code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Dict = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) class snake_case_ : '''simple docstring''' def __init__( self : int , _UpperCamelCase : Optional[str] = None ) ->Tuple: snake_case_ = ( os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) snake_case_ = Extractor def snake_case__( self : Any , _UpperCamelCase : str ) ->str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" snake_case_ = os.path.abspath(_UpperCamelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) ) def snake_case__( self : int , _UpperCamelCase : str , _UpperCamelCase : bool ) ->bool: return force_extract or ( not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase )) ) def snake_case__( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : bool = False ) ->str: snake_case_ = self.extractor.infer_extractor_format(_UpperCamelCase ) if not extractor_format: return input_path snake_case_ = self._get_output_path(_UpperCamelCase ) if self._do_extract(_UpperCamelCase , _UpperCamelCase ): self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return output_path class snake_case_ ( __A ): '''simple docstring''' @classmethod @abstractmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : str ) ->bool: ... @staticmethod @abstractmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: ... class snake_case_ ( __A , __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[bytes] = [] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->List[Any]: with open(_UpperCamelCase , '''rb''' ) as f: return f.read(_UpperCamelCase ) @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if not magic_number: snake_case_ = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) try: snake_case_ = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase ) except OSError: return False return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) class snake_case_ ( __A ): '''simple docstring''' @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : Any ) ->bool: return tarfile.is_tarfile(_UpperCamelCase ) @staticmethod def snake_case__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) ->List[str]: def resolved(_UpperCamelCase : str ) -> str: return os.path.realpath(os.path.abspath(_UpperCamelCase ) ) def badpath(_UpperCamelCase : str , _UpperCamelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase ) def badlink(_UpperCamelCase : Tuple , _UpperCamelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link snake_case_ = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCamelCase ) snake_case_ = resolved(_UpperCamelCase ) for finfo in members: if badpath(finfo.name , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = tarfile.open(_UpperCamelCase ) tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) ) tar_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [b"\x1F\x8B"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with gzip.open(_UpperCamelCase , '''rb''' ) as gzip_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def snake_case__( cls : List[str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCamelCase , '''rb''' ) as fp: snake_case_ = _EndRecData(_UpperCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: snake_case_ = fp.read(_UpperCamelCase ) # CD is where we expect it to be if len(_UpperCamelCase ) == sizeCentralDir: snake_case_ = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with zipfile.ZipFile(_UpperCamelCase , '''r''' ) as zip_file: zip_file.extractall(_UpperCamelCase ) zip_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with lzma.open(_UpperCamelCase ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = rarfile.RarFile(_UpperCamelCase ) rf.extractall(_UpperCamelCase ) rf.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [b"\x28\xb5\x2F\xFD"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd snake_case_ = zstd.ZstdDecompressor() with open(_UpperCamelCase , '''rb''' ) as ifh, open(_UpperCamelCase , '''wb''' ) as ofh: dctx.copy_stream(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"\x42\x5A\x68"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with bza.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with pyazr.SevenZipFile(_UpperCamelCase , '''r''' ) as archive: archive.extractall(_UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x04\x22\x4D\x18"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def snake_case__( cls : List[Any] ) ->List[str]: return max( len(_UpperCamelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCamelCase , _UpperCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->Tuple: try: return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase ) except OSError: return b"" @classmethod def snake_case__( cls : Optional[Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bool = False ) ->bool: warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = cls.infer_extractor_format(_UpperCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def snake_case__( cls : int , _UpperCamelCase : Union[Path, str] ) ->str: # <Added version="2.4.0"/> snake_case_ = cls._get_magic_number_max_length() snake_case_ = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return extractor_format @classmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[BaseExtractor] = "deprecated" , ) ->None: os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase ) # Prevent parallel extractions snake_case_ = str(Path(_UpperCamelCase ).with_suffix('''.lock''' ) ) with FileLock(_UpperCamelCase ): shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = extractor if extractor != '''deprecated''' else extractor_format else: snake_case_ = cls.extractors[extractor_format] return extractor.extract(_UpperCamelCase , _UpperCamelCase ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=_UpperCamelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCamelCase ): return extractor.extract(_UpperCamelCase , _UpperCamelCase )
39
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( __A ): def __init__( self , *A_ , **A_ ): warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
643
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
39
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _UpperCAmelCase ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = "facebook/bart-large-mnli" SCREAMING_SNAKE_CASE : Union[str, Any] = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) SCREAMING_SNAKE_CASE : List[str] = "text_classifier" SCREAMING_SNAKE_CASE : Dict = AutoTokenizer SCREAMING_SNAKE_CASE : int = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Any = ["text", ["text"]] SCREAMING_SNAKE_CASE : Tuple = ["text"] def UpperCamelCase ( self : Any ): super().setup() A = self.model.config A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): A = int(_UpperCamelCase ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : int , UpperCamelCase__ : Dict , UpperCamelCase__ : str ): A = labels return self.pre_processor( [text] * len(_UpperCamelCase ) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : int , UpperCamelCase__ : str ): A = outputs.logits A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
699
import re from filelock import FileLock try: import nltk lowerCAmelCase_ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): re.sub('''<n>''' , '''''' , SCREAMING_SNAKE_CASE__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE__ ) )
39
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class _A ( __A , __A ): '''simple docstring''' __lowerCamelCase : Optional[int] = 1 @register_to_config def __init__( self ,SCREAMING_SNAKE_CASE_=2000 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=20 ,SCREAMING_SNAKE_CASE_=1E-3 ): '''simple docstring''' snake_case : Optional[int] = None snake_case : Tuple = None snake_case : Union[str, Any] = None def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ): '''simple docstring''' snake_case : Optional[Any] = torch.linspace(1 ,self.config.sampling_eps ,_UpperCamelCase ,device=_UpperCamelCase ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score snake_case : Tuple = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) snake_case : Union[str, Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) snake_case : str = std.flatten() while len(std.shape ) < len(score.shape ): snake_case : Tuple = std.unsqueeze(-1 ) snake_case : Any = -score / std # compute snake_case : List[str] = -1.0 / len(self.timesteps ) snake_case : Dict = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) snake_case : List[str] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): snake_case : str = beta_t.unsqueeze(-1 ) snake_case : Dict = -0.5 * beta_t * x snake_case : int = torch.sqrt(_UpperCamelCase ) snake_case : Union[str, Any] = drift - diffusion**2 * score snake_case : Union[str, Any] = x + drift * dt # add noise snake_case : Any = randn_tensor(x.shape ,layout=x.layout ,generator=_UpperCamelCase ,device=x.device ,dtype=x.dtype ) snake_case : List[str] = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
36
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [0 for i in range(r + 1 )] # nc0 = 1 snake_case_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case_ = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
39
0
'''simple docstring''' def _lowerCAmelCase ( __magic_name__ : List[Any] = "The quick brown fox jumps over the lazy dog" , ) -> str: lowercase : Dict =set() # Replace all the whitespace in our sentence lowercase : Any =input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE__ ) == 26 def _lowerCAmelCase ( __magic_name__ : str = "The quick brown fox jumps over the lazy dog" , ) -> Any: lowercase : str =[False] * 26 for char in input_str: if char.islower(): lowercase : str =True elif char.isupper(): lowercase : List[Any] =True return all(SCREAMING_SNAKE_CASE__ ) def _lowerCAmelCase ( __magic_name__ : Optional[int] = "The quick brown fox jumps over the lazy dog" , ) -> List[str]: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _lowerCAmelCase ( ) -> Tuple: from timeit import timeit lowercase : Optional[int] ='''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=SCREAMING_SNAKE_CASE__ ) ) print(timeit('''is_pangram_faster()''' , setup=SCREAMING_SNAKE_CASE__ ) ) print(timeit('''is_pangram_fastest()''' , setup=SCREAMING_SNAKE_CASE__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
92
