),
_del("""key_a"""),
_del("""key_a"""),
_get("""key_a"""),
]
lowerCamelCase = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
]
lowerCamelCase = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
*[_del(x) for x in range(5)],
_set("""key_a""", """val_b"""),
]
@pytest.mark.parametrize(
"operations" , (
pytest.param(_add_items , id="add items" ),
pytest.param(_overwrite_items , id="overwrite items" ),
pytest.param(_delete_items , id="delete items" ),
pytest.param(_access_absent_items , id="access absent items" ),
pytest.param(_add_with_resize_up , id="add with resize up" ),
pytest.param(_add_with_resize_down , id="add with resize down" ),
) , )
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = HashMap(initial_block_size=4 )
UpperCAmelCase_ = {}
for _, (fun, *args) in enumerate(lowerCAmelCase__ ):
UpperCAmelCase_ , UpperCAmelCase_ = _run_operation(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ )
UpperCAmelCase_ , UpperCAmelCase_ = _run_operation(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ )
assert my_res == py_res
assert str(lowerCAmelCase__ ) == str(lowerCAmelCase__ )
assert set(lowerCAmelCase__ ) == set(lowerCAmelCase__ )
assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ )
assert set(my.items() ) == set(py.items() )
def a__ ( ):
def is_public(lowerCAmelCase__ ) -> bool:
return not name.startswith("_" )
UpperCAmelCase_ = {name for name in dir({} ) if is_public(lowerCAmelCase__ )}
UpperCAmelCase_ = {name for name in dir(HashMap() ) if is_public(lowerCAmelCase__ )}
assert dict_public_names > hash_public_names
| 82 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTMSNModel''',
'''ViTMSNForImageClassification''',
'''ViTMSNPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 39 | 0 |
"""simple docstring"""
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ = logging.get_logger(__name__)
def snake_case_ ( A_ : List[str] ):
'''simple docstring'''
_lowerCamelCase : Dict = torch.load(A_, map_location='''cpu''' )
if "model" in sd.keys():
_lowerCamelCase : List[str] = torch.load(A_, map_location='''cpu''' )['''model''']
# pop unnecessary weights
_lowerCamelCase : Tuple = [
'''decoder.version''',
'''decoder.output_projection.weight''',
]
for key in keys_to_delete:
if key in sd:
sd.pop(A_ )
_lowerCamelCase : Dict = {
'''decoder.project_in_dim.weight''': '''decoder.project_in.weight''',
'''decoder.project_out_dim.weight''': '''decoder.project_out.weight''',
'''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''',
'''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''',
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
_lowerCamelCase : int = sd.pop(A_ )
_lowerCamelCase : List[Any] = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
_lowerCamelCase : Tuple = sd[key]
# We split QKV in separate Q,K,V
_lowerCamelCase : Any = key.replace('''.qkv_proj.''', '''.q_proj.''' )
_lowerCamelCase : Dict = key.replace('''.qkv_proj.''', '''.k_proj.''' )
_lowerCamelCase : int = key.replace('''.qkv_proj.''', '''.v_proj.''' )
_lowerCamelCase : Tuple = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = torch.split(A_, depth // 3, dim=0 )
_lowerCamelCase : Optional[Any] = q
_lowerCamelCase : Tuple = k
_lowerCamelCase : Tuple = v
del sd[key]
return sd
@torch.no_grad()
def snake_case_ ( A_ : Dict, A_ : Optional[int], A_ : Union[str, Any]=None ):
'''simple docstring'''
_lowerCamelCase : Dict = load_checkpoint(A_ )
if config is not None:
_lowerCamelCase : List[Any] = OPTConfig.from_pretrained(A_ )
else:
_lowerCamelCase : Union[str, Any] = OPTConfig()
_lowerCamelCase : Optional[Any] = OPTModel(A_ ).half().eval()
model.load_state_dict(A_ )
# Check results
Path(A_ ).mkdir(exist_ok=A_ )
model.save_pretrained(A_ )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--fairseq_path''',
type=str,
help=(
'''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:'''
''' https://huggingface.co/models?other=opt_metasq'''
),
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''')
lowerCAmelCase__ = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 83 |
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : Optional[Any] ) ->Any:
snake_case_ = tf.convert_to_tensor(
[
[
8.2220991, # 3rd highest value; idx. 0
-0.5620044,
5.23229752,
4.0386393,
-6.8798378,
-0.54785802,
-3.2012153,
2.92777176,
1.88171953,
7.35341276, # 5th highest value; idx. 9
8.43207833, # 2nd highest value; idx. 10
-9.85711836,
-5.96209236,
-1.13039161,
-7.1115294,
-0.8369633,
-5.3186408,
7.06427407,
0.81369344,
-0.82023817,
-5.9179796,
0.58813443,
-6.99778438,
4.71551189,
-0.18771637,
7.44020759, # 4th highest value; idx. 25
9.38450987, # 1st highest value; idx. 26
2.12662941,
-9.32562038,
2.35652522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58425518,
4.53139238,
-5.57510464,
-6.28030699,
-7.19529503,
-4.02122551,
1.39337037,
-6.06707057,
1.59480517,
-9.643119,
0.03907799,
0.67231762,
-8.88206726,
6.27115922, # 4th highest value; idx. 13
2.28520723,
4.82767506,
4.30421368,
8.8275313, # 2nd highest value; idx. 17
5.44029958, # 5th highest value; idx. 18
-4.4735794,
7.38579536, # 3rd highest value; idx. 20
-2.91051663,
2.61946077,
-2.5674762,
-9.48959302,
-4.02922645,
-1.35416918,
9.67702323, # 1st highest value; idx. 27
-5.89478553,
1.85370467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
snake_case_ = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
snake_case_ = tf.convert_to_tensor(
[8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above
snake_case_ = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 )
snake_case_ = output[output != -float('''inf''' )]
snake_case_ = tf.cast(
tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-12 )
tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase )
@require_tf
class snake_case_ ( unittest.TestCase , __A ):
'''simple docstring'''
if is_tf_available():
SCREAMING_SNAKE_CASE : Optional[int] = {
"AutoModelForCausalLM": TFAutoModelForCausalLM,
"AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq,
"AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM,
"AutoModelForVision2Seq": TFAutoModelForVisionaSeq,
"LogitsProcessorList": TFLogitsProcessorList,
"MinLengthLogitsProcessor": TFMinLengthLogitsProcessor,
"create_tensor_fn": tf.convert_to_tensor,
"floats_tensor": floats_tensor,
"return_tensors": "tf",
}
@slow
def snake_case__( self : List[Any] ) ->Optional[int]:
# TF-only test: tf.saved_model export
snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
snake_case_ = 2
snake_case_ = 2
class snake_case_ ( tf.Module ):
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->List[Any]:
super(_UpperCamelCase , self ).__init__()
snake_case_ = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ),
tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ),
) , jit_compile=_UpperCamelCase , )
def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) ->List[Any]:
snake_case_ = self.model.generate(
input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , )
return {"sequences": outputs["sequences"]}
snake_case_ = [[2, 0], [1_0_2, 1_0_3]]
snake_case_ = [[1, 0], [1, 1]]
snake_case_ = DummyModel(model=_UpperCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} )
snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default''']
for batch_size in range(1 , len(_UpperCamelCase ) + 1 ):
snake_case_ = {
'''input_ids''': tf.constant(dummy_input_ids[:batch_size] ),
'''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ),
}
snake_case_ = serving_func(**_UpperCamelCase )['''sequences''']
snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase )
tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase )
@slow
def snake_case__( self : List[str] ) ->int:
# TF-only test: tf.saved_model export
snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
snake_case_ = 1
snake_case_ = 2
class snake_case_ ( tf.Module ):
'''simple docstring'''
def __init__( self : str , _UpperCamelCase : Any ) ->List[str]:
super(_UpperCamelCase , self ).__init__()
snake_case_ = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ),
tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ),
) , jit_compile=_UpperCamelCase , )
def snake_case__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) ->Optional[int]:
snake_case_ = self.model.generate(
input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , )
return {"sequences": outputs["sequences"]}
snake_case_ = [[2], [1_0_2, 1_0_3]]
snake_case_ = [[1], [1, 1]]
snake_case_ = DummyModel(model=_UpperCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} )
snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default''']
for input_row in range(len(_UpperCamelCase ) ):
snake_case_ = {
'''input_ids''': tf.constant([dummy_input_ids[input_row]] ),
'''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ),
}
snake_case_ = serving_func(**_UpperCamelCase )['''sequences''']
snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase )
tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase )
@slow
@require_tensorflow_text
def snake_case__( self : Optional[Any] ) ->List[Any]:
# TF-only test: tf.saved_model export
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_UpperCamelCase )
class snake_case_ ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Tuple ) ->List[Any]:
super().__init__()
snake_case_ = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , '''spiece.model''' ) , '''rb''' ).read() )
snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' )
def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->List[Any]:
snake_case_ = self.tokenizer.tokenize(_UpperCamelCase )
snake_case_, snake_case_ = text.pad_model_inputs(
_UpperCamelCase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id )
snake_case_ = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase )
return self.tokenizer.detokenize(_UpperCamelCase )
snake_case_ = CompleteSentenceTransformer()
snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' )
snake_case_ = complete_model(_UpperCamelCase )
snake_case_ = tf.keras.Model(_UpperCamelCase , _UpperCamelCase )
keras_model.save(_UpperCamelCase )
def snake_case__( self : Any ) ->List[Any]:
# Has PT equivalent: this test relies on random sampling
snake_case_ = {
'''do_sample''': True,
'''num_beams''': 1,
'''top_p''': 0.7,
'''top_k''': 1_0,
'''temperature''': 0.7,
}
snake_case_ = 1_4
snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
snake_case_ = '''Hello, my dog is cute and'''
snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''tf''' )
snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
snake_case_ = 6_3_8
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(''':/CPU:0''' ):
tf.random.set_seed(0 )
snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
self.assertTrue(expectation == len(generated_tokens[0] ) )
snake_case_ = [6_3_8, 1_9_8]
with tf.device(''':/CPU:0''' ):
tf.random.set_seed(0 )
snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def snake_case__( self : str ) ->Dict:
# Has PT equivalent: ample use of framework-specific code
snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' )
snake_case_ = '''Hugging Face is a technology company based in New York and Paris.'''
snake_case_ = bart_tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids
snake_case_ = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' )
snake_case_ = bart_model.generate(_UpperCamelCase ).numpy()
class snake_case_ ( __A ):
'''simple docstring'''
def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Optional[int] ) ->List[str]:
return super().call(_UpperCamelCase , **_UpperCamelCase )
snake_case_ = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' )
snake_case_ = bart_model.generate(_UpperCamelCase , foo='''bar''' ).numpy()
self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) )
class snake_case_ ( bart_model.model.encoder.__class__ ):
'''simple docstring'''
def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , **_UpperCamelCase : Tuple ) ->Optional[Any]:
return super().call(_UpperCamelCase , **_UpperCamelCase )
snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared )
snake_case_ = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
snake_case_ = bart_model.generate(_UpperCamelCase ).numpy()
with self.assertRaises(_UpperCamelCase ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(_UpperCamelCase , foo='''bar''' ) | 39 | 0 |
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
UpperCAmelCase = 16
UpperCAmelCase = 32
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 16 ):
lowercase = AutoTokenizer.from_pretrained('bert-base-cased' )
lowercase = load_dataset('glue' , 'mrpc' )
def tokenize_function(__SCREAMING_SNAKE_CASE ):
# max_length=None => use the model max length (it's actually the default)
lowercase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowercase = datasets.map(
__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , remove_columns=['idx', 'sentence1', 'sentence2'] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(__SCREAMING_SNAKE_CASE ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowercase = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowercase = 16
elif accelerator.mixed_precision != "no":
lowercase = 8
else:
lowercase = None
return tokenizer.pad(
__SCREAMING_SNAKE_CASE , padding='longest' , max_length=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_tensors='pt' , )
# Instantiate dataloaders.
lowercase = DataLoader(
tokenized_datasets['train'] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE )
lowercase = DataLoader(
tokenized_datasets['validation'] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
UpperCAmelCase = mocked_dataloaders # noqa: F811
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS' , __SCREAMING_SNAKE_CASE ) == "1":
lowercase = 2
# Initialize accelerator
lowercase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase = config['lr']
lowercase = int(config['num_epochs'] )
lowercase = int(config['seed'] )
lowercase = int(config['batch_size'] )
lowercase = evaluate.load('glue' , 'mrpc' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=__SCREAMING_SNAKE_CASE )
def inner_training_loop(__SCREAMING_SNAKE_CASE ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(__SCREAMING_SNAKE_CASE )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__SCREAMING_SNAKE_CASE )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowercase = model.to(accelerator.device )
# Instantiate optimizer
lowercase = AdamW(params=model.parameters() , lr=__SCREAMING_SNAKE_CASE )
lowercase , lowercase = get_dataloaders(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Instantiate scheduler
lowercase = get_linear_schedule_with_warmup(
optimizer=__SCREAMING_SNAKE_CASE , num_warmup_steps=100 , num_training_steps=(len(__SCREAMING_SNAKE_CASE ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase , lowercase , lowercase , lowercase , lowercase = accelerator.prepare(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Now we train the model
for epoch in range(__SCREAMING_SNAKE_CASE ):
model.train()
for step, batch in enumerate(__SCREAMING_SNAKE_CASE ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowercase = model(**__SCREAMING_SNAKE_CASE )
lowercase = outputs.loss
accelerator.backward(__SCREAMING_SNAKE_CASE )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__SCREAMING_SNAKE_CASE ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase = model(**__SCREAMING_SNAKE_CASE )
lowercase = outputs.logits.argmax(dim=-1 )
lowercase , lowercase = accelerator.gather_for_metrics((predictions, batch['labels']) )
metric.add_batch(
predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE , )
lowercase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , __SCREAMING_SNAKE_CASE )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def UpperCAmelCase_ ( ):
lowercase = argparse.ArgumentParser(description='Simple example of training script.' )
parser.add_argument(
'--mixed_precision' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.' , )
parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' )
lowercase = parser.parse_args()
lowercase = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
training_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 84 |
import unittest
from transformers import DonutProcessor
lowerCAmelCase_ = '''naver-clova-ix/donut-base'''
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : Union[str, Any] ) ->Any:
snake_case_ = DonutProcessor.from_pretrained(_UpperCamelCase )
def snake_case__( self : Dict ) ->str:
snake_case_ = {
'''name''': '''John Doe''',
'''age''': '''99''',
'''city''': '''Atlanta''',
'''state''': '''GA''',
'''zip''': '''30301''',
'''phone''': '''123-4567''',
'''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}],
}
snake_case_ = (
'''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>'''
'''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>'''
'''<s_nicknames><s_nickname>Johnny</s_nickname>'''
'''<sep/><s_nickname>JD</s_nickname></s_nicknames>'''
)
snake_case_ = self.processor.tokenajson(_UpperCamelCase )
self.assertDictEqual(_UpperCamelCase , _UpperCamelCase ) | 39 | 0 |
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def _a ( lowercase__ : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : str = []
embed.append(
(
f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',
f'''stage{idx}.patch_embed.proj.weight''',
) )
embed.append(
(
f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',
f'''stage{idx}.patch_embed.proj.bias''',
) )
embed.append(
(
f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',
f'''stage{idx}.patch_embed.norm.weight''',
) )
embed.append(
(
f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',
f'''stage{idx}.patch_embed.norm.bias''',
) )
return embed
def _a ( lowercase__ : Union[str, Any] , lowercase__ : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = []
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',
f'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',
f'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',
f'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',
f'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',
f'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',
f'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',
f'''stage{idx}.blocks.{cnt}.attn.proj.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',
f'''stage{idx}.blocks.{cnt}.attn.proj.bias''',
) )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', f'''stage{idx}.blocks.{cnt}.norm1.weight''') )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', f'''stage{idx}.blocks.{cnt}.norm1.bias''') )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', f'''stage{idx}.blocks.{cnt}.norm2.weight''') )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', f'''stage{idx}.blocks.{cnt}.norm2.bias''') )
return attention_weights
def _a ( lowercase__ : Dict ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[Any] = []
token.append((f'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') )
return token
def _a ( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[Any] = []
head.append(('layernorm.weight', 'norm.weight') )
head.append(('layernorm.bias', 'norm.bias') )
head.append(('classifier.weight', 'head.weight') )
head.append(('classifier.bias', 'head.bias') )
return head
def _a ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Optional[int] , lowercase__ : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[int] = 'imagenet-1k-id2label.json'
SCREAMING_SNAKE_CASE__ : int = 10_00
SCREAMING_SNAKE_CASE__ : Dict = 'huggingface/label-files'
SCREAMING_SNAKE_CASE__ : str = num_labels
SCREAMING_SNAKE_CASE__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowercase__ , lowercase__ , repo_type='dataset' ) ) , 'r' ) )
SCREAMING_SNAKE_CASE__ : Dict = {int(lowercase__ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE__ : Optional[Any] = idalabel
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE__ : List[str] = CvtConfig(num_labels=lowercase__ , idalabel=lowercase__ , labelaid=lowercase__ )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13":
SCREAMING_SNAKE_CASE__ : int = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21":
SCREAMING_SNAKE_CASE__ : Dict = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
SCREAMING_SNAKE_CASE__ : Dict = [2, 2, 20]
SCREAMING_SNAKE_CASE__ : Any = [3, 12, 16]
SCREAMING_SNAKE_CASE__ : List[str] = [1_92, 7_68, 10_24]
SCREAMING_SNAKE_CASE__ : List[Any] = CvtForImageClassification(lowercase__ )
SCREAMING_SNAKE_CASE__ : Optional[int] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
SCREAMING_SNAKE_CASE__ : Optional[int] = image_size
SCREAMING_SNAKE_CASE__ : List[str] = torch.load(lowercase__ , map_location=torch.device('cpu' ) )
SCREAMING_SNAKE_CASE__ : Any = OrderedDict()
SCREAMING_SNAKE_CASE__ : Dict = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
SCREAMING_SNAKE_CASE__ : Tuple = list_of_state_dict + cls_token(lowercase__ )
SCREAMING_SNAKE_CASE__ : Optional[int] = list_of_state_dict + embeddings(lowercase__ )
for cnt in range(config.depth[idx] ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = list_of_state_dict + attention(lowercase__ , lowercase__ )
SCREAMING_SNAKE_CASE__ : Any = list_of_state_dict + final()
for gg in list_of_state_dict:
print(lowercase__ )
for i in range(len(lowercase__ ) ):
SCREAMING_SNAKE_CASE__ : Optional[int] = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(lowercase__ )
model.save_pretrained(lowercase__ )
image_processor.save_pretrained(lowercase__ )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : List[str] = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=384,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
SCREAMING_SNAKE_CASE__ : Dict = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 85 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
if not nums:
raise ValueError('''List is empty''' )
return sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 39 | 0 |
from math import ceil
def __snake_case ( __UpperCamelCase : int = 1001 ):
"""simple docstring"""
A_ = 1
for i in range(1 ,int(ceil(n / 2.0 ) ) ):
A_ = 2 * i + 1
A_ = 2 * i
A_ = total + 4 * odd**2 - 6 * even
return total
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution())
else:
try:
__a :Union[str, Any] = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number') | 86 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : List[str] ) ->str:
snake_case_ = inspect.getfile(accelerate.test_utils )
snake_case_ = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
snake_case_ = test_metrics
@require_cpu
def snake_case__( self : str ) ->int:
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def snake_case__( self : Union[str, Any] ) ->Any:
debug_launcher(self.test_metrics.main )
@require_single_gpu
def snake_case__( self : List[Any] ) ->Tuple:
self.test_metrics.main()
@require_multi_gpu
def snake_case__( self : Any ) ->Union[str, Any]:
print(f'''Found {torch.cuda.device_count()} devices.''' )
snake_case_ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) | 39 | 0 |
import inspect
import unittest
from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int=13 , UpperCAmelCase__ : Dict=32 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : int=[10, 20, 30, 40] , UpperCAmelCase__ : Tuple=[2, 2, 3, 2] , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : List[str]=37 , UpperCAmelCase__ : Optional[Any]="gelu" , UpperCAmelCase__ : Optional[int]=10 , UpperCAmelCase__ : str=0.02 , UpperCAmelCase__ : Optional[Any]=["stage2", "stage3", "stage4"] , UpperCAmelCase__ : Tuple=[2, 3, 4] , UpperCAmelCase__ : Any=None , ) ->Dict:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = image_size
A__ = num_channels
A__ = num_stages
A__ = hidden_sizes
A__ = depths
A__ = is_training
A__ = use_labels
A__ = intermediate_size
A__ = hidden_act
A__ = num_labels
A__ = initializer_range
A__ = out_features
A__ = out_indices
A__ = scope
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]:
'''simple docstring'''
A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size] , self.num_labels)
A__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict:
'''simple docstring'''
return ConvNextConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict) ->Optional[int]:
'''simple docstring'''
A__ = ConvNextModel(config=UpperCAmelCase__)
model.to(UpperCAmelCase__)
model.eval()
A__ = model(UpperCAmelCase__)
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str]) ->str:
'''simple docstring'''
A__ = ConvNextForImageClassification(UpperCAmelCase__)
model.to(UpperCAmelCase__)
model.eval()
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str) ->Optional[Any]:
'''simple docstring'''
A__ = ConvNextBackbone(config=UpperCAmelCase__)
model.to(UpperCAmelCase__)
model.eval()
A__ = model(UpperCAmelCase__)
# verify hidden states
self.parent.assertEqual(len(result.feature_maps) , len(config.out_features))
self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4])
# verify channels
self.parent.assertEqual(len(model.channels) , len(config.out_features))
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:])
# verify backbone works with out_features=None
A__ = None
A__ = ConvNextBackbone(config=UpperCAmelCase__)
model.to(UpperCAmelCase__)
model.eval()
A__ = model(UpperCAmelCase__)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps) , 1)
self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1])
# verify channels
self.parent.assertEqual(len(model.channels) , 1)
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]])
def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ = config_and_inputs
A__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = (
(
ConvNextModel,
ConvNextForImageClassification,
ConvNextBackbone,
)
if is_torch_available()
else ()
)
UpperCAmelCase__ = (
{'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification}
if is_torch_available()
else {}
)
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : Dict) ->Any:
'''simple docstring'''
A__ = ConvNextModelTester(self)
A__ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self : int) ->Dict:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE ( self : Tuple) ->str:
'''simple docstring'''
return
@unittest.skip(reason='''ConvNext does not use inputs_embeds''')
def SCREAMING_SNAKE_CASE ( self : str) ->str:
'''simple docstring'''
pass
@unittest.skip(reason='''ConvNext does not support input and output embeddings''')
def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]:
'''simple docstring'''
pass
@unittest.skip(reason='''ConvNext does not use feedforward chunking''')
def SCREAMING_SNAKE_CASE ( self : int) ->List[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(UpperCAmelCase__)
A__ = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ = [*signature.parameters.keys()]
A__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : int) ->List[str]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->int:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple:
'''simple docstring'''
def check_hidden_states_output(UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int):
A__ = model_class(UpperCAmelCase__)
model.to(UpperCAmelCase__)
model.eval()
with torch.no_grad():
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__))
A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
A__ = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase__) , expected_num_stages + 1)
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->int:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__)
@slow
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]:
'''simple docstring'''
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ = ConvNextModel.from_pretrained(UpperCAmelCase__)
self.assertIsNotNone(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( ) -> Tuple:
"""simple docstring"""
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Tuple:
'''simple docstring'''
return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''') if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict:
'''simple docstring'''
A__ = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''').to(UpperCAmelCase__)
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''pt''').to(UpperCAmelCase__)
# forward pass
with torch.no_grad():
A__ = model(**UpperCAmelCase__)
# verify the logits
A__ = torch.Size((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = torch.tensor([-0.0260, -0.4739, 0.1911]).to(UpperCAmelCase__)
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
@require_torch
class UpperCamelCase_ ( unittest.TestCase , UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = (ConvNextBackbone,) if is_torch_available() else ()
UpperCAmelCase__ = ConvNextConfig
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]:
'''simple docstring'''
A__ = ConvNextModelTester(self)
| 87 |
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'''huggingface/informer-tourism-monthly''': (
'''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json'''
),
# See all Informer models at https://huggingface.co/models?filter=informer
}
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = "informer"
SCREAMING_SNAKE_CASE : int = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__( self : Dict , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "student_t" , _UpperCamelCase : str = "nll" , _UpperCamelCase : int = 1 , _UpperCamelCase : List[int] = None , _UpperCamelCase : Optional[Union[str, bool]] = "mean" , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : int = 6_4 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.05 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : Dict=True , _UpperCamelCase : str = "prob" , _UpperCamelCase : int = 5 , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Optional[int]:
# time series specific configuration
snake_case_ = prediction_length
snake_case_ = context_length or prediction_length
snake_case_ = distribution_output
snake_case_ = loss
snake_case_ = input_size
snake_case_ = num_time_features
snake_case_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7]
snake_case_ = scaling
snake_case_ = num_dynamic_real_features
snake_case_ = num_static_real_features
snake_case_ = num_static_categorical_features
# set cardinality
if cardinality and num_static_categorical_features > 0:
if len(_UpperCamelCase ) != num_static_categorical_features:
raise ValueError(
'''The cardinality should be a list of the same length as `num_static_categorical_features`''' )
snake_case_ = cardinality
else:
snake_case_ = [0]
# set embedding_dimension
if embedding_dimension and num_static_categorical_features > 0:
if len(_UpperCamelCase ) != num_static_categorical_features:
raise ValueError(
'''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' )
snake_case_ = embedding_dimension
else:
snake_case_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
snake_case_ = num_parallel_samples
# Transformer architecture configuration
snake_case_ = input_size * len(self.lags_sequence ) + self._number_of_features
snake_case_ = d_model
snake_case_ = encoder_attention_heads
snake_case_ = decoder_attention_heads
snake_case_ = encoder_ffn_dim
snake_case_ = decoder_ffn_dim
snake_case_ = encoder_layers
snake_case_ = decoder_layers
snake_case_ = dropout
snake_case_ = attention_dropout
snake_case_ = activation_dropout
snake_case_ = encoder_layerdrop
snake_case_ = decoder_layerdrop
snake_case_ = activation_function
snake_case_ = init_std
snake_case_ = use_cache
# Informer
snake_case_ = attention_type
snake_case_ = sampling_factor
snake_case_ = distil
super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase )
@property
def snake_case__( self : Optional[Any] ) ->int:
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
) | 39 | 0 |
"""simple docstring"""
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowercase__ ( A_ ):
__UpperCAmelCase = ['''image_processor''', '''tokenizer''']
__UpperCAmelCase = '''AutoImageProcessor'''
__UpperCAmelCase = '''AutoTokenizer'''
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> str:
super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)
_lowerCamelCase : Optional[int] = self.image_processor
def __call__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE) -> str:
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""")
if text is not None:
_lowerCamelCase : str = self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE)
if images is not None:
_lowerCamelCase : Dict = self.image_processor(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE)
if text is not None and images is not None:
_lowerCamelCase : str = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE) , tensor_type=SCREAMING_SNAKE_CASE)
def UpperCamelCase_ ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) -> List[str]:
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE)
def UpperCamelCase_ ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) -> Tuple:
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE)
@property
def UpperCamelCase_ ( self) -> int:
return ["input_ids", "attention_mask", "pixel_values"]
| 88 |
import cmath
import math
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ )
snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ )
# Convert voltage and current to rectangular form
snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod() | 39 | 0 |
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class _lowerCamelCase( unittest.TestCase ):
def UpperCamelCase ( self) -> Optional[Any]:
"""simple docstring"""
_lowercase : Optional[int] = torch.nn.Linear(10, 10)
_lowercase : Optional[int] = torch.optim.SGD(model.parameters(), 0.1)
_lowercase : Optional[Any] = Accelerator()
_lowercase : Any = accelerator.prepare(lowerCamelCase)
try:
pickle.loads(pickle.dumps(lowerCamelCase))
except Exception as e:
self.fail(F'''Accelerated optimizer pickling failed with {e}''')
AcceleratorState._reset_state()
| 89 |
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class snake_case_ :
'''simple docstring'''
def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=1_3 , _UpperCamelCase : str=7 , _UpperCamelCase : int=True , _UpperCamelCase : Dict=True , _UpperCamelCase : int=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : str=3_2 , _UpperCamelCase : str=5 , _UpperCamelCase : str=4 , _UpperCamelCase : int=3_7 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : str=5_1_2 , _UpperCamelCase : Optional[int]=1_6 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Any=0.02 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : str=None , ) ->Dict:
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = num_choices
snake_case_ = scope
def snake_case__( self : str ) ->List[Any]:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = None
if self.use_input_mask:
snake_case_ = random_attention_mask([self.batch_size, self.seq_length] )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = ids_tensor([self.batch_size] , self.num_choices )
snake_case_ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case__( self : List[str] ) ->Tuple:
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , )
def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) ->Dict:
snake_case_ = BioGptModel(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )
snake_case_ = model(_UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , ) ->Optional[int]:
snake_case_ = BioGptForCausalLM(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , *_UpperCamelCase : List[Any] ) ->Union[str, Any]:
snake_case_ = BioGptModel(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
# create attention mask
snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase )
snake_case_ = self.seq_length // 2
snake_case_ = 0
# first forward pass
snake_case_, snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).to_tuple()
# create hypothetical next token and extent to next_input_ids
snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
snake_case_ = ids_tensor((1,) , _UpperCamelCase ).item() + 1
snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
snake_case_ = random_other_next_tokens
# append to next input_ids and attn_mask
snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case_ = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCamelCase )] , dim=1 , )
# get two different outputs
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state''']
snake_case_ = model(_UpperCamelCase , past_key_values=_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state''']
# select random slice
snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach()
snake_case_ = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) )
def snake_case__( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , *_UpperCamelCase : List[Any] ) ->int:
snake_case_ = BioGptModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval()
snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase )
# first forward pass
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase )
snake_case_, snake_case_ = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case_ = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state''']
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[
'''last_hidden_state'''
]
# select random slice
snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach()
snake_case_ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) )
def snake_case__( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , *_UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=False ) ->Dict:
snake_case_ = BioGptForCausalLM(_UpperCamelCase )
model.to(_UpperCamelCase )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def snake_case__( self : List[Any] , _UpperCamelCase : Optional[int] , *_UpperCamelCase : Dict ) ->Dict:
snake_case_ = BioGptModel(_UpperCamelCase )
snake_case_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 )
def snake_case__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , *_UpperCamelCase : List[str] ) ->int:
snake_case_ = self.num_labels
snake_case_ = BioGptForTokenClassification(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def snake_case__( self : Optional[Any] ) ->int:
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
),
) = config_and_inputs
snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class snake_case_ ( __A , __A , __A , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE : Tuple = (BioGptForCausalLM,) if is_torch_available() else ()
SCREAMING_SNAKE_CASE : Optional[Any] = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE : Tuple = False
def snake_case__( self : List[str] ) ->Union[str, Any]:
snake_case_ = BioGptModelTester(self )
snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 )
def snake_case__( self : str ) ->int:
self.config_tester.run_common_tests()
def snake_case__( self : str ) ->Tuple:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase )
def snake_case__( self : Tuple ) ->List[Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*_UpperCamelCase )
def snake_case__( self : Tuple ) ->str:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCamelCase )
def snake_case__( self : Union[str, Any] ) ->Dict:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*_UpperCamelCase , gradient_checkpointing=_UpperCamelCase )
def snake_case__( self : Optional[int] ) ->List[Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCamelCase )
def snake_case__( self : List[Any] ) ->Union[str, Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCamelCase )
def snake_case__( self : Optional[int] ) ->Optional[int]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCamelCase )
@slow
def snake_case__( self : int ) ->Optional[Any]:
snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(_UpperCamelCase )
snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
snake_case_ = '''left'''
# Define PAD Token = EOS Token = 50256
snake_case_ = tokenizer.eos_token
snake_case_ = model.config.eos_token_id
# use different length sentences to test batching
snake_case_ = [
'''Hello, my dog is a little''',
'''Today, I''',
]
snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase )
snake_case_ = inputs['''input_ids'''].to(_UpperCamelCase )
snake_case_ = model.generate(
input_ids=_UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(_UpperCamelCase ) , )
snake_case_ = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase )
snake_case_ = model.generate(input_ids=_UpperCamelCase )
snake_case_ = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
snake_case_ = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase )
snake_case_ = model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings )
snake_case_ = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase )
snake_case_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase )
snake_case_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase )
snake_case_ = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] )
@slow
def snake_case__( self : Optional[int] ) ->List[str]:
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = BioGptModel.from_pretrained(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase )
def snake_case__( self : Optional[int] ) ->str:
snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = 3
snake_case_ = input_dict['''input_ids''']
snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase )
snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
snake_case_ = BioGptForSequenceClassification(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def snake_case__( self : str ) ->str:
snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = 3
snake_case_ = '''multi_label_classification'''
snake_case_ = input_dict['''input_ids''']
snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase )
snake_case_ = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
snake_case_ = BioGptForSequenceClassification(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def snake_case__( self : int ) ->Any:
snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
snake_case_ = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] )
snake_case_ = model(_UpperCamelCase )[0]
snake_case_ = 4_2_3_8_4
snake_case_ = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , _UpperCamelCase )
snake_case_ = torch.tensor(
[[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) )
@slow
def snake_case__( self : List[str] ) ->Optional[int]:
snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(_UpperCamelCase )
torch.manual_seed(0 )
snake_case_ = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_UpperCamelCase )
snake_case_ = model.generate(
**_UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=_UpperCamelCase , )
snake_case_ = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCamelCase )
snake_case_ = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(_UpperCamelCase , _UpperCamelCase ) | 39 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCAmelCase = {
'''configuration_bigbird_pegasus''': [
'''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''BigBirdPegasusConfig''',
'''BigBirdPegasusOnnxConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BigBirdPegasusForCausalLM''',
'''BigBirdPegasusForConditionalGeneration''',
'''BigBirdPegasusForQuestionAnswering''',
'''BigBirdPegasusForSequenceClassification''',
'''BigBirdPegasusModel''',
'''BigBirdPegasusPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
BigBirdPegasusConfig,
BigBirdPegasusOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST,
BigBirdPegasusForCausalLM,
BigBirdPegasusForConditionalGeneration,
BigBirdPegasusForQuestionAnswering,
BigBirdPegasusForSequenceClassification,
BigBirdPegasusModel,
BigBirdPegasusPreTrainedModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 90 |
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
snake_case_ = (boundary[1] - boundary[0]) / steps
snake_case_ = boundary[0]
snake_case_ = boundary[1]
snake_case_ = make_points(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
snake_case_ = 0.0
y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ )
for i in x_i:
# print(i)
y += h * f(SCREAMING_SNAKE_CASE__ )
y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ )
return y
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = a + h
while x < (b - h):
yield x
snake_case_ = x + h
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # enter your function here
snake_case_ = (x - 0) * (x - 0)
return y
def __SCREAMING_SNAKE_CASE ():
snake_case_ = 0.0 # Lower bound of integration
snake_case_ = 1.0 # Upper bound of integration
snake_case_ = 10.0 # define number of steps or resolution
snake_case_ = [a, b] # define boundary of integration
snake_case_ = method_a(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
print(F'''y = {y}''' )
if __name__ == "__main__":
main() | 39 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowercase = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = ['''XGLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = ['''XGLMTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = [
'''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XGLMForCausalLM''',
'''XGLMModel''',
'''XGLMPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = [
'''FlaxXGLMForCausalLM''',
'''FlaxXGLMModel''',
'''FlaxXGLMPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase = [
'''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXGLMForCausalLM''',
'''TFXGLMModel''',
'''TFXGLMPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
_lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure) | 91 |
import os
import re
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Optional, Union
from uuid import uuida
from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami
from huggingface_hub.file_download import REGEX_COMMIT_HASH
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
is_jinja_available,
)
from packaging import version
from requests import HTTPError
from .. import __version__
from .constants import (
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
)
from .import_utils import (
ENV_VARS_TRUE_VALUES,
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_onnx_available,
is_torch_available,
)
from .logging import get_logger
lowerCAmelCase_ = get_logger(__name__)
lowerCAmelCase_ = Path(__file__).parent / '''model_card_template.md'''
lowerCAmelCase_ = uuida().hex
lowerCAmelCase_ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES
lowerCAmelCase_ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES
lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/'''
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None ):
snake_case_ = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}'''
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
return ua + "; telemetry/off"
if is_torch_available():
ua += F'''; torch/{_torch_version}'''
if is_flax_available():
ua += F'''; jax/{_jax_version}'''
ua += F'''; flax/{_flax_version}'''
if is_onnx_available():
ua += F'''; onnxruntime/{_onnxruntime_version}'''
# CI will set this value to True
if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
ua += "; " + user_agent
return ua
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ):
if token is None:
snake_case_ = HfFolder.get_token()
if organization is None:
snake_case_ = whoami(SCREAMING_SNAKE_CASE__ )['''name''']
return F'''{username}/{model_id}'''
else:
return F'''{organization}/{model_id}'''
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
if not is_jinja_available():
raise ValueError(
'''Modelcard rendering is based on Jinja templates.'''
''' Please make sure to have `jinja` installed before using `create_model_card`.'''
''' To install it, please run `pip install Jinja2`.''' )
if hasattr(SCREAMING_SNAKE_CASE__ , '''local_rank''' ) and args.local_rank not in [-1, 0]:
return
snake_case_ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , '''hub_token''' ) else None
snake_case_ = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ )
snake_case_ = ModelCard.from_template(
card_data=ModelCardData( # Card metadata object that will be converted to YAML block
language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=(
args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''gradient_accumulation_steps''' ) else None
) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , )
snake_case_ = os.path.join(args.output_dir , '''README.md''' )
model_card.save(SCREAMING_SNAKE_CASE__ )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ):
if resolved_file is None or commit_hash is not None:
return commit_hash
snake_case_ = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() )
snake_case_ = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE__ )
if search is None:
return None
snake_case_ = search.groups()[0]
return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
lowerCAmelCase_ = os.path.expanduser(
os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface'''))
)
lowerCAmelCase_ = os.path.join(hf_cache_home, '''diffusers''')
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ):
if new_cache_dir is None:
snake_case_ = DIFFUSERS_CACHE
if old_cache_dir is None:
snake_case_ = old_diffusers_cache
snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser()
snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser()
for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ):
if old_blob_path.is_file() and not old_blob_path.is_symlink():
snake_case_ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ )
new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
try:
os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
except OSError:
logger.warning(
'''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' )
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''')
if not os.path.isfile(cache_version_file):
lowerCAmelCase_ = 0
else:
with open(cache_version_file) as f:
try:
lowerCAmelCase_ = int(f.read())
except ValueError:
lowerCAmelCase_ = 0
if cache_version < 1:
lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
if old_cache_is_not_empty:
logger.warning(
'''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your '''
'''existing cached models. This is a one-time operation, you can interrupt it or run it '''
'''later by calling `diffusers.utils.hub_utils.move_cache()`.'''
)
try:
move_cache()
except Exception as e:
lowerCAmelCase_ = '''\n'''.join(traceback.format_tb(e.__traceback__))
logger.error(
f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """
'''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole '''
'''message and we will do our best to help.'''
)
if cache_version < 1:
try:
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
with open(cache_version_file, '''w''') as f:
f.write('''1''')
except Exception:
logger.warning(
f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """
'''the directory exists and can be written to.'''
)
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ):
if variant is not None:
snake_case_ = weights_name.split('''.''' )
snake_case_ = splits[:-1] + [variant] + splits[-1:]
snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ )
return weights_name
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , *,
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ):
snake_case_ = str(SCREAMING_SNAKE_CASE__ )
if os.path.isfile(SCREAMING_SNAKE_CASE__ ):
return pretrained_model_name_or_path
elif os.path.isdir(SCREAMING_SNAKE_CASE__ ):
if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ):
# Load from a PyTorch checkpoint
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return model_file
elif subfolder is not None and os.path.isfile(
os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ):
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return model_file
else:
raise EnvironmentError(
F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' )
else:
# 1. First check if deprecated way of loading from branches is used
if (
revision in DEPRECATED_REVISION_ARGS
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('''0.20.0''' )
):
try:
snake_case_ = hf_hub_download(
SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , )
warnings.warn(
F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , )
return model_file
except: # noqa: E722
warnings.warn(
F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , )
try:
# 2. Load model file as usual
snake_case_ = hf_hub_download(
SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , )
return model_file
except RepositoryNotFoundError:
raise EnvironmentError(
F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier '''
'''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a '''
'''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli '''
'''login`.''' )
except RevisionNotFoundError:
raise EnvironmentError(
F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for '''
'''this model name. Check the model page at '''
F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' )
except EntryNotFoundError:
raise EnvironmentError(
F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' )
except HTTPError as err:
raise EnvironmentError(
F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' )
except ValueError:
raise EnvironmentError(
F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it'''
F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a'''
F''' directory containing a file named {weights_name} or'''
''' \nCheckout your internet connection or see how to run the library in'''
''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' )
except EnvironmentError:
raise EnvironmentError(
F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from '''
'''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. '''
F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory '''
F'''containing a file named {weights_name}''' ) | 39 | 0 |
'''simple docstring'''
import argparse
import json
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
VideoMAEConfig,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEImageProcessor,
)
def _lowerCAmelCase ( __magic_name__ : List[str] ) -> Any:
lowercase : Optional[int] =VideoMAEConfig()
set_architecture_configs(__magic_name__ , __magic_name__ )
if "finetuned" not in model_name:
lowercase : str =False
if "finetuned" in model_name:
lowercase : Optional[int] ='''huggingface/label-files'''
if "kinetics" in model_name:
lowercase : Union[str, Any] =400
lowercase : List[Any] ='''kinetics400-id2label.json'''
elif "ssv2" in model_name:
lowercase : Union[str, Any] =174
lowercase : str ='''something-something-v2-id2label.json'''
else:
raise ValueError('''Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.''' )
lowercase : str =json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type='''dataset''' ) , '''r''' ) )
lowercase : str ={int(__magic_name__ ): v for k, v in idalabel.items()}
lowercase : Any =idalabel
lowercase : Any ={v: k for k, v in idalabel.items()}
return config
def _lowerCAmelCase ( __magic_name__ : List[Any] , __magic_name__ : List[Any] ) -> Optional[int]:
if "small" in model_name:
lowercase : Any =384
lowercase : Any =1536
lowercase : Dict =12
lowercase : Union[str, Any] =16
lowercase : Dict =12
lowercase : Any =3
lowercase : Optional[Any] =192
lowercase : Optional[int] =768
elif "large" in model_name:
lowercase : Any =1024
lowercase : int =4096
lowercase : Any =24
lowercase : Any =16
lowercase : List[str] =12
lowercase : Any =8
lowercase : List[str] =512
lowercase : List[str] =2048
elif "huge" in model_name:
lowercase : int =1280
lowercase : Any =5120
lowercase : int =32
lowercase : List[Any] =16
lowercase : List[Any] =12
lowercase : Optional[Any] =8
lowercase : Dict =640
lowercase : int =2560
elif "base" not in model_name:
raise ValueError('''Model name should include either "small", "base", "large", or "huge"''' )
def _lowerCAmelCase ( __magic_name__ : int ) -> Optional[int]:
if "encoder." in name:
lowercase : List[str] =name.replace('''encoder.''' , '''''' )
if "cls_token" in name:
lowercase : List[str] =name.replace('''cls_token''' , '''videomae.embeddings.cls_token''' )
if "decoder_pos_embed" in name:
lowercase : Union[str, Any] =name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' )
if "pos_embed" in name and "decoder" not in name:
lowercase : str =name.replace('''pos_embed''' , '''videomae.embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
lowercase : int =name.replace('''patch_embed.proj''' , '''videomae.embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
lowercase : Optional[Any] =name.replace('''patch_embed.norm''' , '''videomae.embeddings.norm''' )
if "decoder.blocks" in name:
lowercase : List[Any] =name.replace('''decoder.blocks''' , '''decoder.decoder_layers''' )
if "blocks" in name:
lowercase : Dict =name.replace('''blocks''' , '''videomae.encoder.layer''' )
if "attn.proj" in name:
lowercase : Tuple =name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name and "bias" not in name:
lowercase : List[Any] =name.replace('''attn''' , '''attention.self''' )
if "attn" in name:
lowercase : List[str] =name.replace('''attn''' , '''attention.attention''' )
if "norm1" in name:
lowercase : Any =name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
lowercase : Union[str, Any] =name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
lowercase : Dict =name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
lowercase : Optional[int] =name.replace('''mlp.fc2''' , '''output.dense''' )
if "decoder_embed" in name:
lowercase : Union[str, Any] =name.replace('''decoder_embed''' , '''decoder.decoder_embed''' )
if "decoder_norm" in name:
lowercase : List[str] =name.replace('''decoder_norm''' , '''decoder.decoder_norm''' )
if "decoder_pred" in name:
lowercase : Dict =name.replace('''decoder_pred''' , '''decoder.decoder_pred''' )
if "norm.weight" in name and "decoder" not in name and "fc" not in name:
lowercase : Tuple =name.replace('''norm.weight''' , '''videomae.layernorm.weight''' )
if "norm.bias" in name and "decoder" not in name and "fc" not in name:
lowercase : Any =name.replace('''norm.bias''' , '''videomae.layernorm.bias''' )
if "head" in name and "decoder" not in name:
lowercase : int =name.replace('''head''' , '''classifier''' )
return name
def _lowerCAmelCase ( __magic_name__ : List[Any] , __magic_name__ : Optional[Any] ) -> str:
for key in orig_state_dict.copy().keys():
lowercase : int =orig_state_dict.pop(__magic_name__ )
if key.startswith('''encoder.''' ):
lowercase : Optional[Any] =key.replace('''encoder.''' , '''''' )
if "qkv" in key:
lowercase : Union[str, Any] =key.split('''.''' )
if key.startswith('''decoder.blocks''' ):
lowercase : Optional[int] =config.decoder_hidden_size
lowercase : Optional[int] =int(key_split[2] )
lowercase : List[Any] ='''decoder.decoder_layers.'''
if "weight" in key:
lowercase : Any =val[:dim, :]
lowercase : Optional[Any] =val[dim : dim * 2, :]
lowercase : int =val[-dim:, :]
else:
lowercase : Union[str, Any] =config.hidden_size
lowercase : List[Any] =int(key_split[1] )
lowercase : List[str] ='''videomae.encoder.layer.'''
if "weight" in key:
lowercase : str =val[:dim, :]
lowercase : str =val[dim : dim * 2, :]
lowercase : List[Any] =val[-dim:, :]
else:
lowercase : Any =val
return orig_state_dict
def _lowerCAmelCase ( ) -> Dict:
lowercase : int =hf_hub_download(
repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' )
lowercase : List[str] =np.load(__magic_name__ )
return list(__magic_name__ )
def _lowerCAmelCase ( __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : str , __magic_name__ : Optional[Any] ) -> Any:
lowercase : Any =get_videomae_config(__magic_name__ )
if "finetuned" in model_name:
lowercase : Union[str, Any] =VideoMAEForVideoClassification(__magic_name__ )
else:
lowercase : Tuple =VideoMAEForPreTraining(__magic_name__ )
# download original checkpoint, hosted on Google Drive
lowercase : List[str] ='''pytorch_model.bin'''
gdown.cached_download(__magic_name__ , __magic_name__ , quiet=__magic_name__ )
lowercase : int =torch.load(__magic_name__ , map_location='''cpu''' )
if "model" in files:
lowercase : str =files['''model''']
else:
lowercase : List[Any] =files['''module''']
lowercase : Optional[Any] =convert_state_dict(__magic_name__ , __magic_name__ )
model.load_state_dict(__magic_name__ )
model.eval()
# verify model on basic input
lowercase : Optional[int] =VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
lowercase : Any =prepare_video()
lowercase : Tuple =image_processor(__magic_name__ , return_tensors='''pt''' )
if "finetuned" not in model_name:
lowercase : Union[str, Any] =hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' )
lowercase : Optional[int] =torch.load(__magic_name__ )
lowercase : Optional[int] =model(**__magic_name__ )
lowercase : Optional[Any] =outputs.logits
lowercase : Tuple =[
'''videomae-small-finetuned-kinetics''',
'''videomae-small-finetuned-ssv2''',
# Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600)
'''videomae-base-short''',
'''videomae-base-short-finetuned-kinetics''',
'''videomae-base''',
'''videomae-base-finetuned-kinetics''',
'''videomae-large''',
'''videomae-large-finetuned-kinetics''',
'''videomae-huge-finetuned-kinetics''',
# Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400)
'''videomae-base-short-ssv2''',
'''videomae-base-short-finetuned-ssv2''',
'''videomae-base-ssv2''',
'''videomae-base-finetuned-ssv2''',
]
# NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5]
if model_name == "videomae-small-finetuned-kinetics":
lowercase : List[Any] =torch.Size([1, 400] )
lowercase : Optional[Any] =torch.tensor([-0.9_2_9_1, -0.4_0_6_1, -0.9_3_0_7] )
elif model_name == "videomae-small-finetuned-ssv2":
lowercase : Union[str, Any] =torch.Size([1, 174] )
lowercase : List[str] =torch.tensor([0.2_6_7_1, -0.4_6_8_9, -0.8_2_3_5] )
elif model_name == "videomae-base":
lowercase : List[Any] =torch.Size([1, 1408, 1536] )
lowercase : Optional[Any] =torch.tensor([[0.7_7_3_9, 0.7_9_6_8, 0.7_0_8_9], [0.6_7_0_1, 0.7_4_8_7, 0.6_2_0_9], [0.4_2_8_7, 0.5_1_5_8, 0.4_7_7_3]] )
elif model_name == "videomae-base-short":
lowercase : Dict =torch.Size([1, 1408, 1536] )
lowercase : int =torch.tensor([[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] )
# we verified the loss both for normalized and unnormalized targets for this one
lowercase : Any =torch.tensor([0.5_1_4_2] ) if config.norm_pix_loss else torch.tensor([0.6_4_6_9] )
elif model_name == "videomae-large":
lowercase : Tuple =torch.Size([1, 1408, 1536] )
lowercase : List[Any] =torch.tensor([[0.7_1_4_9, 0.7_9_9_7, 0.6_9_6_6], [0.6_7_6_8, 0.7_8_6_9, 0.6_9_4_8], [0.5_1_3_9, 0.6_2_2_1, 0.5_6_0_5]] )
elif model_name == "videomae-large-finetuned-kinetics":
lowercase : str =torch.Size([1, 400] )
lowercase : Any =torch.tensor([0.0_7_7_1, 0.0_0_1_1, -0.3_6_2_5] )
elif model_name == "videomae-huge-finetuned-kinetics":
lowercase : Optional[int] =torch.Size([1, 400] )
lowercase : Optional[Any] =torch.tensor([0.2_4_3_3, 0.1_6_3_2, -0.4_8_9_4] )
elif model_name == "videomae-base-short-finetuned-kinetics":
lowercase : List[str] =torch.Size([1, 400] )
lowercase : List[Any] =torch.tensor([0.6_5_8_8, 0.0_9_9_0, -0.2_4_9_3] )
elif model_name == "videomae-base-finetuned-kinetics":
lowercase : Any =torch.Size([1, 400] )
lowercase : Optional[int] =torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] )
elif model_name == "videomae-base-short-ssv2":
lowercase : int =torch.Size([1, 1408, 1536] )
lowercase : Union[str, Any] =torch.tensor([[0.4_7_1_2, 0.5_2_9_6, 0.5_7_8_6], [0.2_2_7_8, 0.2_7_2_9, 0.4_0_2_6], [0.0_3_5_2, 0.0_7_3_0, 0.2_5_0_6]] )
elif model_name == "videomae-base-short-finetuned-ssv2":
lowercase : Tuple =torch.Size([1, 174] )
lowercase : Union[str, Any] =torch.tensor([-0.0_5_3_7, -0.1_5_3_9, -0.3_2_6_6] )
elif model_name == "videomae-base-ssv2":
lowercase : List[Any] =torch.Size([1, 1408, 1536] )
lowercase : Dict =torch.tensor([[0.8_1_3_1, 0.8_7_2_7, 0.8_5_4_6], [0.7_3_6_6, 0.9_3_7_7, 0.8_8_7_0], [0.5_9_3_5, 0.8_8_7_4, 0.8_5_6_4]] )
elif model_name == "videomae-base-finetuned-ssv2":
lowercase : Optional[Any] =torch.Size([1, 174] )
lowercase : List[str] =torch.tensor([0.1_9_6_1, -0.8_3_3_7, -0.6_3_8_9] )
else:
raise ValueError(f'''Model name not supported. Should be one of {model_names}''' )
# verify logits
assert logits.shape == expected_shape
if "finetuned" in model_name:
assert torch.allclose(logits[0, :3] , __magic_name__ , atol=1E-4 )
else:
print('''Logits:''' , logits[0, :3, :3] )
assert torch.allclose(logits[0, :3, :3] , __magic_name__ , atol=1E-4 )
print('''Logits ok!''' )
# verify loss, if applicable
if model_name == "videomae-base-short":
lowercase : Optional[Any] =outputs.loss
assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-4 )
print('''Loss ok!''' )
if pytorch_dump_folder_path is not None:
print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__magic_name__ )
model.save_pretrained(__magic_name__ )
if push_to_hub:
print('''Pushing to the hub...''' )
model.push_to_hub(__magic_name__ , organization='''nielsr''' )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&export=download&confirm=t&uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""",
type=str,
help=(
"""URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct"""
""" download link."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""/Users/nielsrogge/Documents/VideoMAE/Test""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""")
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
UpperCamelCase_ = parser.parse_args()
convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 92 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''',
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt"
def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any:
super().__init__(**_UpperCamelCase )
snake_case_ = hidden_size
snake_case_ = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info('''Initializing the config with a `BiT` backbone.''' )
snake_case_ = {
'''global_padding''': '''same''',
'''layer_type''': '''bottleneck''',
'''depths''': [3, 4, 9],
'''out_features''': ['''stage1''', '''stage2''', '''stage3'''],
'''embedding_dynamic_padding''': True,
}
snake_case_ = BitConfig(**_UpperCamelCase )
elif isinstance(_UpperCamelCase , _UpperCamelCase ):
logger.info('''Initializing the config with a `BiT` backbone.''' )
snake_case_ = BitConfig(**_UpperCamelCase )
elif isinstance(_UpperCamelCase , _UpperCamelCase ):
snake_case_ = backbone_config
else:
raise ValueError(
f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' )
snake_case_ = backbone_featmap_shape
snake_case_ = neck_ignore_stages
if readout_type != "project":
raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' )
else:
snake_case_ = None
snake_case_ = None
snake_case_ = []
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = initializer_range
snake_case_ = layer_norm_eps
snake_case_ = image_size
snake_case_ = patch_size
snake_case_ = num_channels
snake_case_ = qkv_bias
snake_case_ = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' )
snake_case_ = readout_type
snake_case_ = reassemble_factors
snake_case_ = neck_hidden_sizes
snake_case_ = fusion_hidden_size
snake_case_ = head_in_index
snake_case_ = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
snake_case_ = use_auxiliary_head
snake_case_ = auxiliary_loss_weight
snake_case_ = semantic_loss_ignore_index
snake_case_ = semantic_classifier_dropout
def snake_case__( self : List[str] ) ->List[Any]:
snake_case_ = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
snake_case_ = self.backbone_config.to_dict()
snake_case_ = self.__class__.model_type
return output | 39 | 0 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=1_8 , __UpperCAmelCase=3_0 , __UpperCAmelCase=4_0_0 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , ):
'''simple docstring'''
lowerCAmelCase__ :List[str] = size if size is not None else {'height': 1_8, 'width': 1_8}
lowerCAmelCase__ :Optional[int] = parent
lowerCAmelCase__ :Optional[int] = batch_size
lowerCAmelCase__ :Optional[int] = num_channels
lowerCAmelCase__ :Dict = image_size
lowerCAmelCase__ :List[Any] = min_resolution
lowerCAmelCase__ :int = max_resolution
lowerCAmelCase__ :Union[str, Any] = do_resize
lowerCAmelCase__ :Optional[int] = size
lowerCAmelCase__ :Any = apply_ocr
def snake_case ( self ):
'''simple docstring'''
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class _lowerCAmelCase ( a , unittest.TestCase ):
"""simple docstring"""
__magic_name__ :Tuple = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :str = LayoutLMvaImageProcessingTester(self )
@property
def snake_case ( self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Optional[int] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(__UpperCAmelCase , 'size' ) )
self.assertTrue(hasattr(__UpperCAmelCase , 'apply_ocr' ) )
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :int = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} )
lowerCAmelCase__ :Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 )
self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} )
def snake_case ( self ):
'''simple docstring'''
pass
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase__ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , Image.Image )
# Test not batched input
lowerCAmelCase__ :Any = image_processing(image_inputs[0] , return_tensors='pt' )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
self.assertIsInstance(encoding.words , __UpperCAmelCase )
self.assertIsInstance(encoding.boxes , __UpperCAmelCase )
# Test batched
lowerCAmelCase__ :int = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase__ :Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , np.ndarray )
# Test not batched input
lowerCAmelCase__ :Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
lowerCAmelCase__ :List[Any] = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :int = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase__ :Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , torch.Tensor )
# Test not batched input
lowerCAmelCase__ :int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
lowerCAmelCase__ :Optional[int] = image_processing(__UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :int = LayoutLMvaImageProcessor()
from datasets import load_dataset
lowerCAmelCase__ :Optional[Any] = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' )
lowerCAmelCase__ :str = Image.open(ds[0]['file'] ).convert('RGB' )
lowerCAmelCase__ :str = image_processing(__UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
lowerCAmelCase__ :int = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231
lowerCAmelCase__ :str = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , __UpperCAmelCase )
self.assertListEqual(encoding.boxes , __UpperCAmelCase )
# with apply_OCR = False
lowerCAmelCase__ :List[Any] = LayoutLMvaImageProcessor(apply_ocr=__UpperCAmelCase )
lowerCAmelCase__ :Dict = image_processing(__UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
| 93 |
import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional
import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy
lowerCAmelCase_ = logging.getLogger(__name__)
lowerCAmelCase_ = '''pytorch_model.bin'''
@dataclasses.dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = dataclasses.field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , )
@dataclasses.dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} )
SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default=__A , metadata={"help": "A csv or a json file containing the validation data."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default=__A , metadata={"help": "The name of the task to train on."} , )
SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field(
default=__A , metadata={"help": "The list of labels for the task."} )
@dataclasses.dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = dataclasses.field(
metadata={"help": "The output directory where the model predictions and checkpoints will be written."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default="accuracy" , metadata={"help": "The evaluation metric used for the task."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default="no" , metadata={
"help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]"
} , )
SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field(
default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , )
SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field(
default=0.0 , metadata={
"help": "How much the specified evaluation metric must improve to satisfy early stopping conditions."