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCAmelCase_ = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 13_10_72, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return torch.atana(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / math.pi * 2 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.sin(t * math.pi / 2 ) ** 2 snake_case_ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class snake_case_ ( __A ): '''simple docstring''' pass class snake_case_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : int ) ->Optional[int]: super().__init__() snake_case_ = DiffusionAttnUnetaD(_UpperCamelCase , n_attn_layers=4 ) snake_case_ = deepcopy(self.diffusion ) snake_case_ = torch.quasirandom.SobolEngine(1 , scramble=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = MODELS_MAP[model_name]['''url'''] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCAmelCase_ = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCAmelCase_ = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCAmelCase_ = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCAmelCase_ = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif name.startswith(SCREAMING_SNAKE_CASE__ ): return [name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 ): snake_case_ = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) snake_case_ = 0 if string.startswith('''net.3.''' ): depth += 1 snake_case_ = string[6:] elif string.startswith('''net.''' ): snake_case_ = string[4:] while string.startswith('''main.7.''' ): depth += 1 snake_case_ = string[7:] if string.startswith('''main.''' ): snake_case_ = string[5:] # mid block if string[:2].isdigit(): snake_case_ = string[:2] snake_case_ = string[2:] else: snake_case_ = string[0] snake_case_ = string[1:] if depth == max_depth: snake_case_ = MID_NUM_TO_LAYER[layer_num] snake_case_ = '''mid_block''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) < 7: snake_case_ = DOWN_NUM_TO_LAYER[layer_num] snake_case_ = F'''down_blocks.{depth}''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) > 7: snake_case_ = UP_NUM_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: snake_case_ = DEPTH_0_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - 1}''' if int(SCREAMING_SNAKE_CASE__ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) snake_case_ = string_left[1:] if "resnets" in new_layer: snake_case_ = convert_resconv_naming(SCREAMING_SNAKE_CASE__ ) elif "attentions" in new_layer: snake_case_ = convert_attn_naming(SCREAMING_SNAKE_CASE__ ) snake_case_ = new_string_left if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = prefix + '''.''' + new_layer + '''.''' + string_left else: snake_case_ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue snake_case_ = rename(SCREAMING_SNAKE_CASE__ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = transform_conv_attns(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ = v return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) == 1: if len(v.shape ) == 3: # weight snake_case_ = v[:, :, 0] else: # bias snake_case_ = v else: # qkv matrices snake_case_ = v.shape[0] snake_case_ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: snake_case_ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: snake_case_ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) snake_case_ = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' snake_case_ = download(SCREAMING_SNAKE_CASE__ ) snake_case_ = MODELS_MAP[model_name]['''sample_rate'''] snake_case_ = MODELS_MAP[model_name]['''sample_size'''] snake_case_ = Object() snake_case_ = sample_size snake_case_ = sample_rate snake_case_ = 0 snake_case_ = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE__ , sample_rate=SCREAMING_SNAKE_CASE__ ) snake_case_ = diffusers_model.state_dict() snake_case_ = DiffusionUncond(SCREAMING_SNAKE_CASE__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE__ )['''state_dict'''] ) snake_case_ = orig_model.diffusion_ema.eval() snake_case_ = orig_model.state_dict() snake_case_ = rename_orig_weights(SCREAMING_SNAKE_CASE__ ) snake_case_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) snake_case_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE__ ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith('''kernel''' ) for k in list(SCREAMING_SNAKE_CASE__ ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": snake_case_ = value.squeeze() snake_case_ = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = 100 snake_case_ = 33 snake_case_ = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE__ )[:-1] snake_case_ = get_crash_schedule(SCREAMING_SNAKE_CASE__ ) snake_case_ = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(33 ) snake_case_ = pipe(num_inference_steps=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).audios snake_case_ = sampling.iplms_sample(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {} ) snake_case_ = generated.clamp(-1 , 1 ) snake_case_ = (generated - audio).abs().sum() snake_case_ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , SCREAMING_SNAKE_CASE__ ) print('''Diff max''' , SCREAMING_SNAKE_CASE__ ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCAmelCase_ = parser.parse_args() main(args)
39
0
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" __snake_case : Union[str, Any] = [[] for _ in range(SCREAMING_SNAKE_CASE__ )] __snake_case : Any = key - 1 if key <= 0: raise ValueError("""Height of grid can\'t be 0 or negative""" ) if key == 1 or len(SCREAMING_SNAKE_CASE__ ) <= key: return input_string for position, character in enumerate(SCREAMING_SNAKE_CASE__ ): __snake_case : Tuple = position % (lowest * 2) # puts it in bounds __snake_case : str = min(SCREAMING_SNAKE_CASE__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(SCREAMING_SNAKE_CASE__ ) __snake_case : List[str] = ["""""".join(SCREAMING_SNAKE_CASE__ ) for row in temp_grid] __snake_case : Any = """""".join(SCREAMING_SNAKE_CASE__ ) return output_string def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : str = [] __snake_case : Dict = key - 1 if key <= 0: raise ValueError("""Height of grid can\'t be 0 or negative""" ) if key == 1: return input_string __snake_case : Optional[int] = [[] for _ in range(SCREAMING_SNAKE_CASE__ )] # generates template for position in range(len(SCREAMING_SNAKE_CASE__ ) ): __snake_case : Dict = position % (lowest * 2) # puts it in bounds __snake_case : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("""*""" ) __snake_case : List[str] = 0 for row in temp_grid: # fills in the characters __snake_case : Any = input_string[counter : counter + len(SCREAMING_SNAKE_CASE__ )] grid.append(list(SCREAMING_SNAKE_CASE__ ) ) counter += len(SCREAMING_SNAKE_CASE__ ) __snake_case : Optional[int] = """""" # reads as zigzag for position in range(len(SCREAMING_SNAKE_CASE__ ) ): __snake_case : int = position % (lowest * 2) # puts it in bounds __snake_case : Tuple = min(SCREAMING_SNAKE_CASE__ , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[Any] = {} for key_guess in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # tries every key __snake_case : Dict = decrypt(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return results if __name__ == "__main__": import doctest doctest.testmod()
26
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
0
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : List[Any] ,lowerCAmelCase_ : Any ) -> Any: """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) < k or k < 0: raise ValueError('Invalid Input' ) SCREAMING_SNAKE_CASE_ : List[Any] =sum(array[:k] ) for i in range(len(SCREAMING_SNAKE_CASE__ ) - k ): SCREAMING_SNAKE_CASE_ : Any =current_sum - array[i] + array[i + k] SCREAMING_SNAKE_CASE_ : Union[str, Any] =max(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __SCREAMING_SNAKE_CASE = [randint(-1000, 1000) for i in range(100)] __SCREAMING_SNAKE_CASE = randint(0, 110) print(f"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
220
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->Any: snake_case_ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case_ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case_ = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case_ = output[output != -float('''inf''' )] snake_case_ = tf.cast( tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-12 ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @require_tf class snake_case_ ( unittest.TestCase , __A ): '''simple docstring''' if is_tf_available(): SCREAMING_SNAKE_CASE : Optional[int] = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def snake_case__( self : List[Any] ) ->Optional[int]: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 2 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->List[Any]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) ->List[Any]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2, 0], [1_0_2, 1_0_3]] snake_case_ = [[1, 0], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for batch_size in range(1 , len(_UpperCamelCase ) + 1 ): snake_case_ = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow def snake_case__( self : List[str] ) ->int: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 1 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : Any ) ->List[str]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) ->Optional[int]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2], [1_0_2, 1_0_3]] snake_case_ = [[1], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for input_row in range(len(_UpperCamelCase ) ): snake_case_ = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow @require_tensorflow_text def snake_case__( self : Optional[Any] ) ->List[Any]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_UpperCamelCase ) class snake_case_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ) ->List[Any]: super().__init__() snake_case_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , '''spiece.model''' ) , '''rb''' ).read() ) snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->List[Any]: snake_case_ = self.tokenizer.tokenize(_UpperCamelCase ) snake_case_, snake_case_ = text.pad_model_inputs( _UpperCamelCase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) snake_case_ = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) return self.tokenizer.detokenize(_UpperCamelCase ) snake_case_ = CompleteSentenceTransformer() snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) snake_case_ = complete_model(_UpperCamelCase ) snake_case_ = tf.keras.Model(_UpperCamelCase , _UpperCamelCase ) keras_model.save(_UpperCamelCase ) def snake_case__( self : Any ) ->List[Any]: # Has PT equivalent: this test relies on random sampling snake_case_ = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 1_0, '''temperature''': 0.7, } snake_case_ = 1_4 snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = '''Hello, my dog is cute and''' snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''tf''' ) snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case_ = [6_3_8, 1_9_8] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def snake_case__( self : str ) ->Dict: # Has PT equivalent: ample use of framework-specific code snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = '''Hugging Face is a technology company based in New York and Paris.''' snake_case_ = bart_tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids snake_case_ = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Optional[int] ) ->List[str]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) ) class snake_case_ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , **_UpperCamelCase : Tuple ) ->Optional[Any]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() with self.assertRaises(_UpperCamelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_UpperCamelCase , foo='''bar''' )