} , )
SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field(
default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , )
SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field(
default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , )
SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field(
default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , )
SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field(
default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , )
SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field(
default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , )
SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field(
default=__A , metadata={"help": "Random seed for initialization."} , )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 )
if args.do_filter_by_confidence:
snake_case_ = dataset.filter(lambda SCREAMING_SNAKE_CASE__ : example["probability"] > args.confidence_threshold )
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
snake_case_ = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) )
print(SCREAMING_SNAKE_CASE__ )
snake_case_ = dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE__ )
snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) )
snake_case_ = dataset.remove_columns(['''label''', '''probability'''] )
snake_case_ = dataset.rename_column('''prediction''' , '''label''' )
snake_case_ = dataset.map(lambda SCREAMING_SNAKE_CASE__ : {"label": idalabel[example["label"]]} )
snake_case_ = dataset.shuffle(seed=args.seed )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' )
if args.data_file_extension == "csv":
dataset.to_csv(SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ )
else:
dataset.to_json(SCREAMING_SNAKE_CASE__ )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ):
snake_case_ = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(accelerator.state )
# Setup logging, we only want one process per machine to log things on the
# screen. accelerator.is_local_main_process is only True for one process per
# machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
snake_case_ = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ )
snake_case_ = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ , infer_file=SCREAMING_SNAKE_CASE__ )
snake_case_ = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ )
snake_case_ = argparse.Namespace()
for arg_class in (model_args, data_args, training_args):
for key, value in vars(SCREAMING_SNAKE_CASE__ ).items():
setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
for key, value in kwargs.items():
if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Sanity checks
snake_case_ = {}
snake_case_ = None
# You need to provide the training data and the data to predict on
assert args.train_file is not None
assert args.infer_file is not None
snake_case_ = args.train_file
snake_case_ = args.infer_file
if args.evaluation_strategy != IntervalStrategy.NO.value:
assert args.eval_file is not None
snake_case_ = args.eval_file
for key in data_files:
snake_case_ = data_files[key].split('''.''' )[-1]
assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.'''
if args.data_file_extension is None:
snake_case_ = extension
else:
assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.'''
assert (
args.eval_metric in datasets.list_metrics()
), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.'''
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed )
logger.info('''Creating the initial data directory for self-training...''' )
snake_case_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format
snake_case_ = data_dir_format(0 )
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ )
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
snake_case_ = None
snake_case_ = None
snake_case_ = 0
snake_case_ = False
# Show the progress bar
snake_case_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process )
# Self-train
for iteration in range(0 , int(args.max_selftrain_iterations ) ):
snake_case_ = data_dir_format(SCREAMING_SNAKE_CASE__ )
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
# Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
# iteration > 0
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-1''' )
snake_case_ = {
'''accelerator''': accelerator,
'''model_name_or_path''': args.model_name_or_path,
'''cache_dir''': args.cache_dir,
'''do_train''': True,
'''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''],
'''do_eval''': True if args.eval_file is not None else False,
'''eval_file''': data_files['''eval'''],
'''do_predict''': True,
'''infer_file''': data_files['''infer'''],
'''task_name''': args.task_name,
'''label_list''': args.label_list,
'''output_dir''': current_output_dir,
'''eval_metric''': args.eval_metric,
'''evaluation_strategy''': args.evaluation_strategy,
'''early_stopping_patience''': args.early_stopping_patience,
'''early_stopping_threshold''': args.early_stopping_threshold,
'''seed''': args.seed,
}
# Add additional training arguments
for key, value in kwargs.items():
if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
arguments_dict.update({key: value} )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ )
if os.path.exists(SCREAMING_SNAKE_CASE__ ):
logger.info(
'''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , )
else:
logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE__ )
finetune(**SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ )
if iteration > 0 and args.finetune_on_labeled_data:
# Stage 2 (optional): fine-tuning on the original labeled data
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-2''' )
# Update arguments_dict
snake_case_ = model_path
snake_case_ = data_files['''train''']
snake_case_ = current_output_dir
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ )
if os.path.exists(SCREAMING_SNAKE_CASE__ ):
logger.info(
'''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , )
else:
logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE__ )
finetune(**SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ )
snake_case_ = iteration
snake_case_ = data_dir_format(iteration + 1 )
snake_case_ = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) )
snake_case_ = config.idalabel
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-checkpoint.json''' )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''test_results_best-checkpoint.json''' )
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f:
snake_case_ = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''infer_output_best-checkpoint.csv''' )
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
# Loading the dataset from local csv or json files.
snake_case_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data''']
snake_case_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data''']
if accelerator.is_main_process:
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) )
if os.path.exists(SCREAMING_SNAKE_CASE__ ):
shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''test_results_iter-{iteration}.json''' ) )
create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' )
if args.evaluation_strategy != IntervalStrategy.NO.value:
snake_case_ = eval_result
if best_iteration is None:
snake_case_ = new_iteration
snake_case_ = new_eval_result
else:
if new_eval_result - best_eval_result > args.early_stopping_threshold:
snake_case_ = new_iteration
snake_case_ = new_eval_result
snake_case_ = 0
else:
if new_eval_result == best_eval_result:
snake_case_ = new_iteration
snake_case_ = new_eval_result
early_stopping_patience_counter += 1
if early_stopping_patience_counter >= args.early_stopping_patience:
snake_case_ = True
progress_bar.update(1 )
if should_training_stop:
break
if best_iteration is not None:
# Save the best iteration
logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE__ )
logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , )
else:
# Assume that the last iteration is the best
logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 )
logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , ) | 39 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict=13 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : Dict=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : int=5 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : List[str]=512 , UpperCAmelCase : List[str]=16 , UpperCAmelCase : str=2 , UpperCAmelCase : int=0.0_2 , UpperCAmelCase : int=4 , ) -> Optional[Any]:
'''simple docstring'''
lowercase : int =parent
lowercase : Tuple =batch_size
lowercase : List[Any] =seq_length
lowercase : List[Any] =is_training
lowercase : str =use_attention_mask
lowercase : str =use_token_type_ids
lowercase : Optional[Any] =use_labels
lowercase : Optional[Any] =vocab_size
lowercase : Dict =hidden_size
lowercase : Optional[int] =num_hidden_layers
lowercase : Any =num_attention_heads
lowercase : Dict =intermediate_size
lowercase : int =hidden_act
lowercase : List[str] =hidden_dropout_prob
lowercase : Optional[Any] =attention_probs_dropout_prob
lowercase : Any =max_position_embeddings
lowercase : Any =type_vocab_size
lowercase : Tuple =type_sequence_label_size
lowercase : int =initializer_range
lowercase : int =num_choices
def A__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
lowercase : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase : Optional[Any] =None
if self.use_attention_mask:
lowercase : Tuple =random_attention_mask([self.batch_size, self.seq_length] )
lowercase : Union[str, Any] =None
if self.use_token_type_ids:
lowercase : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowercase : Union[str, Any] =AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def A__ ( self : Dict ) -> List[Any]:
'''simple docstring'''
lowercase : Optional[int] =self.prepare_config_and_inputs()
lowercase , lowercase , lowercase , lowercase : int =config_and_inputs
lowercase : int ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_flax
class UpperCAmelCase_ ( __A , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def A__ ( self : List[Any] ) -> List[str]:
'''simple docstring'''
lowercase : Optional[int] =FlaxAlbertModelTester(self )
@slow
def A__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase : int =model_class_name.from_pretrained('''albert-base-v2''' )
lowercase : Optional[Any] =model(np.ones((1, 1) ) )
self.assertIsNotNone(UpperCAmelCase )
@require_flax
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def A__ ( self : List[Any] ) -> List[str]:
'''simple docstring'''
lowercase : List[str] =FlaxAlbertModel.from_pretrained('''albert-base-v2''' )
lowercase : Tuple =np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
lowercase : str =np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
lowercase : Dict =model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0]
lowercase : Any =(1, 11, 768)
self.assertEqual(output.shape , UpperCAmelCase )
lowercase : int =np.array(
[[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1e-4 ) )
| 94 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class snake_case_ ( __A , __A , __A , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = AltDiffusionPipeline
SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS
SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
def snake_case__( self : Dict ) ->int:
torch.manual_seed(0 )
snake_case_ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , )
snake_case_ = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , )
torch.manual_seed(0 )
snake_case_ = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0 )
snake_case_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , )
snake_case_ = CLIPTextModel(_UpperCamelCase )
snake_case_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
snake_case_ = 7_7
snake_case_ = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def snake_case__( self : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0 ) ->Any:
if str(_UpperCamelCase ).startswith('''mps''' ):
snake_case_ = torch.manual_seed(_UpperCamelCase )
else:
snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase )
snake_case_ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def snake_case__( self : Dict ) ->List[str]:
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 )
def snake_case__( self : List[str] ) ->Any:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def snake_case__( self : Dict ) ->Any:
snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case_ = self.get_dummy_components()
torch.manual_seed(0 )
snake_case_ = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , )
# TODO: remove after fixing the non-deterministic text encoder
snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase )
snake_case_ = text_encoder
snake_case_ = AltDiffusionPipeline(**_UpperCamelCase )
snake_case_ = alt_pipe.to(_UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = self.get_dummy_inputs(_UpperCamelCase )
snake_case_ = '''A photo of an astronaut'''
snake_case_ = alt_pipe(**_UpperCamelCase )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
snake_case_ = np.array(
[0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case__( self : Tuple ) ->Union[str, Any]:
snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case_ = self.get_dummy_components()
snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase )
torch.manual_seed(0 )
snake_case_ = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , )
# TODO: remove after fixing the non-deterministic text encoder
snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase )
snake_case_ = text_encoder
snake_case_ = AltDiffusionPipeline(**_UpperCamelCase )
snake_case_ = alt_pipe.to(_UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = self.get_dummy_inputs(_UpperCamelCase )
snake_case_ = alt_pipe(**_UpperCamelCase )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
snake_case_ = np.array(
[0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : int ) ->List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case__( self : List[str] ) ->Tuple:
# make sure here that pndm scheduler skips prk
snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_UpperCamelCase )
snake_case_ = alt_pipe.to(_UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = '''A painting of a squirrel eating a burger'''
snake_case_ = torch.manual_seed(0 )
snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='''np''' )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
snake_case_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case__( self : List[str] ) ->Optional[Any]:
snake_case_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' )
snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase )
snake_case_ = alt_pipe.to(_UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = '''A painting of a squirrel eating a burger'''
snake_case_ = torch.manual_seed(0 )
snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , num_inference_steps=2 , output_type='''numpy''' )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
snake_case_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 | 39 | 0 |
"""simple docstring"""
import math
import os
import sys
def snake_case ( A__ ):
UpperCAmelCase_ : Tuple = ""
try:
with open(A__ ,"rb" ) as binary_file:
UpperCAmelCase_ : Tuple = binary_file.read()
for dat in data:
UpperCAmelCase_ : str = F"""{dat:08b}"""
result += curr_byte
return result
except OSError:
print("File not accessible" )
sys.exit()
def snake_case ( A__ ,A__ ,A__ ,A__ ):
lexicon.pop(A__ )
UpperCAmelCase_ : List[str] = last_match_id
if math.loga(A__ ).is_integer():
for curr_key in lexicon:
UpperCAmelCase_ : Optional[Any] = "0" + lexicon[curr_key]
UpperCAmelCase_ : Dict = bin(A__ )[2:]
def snake_case ( A__ ):
UpperCAmelCase_ : Tuple = {"0": "0", "1": "1"}
UpperCAmelCase_ , UpperCAmelCase_ : Any = "", ""
UpperCAmelCase_ : Dict = len(A__ )
for i in range(len(A__ ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
UpperCAmelCase_ : Optional[int] = lexicon[curr_string]
result += last_match_id
add_key_to_lexicon(A__ ,A__ ,A__ ,A__ )
index += 1
UpperCAmelCase_ : List[str] = ""
while curr_string != "" and curr_string not in lexicon:
curr_string += "0"
if curr_string != "":
UpperCAmelCase_ : Union[str, Any] = lexicon[curr_string]
result += last_match_id
return result
def snake_case ( A__ ,A__ ):
UpperCAmelCase_ : Dict = os.path.getsize(A__ )
UpperCAmelCase_ : int = bin(A__ )[2:]
UpperCAmelCase_ : Optional[int] = len(A__ )
return "0" * (length_length - 1) + file_length_binary + compressed
def snake_case ( A__ ,A__ ):
UpperCAmelCase_ : Optional[int] = 8
try:
with open(A__ ,"wb" ) as opened_file:
UpperCAmelCase_ : Optional[Any] = [
to_write[i : i + byte_length]
for i in range(0 ,len(A__ ) ,A__ )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append("10000000" )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array:
opened_file.write(int(A__ ,2 ).to_bytes(1 ,byteorder="big" ) )
except OSError:
print("File not accessible" )
sys.exit()
def snake_case ( A__ ,A__ ):
UpperCAmelCase_ : List[Any] = read_file_binary(A__ )
UpperCAmelCase_ : List[str] = compress_data(A__ )
UpperCAmelCase_ : Tuple = add_file_length(A__ ,A__ )
write_file_binary(A__ ,A__ )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 95 |
from math import factorial
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
# If either of the conditions are true, the function is being asked
# to calculate a factorial of a negative number, which is not possible
if n < k or k < 0:
raise ValueError('''Please enter positive integers for n and k where n >= k''' )
return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k ))
if __name__ == "__main__":
print(
'''The number of five-card hands possible from a standard''',
f"""fifty-two card deck is: {combinations(52, 5)}\n""",
)
print(
'''If a class of 40 students must be arranged into groups of''',
f"""4 for group projects, there are {combinations(40, 4)} ways""",
'''to arrange them.\n''',
)
print(
'''If 10 teams are competing in a Formula One race, there''',
f"""are {combinations(10, 3)} ways that first, second and""",
'''third place can be awarded.''',
) | 39 | 0 |
"""simple docstring"""
def a ( __UpperCAmelCase : str , __UpperCAmelCase : str = " " ) -> list:
__magic_name__: List[Any] = []
__magic_name__: Optional[int] = 0
for index, char in enumerate(__UpperCAmelCase ):
if char == separator:
split_words.append(string[last_index:index] )
__magic_name__: str = index + 1
elif index + 1 == len(__UpperCAmelCase ):
split_words.append(string[last_index : index + 1] )
return split_words
if __name__ == "__main__":
from doctest import testmod
testmod()
| 96 |
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
lowerCAmelCase_ = sys.version_info >= (3, 10)
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ):
return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : float
SCREAMING_SNAKE_CASE : str
SCREAMING_SNAKE_CASE : bool
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 42
SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : bool = False
SCREAMING_SNAKE_CASE : bool = True
SCREAMING_SNAKE_CASE : Optional[bool] = None
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = "titi"
SCREAMING_SNAKE_CASE : Any = "toto"
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = "titi"
SCREAMING_SNAKE_CASE : Optional[Any] = "toto"
SCREAMING_SNAKE_CASE : Any = 42
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : BasicEnum = "toto"
def snake_case__( self : Tuple ) ->List[str]:
snake_case_ = BasicEnum(self.foo )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto"
def snake_case__( self : Union[str, Any] ) ->Dict:
snake_case_ = MixedTypeEnum(self.foo )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Optional[float] = field(default=__A , metadata={"help": "help message"} )
SCREAMING_SNAKE_CASE : Optional[str] = None
SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] )
SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] )
SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] )
SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] )
SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[int] = field()
SCREAMING_SNAKE_CASE : str = field()
SCREAMING_SNAKE_CASE : BasicEnum = field()
def snake_case__( self : Optional[Any] ) ->Tuple:
snake_case_ = BasicEnum(self.required_enum )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : "BasicEnum" = field()
SCREAMING_SNAKE_CASE : "Optional[bool]" = None
SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} )
SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] )
if is_python_no_less_than_3_10:
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : bool = False
SCREAMING_SNAKE_CASE : bool = True
SCREAMING_SNAKE_CASE : bool | None = None
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : int | None = None
SCREAMING_SNAKE_CASE : float | None = field(default=__A , metadata={"help": "help message"} )
SCREAMING_SNAKE_CASE : str | None = None
SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] )
SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] )
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : Dict , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser ) ->str:
self.assertEqual(len(a._actions ) , len(b._actions ) )
for x, y in zip(a._actions , b._actions ):
snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''}
snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get('''choices''' , _UpperCamelCase ) and yy.get('''choices''' , _UpperCamelCase ):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx['''type'''](_UpperCamelCase ) , yy['''type'''](_UpperCamelCase ) )
del xx["type"], yy["type"]
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Optional[Any] ) ->Dict:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument('''--bar''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument('''--baz''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument('''--flag''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5''']
((snake_case_), ) = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase )
self.assertFalse(example.flag )
def snake_case__( self : Tuple ) ->Optional[int]:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , default=4_2 , type=_UpperCamelCase )
expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Tuple ) ->Tuple:
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' )
expected.add_argument('''--baz''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' )
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCamelCase , dest='''baz''' )
expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase )
snake_case_ = [WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(_UpperCamelCase )
for dataclass_type in dataclass_types:
snake_case_ = HfArgumentParser(_UpperCamelCase )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
snake_case_ = parser.parse_args(['''--foo''', '''--no_baz'''] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
snake_case_ = parser.parse_args(['''--foo''', '''--baz'''] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
snake_case_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
snake_case_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
def snake_case__( self : Tuple ) ->Tuple:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument(
'''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(args.foo , '''toto''' )
snake_case_ = parser.parse_args_into_dataclasses([] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto )
snake_case_ = parser.parse_args(['''--foo''', '''titi'''] )
self.assertEqual(args.foo , '''titi''' )
snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi )
snake_case_ = parser.parse_args(['''--foo''', '''42'''] )
self.assertEqual(args.foo , 4_2 )
snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo )
def snake_case__( self : Tuple ) ->Union[str, Any]:
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto"
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument(
'''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(args.foo , '''toto''' )
snake_case_ = parser.parse_args(['''--foo''', '''titi'''] )
self.assertEqual(args.foo , '''titi''' )
snake_case_ = parser.parse_args(['''--foo''', '''42'''] )
self.assertEqual(args.foo , 4_2 )
def snake_case__( self : List[str] ) ->int:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCamelCase )
expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCamelCase )
expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase )
expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(
_UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , )
snake_case_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() )
self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) )
def snake_case__( self : Optional[Any] ) ->List[Any]:
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , default=_UpperCamelCase , type=_UpperCamelCase )
expected.add_argument('''--bar''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''help message''' )
expected.add_argument('''--baz''' , default=_UpperCamelCase , type=_UpperCamelCase )
expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCamelCase )
expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCamelCase )
snake_case_ = [OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(_UpperCamelCase )
for dataclass_type in dataclass_types:
snake_case_ = HfArgumentParser(_UpperCamelCase )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[] ) )
snake_case_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() )
self.assertEqual(_UpperCamelCase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) )
def snake_case__( self : Union[str, Any] ) ->Optional[int]:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument('''--required_str''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument(
'''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : List[str] ) ->int:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument(
'''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , )
expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase )
expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' )
expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Dict ) ->Any:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = {
'''foo''': 1_2,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
snake_case_ = parser.parse_dict(_UpperCamelCase )[0]
snake_case_ = BasicExample(**_UpperCamelCase )
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : int ) ->Dict:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = {
'''foo''': 1_2,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
'''extra''': 4_2,
}
self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase )
def snake_case__( self : str ) ->Tuple:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = {
'''foo''': 1_2,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = os.path.join(_UpperCamelCase , '''temp_json''' )
os.mkdir(_UpperCamelCase )
with open(temp_local_path + '''.json''' , '''w+''' ) as f:
json.dump(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0]
snake_case_ = BasicExample(**_UpperCamelCase )
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Optional[int] ) ->str:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = {
'''foo''': 1_2,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = os.path.join(_UpperCamelCase , '''temp_yaml''' )
os.mkdir(_UpperCamelCase )
with open(temp_local_path + '''.yaml''' , '''w+''' ) as f:
yaml.dump(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0]
snake_case_ = BasicExample(**_UpperCamelCase )
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Any ) ->Any:
snake_case_ = HfArgumentParser(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase ) | 39 | 0 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def a ( snake_case__: Optional[int] ):
'''simple docstring'''
lowercase_ = 384
lowercase_ = 7
if "tiny" in model_name:
lowercase_ = 96
lowercase_ = (2, 2, 6, 2)
lowercase_ = (3, 6, 12, 24)
elif "small" in model_name:
lowercase_ = 96
lowercase_ = (2, 2, 18, 2)
lowercase_ = (3, 6, 12, 24)
elif "base" in model_name:
lowercase_ = 128
lowercase_ = (2, 2, 18, 2)
lowercase_ = (4, 8, 16, 32)
lowercase_ = 12
lowercase_ = 512
elif "large" in model_name:
lowercase_ = 192
lowercase_ = (2, 2, 18, 2)
lowercase_ = (6, 12, 24, 48)
lowercase_ = 12
lowercase_ = 768
# set label information
lowercase_ = 150
lowercase_ = '''huggingface/label-files'''
lowercase_ = '''ade20k-id2label.json'''
lowercase_ = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) )
lowercase_ = {int(snake_case__ ): v for k, v in idalabel.items()}
lowercase_ = {v: k for k, v in idalabel.items()}
lowercase_ = SwinConfig(
embed_dim=snake_case__ , depths=snake_case__ , num_heads=snake_case__ , window_size=snake_case__ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , )
lowercase_ = UperNetConfig(
backbone_config=snake_case__ , auxiliary_in_channels=snake_case__ , num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ , )
return config
def a ( snake_case__: Tuple ):
'''simple docstring'''
lowercase_ = []
# fmt: off
# stem
rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') )
rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') )
rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') )
rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((F'''backbone.stages.{i}.downsample.reduction.weight''', F'''backbone.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((F'''backbone.stages.{i}.downsample.norm.weight''', F'''backbone.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((F'''backbone.stages.{i}.downsample.norm.bias''', F'''backbone.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''),
('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''),
('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''),
('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''),
] )
# fmt: on
return rename_keys
def a ( snake_case__: Optional[Any] , snake_case__: Dict , snake_case__: Optional[int] ):
'''simple docstring'''
lowercase_ = dct.pop(snake_case__ )
lowercase_ = val
def a ( snake_case__: Dict , snake_case__: Optional[int] ):
'''simple docstring'''
lowercase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
lowercase_ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
lowercase_ = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' )
lowercase_ = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowercase_ = in_proj_weight[:dim, :]
lowercase_ = in_proj_bias[: dim]
lowercase_ = in_proj_weight[
dim : dim * 2, :
]
lowercase_ = in_proj_bias[
dim : dim * 2
]
lowercase_ = in_proj_weight[
-dim :, :
]
lowercase_ = in_proj_bias[-dim :]
# fmt: on
def a ( snake_case__: List[Any] ):
'''simple docstring'''
lowercase_ , lowercase_ = x.shape
lowercase_ = x.reshape(snake_case__ , 4 , in_channel // 4 )
lowercase_ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(snake_case__ , snake_case__ )
return x
def a ( snake_case__: Tuple ):
'''simple docstring'''
lowercase_ , lowercase_ = x.shape
lowercase_ = x.reshape(snake_case__ , in_channel // 4 , 4 )
lowercase_ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(snake_case__ , snake_case__ )
return x
def a ( snake_case__: List[Any] ):
'''simple docstring'''
lowercase_ = x.shape[0]
lowercase_ = x.reshape(4 , in_channel // 4 )
lowercase_ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(snake_case__ )
return x
def a ( snake_case__: Any ):
'''simple docstring'''
lowercase_ = x.shape[0]
lowercase_ = x.reshape(in_channel // 4 , 4 )
lowercase_ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(snake_case__ )
return x
def a ( snake_case__: Dict , snake_case__: Dict , snake_case__: str ):
'''simple docstring'''
lowercase_ = {
'''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''',
'''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''',
'''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''',
'''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''',
}
lowercase_ = model_name_to_url[model_name]
lowercase_ = torch.hub.load_state_dict_from_url(snake_case__ , map_location='''cpu''' , file_name=snake_case__ )[
'''state_dict'''
]
for name, param in state_dict.items():
print(snake_case__ , param.shape )
lowercase_ = get_upernet_config(snake_case__ )
lowercase_ = UperNetForSemanticSegmentation(snake_case__ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
lowercase_ = state_dict.pop(snake_case__ )
if "bn" in key:
lowercase_ = key.replace('''bn''' , '''batch_norm''' )
lowercase_ = val
# rename keys
lowercase_ = create_rename_keys(snake_case__ )
for src, dest in rename_keys:
rename_key(snake_case__ , snake_case__ , snake_case__ )
read_in_q_k_v(snake_case__ , config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