39
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { """configuration_clap""": [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapAudioConfig""", """ClapConfig""", """ClapTextConfig""", ], """processing_clap""": ["""ClapProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapModel""", """ClapPreTrainedModel""", """ClapTextModel""", """ClapTextModelWithProjection""", """ClapAudioModel""", """ClapAudioModelWithProjection""", ] a_ = ["""ClapFeatureExtractor"""] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
437
import unittest from transformers import DonutProcessor lowerCAmelCase_ = '''naver-clova-ix/donut-base''' class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = DonutProcessor.from_pretrained(_UpperCamelCase ) def snake_case__( self : Dict ) ->str: snake_case_ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } snake_case_ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) snake_case_ = self.processor.tokenajson(_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , _UpperCamelCase )
39
0
"""simple docstring""" import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : List[str] = [] if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): for v in tree.values(): shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE__ ) ) elif isinstance(SCREAMING_SNAKE_CASE__ ,(list, tuple) ): for t in tree: shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE__ ) ) elif isinstance(SCREAMING_SNAKE_CASE__ ,torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("Not supported" ) return shapes @torch.jit.ignore def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Optional[int] = [] for d in reversed(SCREAMING_SNAKE_CASE__ ): idx.append(flat_idx % d ) _UpperCamelCase : Any = flat_idx // d return tuple(reversed(SCREAMING_SNAKE_CASE__ ) ) @torch.jit.ignore def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = None ,lowercase_ = None ,) -> str: """simple docstring""" def reduce_edge_list(lowercase_ ) -> None: _UpperCamelCase : int = True for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _UpperCamelCase : Union[str, Any] = -1 * (i + 1) l[reversed_idx] &= tally _UpperCamelCase : Any = l[reversed_idx] if start_edges is None: _UpperCamelCase : Optional[Any] = [s == 0 for s in start] reduce_edge_list(SCREAMING_SNAKE_CASE__ ) if end_edges is None: _UpperCamelCase : Tuple = [e == (d - 1) for e, d in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] reduce_edge_list(SCREAMING_SNAKE_CASE__ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(SCREAMING_SNAKE_CASE__ ) == 0: return [()] elif len(SCREAMING_SNAKE_CASE__ ) == 1: return [(slice(start[0] ,end[0] + 1 ),)] _UpperCamelCase : str = [] _UpperCamelCase : Union[str, Any] = [] # Dimensions common to start and end can be selected directly for s, e in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): if s == e: path_list.append(slice(SCREAMING_SNAKE_CASE__ ,s + 1 ) ) else: break _UpperCamelCase : Union[str, Any] = tuple(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) # start == end, and we're done if divergence_idx == len(SCREAMING_SNAKE_CASE__ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _UpperCamelCase : Optional[int] = start[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE__ ,sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] ,[d - 1 for d in dims[divergence_idx + 1 :]] ,dims[divergence_idx + 1 :] ,start_edges=start_edges[divergence_idx + 1 :] ,end_edges=[True for _ in end_edges[divergence_idx + 1 :]] ,) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _UpperCamelCase : Any = end[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE__ ,edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] ,end[divergence_idx + 1 :] ,dims[divergence_idx + 1 :] ,start_edges=[True for _ in start_edges[divergence_idx + 1 :]] ,end_edges=end_edges[divergence_idx + 1 :] ,) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] ,end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] ,end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 ,end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) _UpperCamelCase : Tuple = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 ,end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : List[Any] = t.shape[:no_batch_dims] _UpperCamelCase : Union[str, Any] = list(_flat_idx_to_idx(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ) # _get_minimal_slice_set is inclusive _UpperCamelCase : str = list(_flat_idx_to_idx(flat_end - 1 ,SCREAMING_SNAKE_CASE__ ) ) # Get an ordered list of slices to perform _UpperCamelCase : int = _get_minimal_slice_set( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,) _UpperCamelCase : Optional[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = False ,lowercase_ = None ,lowercase_ = False ,) -> Union[str, Any]: """simple docstring""" if not (len(SCREAMING_SNAKE_CASE__ ) > 0): raise ValueError("Must provide at least one input" ) _UpperCamelCase : Optional[int] = [shape[:no_batch_dims] for shape in _fetch_dims(SCREAMING_SNAKE_CASE__ )] _UpperCamelCase : Any = tuple([max(SCREAMING_SNAKE_CASE__ ) for s in zip(*SCREAMING_SNAKE_CASE__ )] ) def _prep_inputs(lowercase_ ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: _UpperCamelCase : Dict = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) _UpperCamelCase : Any = t.reshape(-1 ,*t.shape[no_batch_dims:] ) else: _UpperCamelCase : str = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t _UpperCamelCase : Optional[Any] = tensor_tree_map(_prep_inputs ,SCREAMING_SNAKE_CASE__ ) _UpperCamelCase : Union[str, Any] = None if _out is not None: _UpperCamelCase : Dict = tensor_tree_map(lambda lowercase_ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) ,_out ) _UpperCamelCase : int = 1 for d in orig_batch_dims: flat_batch_dim *= d _UpperCamelCase : Optional[int] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowercase_ ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Union[str, Any] = prepped_outputs for _ in range(SCREAMING_SNAKE_CASE__ ): # Chunk the input if not low_mem: _UpperCamelCase : int = _select_chunk else: _UpperCamelCase : Union[str, Any] = partial( _chunk_slice ,flat_start=SCREAMING_SNAKE_CASE__ ,flat_end=min(SCREAMING_SNAKE_CASE__ ,i + chunk_size ) ,no_batch_dims=len(SCREAMING_SNAKE_CASE__ ) ,) _UpperCamelCase : Union[str, Any] = tensor_tree_map(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Run the layer on the chunk _UpperCamelCase : Optional[int] = layer(**SCREAMING_SNAKE_CASE__ ) # Allocate space for the output if out is None: _UpperCamelCase : Dict = tensor_tree_map(lambda lowercase_ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) ,SCREAMING_SNAKE_CASE__ ) # Put the chunk in its pre-allocated space if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): def assign(lowercase_ ,lowercase_ ) -> None: for k, v in da.items(): if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): assign(SCREAMING_SNAKE_CASE__ ,da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: _UpperCamelCase : List[Any] = da[k] assign(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): for xa, xa in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): if _add_into_out: xa[i : i + chunk_size] += xa else: _UpperCamelCase : List[Any] = xa elif isinstance(SCREAMING_SNAKE_CASE__ ,torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: _UpperCamelCase : int = output_chunk else: raise ValueError("Not supported" ) i += chunk_size _UpperCamelCase : Optional[Any] = tensor_tree_map(lambda lowercase_ : t.view(orig_batch_dims + t.shape[1:] ) ,SCREAMING_SNAKE_CASE__ ) return out class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] , __a : int = 512 , ) -> Dict: _UpperCamelCase : Dict = max_chunk_size _UpperCamelCase : Union[str, Any] = None _UpperCamelCase : List[Any] = None def __SCREAMING_SNAKE_CASE ( self : Any , __a : Callable , __a : tuple , __a : int ) -> int: logging.info("Tuning chunk size..." ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size _UpperCamelCase : str = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] _UpperCamelCase : Any = [c for c in candidates if c > min_chunk_size] _UpperCamelCase : str = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__a : int ) -> bool: try: with torch.no_grad(): fn(*_UpperCamelCase , chunk_size=_UpperCamelCase ) return True except RuntimeError: return False _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : Optional[Any] = len(_UpperCamelCase ) - 1 while i > min_viable_chunk_size_index: _UpperCamelCase : Optional[int] = test_chunk_size(candidates[i] ) if not viable: _UpperCamelCase : Optional[Any] = (min_viable_chunk_size_index + i) // 2 else: _UpperCamelCase : str = i _UpperCamelCase : Dict = (i + len(_UpperCamelCase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Iterable , __a : Iterable ) -> bool: _UpperCamelCase : List[str] = True for aa, aa in zip(_UpperCamelCase , _UpperCamelCase ): assert type(_UpperCamelCase ) == type(_UpperCamelCase ) if isinstance(_UpperCamelCase , (list, tuple) ): consistent &= self._compare_arg_caches(_UpperCamelCase , _UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): _UpperCamelCase : Any = [v for _, v in sorted(aa.items() , key=lambda __a : x[0] )] _UpperCamelCase : List[Any] = [v for _, v in sorted(aa.items() , key=lambda __a : x[0] )] consistent &= self._compare_arg_caches(_UpperCamelCase , _UpperCamelCase ) else: consistent &= aa == aa return consistent def __SCREAMING_SNAKE_CASE ( self : str , __a : Callable , __a : tuple , __a : int , ) -> int: _UpperCamelCase : Any = True _UpperCamelCase : Optional[int] = tree_map(lambda __a : a.shape if isinstance(_UpperCamelCase , torch.Tensor ) else a , _UpperCamelCase , _UpperCamelCase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(_UpperCamelCase ) _UpperCamelCase : int = self._compare_arg_caches(self.cached_arg_data , _UpperCamelCase ) else: # Otherwise, we can reuse the precomputed value _UpperCamelCase : Optional[Any] = False if not consistent: _UpperCamelCase : Optional[Any] = self._determine_favorable_chunk_size( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) _UpperCamelCase : Any = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
624
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not nums: raise ValueError('''List is empty''' ) return sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
39
0
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1 / sqrt(2 ) ): """simple docstring""" _UpperCamelCase =tau * frequency / samplerate _UpperCamelCase =sin(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase =cos(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase =_sin / (2 * q_factor) _UpperCamelCase =(1 - _cos) / 2 _UpperCamelCase =1 - _cos _UpperCamelCase =1 + alpha _UpperCamelCase =-2 * _cos _UpperCamelCase =1 - alpha _UpperCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1 / sqrt(2 ) ): """simple docstring""" _UpperCamelCase =tau * frequency / samplerate _UpperCamelCase =sin(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase =cos(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase =_sin / (2 * q_factor) _UpperCamelCase =(1 + _cos) / 2 _UpperCamelCase =-1 - _cos _UpperCamelCase =1 + alpha _UpperCamelCase =-2 * _cos _UpperCamelCase =1 - alpha _UpperCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1 / sqrt(2 ) ): """simple docstring""" _UpperCamelCase =tau * frequency / samplerate _UpperCamelCase =sin(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase =cos(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase =_sin / (2 * q_factor) _UpperCamelCase =_sin / 2 _UpperCamelCase =0 _UpperCamelCase =-ba _UpperCamelCase =1 + alpha _UpperCamelCase =-2 * _cos _UpperCamelCase =1 - alpha _UpperCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1 / sqrt(2 ) ): """simple docstring""" _UpperCamelCase =tau * frequency / samplerate _UpperCamelCase =sin(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase =cos(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase =_sin / (2 * q_factor) _UpperCamelCase =1 - alpha _UpperCamelCase =-2 * _cos _UpperCamelCase =1 + alpha _UpperCamelCase =IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1 / sqrt(2 ) , ): """simple docstring""" _UpperCamelCase =tau * frequency / samplerate _UpperCamelCase =sin(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase =cos(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase =_sin / (2 * q_factor) _UpperCamelCase =10 ** (gain_db / 40) _UpperCamelCase =1 + alpha * big_a _UpperCamelCase =-2 * _cos _UpperCamelCase =1 - alpha * big_a _UpperCamelCase =1 + alpha / big_a _UpperCamelCase =-2 * _cos _UpperCamelCase =1 - alpha / big_a _UpperCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1 / sqrt(2 ) , ): """simple docstring""" _UpperCamelCase =tau * frequency / samplerate _UpperCamelCase =sin(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase =cos(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase =_sin / (2 * q_factor) _UpperCamelCase =10 ** (gain_db / 40) _UpperCamelCase =(big_a + 1) - (big_a - 1) * _cos _UpperCamelCase =(big_a + 1) + (big_a - 1) * _cos _UpperCamelCase =(big_a - 1) - (big_a + 1) * _cos _UpperCamelCase =(big_a - 1) + (big_a + 1) * _cos _UpperCamelCase =2 * sqrt(SCREAMING_SNAKE_CASE__ ) * alpha _UpperCamelCase =big_a * (pmc + aaa) _UpperCamelCase =2 * big_a * mpc _UpperCamelCase =big_a * (pmc - aaa) _UpperCamelCase =ppmc + aaa _UpperCamelCase =-2 * pmpc _UpperCamelCase =ppmc - aaa _UpperCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1 / sqrt(2 ) , ): """simple docstring""" _UpperCamelCase =tau * frequency / samplerate _UpperCamelCase =sin(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase =cos(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase =_sin / (2 * q_factor) _UpperCamelCase =10 ** (gain_db / 40) _UpperCamelCase =(big_a + 1) - (big_a - 1) * _cos _UpperCamelCase =(big_a + 1) + (big_a - 1) * _cos _UpperCamelCase =(big_a - 1) - (big_a + 1) * _cos _UpperCamelCase =(big_a - 1) + (big_a + 1) * _cos _UpperCamelCase =2 * sqrt(SCREAMING_SNAKE_CASE__ ) * alpha _UpperCamelCase =big_a * (ppmc + aaa) _UpperCamelCase =-2 * big_a * pmpc _UpperCamelCase =big_a * (ppmc - aaa) _UpperCamelCase =pmc + aaa _UpperCamelCase =2 * mpc _UpperCamelCase =pmc - aaa _UpperCamelCase =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
404
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : List[str] ) ->str: snake_case_ = inspect.getfile(accelerate.test_utils ) snake_case_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 snake_case_ = test_metrics @require_cpu def snake_case__( self : str ) ->int: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case__( self : Union[str, Any] ) ->Any: debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case__( self : List[Any] ) ->Tuple: self.test_metrics.main() @require_multi_gpu def snake_case__( self : Any ) ->Union[str, Any]: print(f'''Found {torch.cuda.device_count()} devices.''' ) snake_case_ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
39
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _A = get_tests_dir('''fixtures''') class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = mock.Mock() lowerCAmelCase_ = 500 lowerCAmelCase_ = {} lowerCAmelCase_ = HTTPError lowerCAmelCase_ = {} # Download this model to make sure it's in the cache. lowerCAmelCase_ = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''', return_value=_UpperCamelCase ) as mock_head: lowerCAmelCase_ = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" with self.assertRaises(_UpperCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder lowerCAmelCase_ = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) lowerCAmelCase_ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''', subfolder='''feature_extractor''' ) self.assertIsNotNone(_UpperCamelCase ) @is_staging_test class A ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE__ ( cls ): """simple docstring""" lowerCAmelCase_ = TOKEN HfFolder.save_token(_UpperCamelCase ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls ): """simple docstring""" try: delete_repo(token=cls._token, repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = ViTImageProcessor.from_pretrained(_UpperCamelCase ) image_processor.push_to_hub('''test-image-processor''', use_auth_token=self._token ) lowerCAmelCase_ = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase, getattr(_UpperCamelCase, _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token, repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _UpperCamelCase, repo_id='''test-image-processor''', push_to_hub=_UpperCamelCase, use_auth_token=self._token ) lowerCAmelCase_ = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase, getattr(_UpperCamelCase, _UpperCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = ViTImageProcessor.from_pretrained(_UpperCamelCase ) image_processor.push_to_hub('''valid_org/test-image-processor''', use_auth_token=self._token ) lowerCAmelCase_ = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase, getattr(_UpperCamelCase, _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token, repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _UpperCamelCase, repo_id='''valid_org/test-image-processor-org''', push_to_hub=_UpperCamelCase, use_auth_token=self._token ) lowerCAmelCase_ = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase, getattr(_UpperCamelCase, _UpperCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" CustomImageProcessor.register_for_auto_class() lowerCAmelCase_ = CustomImageProcessor.from_pretrained(_UpperCamelCase ) image_processor.push_to_hub('''test-dynamic-image-processor''', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map, {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''}, ) lowerCAmelCase_ = AutoImageProcessor.from_pretrained( f"{USER}/test-dynamic-image-processor", trust_remote_code=_UpperCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__, '''CustomImageProcessor''' )
431
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = "informer" SCREAMING_SNAKE_CASE : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Dict , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "student_t" , _UpperCamelCase : str = "nll" , _UpperCamelCase : int = 1 , _UpperCamelCase : List[int] = None , _UpperCamelCase : Optional[Union[str, bool]] = "mean" , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : int = 6_4 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.05 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : Dict=True , _UpperCamelCase : str = "prob" , _UpperCamelCase : int = 5 , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Optional[int]: # time series specific configuration snake_case_ = prediction_length snake_case_ = context_length or prediction_length snake_case_ = distribution_output snake_case_ = loss snake_case_ = input_size snake_case_ = num_time_features snake_case_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case_ = scaling snake_case_ = num_dynamic_real_features snake_case_ = num_static_real_features snake_case_ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = cardinality else: snake_case_ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = embedding_dimension else: snake_case_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ = num_parallel_samples # Transformer architecture configuration snake_case_ = input_size * len(self.lags_sequence ) + self._number_of_features snake_case_ = d_model snake_case_ = encoder_attention_heads snake_case_ = decoder_attention_heads snake_case_ = encoder_ffn_dim snake_case_ = decoder_ffn_dim snake_case_ = encoder_layers snake_case_ = decoder_layers snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = activation_function snake_case_ = init_std snake_case_ = use_cache # Informer snake_case_ = attention_type snake_case_ = sampling_factor snake_case_ = distil super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def snake_case__( self : Optional[Any] ) ->int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
39
0