lowercase_ = reverse_correct_unfold_reduction_order(snake_case__ )
if "norm" in key:
lowercase_ = reverse_correct_unfold_norm_order(snake_case__ )
model.load_state_dict(snake_case__ )
# verify on image
lowercase_ = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'''
lowercase_ = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('''RGB''' )
lowercase_ = SegformerImageProcessor()
lowercase_ = processor(snake_case__ , return_tensors='''pt''' ).pixel_values
with torch.no_grad():
lowercase_ = model(snake_case__ )
lowercase_ = outputs.logits
print(logits.shape )
print('''First values of logits:''' , logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
lowercase_ = torch.tensor(
[[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] )
elif model_name == "upernet-swin-small":
lowercase_ = torch.tensor(
[[-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.0_9_0_8, -7.0_9_0_8, -6.8_5_3_4]] )
elif model_name == "upernet-swin-base":
lowercase_ = torch.tensor(
[[-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.4_7_6_3, -6.4_7_6_3, -6.3_2_5_4]] )
elif model_name == "upernet-swin-large":
lowercase_ = torch.tensor(
[[-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.4_0_4_4, -7.4_0_4_4, -7.2_5_8_6]] )
print('''Logits:''' , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case__ , atol=1e-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case__ )
print(F'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(snake_case__ )
if push_to_hub:
print(F'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(F'''openmmlab/{model_name}''' )
processor.push_to_hub(F'''openmmlab/{model_name}''' )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='upernet-swin-tiny',
type=str,
choices=[f"upernet-swin-{size}" for size in ['tiny', 'small', 'base', 'large']],
help='Name of the Swin + UperNet model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
__a = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 97 |
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
lowerCAmelCase_ = logging.get_logger(__name__)
class snake_case_ ( __A ):
'''simple docstring'''
def __init__( self : Dict , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->None:
warnings.warn(
'''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use ChineseCLIPImageProcessor instead.''' , _UpperCamelCase , )
super().__init__(*_UpperCamelCase , **_UpperCamelCase ) | 39 | 0 |
'''simple docstring'''
import doctest
from collections import deque
import numpy as np
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self : Tuple ) -> None:
'''simple docstring'''
_UpperCamelCase = [2, 1, 2, -1]
_UpperCamelCase = [1, 2, 3, 4]
def snake_case__ ( self : Optional[int] ) -> list[float]:
'''simple docstring'''
_UpperCamelCase = len(self.first_signal )
_UpperCamelCase = len(self.second_signal )
_UpperCamelCase = max(lowerCAmelCase__ , lowerCAmelCase__ )
# create a zero matrix of max_length x max_length
_UpperCamelCase = [[0] * max_length for i in range(lowerCAmelCase__ )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(lowerCAmelCase__ ):
_UpperCamelCase = deque(self.second_signal )
rotated_signal.rotate(lowerCAmelCase__ )
for j, item in enumerate(lowerCAmelCase__ ):
matrix[i][j] += item
# multiply the matrix with the first signal
_UpperCamelCase = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(lowerCAmelCase__ , 2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 98 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''',
'''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''',
'''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''',
'''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''',
'''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''',
}
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv"
SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"}
def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]:
snake_case_ = vocab_size
snake_case_ = context_length
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size
snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size
snake_case_ = layer_norm_epsilon
snake_case_ = rescale_every
snake_case_ = use_cache
snake_case_ = bos_token_id
snake_case_ = eos_token_id
super().__init__(
tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) | 39 | 0 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class __UpperCAmelCase ( __A ):
"""simple docstring"""
_lowerCamelCase = (DEISMultistepScheduler,)
_lowerCamelCase = (("""num_inference_steps""", 25),)
def snake_case_ ( self , **__A ):
__a = {
"""num_train_timesteps""": 1000,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""solver_order""": 2,
}
config.update(**__A )
return config
def snake_case_ ( self , __A=0 , **__A ):
__a = dict(self.forward_default_kwargs )
__a = kwargs.pop("""num_inference_steps""" , __A )
__a = self.dummy_sample
__a = 0.1 * sample
__a = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
__a = self.get_scheduler_config(**__A )
__a = scheduler_class(**__A )
scheduler.set_timesteps(__A )
# copy over dummy past residuals
__a = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__A )
__a = scheduler_class.from_pretrained(__A )
new_scheduler.set_timesteps(__A )
# copy over dummy past residuals
__a = dummy_past_residuals[: new_scheduler.config.solver_order]
__a , __a = sample, sample
for t in range(__A , time_step + scheduler.config.solver_order + 1 ):
__a = scheduler.step(__A , __A , __A , **__A ).prev_sample
__a = new_scheduler.step(__A , __A , __A , **__A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case_ ( self ):
pass
def snake_case_ ( self , __A=0 , **__A ):
__a = dict(self.forward_default_kwargs )
__a = kwargs.pop("""num_inference_steps""" , __A )
__a = self.dummy_sample
__a = 0.1 * sample
__a = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
__a = self.get_scheduler_config()
__a = scheduler_class(**__A )
scheduler.set_timesteps(__A )
# copy over dummy past residuals (must be after setting timesteps)
__a = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__A )
__a = scheduler_class.from_pretrained(__A )
# copy over dummy past residuals
new_scheduler.set_timesteps(__A )
# copy over dummy past residual (must be after setting timesteps)
__a = dummy_past_residuals[: new_scheduler.config.solver_order]
__a = scheduler.step(__A , __A , __A , **__A ).prev_sample
__a = new_scheduler.step(__A , __A , __A , **__A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case_ ( self , __A=None , **__A ):
if scheduler is None:
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config(**__A )
__a = scheduler_class(**__A )
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config(**__A )
__a = scheduler_class(**__A )
__a = 10
__a = self.dummy_model()
__a = self.dummy_sample_deter
scheduler.set_timesteps(__A )
for i, t in enumerate(scheduler.timesteps ):
__a = model(__A , __A )
__a = scheduler.step(__A , __A , __A ).prev_sample
return sample
def snake_case_ ( self ):
__a = dict(self.forward_default_kwargs )
__a = kwargs.pop("""num_inference_steps""" , __A )
for scheduler_class in self.scheduler_classes:
__a = self.get_scheduler_config()
__a = scheduler_class(**__A )
__a = self.dummy_sample
__a = 0.1 * sample
if num_inference_steps is not None and hasattr(__A , """set_timesteps""" ):
scheduler.set_timesteps(__A )
elif num_inference_steps is not None and not hasattr(__A , """set_timesteps""" ):
__a = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
__a = [residual + 0.2, residual + 0.15, residual + 0.10]
__a = dummy_past_residuals[: scheduler.config.solver_order]
__a = scheduler.timesteps[5]
__a = scheduler.timesteps[6]
__a = scheduler.step(__A , __A , __A , **__A ).prev_sample
__a = scheduler.step(__A , __A , __A , **__A ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def snake_case_ ( self ):
# make sure that iterating over schedulers with same config names gives same results
# for defaults
__a = DEISMultistepScheduler(**self.get_scheduler_config() )
__a = self.full_loop(scheduler=__A )
__a = torch.mean(torch.abs(__A ) )
assert abs(result_mean.item() - 0.23916 ) < 1E-3
__a = DPMSolverSinglestepScheduler.from_config(scheduler.config )
__a = DPMSolverMultistepScheduler.from_config(scheduler.config )
__a = UniPCMultistepScheduler.from_config(scheduler.config )
__a = DEISMultistepScheduler.from_config(scheduler.config )
__a = self.full_loop(scheduler=__A )
__a = torch.mean(torch.abs(__A ) )
assert abs(result_mean.item() - 0.23916 ) < 1E-3
def snake_case_ ( self ):
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=__A )
def snake_case_ ( self ):
self.check_over_configs(thresholding=__A )
for order in [1, 2, 3]:
for solver_type in ["logrho"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=__A , prediction_type=__A , sample_max_value=__A , algorithm_type="""deis""" , solver_order=__A , solver_type=__A , )
def snake_case_ ( self ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__A )
def snake_case_ ( self ):
for algorithm_type in ["deis"]:
for solver_type in ["logrho"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=__A , solver_type=__A , prediction_type=__A , algorithm_type=__A , )
__a = self.full_loop(
solver_order=__A , solver_type=__A , prediction_type=__A , algorithm_type=__A , )
assert not torch.isnan(__A ).any(), "Samples have nan numbers"
def snake_case_ ( self ):
self.check_over_configs(lower_order_final=__A )
self.check_over_configs(lower_order_final=__A )
def snake_case_ ( self ):
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=__A , time_step=0 )
def snake_case_ ( self ):
__a = self.full_loop()
__a = torch.mean(torch.abs(__A ) )
assert abs(result_mean.item() - 0.23916 ) < 1E-3
def snake_case_ ( self ):
__a = self.full_loop(prediction_type="""v_prediction""" )
__a = torch.mean(torch.abs(__A ) )
assert abs(result_mean.item() - 0.091 ) < 1E-3
def snake_case_ ( self ):
__a = self.scheduler_classes[0]
__a = self.get_scheduler_config(thresholding=__A , dynamic_thresholding_ratio=0 )
__a = scheduler_class(**__A )
__a = 10
__a = self.dummy_model()
__a = self.dummy_sample_deter.half()
scheduler.set_timesteps(__A )
for i, t in enumerate(scheduler.timesteps ):
__a = model(__A , __A )
__a = scheduler.step(__A , __A , __A ).prev_sample
assert sample.dtype == torch.floataa
| 99 |
import bza
import gzip
import lzma
import os
import shutil
import struct
import tarfile
import warnings
import zipfile
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List, Optional, Type, Union
from .. import config
from .filelock import FileLock
from .logging import get_logger
lowerCAmelCase_ = get_logger(__name__)
class snake_case_ :
'''simple docstring'''
def __init__( self : int , _UpperCamelCase : Optional[str] = None ) ->Tuple:
snake_case_ = (
os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH
)
snake_case_ = Extractor
def snake_case__( self : Any , _UpperCamelCase : str ) ->str:
from .file_utils import hash_url_to_filename
# Path where we extract compressed archives
# We extract in the cache dir, and get the extracted path name by hashing the original path"
snake_case_ = os.path.abspath(_UpperCamelCase )
return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) )
def snake_case__( self : int , _UpperCamelCase : str , _UpperCamelCase : bool ) ->bool:
return force_extract or (
not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase ))
)
def snake_case__( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : bool = False ) ->str:
snake_case_ = self.extractor.infer_extractor_format(_UpperCamelCase )
if not extractor_format:
return input_path
snake_case_ = self._get_output_path(_UpperCamelCase )
if self._do_extract(_UpperCamelCase , _UpperCamelCase ):
self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
return output_path
class snake_case_ ( __A ):
'''simple docstring'''
@classmethod
@abstractmethod
def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : str ) ->bool:
...
@staticmethod
@abstractmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
...
class snake_case_ ( __A , __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[bytes] = []
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->List[Any]:
with open(_UpperCamelCase , '''rb''' ) as f:
return f.read(_UpperCamelCase )
@classmethod
def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool:
if not magic_number:
snake_case_ = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers )
try:
snake_case_ = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase )
except OSError:
return False
return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers )
class snake_case_ ( __A ):
'''simple docstring'''
@classmethod
def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : Any ) ->bool:
return tarfile.is_tarfile(_UpperCamelCase )
@staticmethod
def snake_case__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) ->List[str]:
def resolved(_UpperCamelCase : str ) -> str:
return os.path.realpath(os.path.abspath(_UpperCamelCase ) )
def badpath(_UpperCamelCase : str , _UpperCamelCase : str ) -> bool:
# joinpath will ignore base if path is absolute
return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase )
def badlink(_UpperCamelCase : Tuple , _UpperCamelCase : str ) -> bool:
# Links are interpreted relative to the directory containing the link
snake_case_ = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) )
return badpath(info.linkname , base=_UpperCamelCase )
snake_case_ = resolved(_UpperCamelCase )
for finfo in members:
if badpath(finfo.name , _UpperCamelCase ):
logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' )
elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ):
logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' )
elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ):
logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' )
else:
yield finfo
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
snake_case_ = tarfile.open(_UpperCamelCase )
tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) )
tar_file.close()
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = [b"\x1F\x8B"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
with gzip.open(_UpperCamelCase , '''rb''' ) as gzip_file:
with open(_UpperCamelCase , '''wb''' ) as extracted_file:
shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase )
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = [
b"PK\x03\x04",
b"PK\x05\x06", # empty archive
b"PK\x07\x08", # spanned archive
]
@classmethod
def snake_case__( cls : List[str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool:
if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ):
return True
try:
# Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives.
# From: https://github.com/python/cpython/pull/5053
from zipfile import (
_CD_SIGNATURE,
_ECD_DISK_NUMBER,
_ECD_DISK_START,
_ECD_ENTRIES_TOTAL,
_ECD_OFFSET,
_ECD_SIZE,
_EndRecData,
sizeCentralDir,
stringCentralDir,
structCentralDir,
)
with open(_UpperCamelCase , '''rb''' ) as fp:
snake_case_ = _EndRecData(_UpperCamelCase )
if endrec:
if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0:
return True # Empty zipfiles are still zipfiles
elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]:
fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk
if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir:
snake_case_ = fp.read(_UpperCamelCase ) # CD is where we expect it to be
if len(_UpperCamelCase ) == sizeCentralDir:
snake_case_ = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size
if centdir[_CD_SIGNATURE] == stringCentralDir:
return True # First central directory entry has correct magic number
return False
except Exception: # catch all errors in case future python versions change the zipfile internals
return False
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
with zipfile.ZipFile(_UpperCamelCase , '''r''' ) as zip_file:
zip_file.extractall(_UpperCamelCase )
zip_file.close()
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = [b"\xFD\x37\x7A\x58\x5A\x00"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
with lzma.open(_UpperCamelCase ) as compressed_file:
with open(_UpperCamelCase , '''wb''' ) as extracted_file:
shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase )
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
if not config.RARFILE_AVAILABLE:
raise ImportError('''Please pip install rarfile''' )
import rarfile
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
snake_case_ = rarfile.RarFile(_UpperCamelCase )
rf.extractall(_UpperCamelCase )
rf.close()
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = [b"\x28\xb5\x2F\xFD"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
if not config.ZSTANDARD_AVAILABLE:
raise ImportError('''Please pip install zstandard''' )
import zstandard as zstd
snake_case_ = zstd.ZstdDecompressor()
with open(_UpperCamelCase , '''rb''' ) as ifh, open(_UpperCamelCase , '''wb''' ) as ofh:
dctx.copy_stream(_UpperCamelCase , _UpperCamelCase )
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = [b"\x42\x5A\x68"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
with bza.open(_UpperCamelCase , '''rb''' ) as compressed_file:
with open(_UpperCamelCase , '''wb''' ) as extracted_file:
shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase )
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = [b"\x37\x7A\xBC\xAF\x27\x1C"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
if not config.PY7ZR_AVAILABLE:
raise ImportError('''Please pip install py7zr''' )
import pyazr
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
with pyazr.SevenZipFile(_UpperCamelCase , '''r''' ) as archive:
archive.extractall(_UpperCamelCase )
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = [b"\x04\x22\x4D\x18"]
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None:
if not config.LZ4_AVAILABLE:
raise ImportError('''Please pip install lz4''' )
import lza.frame
with lza.frame.open(_UpperCamelCase , '''rb''' ) as compressed_file:
with open(_UpperCamelCase , '''wb''' ) as extracted_file:
shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase )
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict[str, Type[BaseExtractor]] = {
"tar": TarExtractor,
"gzip": GzipExtractor,
"zip": ZipExtractor,
"xz": XzExtractor,
"rar": RarExtractor,
"zstd": ZstdExtractor,
"bz2": BzipaExtractor,
"7z": SevenZipExtractor, # <Added version="2.4.0"/>
"lz4": LzaExtractor, # <Added version="2.4.0"/>
}
@classmethod
def snake_case__( cls : List[Any] ) ->List[str]:
return max(
len(_UpperCamelCase )
for extractor in cls.extractors.values()
if issubclass(_UpperCamelCase , _UpperCamelCase )
for extractor_magic_number in extractor.magic_numbers )
@staticmethod
def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->Tuple:
try:
return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase )
except OSError:
return b""
@classmethod
def snake_case__( cls : Optional[Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bool = False ) ->bool:
warnings.warn(
'''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. '''
'''Use \'infer_extractor_format\' instead.''' , category=_UpperCamelCase , )
snake_case_ = cls.infer_extractor_format(_UpperCamelCase )
if extractor_format:
return True if not return_extractor else (True, cls.extractors[extractor_format])
return False if not return_extractor else (False, None)
@classmethod
def snake_case__( cls : int , _UpperCamelCase : Union[Path, str] ) ->str: # <Added version="2.4.0"/>
snake_case_ = cls._get_magic_number_max_length()
snake_case_ = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase )
for extractor_format, extractor in cls.extractors.items():
if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ):
return extractor_format
@classmethod
def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[BaseExtractor] = "deprecated" , ) ->None:
os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase )
# Prevent parallel extractions
snake_case_ = str(Path(_UpperCamelCase ).with_suffix('''.lock''' ) )
with FileLock(_UpperCamelCase ):
shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase )
if extractor_format or extractor != "deprecated":
if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg
warnings.warn(
'''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. '''
'''Use \'extractor_format\' instead.''' , category=_UpperCamelCase , )
snake_case_ = extractor if extractor != '''deprecated''' else extractor_format
else:
snake_case_ = cls.extractors[extractor_format]
return extractor.extract(_UpperCamelCase , _UpperCamelCase )
else:
warnings.warn(
'''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an '''
'''exception in 3.0.0.''' , category=_UpperCamelCase , )
for extractor in cls.extractors.values():
if extractor.is_extractable(_UpperCamelCase ):
return extractor.extract(_UpperCamelCase , _UpperCamelCase ) | 39 | 0 |
import unittest
from transformers.testing_utils import require_bsa
from transformers.utils import is_bsa_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
if is_bsa_available():
from transformers import MarkupLMFeatureExtractor
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , A_ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = parent
def lowercase_ ( self ):
'''simple docstring'''
return {}
def __snake_case ( ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__ = '''<HTML>
<HEAD>
<TITLE>sample document</TITLE>
</HEAD>
<BODY BGCOLOR="FFFFFF">
<HR>
<a href="http://google.com">Goog</a>
<H1>This is one header</H1>
<H2>This is a another Header</H2>
<P>Travel from
<P>
<B>SFO to JFK</B>
<BR>
<B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>
<HR>
<div style="color:#0000FF">
<h3>Traveler <b> name </b> is
<p> John Doe </p>
</div>'''
SCREAMING_SNAKE_CASE__ = '''
<!DOCTYPE html>
<html>
<body>
<h1>My First Heading</h1>
<p>My first paragraph.</p>
</body>
</html>
'''
return [html_string_a, html_string_a]
@require_bsa
class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = MarkupLMFeatureExtractor if is_bsa_available() else None
def lowercase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = MarkupLMFeatureExtractionTester(self )
@property
def lowercase_ ( self ):
'''simple docstring'''
return self.feature_extract_tester.prepare_feat_extract_dict()
def lowercase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = self.feature_extraction_class()
# Test not batched input
SCREAMING_SNAKE_CASE__ = get_html_strings()[0]
SCREAMING_SNAKE_CASE__ = feature_extractor(A_ )
# fmt: off
SCREAMING_SNAKE_CASE__ = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']]
SCREAMING_SNAKE_CASE__ = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']]
# fmt: on
self.assertEqual(encoding.nodes , A_ )
self.assertEqual(encoding.xpaths , A_ )
# Test batched
SCREAMING_SNAKE_CASE__ = get_html_strings()
SCREAMING_SNAKE_CASE__ = feature_extractor(A_ )
# fmt: off
SCREAMING_SNAKE_CASE__ = expected_nodes + [['''My First Heading''', '''My first paragraph.''']]
SCREAMING_SNAKE_CASE__ = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']]
self.assertEqual(len(encoding.nodes ) , 2 )
self.assertEqual(len(encoding.xpaths ) , 2 )
self.assertEqual(encoding.nodes , A_ )
self.assertEqual(encoding.xpaths , A_ )
| 100 |
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ):
raise TypeError('''Sequence must be list of non-negative integers''' )
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__ , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9] | 39 | 0 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCAmelCase__ : Any =logging.get_logger(__name__)
lowerCAmelCase__ : Tuple ={
'Visual-Attention-Network/van-base': (
'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json'
),
}
class __lowercase (__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
_UpperCAmelCase = """van"""
def __init__( self , lowerCAmelCase__=2_2_4 , lowerCAmelCase__=3 , lowerCAmelCase__=[7, 3, 3, 3] , lowerCAmelCase__=[4, 2, 2, 2] , lowerCAmelCase__=[6_4, 1_2_8, 3_2_0, 5_1_2] , lowerCAmelCase__=[3, 3, 1_2, 3] , lowerCAmelCase__=[8, 8, 4, 4] , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-6 , lowerCAmelCase__=1E-2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , **lowerCAmelCase__ , ):
"""simple docstring"""
super().__init__(**lowerCAmelCase__ )
SCREAMING_SNAKE_CASE_ : Optional[Any] = image_size
SCREAMING_SNAKE_CASE_ : str = num_channels
SCREAMING_SNAKE_CASE_ : Optional[Any] = patch_sizes
SCREAMING_SNAKE_CASE_ : str = strides
SCREAMING_SNAKE_CASE_ : Tuple = hidden_sizes
SCREAMING_SNAKE_CASE_ : Tuple = depths
SCREAMING_SNAKE_CASE_ : Any = mlp_ratios
SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act
SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range
SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps
SCREAMING_SNAKE_CASE_ : Tuple = layer_scale_init_value
SCREAMING_SNAKE_CASE_ : Union[str, Any] = drop_path_rate
SCREAMING_SNAKE_CASE_ : str = dropout_rate
| 101 |
import re
from filelock import FileLock
try:
import nltk
lowerCAmelCase_ = True
except (ImportError, ModuleNotFoundError):
lowerCAmelCase_ = False
if NLTK_AVAILABLE:
with FileLock('''.lock''') as lock:
nltk.download('''punkt''', quiet=True)
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
re.sub('''<n>''' , '''''' , SCREAMING_SNAKE_CASE__ ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE__ ) ) | 39 | 0 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
__magic_name__ : Optional[Any] = {
"""Acehnese Arabic""": """ace_Arab""",
"""Acehnese Latin""": """ace_Latn""",
"""Mesopotamian Arabic""": """acm_Arab""",
"""Ta'izzi-Adeni Arabic""": """acq_Arab""",
"""Tunisian Arabic""": """aeb_Arab""",
"""Afrikaans""": """afr_Latn""",
"""South Levantine Arabic""": """ajp_Arab""",
"""Akan""": """aka_Latn""",
"""Amharic""": """amh_Ethi""",
"""North Levantine Arabic""": """apc_Arab""",
"""Modern Standard Arabic""": """arb_Arab""",
"""Modern Standard Arabic Romanized""": """arb_Latn""",
"""Najdi Arabic""": """ars_Arab""",
"""Moroccan Arabic""": """ary_Arab""",
"""Egyptian Arabic""": """arz_Arab""",
"""Assamese""": """asm_Beng""",
"""Asturian""": """ast_Latn""",
"""Awadhi""": """awa_Deva""",
"""Central Aymara""": """ayr_Latn""",
"""South Azerbaijani""": """azb_Arab""",
"""North Azerbaijani""": """azj_Latn""",
"""Bashkir""": """bak_Cyrl""",
"""Bambara""": """bam_Latn""",
"""Balinese""": """ban_Latn""",
"""Belarusian""": """bel_Cyrl""",
"""Bemba""": """bem_Latn""",
"""Bengali""": """ben_Beng""",
"""Bhojpuri""": """bho_Deva""",
"""Banjar Arabic""": """bjn_Arab""",
"""Banjar Latin""": """bjn_Latn""",
"""Standard Tibetan""": """bod_Tibt""",
"""Bosnian""": """bos_Latn""",
"""Buginese""": """bug_Latn""",
"""Bulgarian""": """bul_Cyrl""",
"""Catalan""": """cat_Latn""",
"""Cebuano""": """ceb_Latn""",
"""Czech""": """ces_Latn""",
"""Chokwe""": """cjk_Latn""",
"""Central Kurdish""": """ckb_Arab""",
"""Crimean Tatar""": """crh_Latn""",
"""Welsh""": """cym_Latn""",
"""Danish""": """dan_Latn""",
"""German""": """deu_Latn""",
"""Southwestern Dinka""": """dik_Latn""",
"""Dyula""": """dyu_Latn""",
"""Dzongkha""": """dzo_Tibt""",
"""Greek""": """ell_Grek""",
"""English""": """eng_Latn""",
"""Esperanto""": """epo_Latn""",
"""Estonian""": """est_Latn""",
"""Basque""": """eus_Latn""",
"""Ewe""": """ewe_Latn""",
"""Faroese""": """fao_Latn""",
"""Fijian""": """fij_Latn""",
"""Finnish""": """fin_Latn""",
"""Fon""": """fon_Latn""",
"""French""": """fra_Latn""",
"""Friulian""": """fur_Latn""",
"""Nigerian Fulfulde""": """fuv_Latn""",
"""Scottish Gaelic""": """gla_Latn""",
"""Irish""": """gle_Latn""",
"""Galician""": """glg_Latn""",
"""Guarani""": """grn_Latn""",
"""Gujarati""": """guj_Gujr""",
"""Haitian Creole""": """hat_Latn""",
"""Hausa""": """hau_Latn""",
"""Hebrew""": """heb_Hebr""",
"""Hindi""": """hin_Deva""",
"""Chhattisgarhi""": """hne_Deva""",
"""Croatian""": """hrv_Latn""",
"""Hungarian""": """hun_Latn""",
"""Armenian""": """hye_Armn""",
"""Igbo""": """ibo_Latn""",
"""Ilocano""": """ilo_Latn""",
"""Indonesian""": """ind_Latn""",
"""Icelandic""": """isl_Latn""",
"""Italian""": """ita_Latn""",
"""Javanese""": """jav_Latn""",
"""Japanese""": """jpn_Jpan""",
"""Kabyle""": """kab_Latn""",
"""Jingpho""": """kac_Latn""",
"""Kamba""": """kam_Latn""",
"""Kannada""": """kan_Knda""",
"""Kashmiri Arabic""": """kas_Arab""",
"""Kashmiri Devanagari""": """kas_Deva""",
"""Georgian""": """kat_Geor""",
"""Central Kanuri Arabic""": """knc_Arab""",
"""Central Kanuri Latin""": """knc_Latn""",
"""Kazakh""": """kaz_Cyrl""",
"""Kabiyè""": """kbp_Latn""",
"""Kabuverdianu""": """kea_Latn""",
"""Khmer""": """khm_Khmr""",
"""Kikuyu""": """kik_Latn""",
"""Kinyarwanda""": """kin_Latn""",
"""Kyrgyz""": """kir_Cyrl""",
"""Kimbundu""": """kmb_Latn""",
"""Northern Kurdish""": """kmr_Latn""",
"""Kikongo""": """kon_Latn""",
"""Korean""": """kor_Hang""",
"""Lao""": """lao_Laoo""",
"""Ligurian""": """lij_Latn""",
"""Limburgish""": """lim_Latn""",
"""Lingala""": """lin_Latn""",
"""Lithuanian""": """lit_Latn""",
"""Lombard""": """lmo_Latn""",
"""Latgalian""": """ltg_Latn""",
"""Luxembourgish""": """ltz_Latn""",
"""Luba-Kasai""": """lua_Latn""",
"""Ganda""": """lug_Latn""",
"""Luo""": """luo_Latn""",
"""Mizo""": """lus_Latn""",
"""Standard Latvian""": """lvs_Latn""",
"""Magahi""": """mag_Deva""",
"""Maithili""": """mai_Deva""",
"""Malayalam""": """mal_Mlym""",
"""Marathi""": """mar_Deva""",
"""Minangkabau Arabic """: """min_Arab""",
"""Minangkabau Latin""": """min_Latn""",
"""Macedonian""": """mkd_Cyrl""",
"""Plateau Malagasy""": """plt_Latn""",
"""Maltese""": """mlt_Latn""",
"""Meitei Bengali""": """mni_Beng""",
"""Halh Mongolian""": """khk_Cyrl""",
"""Mossi""": """mos_Latn""",
"""Maori""": """mri_Latn""",
"""Burmese""": """mya_Mymr""",
"""Dutch""": """nld_Latn""",
"""Norwegian Nynorsk""": """nno_Latn""",
"""Norwegian Bokmål""": """nob_Latn""",
"""Nepali""": """npi_Deva""",
"""Northern Sotho""": """nso_Latn""",
"""Nuer""": """nus_Latn""",
"""Nyanja""": """nya_Latn""",
"""Occitan""": """oci_Latn""",
"""West Central Oromo""": """gaz_Latn""",
"""Odia""": """ory_Orya""",
"""Pangasinan""": """pag_Latn""",
"""Eastern Panjabi""": """pan_Guru""",
"""Papiamento""": """pap_Latn""",
"""Western Persian""": """pes_Arab""",
"""Polish""": """pol_Latn""",
"""Portuguese""": """por_Latn""",
"""Dari""": """prs_Arab""",
"""Southern Pashto""": """pbt_Arab""",
"""Ayacucho Quechua""": """quy_Latn""",
"""Romanian""": """ron_Latn""",
"""Rundi""": """run_Latn""",
"""Russian""": """rus_Cyrl""",
"""Sango""": """sag_Latn""",
"""Sanskrit""": """san_Deva""",
"""Santali""": """sat_Olck""",
"""Sicilian""": """scn_Latn""",
"""Shan""": """shn_Mymr""",
"""Sinhala""": """sin_Sinh""",
"""Slovak""": """slk_Latn""",
"""Slovenian""": """slv_Latn""",
"""Samoan""": """smo_Latn""",
"""Shona""": """sna_Latn""",
"""Sindhi""": """snd_Arab""",
"""Somali""": """som_Latn""",
"""Southern Sotho""": """sot_Latn""",
"""Spanish""": """spa_Latn""",
"""Tosk Albanian""": """als_Latn""",
"""Sardinian""": """srd_Latn""",
"""Serbian""": """srp_Cyrl""",
"""Swati""": """ssw_Latn""",
"""Sundanese""": """sun_Latn""",
"""Swedish""": """swe_Latn""",
"""Swahili""": """swh_Latn""",
"""Silesian""": """szl_Latn""",
"""Tamil""": """tam_Taml""",
"""Tatar""": """tat_Cyrl""",
"""Telugu""": """tel_Telu""",
"""Tajik""": """tgk_Cyrl""",
"""Tagalog""": """tgl_Latn""",
"""Thai""": """tha_Thai""",
"""Tigrinya""": """tir_Ethi""",
"""Tamasheq Latin""": """taq_Latn""",
"""Tamasheq Tifinagh""": """taq_Tfng""",
"""Tok Pisin""": """tpi_Latn""",
"""Tswana""": """tsn_Latn""",
"""Tsonga""": """tso_Latn""",
"""Turkmen""": """tuk_Latn""",
"""Tumbuka""": """tum_Latn""",
"""Turkish""": """tur_Latn""",
"""Twi""": """twi_Latn""",
"""Central Atlas Tamazight""": """tzm_Tfng""",
"""Uyghur""": """uig_Arab""",
"""Ukrainian""": """ukr_Cyrl""",
"""Umbundu""": """umb_Latn""",
"""Urdu""": """urd_Arab""",
"""Northern Uzbek""": """uzn_Latn""",
"""Venetian""": """vec_Latn""",
"""Vietnamese""": """vie_Latn""",
"""Waray""": """war_Latn""",
"""Wolof""": """wol_Latn""",
"""Xhosa""": """xho_Latn""",
"""Eastern Yiddish""": """ydd_Hebr""",
"""Yoruba""": """yor_Latn""",
"""Yue Chinese""": """yue_Hant""",
"""Chinese Simplified""": """zho_Hans""",
"""Chinese Traditional""": """zho_Hant""",
"""Standard Malay""": """zsm_Latn""",
"""Zulu""": """zul_Latn""",
}
class lowercase__ ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
__lowerCAmelCase : Tuple = """facebook/nllb-200-distilled-600M"""
__lowerCAmelCase : str = (
"""This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """
"""be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """
"""which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """
"""plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."""
)
__lowerCAmelCase : List[str] = """translator"""
__lowerCAmelCase : Union[str, Any] = AutoTokenizer
__lowerCAmelCase : List[Any] = AutoModelForSeqaSeqLM
__lowerCAmelCase : List[Any] = LANGUAGE_CODES
__lowerCAmelCase : Union[str, Any] = ["""text""", """text""", """text"""]
__lowerCAmelCase : Optional[Any] = ["""text"""]
def _a ( self , _A , _A , _A ):
'''simple docstring'''
if src_lang not in self.lang_to_code:
raise ValueError(f"""{src_lang} is not a supported language.""" )
if tgt_lang not in self.lang_to_code:
raise ValueError(f"""{tgt_lang} is not a supported language.""" )
UpperCamelCase : Dict = self.lang_to_code[src_lang]
UpperCamelCase : Tuple = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
_A , return_tensors="""pt""" , src_lang=_A , tgt_lang=_A )
def _a ( self , _A ):
'''simple docstring'''
return self.model.generate(**_A )
def _a ( self , _A ):
'''simple docstring'''
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=_A )
| 102 |
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = [0 for i in range(r + 1 )]
# nc0 = 1
snake_case_ = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
snake_case_ = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5)) | 39 | 0 |
"""simple docstring"""
from __future__ import annotations
import os
from collections.abc import Mapping
snake_case = tuple[int, int]
class UpperCAmelCase :
def __init__( self : List[Any] , __lowerCamelCase : set[int] , __lowerCamelCase : Mapping[EdgeT, int] ):
"""simple docstring"""
_snake_case = vertices
_snake_case = {
(min(__lowerCamelCase ), max(__lowerCamelCase )): weight for edge, weight in edges.items()
}
def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : EdgeT , __lowerCamelCase : int ):
"""simple docstring"""
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
_snake_case = weight
def __UpperCAmelCase ( self : Union[str, Any] ):
"""simple docstring"""
_snake_case = Graph({min(self.vertices )} , {} )
_snake_case = 42
_snake_case = 42
_snake_case = 42
_snake_case = 42
while len(subgraph.vertices ) < len(self.vertices ):
_snake_case = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
_snake_case = edge
_snake_case = weight
subgraph.add_edge(__lowerCamelCase , __lowerCamelCase )
return subgraph
def snake_case ( lowerCAmelCase_ = "p107_network.txt" ) -> int:
_snake_case = os.path.abspath(os.path.dirname(lowerCAmelCase_ ) )
_snake_case = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case = {}
_snake_case = 42
_snake_case = 42
_snake_case = 42
with open(lowerCAmelCase_ ) as f:
_snake_case = f.read().strip().split('''\n''' )
_snake_case = [line.split(''',''' ) for line in data]
for edgea in range(1 , len(lowerCAmelCase_ ) ):
for edgea in range(lowerCAmelCase_ ):
if adjaceny_matrix[edgea][edgea] != "-":
_snake_case = int(adjaceny_matrix[edgea][edgea] )
_snake_case = Graph(set(range(len(lowerCAmelCase_ ) ) ) , lowerCAmelCase_ )
_snake_case = graph.prims_algorithm()
_snake_case = sum(graph.edges.values() )
_snake_case = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(F"{solution() = }")
| 103 |
import argparse
import math
import os
from copy import deepcopy
import torch
from audio_diffusion.models import DiffusionAttnUnetaD
from diffusion import sampling
from torch import nn
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
lowerCAmelCase_ = {
'''gwf-440k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''',
'''sample_rate''': 4_80_00,
'''sample_size''': 6_55_36,
},
'''jmann-small-190k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''',
'''sample_rate''': 4_80_00,
'''sample_size''': 6_55_36,
},
'''jmann-large-580k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''',
'''sample_rate''': 4_80_00,
'''sample_size''': 13_10_72,
},
'''maestro-uncond-150k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''',
'''sample_rate''': 1_60_00,
'''sample_size''': 6_55_36,
},
'''unlocked-uncond-250k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''',
'''sample_rate''': 1_60_00,
'''sample_size''': 6_55_36,
},
'''honk-140k''': {
'''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''',
'''sample_rate''': 1_60_00,
'''sample_size''': 6_55_36,
},
}
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
return torch.atana(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / math.pi * 2
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
snake_case_ = torch.sin(t * math.pi / 2 ) ** 2
snake_case_ = (1 - sigma**2) ** 0.5
return alpha_sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
class snake_case_ ( __A ):
'''simple docstring'''
pass
class snake_case_ ( nn.Module ):
'''simple docstring'''
def __init__( self : List[Any] , _UpperCamelCase : int ) ->Optional[int]:
super().__init__()
snake_case_ = DiffusionAttnUnetaD(_UpperCamelCase , n_attn_layers=4 )
snake_case_ = deepcopy(self.diffusion )
snake_case_ = torch.quasirandom.SobolEngine(1 , scramble=_UpperCamelCase )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
snake_case_ = MODELS_MAP[model_name]['''url''']
os.system(F'''wget {url} ./''' )
return F'''./{model_name}.ckpt'''
lowerCAmelCase_ = {
'''1''': '''resnets.0''',
'''2''': '''attentions.0''',
'''3''': '''resnets.1''',
'''4''': '''attentions.1''',
'''5''': '''resnets.2''',
'''6''': '''attentions.2''',
}
lowerCAmelCase_ = {
'''8''': '''resnets.0''',
'''9''': '''attentions.0''',
'''10''': '''resnets.1''',
'''11''': '''attentions.1''',
'''12''': '''resnets.2''',
'''13''': '''attentions.2''',
}
lowerCAmelCase_ = {
'''1''': '''resnets.0''',
'''2''': '''attentions.0''',
'''3''': '''resnets.1''',
'''4''': '''attentions.1''',
'''5''': '''resnets.2''',
'''6''': '''attentions.2''',
'''8''': '''resnets.3''',
'''9''': '''attentions.3''',
'''10''': '''resnets.4''',
'''11''': '''attentions.4''',
'''12''': '''resnets.5''',
'''13''': '''attentions.5''',
}
lowerCAmelCase_ = {
'''0''': '''resnets.0''',
'''1''': '''resnets.1''',
'''2''': '''resnets.2''',
'''4''': '''resnets.0''',
'''5''': '''resnets.1''',
'''6''': '''resnets.2''',
}
lowerCAmelCase_ = {
'''skip''': '''conv_skip''',
'''main.0''': '''conv_1''',
'''main.1''': '''group_norm_1''',
'''main.3''': '''conv_2''',
'''main.4''': '''group_norm_2''',
}
lowerCAmelCase_ = {
'''norm''': '''group_norm''',
'''qkv_proj''': ['''query''', '''key''', '''value'''],
'''out_proj''': ['''proj_attn'''],
}
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
if name.startswith('''skip''' ):
return name.replace('''skip''' , RES_CONV_MAP['''skip'''] )
# name has to be of format main.{digit}
if not name.startswith('''main.''' ):
raise ValueError(F'''ResConvBlock error with {name}''' )
return name.replace(name[:6] , RES_CONV_MAP[name[:6]] )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
for key, value in ATTN_MAP.items():
if name.startswith(SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
return name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif name.startswith(SCREAMING_SNAKE_CASE__ ):
return [name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for v in value]
raise ValueError(F'''Attn error with {name}''' )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 ):
snake_case_ = input_string
if string.split('''.''' )[0] == "timestep_embed":
return string.replace('''timestep_embed''' , '''time_proj''' )
snake_case_ = 0
if string.startswith('''net.3.''' ):
depth += 1
snake_case_ = string[6:]
elif string.startswith('''net.''' ):
snake_case_ = string[4:]
while string.startswith('''main.7.''' ):
depth += 1
snake_case_ = string[7:]
if string.startswith('''main.''' ):
snake_case_ = string[5:]
# mid block
if string[:2].isdigit():
snake_case_ = string[:2]
snake_case_ = string[2:]
else:
snake_case_ = string[0]
snake_case_ = string[1:]
if depth == max_depth:
snake_case_ = MID_NUM_TO_LAYER[layer_num]
snake_case_ = '''mid_block'''
elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) < 7:
snake_case_ = DOWN_NUM_TO_LAYER[layer_num]
snake_case_ = F'''down_blocks.{depth}'''
elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) > 7:
snake_case_ = UP_NUM_TO_LAYER[layer_num]
snake_case_ = F'''up_blocks.{max_depth - depth - 1}'''
elif depth == 0:
snake_case_ = DEPTH_0_TO_LAYER[layer_num]
snake_case_ = F'''up_blocks.{max_depth - 1}''' if int(SCREAMING_SNAKE_CASE__ ) > 3 else '''down_blocks.0'''
if not string_left.startswith('''.''' ):
raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' )
snake_case_ = string_left[1:]
if "resnets" in new_layer:
snake_case_ = convert_resconv_naming(SCREAMING_SNAKE_CASE__ )
elif "attentions" in new_layer:
snake_case_ = convert_attn_naming(SCREAMING_SNAKE_CASE__ )
snake_case_ = new_string_left
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = prefix + '''.''' + new_layer + '''.''' + string_left
else:
snake_case_ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left]
return new_string
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
snake_case_ = {}
for k, v in state_dict.items():
if k.endswith('''kernel''' ):
# up- and downsample layers, don't have trainable weights
continue
snake_case_ = rename(SCREAMING_SNAKE_CASE__ )
# check if we need to transform from Conv => Linear for attention
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = transform_conv_attns(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
snake_case_ = v
return new_state_dict
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
if len(SCREAMING_SNAKE_CASE__ ) == 1:
if len(v.shape ) == 3:
# weight
snake_case_ = v[:, :, 0]
else:
# bias
snake_case_ = v
else:
# qkv matrices
snake_case_ = v.shape[0]
snake_case_ = trippled_shape // 3
for i in range(3 ):
if len(v.shape ) == 3:
snake_case_ = v[i * single_shape : (i + 1) * single_shape, :, 0]
else:
snake_case_ = v[i * single_shape : (i + 1) * single_shape]
return new_state_dict
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' )
snake_case_ = args.model_path.split('''/''' )[-1].split('''.''' )[0]
if not os.path.isfile(args.model_path ):
assert (
model_name == args.model_path
), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}'''
snake_case_ = download(SCREAMING_SNAKE_CASE__ )
snake_case_ = MODELS_MAP[model_name]['''sample_rate''']
snake_case_ = MODELS_MAP[model_name]['''sample_size''']
snake_case_ = Object()
snake_case_ = sample_size
snake_case_ = sample_rate
snake_case_ = 0
snake_case_ = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE__ , sample_rate=SCREAMING_SNAKE_CASE__ )
snake_case_ = diffusers_model.state_dict()
snake_case_ = DiffusionUncond(SCREAMING_SNAKE_CASE__ )
orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE__ )['''state_dict'''] )
snake_case_ = orig_model.diffusion_ema.eval()
snake_case_ = orig_model.state_dict()
snake_case_ = rename_orig_weights(SCREAMING_SNAKE_CASE__ )
snake_case_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() )
snake_case_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() )
assert len(SCREAMING_SNAKE_CASE__ ) == 0, F'''Problem with {renamed_minus_diffusers}'''
assert all(k.endswith('''kernel''' ) for k in list(SCREAMING_SNAKE_CASE__ ) ), F'''Problem with {diffusers_minus_renamed}'''
for key, value in renamed_state_dict.items():
assert (
diffusers_state_dict[key].squeeze().shape == value.squeeze().shape
), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}'''
if key == "time_proj.weight":
snake_case_ = value.squeeze()
snake_case_ = value
diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE__ )
snake_case_ = 100
snake_case_ = 33
snake_case_ = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE__ )
snake_case_ = torch.manual_seed(SCREAMING_SNAKE_CASE__ )
snake_case_ = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ )
snake_case_ = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE__ )[:-1]
snake_case_ = get_crash_schedule(SCREAMING_SNAKE_CASE__ )
snake_case_ = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
snake_case_ = torch.manual_seed(33 )
snake_case_ = pipe(num_inference_steps=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).audios
snake_case_ = sampling.iplms_sample(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {} )
snake_case_ = generated.clamp(-1 , 1 )
snake_case_ = (generated - audio).abs().sum()
snake_case_ = (generated - audio).abs().max()
if args.save:
pipe.save_pretrained(args.checkpoint_path )
print('''Diff sum''' , SCREAMING_SNAKE_CASE__ )
print('''Diff max''' , SCREAMING_SNAKE_CASE__ )
assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/'''
print(F'''Conversion for {model_name} successful!''' )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''')
parser.add_argument(
'''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.'''
)
parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''')
lowerCAmelCase_ = parser.parse_args()
main(args) | 39 | 0 |
"""simple docstring"""
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def _lowerCamelCase ( UpperCAmelCase_ : str, UpperCAmelCase_ : Dict=0.999, UpperCAmelCase_ : Tuple="cosine", ) -> List[str]:
"""simple docstring"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(UpperCAmelCase_ : Tuple ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(UpperCAmelCase_ : Optional[Any] ):
return math.exp(t * -12.0 )
else:
raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" )
A__ = []
for i in range(UpperCAmelCase_ ):
A__ = i / num_diffusion_timesteps
A__ = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(UpperCAmelCase_ ) / alpha_bar_fn(UpperCAmelCase_ ), UpperCAmelCase_ ) )
return torch.tensor(UpperCAmelCase_, dtype=torch.floataa )
class UpperCamelCase__ ( _lowerCAmelCase , _lowerCAmelCase ):
"""simple docstring"""
A__ : Optional[Any] = [e.name for e in KarrasDiffusionSchedulers]
A__ : str = 2
@register_to_config
def __init__( self , SCREAMING_SNAKE_CASE__ = 1000 , SCREAMING_SNAKE_CASE__ = 0.0_0_0_8_5 , SCREAMING_SNAKE_CASE__ = 0.0_1_2 , SCREAMING_SNAKE_CASE__ = "linear" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "epsilon" , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = 1.0 , SCREAMING_SNAKE_CASE__ = "linspace" , SCREAMING_SNAKE_CASE__ = 0 , ) -> Optional[int]:
if trained_betas is not None:
A__ = torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa )
elif beta_schedule == "linear":
A__ = torch.linspace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
A__ = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
A__ = betas_for_alpha_bar(SCREAMING_SNAKE_CASE__ , alpha_transform_type="cosine" )
elif beta_schedule == "exp":
A__ = betas_for_alpha_bar(SCREAMING_SNAKE_CASE__ , alpha_transform_type="exp" )
else:
raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" )
A__ = 1.0 - self.betas
A__ = torch.cumprod(self.alphas , dim=0 )
# set all values
self.set_timesteps(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A__ = use_karras_sigmas
def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> Optional[int]:
if schedule_timesteps is None:
A__ = self.timesteps
A__ = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
A__ = 1 if len(SCREAMING_SNAKE_CASE__ ) > 1 else 0
else:
A__ = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE__ ) else timestep
A__ = self._index_counter[timestep_int]
return indices[pos].item()
@property
def snake_case__ ( self ) -> Any:
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> torch.FloatTensor:
A__ = self.index_for_timestep(SCREAMING_SNAKE_CASE__ )
A__ = self.sigmas[step_index]
A__ = sample / ((sigma**2 + 1) ** 0.5)
return sample
def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ) -> Dict:
A__ = num_inference_steps
A__ = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
A__ = np.linspace(0 , num_train_timesteps - 1 , SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ )[::-1].copy()
elif self.config.timestep_spacing == "leading":
A__ = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
A__ = (np.arange(0 , SCREAMING_SNAKE_CASE__ ) * step_ratio).round()[::-1].copy().astype(SCREAMING_SNAKE_CASE__ )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
A__ = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
A__ = (np.arange(SCREAMING_SNAKE_CASE__ , 0 , -step_ratio )).round().copy().astype(SCREAMING_SNAKE_CASE__ )
timesteps -= 1
else:
raise ValueError(
f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" )
A__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
A__ = np.log(SCREAMING_SNAKE_CASE__ )
A__ = np.interp(SCREAMING_SNAKE_CASE__ , np.arange(0 , len(SCREAMING_SNAKE_CASE__ ) ) , SCREAMING_SNAKE_CASE__ )
if self.config.use_karras_sigmas:
A__ = self._convert_to_karras(in_sigmas=SCREAMING_SNAKE_CASE__ , num_inference_steps=self.num_inference_steps )
A__ = np.array([self._sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for sigma in sigmas] )
A__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
A__ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(device=SCREAMING_SNAKE_CASE__ )
A__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] )
A__ = torch.from_numpy(SCREAMING_SNAKE_CASE__ )
A__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] )
if str(SCREAMING_SNAKE_CASE__ ).startswith("mps" ):
# mps does not support float64
A__ = timesteps.to(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa )
else:
A__ = timesteps.to(device=SCREAMING_SNAKE_CASE__ )
# empty dt and derivative
A__ = None
A__ = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
A__ = defaultdict(SCREAMING_SNAKE_CASE__ )
def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]:
# get log sigma
A__ = np.log(SCREAMING_SNAKE_CASE__ )
# get distribution
A__ = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
A__ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 )
A__ = low_idx + 1
A__ = log_sigmas[low_idx]
A__ = log_sigmas[high_idx]
# interpolate sigmas
A__ = (low - log_sigma) / (low - high)
A__ = np.clip(SCREAMING_SNAKE_CASE__ , 0 , 1 )
# transform interpolation to time range
A__ = (1 - w) * low_idx + w * high_idx
A__ = t.reshape(sigma.shape )
return t
def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> torch.FloatTensor:
A__ = in_sigmas[-1].item()
A__ = in_sigmas[0].item()
A__ = 7.0 # 7.0 is the value used in the paper
A__ = np.linspace(0 , 1 , SCREAMING_SNAKE_CASE__ )
A__ = sigma_min ** (1 / rho)
A__ = sigma_max ** (1 / rho)
A__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
@property
def snake_case__ ( self ) -> Optional[Any]:
return self.dt is None
def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = True , ) -> Union[SchedulerOutput, Tuple]:
A__ = self.index_for_timestep(SCREAMING_SNAKE_CASE__ )
# advance index counter by 1
A__ = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE__ ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
A__ = self.sigmas[step_index]
A__ = self.sigmas[step_index + 1]
else:
# 2nd order / Heun's method
A__ = self.sigmas[step_index - 1]
A__ = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
A__ = 0
A__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
A__ = sigma_hat if self.state_in_first_order else sigma_next
A__ = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
A__ = sigma_hat if self.state_in_first_order else sigma_next
A__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
A__ = model_output
else:
raise ValueError(
f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" )
if self.config.clip_sample:
A__ = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
A__ = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
A__ = sigma_next - sigma_hat
# store for 2nd order step
A__ = derivative
A__ = dt
A__ = sample
else:
# 2. 2nd order / Heun's method
A__ = (sample - pred_original_sample) / sigma_next
A__ = (self.prev_derivative + derivative) / 2
# 3. take prev timestep & sample
A__ = self.dt
A__ = self.sample
# free dt and derivative
# Note, this puts the scheduler in "first order mode"
A__ = None
A__ = None
A__ = None
A__ = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE__ )
def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
A__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(SCREAMING_SNAKE_CASE__ ):
# mps does not support float64
A__ = self.timesteps.to(original_samples.device , dtype=torch.floataa )
A__ = timesteps.to(original_samples.device , dtype=torch.floataa )
else:
A__ = self.timesteps.to(original_samples.device )
A__ = timesteps.to(original_samples.device )
A__ = [self.index_for_timestep(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for t in timesteps]
A__ = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
A__ = sigma.unsqueeze(-1 )
A__ = original_samples + noise * sigma
return noisy_samples
def __len__( self ) -> Tuple:
return self.config.num_train_timesteps
| 104 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTMSNModel''',
'''ViTMSNForImageClassification''',
'''ViTMSNPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 39 | 0 |
import warnings
from ...utils import logging
from .image_processing_clip import CLIPImageProcessor
UpperCamelCase__ : List[Any] = logging.get_logger(__name__)
class lowerCAmelCase_ ( lowerCamelCase_ ):
def __init__( self ,*snake_case__ ,**snake_case__ ):
warnings.warn(
'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use CLIPImageProcessor instead.' ,snake_case__ ,)
super().__init__(*snake_case__ ,**snake_case__ )
| 105 |
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : Optional[Any] ) ->Any:
snake_case_ = tf.convert_to_tensor(
[
[
8.2220991, # 3rd highest value; idx. 0
-0.5620044,
5.23229752,
4.0386393,
-6.8798378,
-0.54785802,
-3.2012153,
2.92777176,
1.88171953,
7.35341276, # 5th highest value; idx. 9
8.43207833, # 2nd highest value; idx. 10
-9.85711836,
-5.96209236,
-1.13039161,
-7.1115294,
-0.8369633,
-5.3186408,
7.06427407,
0.81369344,
-0.82023817,
-5.9179796,
0.58813443,
-6.99778438,
4.71551189,
-0.18771637,
7.44020759, # 4th highest value; idx. 25
9.38450987, # 1st highest value; idx. 26
2.12662941,
-9.32562038,
2.35652522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58425518,
4.53139238,
-5.57510464,
-6.28030699,
-7.19529503,
-4.02122551,
1.39337037,
-6.06707057,
1.59480517,
-9.643119,
0.03907799,
0.67231762,
-8.88206726,
6.27115922, # 4th highest value; idx. 13
2.28520723,
4.82767506,
4.30421368,
8.8275313, # 2nd highest value; idx. 17
5.44029958, # 5th highest value; idx. 18
-4.4735794,
7.38579536, # 3rd highest value; idx. 20
-2.91051663,
2.61946077,
-2.5674762,
-9.48959302,
-4.02922645,
-1.35416918,
9.67702323, # 1st highest value; idx. 27
-5.89478553,
1.85370467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
snake_case_ = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
snake_case_ = tf.convert_to_tensor(
[8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above
snake_case_ = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 )
snake_case_ = output[output != -float('''inf''' )]
snake_case_ = tf.cast(
tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-12 )
tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase )
@require_tf
class snake_case_ ( unittest.TestCase , __A ):
'''simple docstring'''
if is_tf_available():
SCREAMING_SNAKE_CASE : Optional[int] = {
"AutoModelForCausalLM": TFAutoModelForCausalLM,
"AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq,
"AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM,
"AutoModelForVision2Seq": TFAutoModelForVisionaSeq,
"LogitsProcessorList": TFLogitsProcessorList,
"MinLengthLogitsProcessor": TFMinLengthLogitsProcessor,
"create_tensor_fn": tf.convert_to_tensor,
"floats_tensor": floats_tensor,
"return_tensors": "tf",
}
@slow
def snake_case__( self : List[Any] ) ->Optional[int]:
# TF-only test: tf.saved_model export
snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
snake_case_ = 2
snake_case_ = 2
class snake_case_ ( tf.Module ):
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->List[Any]:
super(_UpperCamelCase , self ).__init__()
snake_case_ = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ),
tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ),
) , jit_compile=_UpperCamelCase , )
def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) ->List[Any]:
snake_case_ = self.model.generate(
input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , )
return {"sequences": outputs["sequences"]}
snake_case_ = [[2, 0], [1_0_2, 1_0_3]]
snake_case_ = [[1, 0], [1, 1]]
snake_case_ = DummyModel(model=_UpperCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} )
snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default''']
for batch_size in range(1 , len(_UpperCamelCase ) + 1 ):
snake_case_ = {
'''input_ids''': tf.constant(dummy_input_ids[:batch_size] ),
'''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ),
}
snake_case_ = serving_func(**_UpperCamelCase )['''sequences''']
snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase )
tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase )
@slow
def snake_case__( self : List[str] ) ->int:
# TF-only test: tf.saved_model export
snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
snake_case_ = 1
snake_case_ = 2
class snake_case_ ( tf.Module ):
'''simple docstring'''
def __init__( self : str , _UpperCamelCase : Any ) ->List[str]:
super(_UpperCamelCase , self ).__init__()
snake_case_ = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ),
tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ),
) , jit_compile=_UpperCamelCase , )
def snake_case__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) ->Optional[int]:
snake_case_ = self.model.generate(
input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , )
return {"sequences": outputs["sequences"]}
snake_case_ = [[2], [1_0_2, 1_0_3]]
snake_case_ = [[1], [1, 1]]
snake_case_ = DummyModel(model=_UpperCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} )
snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default''']
for input_row in range(len(_UpperCamelCase ) ):
snake_case_ = {
'''input_ids''': tf.constant([dummy_input_ids[input_row]] ),
'''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ),
}
snake_case_ = serving_func(**_UpperCamelCase )['''sequences''']
snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase )
tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase )
@slow
@require_tensorflow_text
def snake_case__( self : Optional[Any] ) ->List[Any]:
# TF-only test: tf.saved_model export
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_UpperCamelCase )
class snake_case_ ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Tuple ) ->List[Any]:
super().__init__()
snake_case_ = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , '''spiece.model''' ) , '''rb''' ).read() )
snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' )
def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->List[Any]:
snake_case_ = self.tokenizer.tokenize(_UpperCamelCase )
snake_case_, snake_case_ = text.pad_model_inputs(
_UpperCamelCase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id )
snake_case_ = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase )
return self.tokenizer.detokenize(_UpperCamelCase )
snake_case_ = CompleteSentenceTransformer()
snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' )
snake_case_ = complete_model(_UpperCamelCase )
snake_case_ = tf.keras.Model(_UpperCamelCase , _UpperCamelCase )
keras_model.save(_UpperCamelCase )
def snake_case__( self : Any ) ->List[Any]:
# Has PT equivalent: this test relies on random sampling
snake_case_ = {
'''do_sample''': True,
'''num_beams''': 1,
'''top_p''': 0.7,
'''top_k''': 1_0,
'''temperature''': 0.7,
}
snake_case_ = 1_4
snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
snake_case_ = '''Hello, my dog is cute and'''
snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''tf''' )
snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
snake_case_ = 6_3_8
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(''':/CPU:0''' ):
tf.random.set_seed(0 )
snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
self.assertTrue(expectation == len(generated_tokens[0] ) )
snake_case_ = [6_3_8, 1_9_8]
with tf.device(''':/CPU:0''' ):
tf.random.set_seed(0 )
snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def snake_case__( self : str ) ->Dict:
# Has PT equivalent: ample use of framework-specific code
snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' )
snake_case_ = '''Hugging Face is a technology company based in New York and Paris.'''