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : Dict="pt" ) -> List[Any]: """simple docstring""" UpperCAmelCase = {'''add_prefix_space''': True} if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not line.startswith(''' ''' ) else {} UpperCAmelCase = padding_side return tokenizer( [line] , max_length=SCREAMING_SNAKE_CASE__ , padding='''max_length''' if pad_to_max_length else None , truncation=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int=None , ) -> Tuple: """simple docstring""" UpperCAmelCase = input_ids.ne(SCREAMING_SNAKE_CASE__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCAmelCase__ ( __A ): '''simple docstring''' def __init__( self : Optional[int] , a__ : Dict , a__ : int , a__ : Tuple , a__ : int , a__ : Tuple="train" , a__ : Dict=None , a__ : Optional[int]=None , a__ : List[str]=None , a__ : int="" , ): super().__init__() UpperCAmelCase = Path(_UpperCamelCase ).joinpath(type_path + '''.source''' ) UpperCAmelCase = Path(_UpperCamelCase ).joinpath(type_path + '''.target''' ) UpperCAmelCase = self.get_char_lens(self.src_file ) UpperCAmelCase = max_source_length UpperCAmelCase = max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" UpperCAmelCase = tokenizer UpperCAmelCase = prefix if n_obs is not None: UpperCAmelCase = self.src_lens[:n_obs] UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang def __len__( self : List[str] ): return len(self.src_lens ) def __getitem__( self : Tuple , a__ : Tuple ): UpperCAmelCase = index + 1 # linecache starts at 1 UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file ) , _UpperCamelCase ).rstrip('''\n''' ) UpperCAmelCase = linecache.getline(str(self.tgt_file ) , _UpperCamelCase ).rstrip('''\n''' ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , _UpperCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer ) UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer UpperCAmelCase = encode_line(_UpperCamelCase , _UpperCamelCase , self.max_source_length , '''right''' ) UpperCAmelCase = encode_line(_UpperCamelCase , _UpperCamelCase , self.max_target_length , '''right''' ) UpperCAmelCase = source_inputs['''input_ids'''].squeeze() UpperCAmelCase = target_inputs['''input_ids'''].squeeze() UpperCAmelCase = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __snake_case ( a__ : Tuple ): return [len(_UpperCamelCase ) for x in Path(_UpperCamelCase ).open().readlines()] def __snake_case ( self : Tuple , a__ : Optional[Any] ): UpperCAmelCase = torch.stack([x['''input_ids'''] for x in batch] ) UpperCAmelCase = torch.stack([x['''attention_mask'''] for x in batch] ) UpperCAmelCase = torch.stack([x['''decoder_input_ids'''] for x in batch] ) UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer.pad_token_id ) UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _UpperCamelCase ) else self.tokenizer.pad_token_id ) UpperCAmelCase = trim_batch(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase, UpperCAmelCase = trim_batch(_UpperCamelCase , _UpperCamelCase , attention_mask=_UpperCamelCase ) UpperCAmelCase = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch a__ : List[Any] = getLogger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> int: """simple docstring""" return list(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE__ ) ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = get_git_info() save_json(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , '''git_log.json''' ) ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any=4 , **SCREAMING_SNAKE_CASE_ : Tuple ) -> List[Any]: """simple docstring""" with open(SCREAMING_SNAKE_CASE__ , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: """simple docstring""" with open(SCREAMING_SNAKE_CASE__ ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def __snake_case ( ) -> Dict: """simple docstring""" UpperCAmelCase = git.Repo(search_parent_directories=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase = { '''repo_id''': str(SCREAMING_SNAKE_CASE__ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: """simple docstring""" return list(map(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any ) -> Any: """simple docstring""" with open(SCREAMING_SNAKE_CASE__ , '''wb''' ) as f: return pickle.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" def remove_articles(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): return re.sub(R'''\b(a|an|the)\b''' , ''' ''' , SCREAMING_SNAKE_CASE__ ) def white_space_fix(SCREAMING_SNAKE_CASE_ : Dict ): return " ".join(text.split() ) def remove_punc(SCREAMING_SNAKE_CASE_ : Tuple ): UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(SCREAMING_SNAKE_CASE_ : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE__ ) ) ) ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[int]: """simple docstring""" UpperCAmelCase = normalize_answer(SCREAMING_SNAKE_CASE__ ).split() UpperCAmelCase = normalize_answer(SCREAMING_SNAKE_CASE__ ).split() UpperCAmelCase = Counter(SCREAMING_SNAKE_CASE__ ) & Counter(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 UpperCAmelCase = 1.0 * num_same / len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase = 1.0 * num_same / len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: """simple docstring""" return normalize_answer(SCREAMING_SNAKE_CASE__ ) == normalize_answer(SCREAMING_SNAKE_CASE__ ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: """simple docstring""" assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase = 0 for hypo, pred in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): em += exact_match_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: em /= len(SCREAMING_SNAKE_CASE__ ) return {"em": em} def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Dict: """simple docstring""" return model_prefix.startswith('''rag''' ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> str: """simple docstring""" UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead UpperCAmelCase = '''dropout_rate''' for p in extra_params: if getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not hasattr(SCREAMING_SNAKE_CASE__ , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(SCREAMING_SNAKE_CASE__ ) ) delattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue UpperCAmelCase = p if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else equivalent_param[p] setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) delattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return hparams, config
51
import cmath import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) # Convert voltage and current to rectangular form snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
39
0
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments SCREAMING_SNAKE_CASE__ : str = logging.getLogger(__name__) @dataclass class _SCREAMING_SNAKE_CASE ( __A ): __SCREAMING_SNAKE_CASE = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) __SCREAMING_SNAKE_CASE = field(default=__A , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) __SCREAMING_SNAKE_CASE = field( default=__A , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) __SCREAMING_SNAKE_CASE = field(default=__A , metadata={'''help''': '''whether to use adafactor'''} ) __SCREAMING_SNAKE_CASE = field( default=__A , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) __SCREAMING_SNAKE_CASE = field( default=__A , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) __SCREAMING_SNAKE_CASE = field(default=__A , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) __SCREAMING_SNAKE_CASE = field( default=__A , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) __SCREAMING_SNAKE_CASE = field( default='''linear''' , metadata={'''help''': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
643
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=1_3 , _UpperCamelCase : str=7 , _UpperCamelCase : int=True , _UpperCamelCase : Dict=True , _UpperCamelCase : int=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : str=3_2 , _UpperCamelCase : str=5 , _UpperCamelCase : str=4 , _UpperCamelCase : int=3_7 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : str=5_1_2 , _UpperCamelCase : Optional[int]=1_6 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Any=0.02 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : str=None , ) ->Dict: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def snake_case__( self : str ) ->List[Any]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self : List[str] ) ->Tuple: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) ->Dict: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , ) ->Optional[int]: snake_case_ = BioGptForCausalLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , *_UpperCamelCase : List[Any] ) ->Union[str, Any]: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # create attention mask snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) snake_case_ = self.seq_length // 2 snake_case_ = 0 # first forward pass snake_case_, snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids snake_case_ = ids_tensor((1,) , _UpperCamelCase ).item() + 1 snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) snake_case_ = random_other_next_tokens # append to next input_ids and attn_mask snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCamelCase )] , dim=1 , ) # get two different outputs snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , past_key_values=_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , *_UpperCamelCase : List[Any] ) ->int: snake_case_ = BioGptModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval() snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) # first forward pass snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase ) snake_case_, snake_case_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[ '''last_hidden_state''' ] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , *_UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=False ) ->Dict: snake_case_ = BioGptForCausalLM(_UpperCamelCase ) model.to(_UpperCamelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def snake_case__( self : List[Any] , _UpperCamelCase : Optional[int] , *_UpperCamelCase : Dict ) ->Dict: snake_case_ = BioGptModel(_UpperCamelCase ) snake_case_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def snake_case__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , *_UpperCamelCase : List[str] ) ->int: snake_case_ = self.num_labels snake_case_ = BioGptForTokenClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = (BioGptForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Optional[Any] = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Tuple = False def snake_case__( self : List[str] ) ->Union[str, Any]: snake_case_ = BioGptModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : str ) ->int: self.config_tester.run_common_tests() def snake_case__( self : str ) ->Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_UpperCamelCase , gradient_checkpointing=_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCamelCase ) def snake_case__( self : List[Any] ) ->Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCamelCase ) @slow def snake_case__( self : int ) ->Optional[Any]: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = '''left''' # Define PAD Token = EOS Token = 50256 snake_case_ = tokenizer.eos_token snake_case_ = model.config.eos_token_id # use different length sentences to test batching snake_case_ = [ '''Hello, my dog is a little''', '''Today, I''', ] snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase ) snake_case_ = inputs['''input_ids'''].to(_UpperCamelCase ) snake_case_ = model.generate( input_ids=_UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(_UpperCamelCase ) , ) snake_case_ = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase ) snake_case_ = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() snake_case_ = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings ) snake_case_ = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] ) @slow def snake_case__( self : Optional[int] ) ->List[str]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = BioGptModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__( self : str ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = '''multi_label_classification''' snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__( self : int ) ->Any: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) snake_case_ = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) snake_case_ = model(_UpperCamelCase )[0] snake_case_ = 4_2_3_8_4 snake_case_ = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def snake_case__( self : List[str] ) ->Optional[int]: snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_UpperCamelCase ) snake_case_ = model.generate( **_UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=_UpperCamelCase , ) snake_case_ = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(_UpperCamelCase , _UpperCamelCase )
39
0
def __UpperCamelCase (lowerCAmelCase : List[str] ) -> Dict: A = len(SCREAMING_SNAKE_CASE__ ) while cur > 1: # Find the maximum number in arr A = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi A = arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE__ )] # Reverse whole list A = arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE__ )] cur -= 1 return arr if __name__ == "__main__": _UpperCAmelCase = input("Enter numbers separated by a comma:\n").strip() _UpperCAmelCase = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
699
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) snake_case_ = (boundary[1] - boundary[0]) / steps snake_case_ = boundary[0] snake_case_ = boundary[1] snake_case_ = make_points(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = 0.0 y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) for i in x_i: # print(i) y += h * f(SCREAMING_SNAKE_CASE__ ) y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) return y def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = a + h while x < (b - h): yield x snake_case_ = x + h def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # enter your function here snake_case_ = (x - 0) * (x - 0) return y def __SCREAMING_SNAKE_CASE (): snake_case_ = 0.0 # Lower bound of integration snake_case_ = 1.0 # Upper bound of integration snake_case_ = 10.0 # define number of steps or resolution snake_case_ = [a, b] # define boundary of integration snake_case_ = method_a(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
39
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowercase : List[Any] = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def lowercase ( __A : int ) -> Union[str, Any]: '''simple docstring''' config.addinivalue_line( """markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" ) def lowercase ( __A : Any ) -> Any: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(SCREAMING_SNAKE_CASE__ ) def lowercase ( __A : List[str] ) -> Union[str, Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main snake_case : Optional[Any] = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(SCREAMING_SNAKE_CASE__ , id=SCREAMING_SNAKE_CASE__ ) def lowercase ( __A : List[str] , __A : Tuple ) -> List[Any]: '''simple docstring''' if exitstatus == 5: snake_case : Optional[int] = 0 # Doctest custom flag to ignore output. __lowercase : int = doctest.register_optionflag('''IGNORE_RESULT''') __lowercase : Optional[Any] = doctest.OutputChecker class _A ( __A ): '''simple docstring''' def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) __lowercase : Dict = CustomOutputChecker __lowercase : Union[str, Any] = HfDoctestModule __lowercase : List[Any] = HfDocTestParser
36
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / '''model_card_template.md''' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None ): snake_case_ = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if token is None: snake_case_ = HfFolder.get_token() if organization is None: snake_case_ = whoami(SCREAMING_SNAKE_CASE__ )['''name'''] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(SCREAMING_SNAKE_CASE__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , '''hub_token''' ) else None snake_case_ = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) snake_case_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ = os.path.join(args.output_dir , '''README.md''' ) model_card.save(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) snake_case_ = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE__ ) if search is None: return None snake_case_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, '''diffusers''') def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if new_cache_dir is None: snake_case_ = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ = old_diffusers_cache snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ '''the directory exists and can be written to.''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if variant is not None: snake_case_ = weights_name.split('''.''' ) snake_case_ = splits[:-1] + [variant] + splits[-1:] snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ ) return weights_name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ): snake_case_ = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' '''this model name. Check the model page at ''' F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
39
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase_ = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } UpperCamelCase_ = { """squeezebert/squeezebert-uncased""": 512, """squeezebert/squeezebert-mnli""": 512, """squeezebert/squeezebert-mnli-headless""": 512, } UpperCamelCase_ = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class __SCREAMING_SNAKE_CASE ( __A ): lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = SqueezeBertTokenizer def __init__( self : List[Any] , UpperCAmelCase__ : int=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Dict="[UNK]" , UpperCAmelCase__ : int="[SEP]" , UpperCAmelCase__ : int="[PAD]" , UpperCAmelCase__ : List[str]="[CLS]" , UpperCAmelCase__ : List[Any]="[MASK]" , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : Optional[int] , ): '''simple docstring''' super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) lowercase : List[str] =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _UpperCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _UpperCamelCase ) != tokenize_chinese_chars ): lowercase : List[Any] =getattr(_UpperCamelCase , normalizer_state.pop('''type''' ) ) lowercase : Any =do_lower_case lowercase : Dict =strip_accents lowercase : Dict =tokenize_chinese_chars lowercase : Optional[Any] =normalizer_class(**_UpperCamelCase ) lowercase : Union[str, Any] =do_lower_case def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any]=None ): '''simple docstring''' lowercase : List[str] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase : Any =[self.sep_token_id] lowercase : int =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ): '''simple docstring''' lowercase : List[str] =self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
92
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt" def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) snake_case_ = backbone_featmap_shape snake_case_ = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: snake_case_ = None snake_case_ = None snake_case_ = [] snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) snake_case_ = readout_type snake_case_ = reassemble_factors snake_case_ = neck_hidden_sizes snake_case_ = fusion_hidden_size snake_case_ = head_in_index snake_case_ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = semantic_loss_ignore_index snake_case_ = semantic_classifier_dropout def snake_case__( self : List[str] ) ->List[Any]: snake_case_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
39
0
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A ( __A ): def lowercase__ ( self : Any ) -> str: """simple docstring""" __snake_case : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCamelCase , """embed_dim""" ) ) self.parent.assertTrue(hasattr(_UpperCamelCase , """num_heads""" ) ) class _A : def __init__( self : Any , __magic_name__ : int , __magic_name__ : List[Any]=13 , __magic_name__ : str=64 , __magic_name__ : List[str]=3 , __magic_name__ : Union[str, Any]=[16, 48, 96] , __magic_name__ : Dict=[1, 3, 6] , __magic_name__ : int=[1, 2, 10] , __magic_name__ : Any=[7, 3, 3] , __magic_name__ : Union[str, Any]=[4, 2, 2] , __magic_name__ : List[str]=[2, 1, 1] , __magic_name__ : List[Any]=[2, 2, 2] , __magic_name__ : Tuple=[False, False, True] , __magic_name__ : List[Any]=[0.0, 0.0, 0.0] , __magic_name__ : int=0.02 , __magic_name__ : Any=1E-12 , __magic_name__ : Dict=True , __magic_name__ : List[str]=True , __magic_name__ : List[Any]=2 , ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : int = batch_size __snake_case : Optional[Any] = image_size __snake_case : List[Any] = patch_sizes __snake_case : List[Any] = patch_stride __snake_case : List[str] = patch_padding __snake_case : Any = is_training __snake_case : List[Any] = use_labels __snake_case : Optional[int] = num_labels __snake_case : Optional[int] = num_channels __snake_case : List[Any] = embed_dim __snake_case : Union[str, Any] = num_heads __snake_case : Optional[Any] = stride_kv __snake_case : Optional[Any] = depth __snake_case : List[str] = cls_token __snake_case : List[Any] = attention_drop_rate __snake_case : Dict = initializer_range __snake_case : List[Any] = layer_norm_eps def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : List[Any] = None if self.use_labels: __snake_case : int = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Dict = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[Any] ) -> List[str]: """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = CvtModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() __snake_case : int = model(_UpperCamelCase ) __snake_case : Optional[int] = (self.image_size, self.image_size) __snake_case , __snake_case : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): __snake_case : Tuple = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __snake_case : Any = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowercase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = self.num_labels __snake_case : Dict = CvtForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() __snake_case : List[str] = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Optional[int] = config_and_inputs __snake_case : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __A , __A , unittest.TestCase ): lowercase__: Tuple = (CvtModel, CvtForImageClassification) if is_torch_available() else () lowercase__: Dict = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) lowercase__: Optional[Any] = False lowercase__: Optional[int] = False lowercase__: Dict = False lowercase__: Optional[Any] = False lowercase__: Tuple = False def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Any = CvtModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def lowercase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : str ) -> int: """simple docstring""" return @unittest.skip(reason="""Cvt does not output attentions""" ) def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def lowercase__ ( self : Any ) -> Dict: """simple docstring""" pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def lowercase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = model_class(_UpperCamelCase ) __snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Optional[Any] = [*signature.parameters.keys()] __snake_case : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def lowercase__ ( self : int ) -> List[Any]: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" def check_hidden_states_output(__magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any ): __snake_case : int = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) __snake_case : List[Any] = outputs.hidden_states __snake_case : Any = len(self.model_tester.depth ) self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[Any] = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : List[str] = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def lowercase__ ( self : Optional[Any] ) -> Any: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : Any ) -> Any: """simple docstring""" pass @slow def lowercase__ ( self : Tuple ) -> Tuple: """simple docstring""" for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[Any] = CvtModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def _a ( ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : Dict = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_UpperCamelCase ) __snake_case : Optional[Any] = self.default_image_processor __snake_case : int = prepare_img() __snake_case : str = image_processor(images=_UpperCamelCase , return_tensors="""pt""" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): __snake_case : str = model(**_UpperCamelCase ) # verify the logits __snake_case : List[str] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) __snake_case : Optional[int] = torch.tensor([0.9285, 0.9015, -0.3150] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1E-4 ) )
26
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = '''pytorch_model.bin''' @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "A csv or a json file containing the validation data."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "The name of the task to train on."} , ) SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field( default=__A , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=__A , metadata={"help": "Random seed for initialization."} , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case_ = dataset.filter(lambda SCREAMING_SNAKE_CASE__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case_ = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) ) print(SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = dataset.remove_columns(['''label''', '''probability'''] ) snake_case_ = dataset.rename_column('''prediction''' , '''label''' ) snake_case_ = dataset.map(lambda SCREAMING_SNAKE_CASE__ : {"label": idalabel[example["label"]]} ) snake_case_ = dataset.shuffle(seed=args.seed ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) else: dataset.to_json(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): snake_case_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case_ = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ ) snake_case_ = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ , infer_file=SCREAMING_SNAKE_CASE__ ) snake_case_ = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ ) snake_case_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(SCREAMING_SNAKE_CASE__ ).items(): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Sanity checks snake_case_ = {} snake_case_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case_ = args.train_file snake_case_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case_ = args.eval_file for key in data_files: snake_case_ = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: snake_case_ = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) snake_case_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format snake_case_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = None snake_case_ = None snake_case_ = 0 snake_case_ = False # Show the progress bar snake_case_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case_ = data_dir_format(SCREAMING_SNAKE_CASE__ ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-1''' ) snake_case_ = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): arguments_dict.update({key: value} ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-2''' ) # Update arguments_dict snake_case_ = model_path snake_case_ = data_files['''train'''] snake_case_ = current_output_dir snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = iteration snake_case_ = data_dir_format(iteration + 1 ) snake_case_ = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) ) snake_case_ = config.idalabel snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-checkpoint.json''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: snake_case_ = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Loading the dataset from local csv or json files. snake_case_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] snake_case_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case_ = eval_result if best_iteration is None: snake_case_ = new_iteration snake_case_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case_ = new_iteration snake_case_ = new_eval_result snake_case_ = 0 else: if new_eval_result == best_eval_result: snake_case_ = new_iteration snake_case_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE__ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , )
39
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __SCREAMING_SNAKE_CASE = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure)
220
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AltDiffusionPipeline SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__( self : Dict ) ->int: torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) snake_case_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) snake_case_ = CLIPTextModel(_UpperCamelCase ) snake_case_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) snake_case_ = 7_7 snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__( self : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0 ) ->Any: if str(_UpperCamelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCamelCase ) else: snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case__( self : Dict ) ->List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def snake_case__( self : List[str] ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case__( self : Dict ) ->Any: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = '''A photo of an astronaut''' snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : Tuple ) ->Union[str, Any]: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : int ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self : List[str] ) ->Tuple: # make sure here that pndm scheduler skips prk snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='''np''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : List[str] ) ->Optional[Any]: snake_case_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , num_inference_steps=2 , output_type='''numpy''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
0
"""simple docstring""" from __future__ import annotations a_ = 1.6021e-19 # units = C def UpperCAmelCase_ ( __a : int , __a : Dict , __a : Optional[Any] , ): '''simple docstring''' if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif conductivity < 0: raise ValueError('Conductivity cannot be negative' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative' ) elif mobility < 0: raise ValueError('mobility cannot be negative' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
437
from math import factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( '''If a class of 40 students must be arranged into groups of''', f"""4 for group projects, there are {combinations(40, 4)} ways""", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f"""are {combinations(10, 3)} ways that first, second and""", '''third place can be awarded.''', )
39
0
"""simple docstring""" import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCamelCase__ = "sshleifer/bart-tiny-random" lowerCamelCase__ = "patrickvonplaten/t5-tiny-random" @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return AutoConfig.from_pretrained(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: _UpperCamelCase, *_UpperCamelCase : Tuple = create_student_by_copying_alternating_layers(_UpperCamelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: _UpperCamelCase, *_UpperCamelCase : List[Any] = create_student_by_copying_alternating_layers(_UpperCamelCase , tempfile.mkdtemp() , e=1 , d=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: _UpperCamelCase, *_UpperCamelCase : List[Any] = create_student_by_copying_alternating_layers(_UpperCamelCase , tempfile.mkdtemp() , e=1 , d=_UpperCamelCase ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: _UpperCamelCase, *_UpperCamelCase : Optional[Any] = create_student_by_copying_alternating_layers(_UpperCamelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: with self.assertRaises(_UpperCamelCase ): create_student_by_copying_alternating_layers(_UpperCamelCase , tempfile.mkdtemp() , e=_UpperCamelCase , d=_UpperCamelCase )