snake_case_ = bart_tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids
snake_case_ = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' )
snake_case_ = bart_model.generate(_UpperCamelCase ).numpy()
class snake_case_ ( __A ):
'''simple docstring'''
def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Optional[int] ) ->List[str]:
return super().call(_UpperCamelCase , **_UpperCamelCase )
snake_case_ = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' )
snake_case_ = bart_model.generate(_UpperCamelCase , foo='''bar''' ).numpy()
self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) )
class snake_case_ ( bart_model.model.encoder.__class__ ):
'''simple docstring'''
def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , **_UpperCamelCase : Tuple ) ->Optional[Any]:
return super().call(_UpperCamelCase , **_UpperCamelCase )
snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared )
snake_case_ = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
snake_case_ = bart_model.generate(_UpperCamelCase ).numpy()
with self.assertRaises(_UpperCamelCase ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(_UpperCamelCase , foo='''bar''' ) | 39 | 0 |
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Pipeline,
ZeroShotClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
__snake_case :List[str] ={'LayoutLMv2Config', 'LayoutLMv3Config'}
@is_pipeline_test
class lowerCAmelCase__ ( unittest.TestCase ):
A_ : Any = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
A_ : List[Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
A_ : Dict = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
A_ : int = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict ) -> Any:
A = ZeroShotClassificationPipeline(
model=__UpperCamelCase , tokenizer=__UpperCamelCase , candidate_labels=['polics', 'health'] )
return classifier, ["Who are you voting for in 2020?", "My stomach hurts."]
def __UpperCamelCase ( self : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] ) -> int:
A = classifier('Who are you voting for in 2020?' , candidate_labels='politics' )
self.assertEqual(__UpperCamelCase , {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase )]} )
# No kwarg
A = classifier('Who are you voting for in 2020?' , ['politics'] )
self.assertEqual(__UpperCamelCase , {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase )]} )
A = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] )
self.assertEqual(__UpperCamelCase , {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase )]} )
A = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' )
self.assertEqual(
__UpperCamelCase , {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 )
A = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] )
self.assertEqual(
__UpperCamelCase , {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 )
A = classifier(
'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' )
self.assertEqual(__UpperCamelCase , {'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase )]} )
# https://github.com/huggingface/transformers/issues/13846
A = classifier(['I am happy'] , ['positive', 'negative'] )
self.assertEqual(
__UpperCamelCase , [
{'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]}
for i in range(1 )
] , )
A = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] )
self.assertEqual(
__UpperCamelCase , [
{'sequence': ANY(__UpperCamelCase ), 'labels': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], 'scores': [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]}
for i in range(2 )
] , )
with self.assertRaises(__UpperCamelCase ):
classifier('' , candidate_labels='politics' )
with self.assertRaises(__UpperCamelCase ):
classifier(__UpperCamelCase , candidate_labels='politics' )
with self.assertRaises(__UpperCamelCase ):
classifier('Who are you voting for in 2020?' , candidate_labels='' )
with self.assertRaises(__UpperCamelCase ):
classifier('Who are you voting for in 2020?' , candidate_labels=__UpperCamelCase )
with self.assertRaises(__UpperCamelCase ):
classifier(
'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , )
with self.assertRaises(__UpperCamelCase ):
classifier(
'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=__UpperCamelCase , )
self.run_entailment_id(__UpperCamelCase )
def __UpperCamelCase ( self : int , __UpperCamelCase : Pipeline ) -> Any:
A = zero_shot_classifier.model.config
A = config.labelaid
A = zero_shot_classifier.entailment_id
A = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2}
self.assertEqual(zero_shot_classifier.entailment_id , -1 )
A = {'entailment': 0, 'neutral': 1, 'contradiction': 2}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
A = {'ENTAIL': 0, 'NON-ENTAIL': 1}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
A = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0}
self.assertEqual(zero_shot_classifier.entailment_id , 2 )
A = original_labelaid
self.assertEqual(__UpperCamelCase , zero_shot_classifier.entailment_id )
@require_torch
def __UpperCamelCase ( self : Tuple ) -> Optional[Any]:
A = pipeline(
'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , )
# There was a regression in 4.10 for this
# Adding a test so we don't make the mistake again.
# https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499
zero_shot_classifier(
'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] )
@require_torch
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
A = pipeline(
'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , )
A = zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['science', 'public health', 'politics'],
'scores': [0.3_3_3, 0.3_3_3, 0.3_3_3],
} , )
@require_tf
def __UpperCamelCase ( self : int ) -> Dict:
A = pipeline(
'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , )
A = zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['science', 'public health', 'politics'],
'scores': [0.3_3_3, 0.3_3_3, 0.3_3_3],
} , )
@slow
@require_torch
def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]:
A = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' )
A = zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['politics', 'public health', 'science'],
'scores': [0.9_7_6, 0.0_1_5, 0.0_0_9],
} , )
A = zero_shot_classifier(
'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'
' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder'
' through an attention mechanism. We propose a new simple network architecture, the Transformer, based'
' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two'
' machine translation tasks show these models to be superior in quality while being more parallelizable'
' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014'
' English-to-German translation task, improving over the existing best results, including ensembles by'
' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new'
' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small'
' fraction of the training costs of the best models from the literature. We show that the Transformer'
' generalizes well to other tasks by applying it successfully to English constituency parsing both with'
' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=__UpperCamelCase , )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , {
'sequence': (
'The dominant sequence transduction models are based on complex recurrent or convolutional neural'
' networks in an encoder-decoder configuration. The best performing models also connect the'
' encoder and decoder through an attention mechanism. We propose a new simple network'
' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence'
' and convolutions entirely. Experiments on two machine translation tasks show these models to be'
' superior in quality while being more parallelizable and requiring significantly less time to'
' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,'
' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014'
' English-to-French translation task, our model establishes a new single-model state-of-the-art'
' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training'
' costs of the best models from the literature. We show that the Transformer generalizes well to'
' other tasks by applying it successfully to English constituency parsing both with large and'
' limited training data.'
),
'labels': ['translation', 'machine learning', 'vision', 'statistics'],
'scores': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8],
} , )
@slow
@require_tf
def __UpperCamelCase ( self : List[str] ) -> Any:
A = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' )
A = zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['politics', 'public health', 'science'],
'scores': [0.9_7_6, 0.0_1_5, 0.0_0_9],
} , )
A = zero_shot_classifier(
'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'
' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder'
' through an attention mechanism. We propose a new simple network architecture, the Transformer, based'
' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two'
' machine translation tasks show these models to be superior in quality while being more parallelizable'
' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014'
' English-to-German translation task, improving over the existing best results, including ensembles by'
' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new'
' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small'
' fraction of the training costs of the best models from the literature. We show that the Transformer'
' generalizes well to other tasks by applying it successfully to English constituency parsing both with'
' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=__UpperCamelCase , )
self.assertEqual(
nested_simplify(__UpperCamelCase ) , {
'sequence': (
'The dominant sequence transduction models are based on complex recurrent or convolutional neural'
' networks in an encoder-decoder configuration. The best performing models also connect the'
' encoder and decoder through an attention mechanism. We propose a new simple network'
' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence'
' and convolutions entirely. Experiments on two machine translation tasks show these models to be'
' superior in quality while being more parallelizable and requiring significantly less time to'
' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,'
' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014'
' English-to-French translation task, our model establishes a new single-model state-of-the-art'
' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training'
' costs of the best models from the literature. We show that the Transformer generalizes well to'
' other tasks by applying it successfully to English constituency parsing both with large and'
' limited training data.'
),
'labels': ['translation', 'machine learning', 'vision', 'statistics'],
'scores': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8],
} , ) | 106 |
import unittest
from transformers import DonutProcessor
lowerCAmelCase_ = '''naver-clova-ix/donut-base'''
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : Union[str, Any] ) ->Any:
snake_case_ = DonutProcessor.from_pretrained(_UpperCamelCase )
def snake_case__( self : Dict ) ->str:
snake_case_ = {
'''name''': '''John Doe''',
'''age''': '''99''',
'''city''': '''Atlanta''',
'''state''': '''GA''',
'''zip''': '''30301''',
'''phone''': '''123-4567''',
'''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}],
}
snake_case_ = (
'''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>'''
'''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>'''
'''<s_nicknames><s_nickname>Johnny</s_nickname>'''
'''<sep/><s_nickname>JD</s_nickname></s_nicknames>'''
)
snake_case_ = self.processor.tokenajson(_UpperCamelCase )
self.assertDictEqual(_UpperCamelCase , _UpperCamelCase ) | 39 | 0 |
'''simple docstring'''
from __future__ import annotations
_UpperCAmelCase : Optional[int] = []
def _SCREAMING_SNAKE_CASE ( __snake_case : list[list[int]] , __snake_case : int , __snake_case : int ):
for i in range(len(__snake_case ) ):
if board[row][i] == 1:
return False
for i in range(len(__snake_case ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(__snake_case , -1 , -1 ) , range(__snake_case , -1 , -1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(__snake_case , -1 , -1 ) , range(__snake_case , len(__snake_case ) ) ):
if board[i][j] == 1:
return False
return True
def _SCREAMING_SNAKE_CASE ( __snake_case : list[list[int]] , __snake_case : int ):
if row >= len(__snake_case ):
solution.append(__snake_case )
printboard(__snake_case )
print()
return True
for i in range(len(__snake_case ) ):
if is_safe(__snake_case , __snake_case , __snake_case ):
_A = 1
solve(__snake_case , row + 1 )
_A = 0
return False
def _SCREAMING_SNAKE_CASE ( __snake_case : list[list[int]] ):
for i in range(len(__snake_case ) ):
for j in range(len(__snake_case ) ):
if board[i][j] == 1:
print('Q' , end=' ' )
else:
print('.' , end=' ' )
print()
# n=int(input("The no. of queens"))
_UpperCAmelCase : Any = 8
_UpperCAmelCase : Dict = [[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print('''The total no. of solutions are :''', len(solution))
| 107 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
if not nums:
raise ValueError('''List is empty''' )
return sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 39 | 0 |
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
__a: str = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
__a: List[Any] = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"{len(upper_files)} files contain uppercase characters:")
print('''\n'''.join(upper_files) + '''\n''')
__a: str = [file for file in filepaths if ''' ''' in file]
if space_files:
print(F"{len(space_files)} files contain space characters:")
print('''\n'''.join(space_files) + '''\n''')
__a: Dict = [file for file in filepaths if '''-''' in file]
if hyphen_files:
print(F"{len(hyphen_files)} files contain hyphen characters:")
print('''\n'''.join(hyphen_files) + '''\n''')
__a: Optional[Any] = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"{len(nodir_files)} files are not in a directory:")
print('''\n'''.join(nodir_files) + '''\n''')
__a: Tuple = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files) | 108 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : List[str] ) ->str:
snake_case_ = inspect.getfile(accelerate.test_utils )
snake_case_ = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
snake_case_ = test_metrics
@require_cpu
def snake_case__( self : str ) ->int:
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def snake_case__( self : Union[str, Any] ) ->Any:
debug_launcher(self.test_metrics.main )
@require_single_gpu
def snake_case__( self : List[Any] ) ->Tuple:
self.test_metrics.main()
@require_multi_gpu
def snake_case__( self : Any ) ->Union[str, Any]:
print(f'''Found {torch.cuda.device_count()} devices.''' )
snake_case_ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) | 39 | 0 |
'''simple docstring'''
def __magic_name__ ( __UpperCAmelCase = 200 ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = [1, 2, 5, 10, 20, 50, 100, 200]
__SCREAMING_SNAKE_CASE = [0] * (pence + 1)
__SCREAMING_SNAKE_CASE = 1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(__UpperCAmelCase , pence + 1 , 1 ):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(200) == 73682
| 109 |
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'''huggingface/informer-tourism-monthly''': (
'''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json'''
),
# See all Informer models at https://huggingface.co/models?filter=informer
}
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = "informer"
SCREAMING_SNAKE_CASE : int = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__( self : Dict , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "student_t" , _UpperCamelCase : str = "nll" , _UpperCamelCase : int = 1 , _UpperCamelCase : List[int] = None , _UpperCamelCase : Optional[Union[str, bool]] = "mean" , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : int = 6_4 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.05 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : Dict=True , _UpperCamelCase : str = "prob" , _UpperCamelCase : int = 5 , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Optional[int]:
# time series specific configuration
snake_case_ = prediction_length
snake_case_ = context_length or prediction_length
snake_case_ = distribution_output
snake_case_ = loss
snake_case_ = input_size
snake_case_ = num_time_features
snake_case_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7]
snake_case_ = scaling
snake_case_ = num_dynamic_real_features
snake_case_ = num_static_real_features
snake_case_ = num_static_categorical_features
# set cardinality
if cardinality and num_static_categorical_features > 0:
if len(_UpperCamelCase ) != num_static_categorical_features:
raise ValueError(
'''The cardinality should be a list of the same length as `num_static_categorical_features`''' )
snake_case_ = cardinality
else:
snake_case_ = [0]
# set embedding_dimension
if embedding_dimension and num_static_categorical_features > 0:
if len(_UpperCamelCase ) != num_static_categorical_features:
raise ValueError(
'''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' )
snake_case_ = embedding_dimension
else:
snake_case_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
snake_case_ = num_parallel_samples
# Transformer architecture configuration
snake_case_ = input_size * len(self.lags_sequence ) + self._number_of_features
snake_case_ = d_model
snake_case_ = encoder_attention_heads
snake_case_ = decoder_attention_heads
snake_case_ = encoder_ffn_dim
snake_case_ = decoder_ffn_dim
snake_case_ = encoder_layers
snake_case_ = decoder_layers
snake_case_ = dropout
snake_case_ = attention_dropout
snake_case_ = activation_dropout
snake_case_ = encoder_layerdrop
snake_case_ = decoder_layerdrop
snake_case_ = activation_function
snake_case_ = init_std
snake_case_ = use_cache
# Informer
snake_case_ = attention_type
snake_case_ = sampling_factor
snake_case_ = distil
super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase )
@property
def snake_case__( self : Optional[Any] ) ->int:
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
) | 39 | 0 |
"""simple docstring"""
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def lowerCamelCase ( ):
UpperCAmelCase__ , UpperCAmelCase__ : str = 9, 14 # noqa: F841
UpperCAmelCase__ : Union[str, Any] = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
UpperCAmelCase__ : Dict = defaultdict(_snake_case )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
UpperCAmelCase__ : List[Any] = mst(_snake_case )
UpperCAmelCase__ : Tuple = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
UpperCAmelCase__ : Optional[Any] = tuple(answer[:2] )
UpperCAmelCase__ : Dict = tuple(edge[::-1] )
assert edge in result or reverse in result
| 110 |
import cmath
import math
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ )
snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ )
# Convert voltage and current to rectangular form
snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod() | 39 | 0 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def __snake_case( self ):
_UpperCAmelCase : List[str] = inspect.getfile(accelerate.test_utils )
_UpperCAmelCase : Union[str, Any] = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
_UpperCAmelCase : List[str] = test_metrics
@require_cpu
def __snake_case( self ):
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def __snake_case( self ):
debug_launcher(self.test_metrics.main )
@require_single_gpu
def __snake_case( self ):
self.test_metrics.main()
@require_multi_gpu
def __snake_case( self ):
print(F'''Found {torch.cuda.device_count()} devices.''' )
_UpperCAmelCase : Union[str, Any] = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
| 643 |
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class snake_case_ :
'''simple docstring'''
def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=1_3 , _UpperCamelCase : str=7 , _UpperCamelCase : int=True , _UpperCamelCase : Dict=True , _UpperCamelCase : int=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : str=3_2 , _UpperCamelCase : str=5 , _UpperCamelCase : str=4 , _UpperCamelCase : int=3_7 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : str=5_1_2 , _UpperCamelCase : Optional[int]=1_6 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Any=0.02 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : str=None , ) ->Dict:
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = num_choices
snake_case_ = scope
def snake_case__( self : str ) ->List[Any]:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = None
if self.use_input_mask:
snake_case_ = random_attention_mask([self.batch_size, self.seq_length] )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = ids_tensor([self.batch_size] , self.num_choices )
snake_case_ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case__( self : List[str] ) ->Tuple:
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , )
def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) ->Dict:
snake_case_ = BioGptModel(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )
snake_case_ = model(_UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , ) ->Optional[int]:
snake_case_ = BioGptForCausalLM(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , *_UpperCamelCase : List[Any] ) ->Union[str, Any]:
snake_case_ = BioGptModel(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
# create attention mask
snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase )
snake_case_ = self.seq_length // 2
snake_case_ = 0
# first forward pass
snake_case_, snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).to_tuple()
# create hypothetical next token and extent to next_input_ids
snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
snake_case_ = ids_tensor((1,) , _UpperCamelCase ).item() + 1
snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
snake_case_ = random_other_next_tokens
# append to next input_ids and attn_mask
snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case_ = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCamelCase )] , dim=1 , )
# get two different outputs
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state''']
snake_case_ = model(_UpperCamelCase , past_key_values=_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state''']
# select random slice
snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach()
snake_case_ = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) )
def snake_case__( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , *_UpperCamelCase : List[Any] ) ->int:
snake_case_ = BioGptModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval()
snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase )
# first forward pass
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase )
snake_case_, snake_case_ = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case_ = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state''']
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[
'''last_hidden_state'''
]
# select random slice
snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach()
snake_case_ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) )
def snake_case__( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , *_UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=False ) ->Dict:
snake_case_ = BioGptForCausalLM(_UpperCamelCase )
model.to(_UpperCamelCase )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def snake_case__( self : List[Any] , _UpperCamelCase : Optional[int] , *_UpperCamelCase : Dict ) ->Dict:
snake_case_ = BioGptModel(_UpperCamelCase )
snake_case_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 )
def snake_case__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , *_UpperCamelCase : List[str] ) ->int:
snake_case_ = self.num_labels
snake_case_ = BioGptForTokenClassification(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def snake_case__( self : Optional[Any] ) ->int:
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
),
) = config_and_inputs
snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class snake_case_ ( __A , __A , __A , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE : Tuple = (BioGptForCausalLM,) if is_torch_available() else ()
SCREAMING_SNAKE_CASE : Optional[Any] = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE : Tuple = False
def snake_case__( self : List[str] ) ->Union[str, Any]:
snake_case_ = BioGptModelTester(self )
snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 )
def snake_case__( self : str ) ->int:
self.config_tester.run_common_tests()
def snake_case__( self : str ) ->Tuple:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase )
def snake_case__( self : Tuple ) ->List[Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*_UpperCamelCase )
def snake_case__( self : Tuple ) ->str:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCamelCase )
def snake_case__( self : Union[str, Any] ) ->Dict:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*_UpperCamelCase , gradient_checkpointing=_UpperCamelCase )
def snake_case__( self : Optional[int] ) ->List[Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCamelCase )
def snake_case__( self : List[Any] ) ->Union[str, Any]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCamelCase )
def snake_case__( self : Optional[int] ) ->Optional[int]:
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCamelCase )
@slow
def snake_case__( self : int ) ->Optional[Any]:
snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(_UpperCamelCase )
snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
snake_case_ = '''left'''
# Define PAD Token = EOS Token = 50256
snake_case_ = tokenizer.eos_token
snake_case_ = model.config.eos_token_id
# use different length sentences to test batching
snake_case_ = [
'''Hello, my dog is a little''',
'''Today, I''',
]
snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase )
snake_case_ = inputs['''input_ids'''].to(_UpperCamelCase )
snake_case_ = model.generate(
input_ids=_UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(_UpperCamelCase ) , )
snake_case_ = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase )
snake_case_ = model.generate(input_ids=_UpperCamelCase )
snake_case_ = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
snake_case_ = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase )
snake_case_ = model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings )
snake_case_ = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase )
snake_case_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase )
snake_case_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase )
snake_case_ = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] )
@slow
def snake_case__( self : Optional[int] ) ->List[str]:
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = BioGptModel.from_pretrained(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase )
def snake_case__( self : Optional[int] ) ->str:
snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = 3
snake_case_ = input_dict['''input_ids''']
snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase )
snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
snake_case_ = BioGptForSequenceClassification(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def snake_case__( self : str ) ->str:
snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = 3
snake_case_ = '''multi_label_classification'''
snake_case_ = input_dict['''input_ids''']
snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase )
snake_case_ = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
snake_case_ = BioGptForSequenceClassification(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def snake_case__( self : int ) ->Any:
snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
snake_case_ = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] )
snake_case_ = model(_UpperCamelCase )[0]
snake_case_ = 4_2_3_8_4
snake_case_ = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , _UpperCamelCase )
snake_case_ = torch.tensor(
[[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) )
@slow
def snake_case__( self : List[str] ) ->Optional[int]:
snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(_UpperCamelCase )
torch.manual_seed(0 )
snake_case_ = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_UpperCamelCase )
snake_case_ = model.generate(
**_UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=_UpperCamelCase , )
snake_case_ = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCamelCase )
snake_case_ = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(_UpperCamelCase , _UpperCamelCase ) | 39 | 0 |
import argparse
import struct
import unittest
class _UpperCAmelCase :
'''simple docstring'''
def __init__( self : Union[str, Any] , UpperCamelCase__ : bytes ):
A = data
# Initialize hash values
A = [
0X6a_09e_667,
0Xbb_67a_e85,
0X3c_6ef_372,
0Xa5_4ff_53a,
0X51_0e5_27f,
0X9b_056_88c,
0X1f_83d_9ab,
0X5b_e0c_d19,
]
# Initialize round constants
A = [
0X42_8a2_f98,
0X71_374_491,
0Xb5_c0f_bcf,
0Xe9_b5d_ba5,
0X39_56c_25b,
0X59_f11_1f1,
0X92_3f8_2a4,
0Xab_1c5_ed5,
0Xd8_07a_a98,
0X12_835_b01,
0X24_318_5be,
0X55_0c7_dc3,
0X72_be5_d74,
0X80_deb_1fe,
0X9b_dc0_6a7,
0Xc1_9bf_174,
0Xe4_9b6_9c1,
0Xef_be4_786,
0X0f_c19_dc6,
0X24_0ca_1cc,
0X2d_e92_c6f,
0X4a_748_4aa,
0X5c_b0a_9dc,
0X76_f98_8da,
0X98_3e5_152,
0Xa8_31c_66d,
0Xb0_032_7c8,
0Xbf_597_fc7,
0Xc6_e00_bf3,
0Xd5_a79_147,
0X06_ca6_351,
0X14_292_967,
0X27_b70_a85,
0X2e_1b2_138,
0X4d_2c6_dfc,
0X53_380_d13,
0X65_0a7_354,
0X76_6a0_abb,
0X81_c2c_92e,
0X92_722_c85,
0Xa2_bfe_8a1,
0Xa8_1a6_64b,
0Xc2_4b8_b70,
0Xc7_6c5_1a3,
0Xd1_92e_819,
0Xd6_990_624,
0Xf4_0e3_585,
0X10_6aa_070,
0X19_a4c_116,
0X1e_376_c08,
0X27_487_74c,
0X34_b0b_cb5,
0X39_1c0_cb3,
0X4e_d8a_a4a,
0X5b_9cc_a4f,
0X68_2e6_ff3,
0X74_8f8_2ee,
0X78_a56_36f,
0X84_c87_814,
0X8c_c70_208,
0X90_bef_ffa,
0Xa4_506_ceb,
0Xbe_f9a_3f7,
0Xc6_717_8f2,
]
A = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def UpperCamelCase ( UpperCamelCase__ : bytes ):
A = B'\x80' + (B'\x00' * (63 - (len(_UpperCamelCase ) + 8) % 64))
A = struct.pack('>Q' , (len(_UpperCamelCase ) * 8) )
return data + padding + big_endian_integer
def UpperCamelCase ( self : Optional[Any] ):
# Convert into blocks of 64 bytes
A = [
self.preprocessed_data[x : x + 64]
for x in range(0 , len(self.preprocessed_data ) , 64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
A = list(struct.unpack('>16L' , _UpperCamelCase ) )
# add 48 0-ed integers
words += [0] * 48
A , A , A , A , A , A , A , A = self.hashes
for index in range(0 , 64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
A = (
self.ror(words[index - 15] , 7 )
^ self.ror(words[index - 15] , 18 )
^ (words[index - 15] >> 3)
)
A = (
self.ror(words[index - 2] , 17 )
^ self.ror(words[index - 2] , 19 )
^ (words[index - 2] >> 10)
)
A = (
words[index - 16] + sa + words[index - 7] + sa
) % 0X100_000_000
# Compression
A = self.ror(_UpperCamelCase , 6 ) ^ self.ror(_UpperCamelCase , 11 ) ^ self.ror(_UpperCamelCase , 25 )
A = (e & f) ^ ((~e & 0Xff_fff_fff) & g)
A = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0X100_000_000
A = self.ror(_UpperCamelCase , 2 ) ^ self.ror(_UpperCamelCase , 13 ) ^ self.ror(_UpperCamelCase , 22 )
A = (a & b) ^ (a & c) ^ (b & c)
A = (sa + maj) % 0X100_000_000
A , A , A , A , A , A , A , A = (
g,
f,
e,
((d + tempa) % 0X100_000_000),
c,
b,
a,
((tempa + tempa) % 0X100_000_000),
)
A = [a, b, c, d, e, f, g, h]
# Modify final values
A = [
((element + mutated_hash_values[index]) % 0X100_000_000)
for index, element in enumerate(self.hashes )
]
A = ''.join([hex(_UpperCamelCase )[2:].zfill(8 ) for value in self.hashes] )
def UpperCamelCase ( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ):
return 0Xff_fff_fff & (value << (32 - rotations)) | (value >> rotations)
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase ( self : Any ):
import hashlib
A = bytes('Test String' , 'utf-8' )
self.assertEqual(SHAaaa(_UpperCamelCase ).hash , hashlib.shaaaa(_UpperCamelCase ).hexdigest() )
def __UpperCamelCase () -> Any:
import doctest
doctest.testmod()
A = argparse.ArgumentParser()
parser.add_argument(
'-s', '--string', dest='input_string', default='Hello World!! Welcome to Cryptography', help='Hash the string', )
parser.add_argument(
'-f', '--file', dest='input_file', help='Hash contents of a file' )
A = parser.parse_args()
A = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file, 'rb' ) as f:
A = f.read()
else:
A = bytes(SCREAMING_SNAKE_CASE__, 'utf-8' )
print(SHAaaa(SCREAMING_SNAKE_CASE__ ).hash )
if __name__ == "__main__":
main()
| 699 |
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
snake_case_ = (boundary[1] - boundary[0]) / steps
snake_case_ = boundary[0]
snake_case_ = boundary[1]
snake_case_ = make_points(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
snake_case_ = 0.0
y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ )
for i in x_i:
# print(i)
y += h * f(SCREAMING_SNAKE_CASE__ )
y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ )
return y
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = a + h
while x < (b - h):
yield x
snake_case_ = x + h
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # enter your function here
snake_case_ = (x - 0) * (x - 0)
return y
def __SCREAMING_SNAKE_CASE ():
snake_case_ = 0.0 # Lower bound of integration
snake_case_ = 1.0 # Upper bound of integration
snake_case_ = 10.0 # define number of steps or resolution
snake_case_ = [a, b] # define boundary of integration
snake_case_ = method_a(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
print(F'''y = {y}''' )
if __name__ == "__main__":
main() | 39 | 0 |
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _A ( __A , unittest.TestCase ):
'''simple docstring'''
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class _A ( unittest.TestCase ):
'''simple docstring'''
@property
def snake_case_ ( self ):
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def snake_case_ ( self ):
'''simple docstring'''
snake_case : List[str] = ort.SessionOptions()
snake_case : Tuple = False
return options
def snake_case_ ( self ):
'''simple docstring'''
snake_case : Union[str, Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
snake_case : Optional[Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
snake_case : Tuple = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"""runwayml/stable-diffusion-inpainting""" ,revision="""onnx""" ,safety_checker=_UpperCamelCase ,feature_extractor=_UpperCamelCase ,provider=self.gpu_provider ,sess_options=self.gpu_options ,)
pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case : List[Any] = """A red cat sitting on a park bench"""
snake_case : List[Any] = np.random.RandomState(0 )
snake_case : Optional[int] = pipe(
prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=_UpperCamelCase ,output_type="""np""" ,)
snake_case : Optional[Any] = output.images
snake_case : Optional[Any] = images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
snake_case : Tuple = np.array([0.25_14, 0.30_07, 0.35_17, 0.17_90, 0.23_82, 0.31_67, 0.19_44, 0.22_73, 0.24_64] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def snake_case_ ( self ):
'''simple docstring'''
snake_case : Optional[Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
snake_case : int = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
snake_case : Union[str, Any] = LMSDiscreteScheduler.from_pretrained(
"""runwayml/stable-diffusion-inpainting""" ,subfolder="""scheduler""" ,revision="""onnx""" )
snake_case : int = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"""runwayml/stable-diffusion-inpainting""" ,revision="""onnx""" ,scheduler=_UpperCamelCase ,safety_checker=_UpperCamelCase ,feature_extractor=_UpperCamelCase ,provider=self.gpu_provider ,sess_options=self.gpu_options ,)
pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case : Optional[Any] = """A red cat sitting on a park bench"""
snake_case : Optional[Any] = np.random.RandomState(0 )
snake_case : Union[str, Any] = pipe(
prompt=_UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=_UpperCamelCase ,output_type="""np""" ,)
snake_case : Optional[int] = output.images
snake_case : Optional[Any] = images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
snake_case : Any = np.array([0.00_86, 0.00_77, 0.00_83, 0.00_93, 0.01_07, 0.01_39, 0.00_94, 0.00_97, 0.01_25] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
| 36 |
import os
import re
import sys
import traceback
import warnings
from pathlib import Path
from typing import Dict, Optional, Union
from uuid import uuida
from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami
from huggingface_hub.file_download import REGEX_COMMIT_HASH
from huggingface_hub.utils import (
EntryNotFoundError,
RepositoryNotFoundError,
RevisionNotFoundError,
is_jinja_available,
)
from packaging import version
from requests import HTTPError
from .. import __version__
from .constants import (
DEPRECATED_REVISION_ARGS,
DIFFUSERS_CACHE,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
)
from .import_utils import (
ENV_VARS_TRUE_VALUES,
_flax_version,
_jax_version,
_onnxruntime_version,
_torch_version,
is_flax_available,
is_onnx_available,
is_torch_available,
)
from .logging import get_logger
lowerCAmelCase_ = get_logger(__name__)
lowerCAmelCase_ = Path(__file__).parent / '''model_card_template.md'''
lowerCAmelCase_ = uuida().hex
lowerCAmelCase_ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES
lowerCAmelCase_ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES
lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/'''
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None ):
snake_case_ = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}'''
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
return ua + "; telemetry/off"
if is_torch_available():
ua += F'''; torch/{_torch_version}'''
if is_flax_available():
ua += F'''; jax/{_jax_version}'''
ua += F'''; flax/{_flax_version}'''
if is_onnx_available():
ua += F'''; onnxruntime/{_onnxruntime_version}'''
# CI will set this value to True
if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES:
ua += "; is_ci/true"
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
ua += "; " + user_agent
return ua
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ):
if token is None:
snake_case_ = HfFolder.get_token()
if organization is None:
snake_case_ = whoami(SCREAMING_SNAKE_CASE__ )['''name''']
return F'''{username}/{model_id}'''
else:
return F'''{organization}/{model_id}'''
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
if not is_jinja_available():
raise ValueError(
'''Modelcard rendering is based on Jinja templates.'''
''' Please make sure to have `jinja` installed before using `create_model_card`.'''
''' To install it, please run `pip install Jinja2`.''' )
if hasattr(SCREAMING_SNAKE_CASE__ , '''local_rank''' ) and args.local_rank not in [-1, 0]:
return
snake_case_ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , '''hub_token''' ) else None
snake_case_ = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ )
snake_case_ = ModelCard.from_template(
card_data=ModelCardData( # Card metadata object that will be converted to YAML block
language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=(
args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''gradient_accumulation_steps''' ) else None
) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , )
snake_case_ = os.path.join(args.output_dir , '''README.md''' )
model_card.save(SCREAMING_SNAKE_CASE__ )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ):
if resolved_file is None or commit_hash is not None:
return commit_hash
snake_case_ = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() )
snake_case_ = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE__ )
if search is None:
return None
snake_case_ = search.groups()[0]
return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
lowerCAmelCase_ = os.path.expanduser(
os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface'''))
)
lowerCAmelCase_ = os.path.join(hf_cache_home, '''diffusers''')
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ):
if new_cache_dir is None:
snake_case_ = DIFFUSERS_CACHE
if old_cache_dir is None:
snake_case_ = old_diffusers_cache
snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser()
snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser()
for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ):
if old_blob_path.is_file() and not old_blob_path.is_symlink():
snake_case_ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ )
new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
try:
os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
except OSError:
logger.warning(
'''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' )
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''')
if not os.path.isfile(cache_version_file):
lowerCAmelCase_ = 0
else:
with open(cache_version_file) as f:
try:
lowerCAmelCase_ = int(f.read())
except ValueError:
lowerCAmelCase_ = 0
if cache_version < 1:
lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
if old_cache_is_not_empty:
logger.warning(
'''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your '''
'''existing cached models. This is a one-time operation, you can interrupt it or run it '''
'''later by calling `diffusers.utils.hub_utils.move_cache()`.'''
)
try:
move_cache()
except Exception as e:
lowerCAmelCase_ = '''\n'''.join(traceback.format_tb(e.__traceback__))
logger.error(
f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """
'''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole '''
'''message and we will do our best to help.'''
)
if cache_version < 1:
try:
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
with open(cache_version_file, '''w''') as f:
f.write('''1''')
except Exception:
logger.warning(
f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """
'''the directory exists and can be written to.'''
)
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ):
if variant is not None:
snake_case_ = weights_name.split('''.''' )
snake_case_ = splits[:-1] + [variant] + splits[-1:]
snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ )
return weights_name
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , *,
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ):
snake_case_ = str(SCREAMING_SNAKE_CASE__ )
if os.path.isfile(SCREAMING_SNAKE_CASE__ ):
return pretrained_model_name_or_path
elif os.path.isdir(SCREAMING_SNAKE_CASE__ ):
if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ):
# Load from a PyTorch checkpoint
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return model_file
elif subfolder is not None and os.path.isfile(
os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ):
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return model_file
else:
raise EnvironmentError(
F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' )
else:
# 1. First check if deprecated way of loading from branches is used
if (
revision in DEPRECATED_REVISION_ARGS
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('''0.20.0''' )
):
try:
snake_case_ = hf_hub_download(
SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , )
warnings.warn(
F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , )
return model_file
except: # noqa: E722
warnings.warn(
F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , )
try:
# 2. Load model file as usual
snake_case_ = hf_hub_download(
SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , )
return model_file
except RepositoryNotFoundError:
raise EnvironmentError(
F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier '''
'''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a '''
'''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli '''
'''login`.''' )
except RevisionNotFoundError:
raise EnvironmentError(
F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for '''
'''this model name. Check the model page at '''
F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' )
except EntryNotFoundError:
raise EnvironmentError(
F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' )
except HTTPError as err:
raise EnvironmentError(
F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' )
except ValueError:
raise EnvironmentError(
F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it'''
F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a'''
F''' directory containing a file named {weights_name} or'''
''' \nCheckout your internet connection or see how to run the library in'''
''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' )
except EnvironmentError:
raise EnvironmentError(
F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from '''
'''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. '''
F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory '''
F'''containing a file named {weights_name}''' ) | 39 | 0 |
'''simple docstring'''
from __future__ import annotations
import requests
def _lowerCAmelCase ( __magic_name__ : Optional[int] ) -> Dict:
lowercase : Tuple =f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty'''
return requests.get(SCREAMING_SNAKE_CASE__ ).json()
def _lowerCAmelCase ( __magic_name__ : Any = 10 ) -> List[str]:
lowercase : int ='''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty'''
lowercase : Union[str, Any] =requests.get(SCREAMING_SNAKE_CASE__ ).json()[:max_stories]
return [get_hackernews_story(SCREAMING_SNAKE_CASE__ ) for story_id in story_ids]
def _lowerCAmelCase ( __magic_name__ : Any = 10 ) -> List[str]:
lowercase : Dict =hackernews_top_stories(SCREAMING_SNAKE_CASE__ )
return "\n".join('''* [{title}]({url})'''.format(**SCREAMING_SNAKE_CASE__ ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 92 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''',
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt"
def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any:
super().__init__(**_UpperCamelCase )
snake_case_ = hidden_size
snake_case_ = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info('''Initializing the config with a `BiT` backbone.''' )
snake_case_ = {
'''global_padding''': '''same''',
'''layer_type''': '''bottleneck''',
'''depths''': [3, 4, 9],
'''out_features''': ['''stage1''', '''stage2''', '''stage3'''],
'''embedding_dynamic_padding''': True,
}
snake_case_ = BitConfig(**_UpperCamelCase )
elif isinstance(_UpperCamelCase , _UpperCamelCase ):
logger.info('''Initializing the config with a `BiT` backbone.''' )
snake_case_ = BitConfig(**_UpperCamelCase )
elif isinstance(_UpperCamelCase , _UpperCamelCase ):
snake_case_ = backbone_config
else:
raise ValueError(
f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' )
snake_case_ = backbone_featmap_shape
snake_case_ = neck_ignore_stages
if readout_type != "project":
raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' )
else:
snake_case_ = None
snake_case_ = None
snake_case_ = []
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = initializer_range
snake_case_ = layer_norm_eps
snake_case_ = image_size
snake_case_ = patch_size
snake_case_ = num_channels
snake_case_ = qkv_bias
snake_case_ = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' )
snake_case_ = readout_type
snake_case_ = reassemble_factors
snake_case_ = neck_hidden_sizes
snake_case_ = fusion_hidden_size
snake_case_ = head_in_index
snake_case_ = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
snake_case_ = use_auxiliary_head
snake_case_ = auxiliary_loss_weight
snake_case_ = semantic_loss_ignore_index
snake_case_ = semantic_classifier_dropout
def snake_case__( self : List[str] ) ->List[Any]:
snake_case_ = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
snake_case_ = self.backbone_config.to_dict()
snake_case_ = self.__class__.model_type
return output | 39 | 0 |
'''simple docstring'''
__UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def _a ( ) -> Any:
"""simple docstring"""
__snake_case : Optional[Any] = input("""Enter message: """ )
__snake_case : Union[str, Any] = input("""Enter key [alphanumeric]: """ )
__snake_case : Dict = input("""Encrypt/Decrypt [e/d]: """ )
if mode.lower().startswith("""e""" ):
__snake_case : Optional[Any] = """encrypt"""
__snake_case : Optional[int] = encrypt_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif mode.lower().startswith("""d""" ):
__snake_case : Any = """decrypt"""
__snake_case : str = decrypt_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
print(F'''\n{mode.title()}ed message:''' )
print(SCREAMING_SNAKE_CASE__ )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
return translate_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """encrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase ) -> str:
"""simple docstring"""
return translate_message(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """decrypt""" )
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case : List[Any] = []
__snake_case : Any = 0
__snake_case : Optional[Any] = key.upper()
for symbol in message:
__snake_case : Union[str, Any] = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(SCREAMING_SNAKE_CASE__ )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(SCREAMING_SNAKE_CASE__ ):
__snake_case : Union[str, Any] = 0
else:
translated.append(SCREAMING_SNAKE_CASE__ )
return "".join(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 26 |
import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional
import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy
lowerCAmelCase_ = logging.getLogger(__name__)
lowerCAmelCase_ = '''pytorch_model.bin'''
@dataclasses.dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = dataclasses.field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , )
@dataclasses.dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} )
SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default=__A , metadata={"help": "A csv or a json file containing the validation data."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default=__A , metadata={"help": "The name of the task to train on."} , )
SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field(
default=__A , metadata={"help": "The list of labels for the task."} )
@dataclasses.dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = dataclasses.field(
metadata={"help": "The output directory where the model predictions and checkpoints will be written."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default="accuracy" , metadata={"help": "The evaluation metric used for the task."} )
SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field(
default="no" , metadata={
"help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]"
} , )
SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field(
default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , )
SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field(
default=0.0 , metadata={
"help": "How much the specified evaluation metric must improve to satisfy early stopping conditions."
} , )
SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field(
default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , )
SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field(
default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , )
SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field(
default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , )
SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field(
default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , )
SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field(
default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , )
SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field(
default=__A , metadata={"help": "Random seed for initialization."} , )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 )
if args.do_filter_by_confidence:
snake_case_ = dataset.filter(lambda SCREAMING_SNAKE_CASE__ : example["probability"] > args.confidence_threshold )
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
snake_case_ = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) )
print(SCREAMING_SNAKE_CASE__ )
snake_case_ = dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE__ )
snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) )
snake_case_ = dataset.remove_columns(['''label''', '''probability'''] )
snake_case_ = dataset.rename_column('''prediction''' , '''label''' )
snake_case_ = dataset.map(lambda SCREAMING_SNAKE_CASE__ : {"label": idalabel[example["label"]]} )
snake_case_ = dataset.shuffle(seed=args.seed )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' )
if args.data_file_extension == "csv":
dataset.to_csv(SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ )
else:
dataset.to_json(SCREAMING_SNAKE_CASE__ )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ):
snake_case_ = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , )
logger.info(accelerator.state )
# Setup logging, we only want one process per machine to log things on the
# screen. accelerator.is_local_main_process is only True for one process per
# machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
snake_case_ = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ )
snake_case_ = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ , infer_file=SCREAMING_SNAKE_CASE__ )
snake_case_ = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ )
snake_case_ = argparse.Namespace()
for arg_class in (model_args, data_args, training_args):
for key, value in vars(SCREAMING_SNAKE_CASE__ ).items():
setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
for key, value in kwargs.items():
if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Sanity checks
snake_case_ = {}
snake_case_ = None
# You need to provide the training data and the data to predict on
assert args.train_file is not None
assert args.infer_file is not None
snake_case_ = args.train_file
snake_case_ = args.infer_file
if args.evaluation_strategy != IntervalStrategy.NO.value:
assert args.eval_file is not None
snake_case_ = args.eval_file
for key in data_files:
snake_case_ = data_files[key].split('''.''' )[-1]
assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.'''
if args.data_file_extension is None:
snake_case_ = extension
else:
assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.'''
assert (
args.eval_metric in datasets.list_metrics()
), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.'''
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed )
logger.info('''Creating the initial data directory for self-training...''' )
snake_case_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format
snake_case_ = data_dir_format(0 )
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ )
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
snake_case_ = None
snake_case_ = None
snake_case_ = 0
snake_case_ = False
# Show the progress bar
snake_case_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process )
# Self-train
for iteration in range(0 , int(args.max_selftrain_iterations ) ):
snake_case_ = data_dir_format(SCREAMING_SNAKE_CASE__ )
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
# Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
# iteration > 0
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-1''' )
snake_case_ = {
'''accelerator''': accelerator,
'''model_name_or_path''': args.model_name_or_path,
'''cache_dir''': args.cache_dir,
'''do_train''': True,
'''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''],
'''do_eval''': True if args.eval_file is not None else False,
'''eval_file''': data_files['''eval'''],
'''do_predict''': True,
'''infer_file''': data_files['''infer'''],
'''task_name''': args.task_name,
'''label_list''': args.label_list,
'''output_dir''': current_output_dir,
'''eval_metric''': args.eval_metric,
'''evaluation_strategy''': args.evaluation_strategy,
'''early_stopping_patience''': args.early_stopping_patience,
'''early_stopping_threshold''': args.early_stopping_threshold,
'''seed''': args.seed,
}
# Add additional training arguments
for key, value in kwargs.items():
if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
arguments_dict.update({key: value} )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ )
if os.path.exists(SCREAMING_SNAKE_CASE__ ):
logger.info(
'''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , )
else:
logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE__ )
finetune(**SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ )
if iteration > 0 and args.finetune_on_labeled_data:
# Stage 2 (optional): fine-tuning on the original labeled data
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-2''' )
# Update arguments_dict
snake_case_ = model_path
snake_case_ = data_files['''train''']
snake_case_ = current_output_dir
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ )
if os.path.exists(SCREAMING_SNAKE_CASE__ ):
logger.info(
'''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , )
else:
logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE__ )
finetune(**SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ )
snake_case_ = iteration
snake_case_ = data_dir_format(iteration + 1 )
snake_case_ = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) )
snake_case_ = config.idalabel
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-checkpoint.json''' )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''test_results_best-checkpoint.json''' )
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f:
snake_case_ = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] )
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''infer_output_best-checkpoint.csv''' )
assert os.path.exists(SCREAMING_SNAKE_CASE__ )
# Loading the dataset from local csv or json files.
snake_case_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data''']
snake_case_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data''']
if accelerator.is_main_process:
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) )
if os.path.exists(SCREAMING_SNAKE_CASE__ ):
shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''test_results_iter-{iteration}.json''' ) )
create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' )
if args.evaluation_strategy != IntervalStrategy.NO.value:
snake_case_ = eval_result
if best_iteration is None:
snake_case_ = new_iteration
snake_case_ = new_eval_result
else:
if new_eval_result - best_eval_result > args.early_stopping_threshold:
snake_case_ = new_iteration
snake_case_ = new_eval_result
snake_case_ = 0
else:
if new_eval_result == best_eval_result:
snake_case_ = new_iteration
snake_case_ = new_eval_result
early_stopping_patience_counter += 1
if early_stopping_patience_counter >= args.early_stopping_patience:
snake_case_ = True
progress_bar.update(1 )
if should_training_stop:
break
if best_iteration is not None:
# Save the best iteration
logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE__ )
logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , )
else:
# Assume that the last iteration is the best
logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 )
logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , ) | 39 | 0 |
from math import factorial
def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Union[str, Any] = 20 ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] =2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
SCREAMING_SNAKE_CASE_ : Tuple =n // 2
return int(factorial(SCREAMING_SNAKE_CASE__ ) / (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
__SCREAMING_SNAKE_CASE = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 220 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class snake_case_ ( __A , __A , __A , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = AltDiffusionPipeline
SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS
SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
def snake_case__( self : Dict ) ->int:
torch.manual_seed(0 )
snake_case_ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , )
snake_case_ = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , )
torch.manual_seed(0 )
snake_case_ = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0 )
snake_case_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , )
snake_case_ = CLIPTextModel(_UpperCamelCase )
snake_case_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
snake_case_ = 7_7
snake_case_ = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def snake_case__( self : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0 ) ->Any:
if str(_UpperCamelCase ).startswith('''mps''' ):
snake_case_ = torch.manual_seed(_UpperCamelCase )
else:
snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase )
snake_case_ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def snake_case__( self : Dict ) ->List[str]:
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 )
def snake_case__( self : List[str] ) ->Any:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def snake_case__( self : Dict ) ->Any:
snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case_ = self.get_dummy_components()
torch.manual_seed(0 )
snake_case_ = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , )
# TODO: remove after fixing the non-deterministic text encoder
snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase )
snake_case_ = text_encoder
snake_case_ = AltDiffusionPipeline(**_UpperCamelCase )
snake_case_ = alt_pipe.to(_UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = self.get_dummy_inputs(_UpperCamelCase )
snake_case_ = '''A photo of an astronaut'''
snake_case_ = alt_pipe(**_UpperCamelCase )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
snake_case_ = np.array(
[0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case__( self : Tuple ) ->Union[str, Any]:
snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case_ = self.get_dummy_components()
snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase )
torch.manual_seed(0 )
snake_case_ = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , )
# TODO: remove after fixing the non-deterministic text encoder
snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase )
snake_case_ = text_encoder
snake_case_ = AltDiffusionPipeline(**_UpperCamelCase )
snake_case_ = alt_pipe.to(_UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = self.get_dummy_inputs(_UpperCamelCase )
snake_case_ = alt_pipe(**_UpperCamelCase )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
snake_case_ = np.array(
[0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : int ) ->List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case__( self : List[str] ) ->Tuple:
# make sure here that pndm scheduler skips prk
snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_UpperCamelCase )
snake_case_ = alt_pipe.to(_UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = '''A painting of a squirrel eating a burger'''
snake_case_ = torch.manual_seed(0 )
snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='''np''' )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
snake_case_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case__( self : List[str] ) ->Optional[Any]:
snake_case_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' )
snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase )
snake_case_ = alt_pipe.to(_UpperCamelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCamelCase )
snake_case_ = '''A painting of a squirrel eating a burger'''
snake_case_ = torch.manual_seed(0 )
snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , num_inference_steps=2 , output_type='''numpy''' )
snake_case_ = output.images
snake_case_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
snake_case_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 | 39 | 0 |
"""simple docstring"""
# flake8: noqa
# Lint as: python3
from typing import Dict, List, Optional, Type
from .. import config
from ..utils import logging
from .formatting import (
ArrowFormatter,
CustomFormatter,
Formatter,
PandasFormatter,
PythonFormatter,
TensorFormatter,
format_table,
query_table,
)
from .np_formatter import NumpyFormatter
a_ = logging.get_logger(__name__)
a_ = {}
a_ = {}
a_ = {}
def UpperCAmelCase_ ( __a : Any , __a : Optional[int] , __a : List[str] = None , ):
'''simple docstring'''
_lowerCamelCase : Any = aliases if aliases is not None else []
if format_type in _FORMAT_TYPES:
logger.warning(
f"Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" )
_lowerCamelCase : int = formatter_cls
for alias in set(aliases + [format_type] ):
if alias in _FORMAT_TYPES_ALIASES:
logger.warning(
f"Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" )
_lowerCamelCase : List[str] = format_type
def UpperCAmelCase_ ( __a : Optional[int] , __a : int , __a : Optional[int] = None ):
'''simple docstring'''
_lowerCamelCase : Any = aliases if aliases is not None else []
for alias in set(aliases + [format_type] ):
_lowerCamelCase : List[Any] = unavailable_error
# Here we define all the available formatting functions that can be used by `Dataset.set_format`
_register_formatter(PythonFormatter, None, aliases=["""python"""])
_register_formatter(ArrowFormatter, """arrow""", aliases=["""pa""", """pyarrow"""])
_register_formatter(NumpyFormatter, """numpy""", aliases=["""np"""])
_register_formatter(PandasFormatter, """pandas""", aliases=["""pd"""])
_register_formatter(CustomFormatter, """custom""")
if config.TORCH_AVAILABLE:
from .torch_formatter import TorchFormatter
_register_formatter(TorchFormatter, """torch""", aliases=["""pt""", """pytorch"""])
else:
a_ = ValueError("""PyTorch needs to be installed to be able to return PyTorch tensors.""")
_register_unavailable_formatter(_torch_error, """torch""", aliases=["""pt""", """pytorch"""])
if config.TF_AVAILABLE:
from .tf_formatter import TFFormatter
_register_formatter(TFFormatter, """tensorflow""", aliases=["""tf"""])
else:
a_ = ValueError("""Tensorflow needs to be installed to be able to return Tensorflow tensors.""")
_register_unavailable_formatter(_tf_error, """tensorflow""", aliases=["""tf"""])
if config.JAX_AVAILABLE:
from .jax_formatter import JaxFormatter
_register_formatter(JaxFormatter, """jax""", aliases=[])
else:
a_ = ValueError("""JAX needs to be installed to be able to return JAX arrays.""")
_register_unavailable_formatter(_jax_error, """jax""", aliases=[])
def UpperCAmelCase_ ( __a : int ):
'''simple docstring'''
if format_type in _FORMAT_TYPES_ALIASES:
return _FORMAT_TYPES_ALIASES[format_type]
else:
return format_type
def UpperCAmelCase_ ( __a : Any , **__a : str ):
'''simple docstring'''
_lowerCamelCase : Dict = get_format_type_from_alias(SCREAMING_SNAKE_CASE__ )
if format_type in _FORMAT_TYPES:
return _FORMAT_TYPES[format_type](**SCREAMING_SNAKE_CASE__ )
if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:
raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]
else:
raise ValueError(
f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'" )
| 437 |
from math import factorial
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
# If either of the conditions are true, the function is being asked
# to calculate a factorial of a negative number, which is not possible
if n < k or k < 0:
raise ValueError('''Please enter positive integers for n and k where n >= k''' )
return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k ))
if __name__ == "__main__":
print(
'''The number of five-card hands possible from a standard''',
f"""fifty-two card deck is: {combinations(52, 5)}\n""",
)
print(
'''If a class of 40 students must be arranged into groups of''',
f"""4 for group projects, there are {combinations(40, 4)} ways""",
'''to arrange them.\n''',
)
print(
'''If 10 teams are competing in a Formula One race, there''',
f"""are {combinations(10, 3)} ways that first, second and""",
'''third place can be awarded.''',
) | 39 | 0 |
"""simple docstring"""
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any:
_UpperCamelCase : Optional[int] = tf.convert_to_tensor(
[
[
8.2_22_09_91, # 3rd highest value; idx. 0
-0.5_62_00_44,
5.23_22_97_52,
4.0_38_63_93,
-6.8_79_83_78,
-0.54_78_58_02,
-3.2_01_21_53,
2.92_77_71_76,
1.88_17_19_53,
7.35_34_12_76, # 5th highest value; idx. 9
8.43_20_78_33, # 2nd highest value; idx. 10
-9.85_71_18_36,
-5.96_20_92_36,
-1.13_03_91_61,
-7.1_11_52_94,
-0.8_36_96_33,
-5.3_18_64_08,
7.06_42_74_07,
0.81_36_93_44,
-0.82_02_38_17,
-5.9_17_97_96,
0.58_81_34_43,
-6.99_77_84_38,
4.71_55_11_89,
-0.18_77_16_37,
7.44_02_07_59, # 4th highest value; idx. 25
9.38_45_09_87, # 1st highest value; idx. 26
2.12_66_29_41,
-9.32_56_20_38,
2.35_65_25_22,
], # cummulative prob of 5 highest values <= 0.6
[
0.58_42_55_18,
4.53_13_92_38,
-5.57_51_04_64,
-6.28_03_06_99,
-7.19_52_95_03,
-4.02_12_25_51,
1.39_33_70_37,
-6.06_70_70_57,
1.59_48_05_17,
-9.64_31_19,
0.03_90_77_99,
0.67_23_17_62,
-8.88_20_67_26,
6.27_11_59_22, # 4th highest value; idx. 13
2.28_52_07_23,
4.82_76_75_06,
4.30_42_13_68,
8.8_27_53_13, # 2nd highest value; idx. 17
5.44_02_99_58, # 5th highest value; idx. 18
-4.4_73_57_94,
7.38_57_95_36, # 3rd highest value; idx. 20
-2.91_05_16_63,
2.61_94_60_77,
-2.5_67_47_62,
-9.48_95_93_02,
-4.02_92_26_45,
-1.35_41_69_18,
9.67_70_23_23, # 1st highest value; idx. 27
-5.89_47_85_53,
1.85_37_04_67,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
_UpperCamelCase : Any = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
_UpperCamelCase : int = tf.convert_to_tensor(
[8.22_20_99, 7.3_53_41_26, 8.43_20_78, 7.4_40_20_75, 9.3_84_51, 6.27_11_59, 8.82_75_31, 5.4_40_29_95, 7.3_85_79_56, 9.67_70_23] , dtype=tf.floataa , ) # expected non filtered values as noted above
_UpperCamelCase : Any = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
_UpperCamelCase : Union[str, Any] = output[output != -float("inf" )]
_UpperCamelCase : Dict = tf.cast(
tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float("inf" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-1_2 )
tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase )
@require_tf
class __SCREAMING_SNAKE_CASE ( unittest.TestCase , __A ):
'''simple docstring'''
if is_tf_available():
SCREAMING_SNAKE_CASE__ :Optional[int] = {
"AutoModelForCausalLM": TFAutoModelForCausalLM,
"AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq,
"AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM,
"AutoModelForVision2Seq": TFAutoModelForVisionaSeq,
"LogitsProcessorList": TFLogitsProcessorList,
"MinLengthLogitsProcessor": TFMinLengthLogitsProcessor,
"create_tensor_fn": tf.convert_to_tensor,
"floats_tensor": floats_tensor,
"return_tensors": "tf",
}
@slow
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]:
# TF-only test: tf.saved_model export
_UpperCamelCase : Optional[Any] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_UpperCamelCase : List[Any] = 2
_UpperCamelCase : Optional[Any] = 2
class __SCREAMING_SNAKE_CASE ( tf.Module ):
'''simple docstring'''
def __init__( self : Optional[Any] , __a : Optional[int] ) -> List[Any]:
super(_UpperCamelCase , self ).__init__()
_UpperCamelCase : Tuple = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids" ),
tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask" ),
) , jit_compile=_UpperCamelCase , )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : int , __a : Union[str, Any] ) -> List[Any]:
_UpperCamelCase : List[Any] = self.model.generate(
input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , )
return {"sequences": outputs["sequences"]}
_UpperCamelCase : Any = [[2, 0], [102, 103]]
_UpperCamelCase : Any = [[1, 0], [1, 1]]
_UpperCamelCase : Union[str, Any] = DummyModel(model=_UpperCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={"serving_default": dummy_model.serving} )
_UpperCamelCase : Union[str, Any] = tf.saved_model.load(_UpperCamelCase ).signatures["serving_default"]
for batch_size in range(1 , len(_UpperCamelCase ) + 1 ):
_UpperCamelCase : str = {
"input_ids": tf.constant(dummy_input_ids[:batch_size] ),
"attention_mask": tf.constant(dummy_attention_masks[:batch_size] ),
}
_UpperCamelCase : Tuple = serving_func(**_UpperCamelCase )["sequences"]
_UpperCamelCase : List[str] = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase )
tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase )
@slow
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int:
# TF-only test: tf.saved_model export
_UpperCamelCase : List[Any] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_UpperCamelCase : List[str] = 1
_UpperCamelCase : int = 2
class __SCREAMING_SNAKE_CASE ( tf.Module ):
'''simple docstring'''
def __init__( self : str , __a : Any ) -> List[str]:
super(_UpperCamelCase , self ).__init__()
_UpperCamelCase : str = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids" ),
tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask" ),
) , jit_compile=_UpperCamelCase , )
def __SCREAMING_SNAKE_CASE ( self : int , __a : Tuple , __a : List[Any] ) -> Optional[int]:
_UpperCamelCase : Any = self.model.generate(
input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , )
return {"sequences": outputs["sequences"]}
_UpperCamelCase : Tuple = [[2], [102, 103]]
_UpperCamelCase : Union[str, Any] = [[1], [1, 1]]
_UpperCamelCase : Optional[int] = DummyModel(model=_UpperCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={"serving_default": dummy_model.serving} )
_UpperCamelCase : str = tf.saved_model.load(_UpperCamelCase ).signatures["serving_default"]
for input_row in range(len(_UpperCamelCase ) ):
_UpperCamelCase : List[str] = {
"input_ids": tf.constant([dummy_input_ids[input_row]] ),
"attention_mask": tf.constant([dummy_attention_masks[input_row]] ),
}
_UpperCamelCase : Any = serving_func(**_UpperCamelCase )["sequences"]
_UpperCamelCase : Any = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase )
tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase )
@slow
@require_tensorflow_text
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]:
# TF-only test: tf.saved_model export
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=_UpperCamelCase )
class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Tuple ) -> List[Any]:
super().__init__()
_UpperCamelCase : Union[str, Any] = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , "spiece.model" ) , "rb" ).read() )
_UpperCamelCase : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5" )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[Any] , *__a : Optional[int] , **__a : str ) -> List[Any]:
_UpperCamelCase : List[str] = self.tokenizer.tokenize(_UpperCamelCase )
_UpperCamelCase, _UpperCamelCase : int = text.pad_model_inputs(
_UpperCamelCase , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
_UpperCamelCase : Optional[Any] = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase )
return self.tokenizer.detokenize(_UpperCamelCase )
_UpperCamelCase : Any = CompleteSentenceTransformer()
_UpperCamelCase : Tuple = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs" )
_UpperCamelCase : Optional[Any] = complete_model(_UpperCamelCase )
_UpperCamelCase : Optional[Any] = tf.keras.Model(_UpperCamelCase , _UpperCamelCase )
keras_model.save(_UpperCamelCase )
def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]:
# Has PT equivalent: this test relies on random sampling
_UpperCamelCase : str = {
"do_sample": True,
"num_beams": 1,
"top_p": 0.7,
"top_k": 10,
"temperature": 0.7,
}
_UpperCamelCase : Union[str, Any] = 14
_UpperCamelCase : Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_UpperCamelCase : Dict = "Hello, my dog is cute and"
_UpperCamelCase : List[str] = tokenizer(_UpperCamelCase , return_tensors="tf" )
_UpperCamelCase : Dict = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_UpperCamelCase : Optional[Any] = 638
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(":/CPU:0" ):
tf.random.set_seed(0 )
_UpperCamelCase : Optional[int] = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
self.assertTrue(expectation == len(generated_tokens[0] ) )
_UpperCamelCase : Dict = [638, 198]
with tf.device(":/CPU:0" ):
tf.random.set_seed(0 )
_UpperCamelCase : List[str] = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict:
# Has PT equivalent: ample use of framework-specific code
_UpperCamelCase : int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart" )
_UpperCamelCase : Optional[Any] = "Hugging Face is a technology company based in New York and Paris."
_UpperCamelCase : Tuple = bart_tokenizer(_UpperCamelCase , return_tensors="tf" ).input_ids
_UpperCamelCase : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart" )
_UpperCamelCase : str = bart_model.generate(_UpperCamelCase ).numpy()
class __SCREAMING_SNAKE_CASE ( __A ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : str , __a : Any , __a : Tuple=None , **__a : Optional[int] ) -> List[str]:
return super().call(_UpperCamelCase , **_UpperCamelCase )
_UpperCamelCase : Optional[Any] = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart" )
_UpperCamelCase : Optional[int] = bart_model.generate(_UpperCamelCase , foo="bar" ).numpy()
self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) )
class __SCREAMING_SNAKE_CASE ( bart_model.model.encoder.__class__ ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : str , **__a : Tuple ) -> Optional[Any]:
return super().call(_UpperCamelCase , **_UpperCamelCase )
_UpperCamelCase : Optional[Any] = FakeEncoder(bart_model.config , bart_model.model.shared )
_UpperCamelCase : str = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
_UpperCamelCase : List[Any] = bart_model.generate(_UpperCamelCase ).numpy()
with self.assertRaises(_UpperCamelCase ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(_UpperCamelCase , foo="bar" )
| 624 |
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
lowerCAmelCase_ = sys.version_info >= (3, 10)
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ):
return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : float
SCREAMING_SNAKE_CASE : str
SCREAMING_SNAKE_CASE : bool
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = 42
SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : bool = False
SCREAMING_SNAKE_CASE : bool = True
SCREAMING_SNAKE_CASE : Optional[bool] = None
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = "titi"
SCREAMING_SNAKE_CASE : Any = "toto"
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = "titi"
SCREAMING_SNAKE_CASE : Optional[Any] = "toto"
SCREAMING_SNAKE_CASE : Any = 42
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : BasicEnum = "toto"
def snake_case__( self : Tuple ) ->List[str]:
snake_case_ = BasicEnum(self.foo )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto"
def snake_case__( self : Union[str, Any] ) ->Dict:
snake_case_ = MixedTypeEnum(self.foo )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Optional[float] = field(default=__A , metadata={"help": "help message"} )
SCREAMING_SNAKE_CASE : Optional[str] = None
SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] )
SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] )
SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] )
SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] )
SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[int] = field()
SCREAMING_SNAKE_CASE : str = field()
SCREAMING_SNAKE_CASE : BasicEnum = field()
def snake_case__( self : Optional[Any] ) ->Tuple:
snake_case_ = BasicEnum(self.required_enum )
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : "BasicEnum" = field()
SCREAMING_SNAKE_CASE : "Optional[bool]" = None
SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} )
SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] )
if is_python_no_less_than_3_10:
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : bool = False
SCREAMING_SNAKE_CASE : bool = True
SCREAMING_SNAKE_CASE : bool | None = None
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : int | None = None
SCREAMING_SNAKE_CASE : float | None = field(default=__A , metadata={"help": "help message"} )
SCREAMING_SNAKE_CASE : str | None = None
SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] )
SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] )
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : Dict , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser ) ->str:
self.assertEqual(len(a._actions ) , len(b._actions ) )
for x, y in zip(a._actions , b._actions ):
snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''}
snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get('''choices''' , _UpperCamelCase ) and yy.get('''choices''' , _UpperCamelCase ):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx['''type'''](_UpperCamelCase ) , yy['''type'''](_UpperCamelCase ) )
del xx["type"], yy["type"]
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Optional[Any] ) ->Dict:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument('''--bar''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument('''--baz''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument('''--flag''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5''']
((snake_case_), ) = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase )
self.assertFalse(example.flag )
def snake_case__( self : Tuple ) ->Optional[int]:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , default=4_2 , type=_UpperCamelCase )
expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Tuple ) ->Tuple:
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' )
expected.add_argument('''--baz''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' )
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCamelCase , dest='''baz''' )
expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase )
snake_case_ = [WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(_UpperCamelCase )
for dataclass_type in dataclass_types:
snake_case_ = HfArgumentParser(_UpperCamelCase )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
snake_case_ = parser.parse_args(['''--foo''', '''--no_baz'''] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
snake_case_ = parser.parse_args(['''--foo''', '''--baz'''] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
snake_case_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
snake_case_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) )
def snake_case__( self : Tuple ) ->Tuple:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument(
'''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(args.foo , '''toto''' )
snake_case_ = parser.parse_args_into_dataclasses([] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto )
snake_case_ = parser.parse_args(['''--foo''', '''titi'''] )
self.assertEqual(args.foo , '''titi''' )
snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi )
snake_case_ = parser.parse_args(['''--foo''', '''42'''] )
self.assertEqual(args.foo , 4_2 )
snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo )
def snake_case__( self : Tuple ) ->Union[str, Any]:
@dataclass
class snake_case_ :
'''simple docstring'''
SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto"
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument(
'''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(args.foo , '''toto''' )
snake_case_ = parser.parse_args(['''--foo''', '''titi'''] )
self.assertEqual(args.foo , '''titi''' )
snake_case_ = parser.parse_args(['''--foo''', '''42'''] )
self.assertEqual(args.foo , 4_2 )
def snake_case__( self : List[str] ) ->int:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCamelCase )
expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCamelCase )
expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase )
expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(
_UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , )
snake_case_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() )
self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) )
def snake_case__( self : Optional[Any] ) ->List[Any]:
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , default=_UpperCamelCase , type=_UpperCamelCase )
expected.add_argument('''--bar''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''help message''' )
expected.add_argument('''--baz''' , default=_UpperCamelCase , type=_UpperCamelCase )
expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCamelCase )
expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCamelCase )
snake_case_ = [OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(_UpperCamelCase )
for dataclass_type in dataclass_types:
snake_case_ = HfArgumentParser(_UpperCamelCase )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_args([] )
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[] ) )
snake_case_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() )
self.assertEqual(_UpperCamelCase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) )
def snake_case__( self : Union[str, Any] ) ->Optional[int]:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument('''--required_str''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument(
'''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : List[str] ) ->int:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = argparse.ArgumentParser()
expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase )
expected.add_argument(
'''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , )
expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase )
expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' )
expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Dict ) ->Any:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = {
'''foo''': 1_2,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
snake_case_ = parser.parse_dict(_UpperCamelCase )[0]
snake_case_ = BasicExample(**_UpperCamelCase )
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : int ) ->Dict:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = {
'''foo''': 1_2,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
'''extra''': 4_2,
}
self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase )
def snake_case__( self : str ) ->Tuple:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = {
'''foo''': 1_2,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = os.path.join(_UpperCamelCase , '''temp_json''' )
os.mkdir(_UpperCamelCase )
with open(temp_local_path + '''.json''' , '''w+''' ) as f:
json.dump(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0]
snake_case_ = BasicExample(**_UpperCamelCase )
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Optional[int] ) ->str:
snake_case_ = HfArgumentParser(_UpperCamelCase )
snake_case_ = {
'''foo''': 1_2,
'''bar''': 3.14,
'''baz''': '''42''',
'''flag''': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = os.path.join(_UpperCamelCase , '''temp_yaml''' )
os.mkdir(_UpperCamelCase )
with open(temp_local_path + '''.yaml''' , '''w+''' ) as f:
yaml.dump(_UpperCamelCase , _UpperCamelCase )
snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0]
snake_case_ = BasicExample(**_UpperCamelCase )
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
def snake_case__( self : Any ) ->Any:
snake_case_ = HfArgumentParser(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase ) | 39 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class UpperCAmelCase ( __A , unittest.TestCase):
"""simple docstring"""
lowerCAmelCase_ = LDMTextToImagePipeline
lowerCAmelCase_ = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
lowerCAmelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS
lowerCAmelCase_ = False
def UpperCamelCase__ ( self : Optional[Any] ) -> List[str]:
torch.manual_seed(0 )
_UpperCamelCase =UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
_UpperCamelCase =DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , )
torch.manual_seed(0 )
_UpperCamelCase =AutoencoderKL(
block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , latent_channels=4 , )
torch.manual_seed(0 )
_UpperCamelCase =CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
_UpperCamelCase =CLIPTextModel(_UpperCamelCase )
_UpperCamelCase =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
_UpperCamelCase ={
'''unet''': unet,
'''scheduler''': scheduler,
'''vqvae''': vae,
'''bert''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def UpperCamelCase__ ( self : int , UpperCamelCase__ : int , UpperCamelCase__ : List[Any]=0 ) -> Any:
if str(_UpperCamelCase ).startswith('''mps''' ):
_UpperCamelCase =torch.manual_seed(_UpperCamelCase )
else:
_UpperCamelCase =torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase )
_UpperCamelCase ={
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def UpperCamelCase__ ( self : str ) -> List[Any]:
_UpperCamelCase ='''cpu''' # ensure determinism for the device-dependent torch.Generator
_UpperCamelCase =self.get_dummy_components()
_UpperCamelCase =LDMTextToImagePipeline(**_UpperCamelCase )
pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCamelCase =self.get_dummy_inputs(_UpperCamelCase )
_UpperCamelCase =pipe(**_UpperCamelCase ).images
_UpperCamelCase =image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
_UpperCamelCase =np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class UpperCAmelCase ( unittest.TestCase):
"""simple docstring"""
def UpperCamelCase__ ( self : Optional[int] ) -> str:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str]=torch.floataa , UpperCamelCase__ : List[str]=0 ) -> Tuple:
_UpperCamelCase =torch.manual_seed(_UpperCamelCase )
_UpperCamelCase =np.random.RandomState(_UpperCamelCase ).standard_normal((1, 4, 32, 32) )
_UpperCamelCase =torch.from_numpy(_UpperCamelCase ).to(device=_UpperCamelCase , dtype=_UpperCamelCase )
_UpperCamelCase ={
'''prompt''': '''A painting of a squirrel eating a burger''',
'''latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def UpperCamelCase__ ( self : Any ) -> int:
_UpperCamelCase =LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCamelCase =self.get_inputs(_UpperCamelCase )
_UpperCamelCase =pipe(**_UpperCamelCase ).images
_UpperCamelCase =image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
_UpperCamelCase =np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878] )
_UpperCamelCase =np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class UpperCAmelCase ( unittest.TestCase):
"""simple docstring"""
def UpperCamelCase__ ( self : Dict ) -> List[Any]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any]=torch.floataa , UpperCamelCase__ : List[str]=0 ) -> Dict:
_UpperCamelCase =torch.manual_seed(_UpperCamelCase )
_UpperCamelCase =np.random.RandomState(_UpperCamelCase ).standard_normal((1, 4, 32, 32) )
_UpperCamelCase =torch.from_numpy(_UpperCamelCase ).to(device=_UpperCamelCase , dtype=_UpperCamelCase )
_UpperCamelCase ={
'''prompt''': '''A painting of a squirrel eating a burger''',
'''latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 50,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def UpperCamelCase__ ( self : Optional[int] ) -> List[str]:
_UpperCamelCase =LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCamelCase =self.get_inputs(_UpperCamelCase )
_UpperCamelCase =pipe(**_UpperCamelCase ).images[0]
_UpperCamelCase =load_numpy(
'''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy''' )
_UpperCamelCase =np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 404 |
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
lowerCAmelCase_ = logging.get_logger(__name__)
class snake_case_ ( __A ):
'''simple docstring'''
def __init__( self : Dict , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->None:
warnings.warn(
'''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use ChineseCLIPImageProcessor instead.''' , _UpperCamelCase , )
super().__init__(*_UpperCamelCase , **_UpperCamelCase ) | 39 | 0 |
import argparse
import json
import os
from collections import OrderedDict
import numpy as np
import tensorflow as tf
import torch
def __UpperCamelCase ( _A ):
lowerCAmelCase_ = os.path.join(args.tf_model_dir , '''parameters.json''' )
lowerCAmelCase_ = json.loads(open(SCREAMING_SNAKE_CASE__ ).read() )
if not params:
raise ValueError(
f"It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file." )
if not args.output.endswith('''.pt''' ):
lowerCAmelCase_ = args.output + '''.pt'''
lowerCAmelCase_ = OrderedDict()
with tf.device('''/CPU:0''' ):
lowerCAmelCase_ = tf.train.load_checkpoint(args.tf_model_dir )
lowerCAmelCase_ = reader.get_variable_to_shape_map()
for key_name in shapes.keys():
lowerCAmelCase_ = reader.get_tensor(SCREAMING_SNAKE_CASE__ ).astype(np.floataa )
if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ):
continue
if key_name.startswith('''pasts/''' ):
if key_name.startswith('''pasts/mlp''' ):
lowerCAmelCase_ = int(key_name[9] )
elif key_name.startswith('''pasts/out''' ):
lowerCAmelCase_ = 8
lowerCAmelCase_ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time
lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ )
elif key_name.startswith('''model/moe''' ):
lowerCAmelCase_ = int(key_name[9:].split('''/''' )[0] )
if key_name.endswith('''/switch_gating/kernel''' ):
lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player
lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ )
elif key_name.endswith('''/softmlp/kernel''' ):
lowerCAmelCase_ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player
lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ )
elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ):
lowerCAmelCase_ = key_name[-9:-7]
for i in range(16 ):
lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer)
lowerCAmelCase_ = (
vnp[i].transpose([1, 0] ).copy()
) # In Mesh-Tensorflow, it is one array, so it is divided
lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ )
elif key_name.startswith('''model/mlp''' ):
lowerCAmelCase_ = int(key_name[9:].split('''/''' )[0] )
if key_name.endswith('''/p1/kernel''' ):
lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player
lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ )
elif key_name.endswith('''/p1/bias''' ):
lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player
lowerCAmelCase_ = vnp.copy() # same because it is one dimensional
lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ )
elif key_name.endswith('''/p2/kernel''' ):
lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player
lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ )
elif key_name.endswith('''/p2/bias''' ):
lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player
lowerCAmelCase_ = vnp.copy() # same because it is one dimensional
lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ )
elif key_name.startswith('''model/ln''' ):
lowerCAmelCase_ = int(key_name[8:].split('''/''' )[0] )
if key_name.endswith('''/b''' ):
lowerCAmelCase_ = '''model.blocks.%d.feed_forward.norm.bias''' % player
lowerCAmelCase_ = vnp.copy() # same because it is one dimensional
lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ )
elif key_name.endswith('''/g''' ):
lowerCAmelCase_ = '''model.blocks.%d.feed_forward.norm.weight''' % player
lowerCAmelCase_ = vnp.copy() # same because it is one dimensional
lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ )
elif key_name.startswith('''model/att''' ):
lowerCAmelCase_ = int(key_name[9:].split('''/''' )[0] )
if key_name.endswith('''/qkv/kernel''' ):
lowerCAmelCase_ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum
lowerCAmelCase_ = state[:, 0, :, :]
lowerCAmelCase_ = state[:, 1, :, :]
lowerCAmelCase_ = state[:, 2, :, :]
lowerCAmelCase_ = (
state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
lowerCAmelCase_ = (
state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
lowerCAmelCase_ = (
state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player
lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player
lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player
lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ )
elif key_name.endswith('''/o/kernel''' ):
lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player
lowerCAmelCase_ = (
vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy()
) # Mesh-Tensorflow is a diagonal matrix
lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ )
elif key_name.startswith('''model/an''' ):
lowerCAmelCase_ = int(key_name[8:].split('''/''' )[0] )
if key_name.endswith('''/b''' ):
lowerCAmelCase_ = '''model.blocks.%d.self_attn.norm.bias''' % player
lowerCAmelCase_ = vnp.copy() # same because it is one dimensional
lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ )
elif key_name.endswith('''/g''' ):
lowerCAmelCase_ = '''model.blocks.%d.self_attn.norm.weight''' % player
lowerCAmelCase_ = vnp.copy() # same because it is one dimensional
lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ )
elif (
key_name.startswith('''model/wte''' )
or key_name.startswith('''model/wpe''' )
or key_name.startswith('''model/ete''' )
):
lowerCAmelCase_ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[
key_name[-3:]
]
lowerCAmelCase_ = '''model.%s.weight''' % nlayer
lowerCAmelCase_ = vnp.copy() # same in embedded
lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ )
if key_name.startswith('''model/wte''' ):
lowerCAmelCase_ = '''lm_head.weight'''
lowerCAmelCase_ = vnp.copy() # same in embedded
lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ )
elif key_name.startswith('''model/wob''' ):
lowerCAmelCase_ = '''final_logits_bias'''
lowerCAmelCase_ = vnp.copy() # same in embedded
lowerCAmelCase_ = state.reshape((1, -1) )
lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ )
elif key_name == "model/dense/kernel":
lowerCAmelCase_ = '''model.last_project.weight'''
lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ )
elif key_name == "model/dense_1/bias":
lowerCAmelCase_ = '''model.last_project.bias'''
lowerCAmelCase_ = vnp.copy() # same because it is one dimensional
lowerCAmelCase_ = torch.tensor(SCREAMING_SNAKE_CASE__ )
torch.save(SCREAMING_SNAKE_CASE__ , args.output )
if __name__ == "__main__":
_A = argparse.ArgumentParser(
description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''')
parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''')
_A = parser.parse_args()
convert_tf_gptsan_to_pt(args)
| 431 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''',
'''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''',
'''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''',
'''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''',
'''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''',
}
class snake_case_ ( __A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv"
SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"}
def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]:
snake_case_ = vocab_size
snake_case_ = context_length
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size
snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size
snake_case_ = layer_norm_epsilon
snake_case_ = rescale_every
snake_case_ = use_cache
snake_case_ = bos_token_id
snake_case_ = eos_token_id
super().__init__(
tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) | 39 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.