624
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCAmelCase_ = sys.version_info >= (3, 10) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ): return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : bool @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int = 42 SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : Optional[bool] = None class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = "titi" SCREAMING_SNAKE_CASE : Any = "toto" class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = "titi" SCREAMING_SNAKE_CASE : Optional[Any] = "toto" SCREAMING_SNAKE_CASE : Any = 42 @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : BasicEnum = "toto" def snake_case__( self : Tuple ) ->List[str]: snake_case_ = BasicEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto" def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = MixedTypeEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[float] = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : Optional[str] = None SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] ) SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] ) SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] ) SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = field() SCREAMING_SNAKE_CASE : str = field() SCREAMING_SNAKE_CASE : BasicEnum = field() def snake_case__( self : Optional[Any] ) ->Tuple: snake_case_ = BasicEnum(self.required_enum ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : "BasicEnum" = field() SCREAMING_SNAKE_CASE : "Optional[bool]" = None SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : bool | None = None @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int | None = None SCREAMING_SNAKE_CASE : float | None = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : str | None = None SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] ) SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] ) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Dict , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser ) ->str: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _UpperCamelCase ) and yy.get('''choices''' , _UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_UpperCamelCase ) , yy['''type'''](_UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--bar''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--baz''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--flag''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((snake_case_), ) = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase ) self.assertFalse(example.flag ) def snake_case__( self : Tuple ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) snake_case_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case__( self : Tuple ) ->Union[str, Any]: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto" snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual( _UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def snake_case__( self : Optional[Any] ) ->List[Any]: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--bar''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) snake_case_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[] ) ) snake_case_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def snake_case__( self : Union[str, Any] ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--required_str''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Dict ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } snake_case_ = parser.parse_dict(_UpperCamelCase )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : int ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase ) def snake_case__( self : str ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_json''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_yaml''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Any ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase )
39
0
'''simple docstring''' from timeit import timeit __lowerCamelCase : Tuple = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =0 _UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) // 2 _UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) ) def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) <= 2: return True if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" return s == s[::-1] def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =f'''all({name}(key) is value for key, value in test_data.items())''' _UpperCamelCase =f'''from __main__ import test_data, {name}''' _UpperCamelCase =50_0000 _UpperCamelCase =timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ ) print(f'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F"""{key:21} {value}""") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
404
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Dict , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
39
0
from __future__ import annotations import math def __UpperCamelCase ( _A ): if num <= 0: lowerCAmelCase_ = f"{num}: Invalid input, please enter a positive integer." raise ValueError(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = [True] * (num + 1) lowerCAmelCase_ = [] lowerCAmelCase_ = 2 lowerCAmelCase_ = int(math.sqrt(SCREAMING_SNAKE_CASE__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(SCREAMING_SNAKE_CASE__ ) # Set multiples of start be False for i in range(start * start , num + 1 , SCREAMING_SNAKE_CASE__ ): if sieve[i] is True: lowerCAmelCase_ = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(SCREAMING_SNAKE_CASE__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
431
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv" SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]: snake_case_ = vocab_size snake_case_ = context_length snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case_ = layer_norm_epsilon snake_case_ = rescale_every snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
39
0
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a__ : List[str] = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : Any=None , ) -> Any: """simple docstring""" if attention_mask is None: UpperCAmelCase = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: UpperCAmelCase = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: UpperCAmelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Tuple , a__ : str , a__ : Tuple=13 , a__ : Union[str, Any]=7 , a__ : Optional[int]=True , a__ : Tuple=False , a__ : str=99 , a__ : List[str]=16 , a__ : Any=2 , a__ : List[str]=4 , a__ : Union[str, Any]=4 , a__ : Tuple="gelu" , a__ : List[str]=0.1 , a__ : int=0.1 , a__ : Union[str, Any]=32 , a__ : int=2 , a__ : Optional[int]=1 , a__ : Any=0 , a__ : Union[str, Any]=0.02 , ): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = bos_token_id UpperCAmelCase = initializer_range def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) UpperCAmelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) UpperCAmelCase = shift_tokens_right(_UpperCamelCase , 1 , 2 ) UpperCAmelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_UpperCamelCase , ) UpperCAmelCase = prepare_blenderbot_inputs_dict(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return config, inputs_dict def __snake_case ( self : List[Any] ): UpperCAmelCase, UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def __snake_case ( self : List[Any] , a__ : Optional[int] , a__ : List[Any] , a__ : Optional[Any] ): UpperCAmelCase = 20 UpperCAmelCase = model_class_name(_UpperCamelCase ) UpperCAmelCase = model.encode(inputs_dict['''input_ids'''] ) UpperCAmelCase, UpperCAmelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , ) UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_UpperCamelCase , ) UpperCAmelCase = model.decode(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"Max diff is {diff}" ) def __snake_case ( self : Any , a__ : str , a__ : Union[str, Any] , a__ : Optional[Any] ): UpperCAmelCase = 20 UpperCAmelCase = model_class_name(_UpperCamelCase ) UpperCAmelCase = model.encode(inputs_dict['''input_ids'''] ) UpperCAmelCase, UpperCAmelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) UpperCAmelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , ) UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , _UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , ) UpperCAmelCase = model.decode(_UpperCamelCase , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase ) UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"Max diff is {diff}" ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCamelCase =99 def __snake_case ( self : Tuple ): UpperCAmelCase = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) UpperCAmelCase = input_ids.shape[0] UpperCAmelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __snake_case ( self : Any ): UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = self._get_config_and_data() UpperCAmelCase = FlaxBlenderbotForConditionalGeneration(_UpperCamelCase ) UpperCAmelCase = lm_model(input_ids=_UpperCamelCase ) UpperCAmelCase = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _UpperCamelCase ) def __snake_case ( self : Optional[Any] ): UpperCAmelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) UpperCAmelCase = FlaxBlenderbotForConditionalGeneration(_UpperCamelCase ) UpperCAmelCase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) UpperCAmelCase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) UpperCAmelCase = lm_model(input_ids=_UpperCamelCase , decoder_input_ids=_UpperCamelCase ) UpperCAmelCase = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _UpperCamelCase ) def __snake_case ( self : Tuple ): UpperCAmelCase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) UpperCAmelCase = shift_tokens_right(_UpperCamelCase , 1 , 2 ) UpperCAmelCase = np.equal(_UpperCamelCase , 1 ).astype(np.floataa ).sum() UpperCAmelCase = np.equal(_UpperCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_UpperCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCAmelCase__ ( __A , unittest.TestCase , __A ): '''simple docstring''' _lowerCamelCase =True _lowerCamelCase =( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) _lowerCamelCase =(FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def __snake_case ( self : List[str] ): UpperCAmelCase = FlaxBlenderbotModelTester(self ) def __snake_case ( self : int ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __snake_case ( self : List[str] ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __snake_case ( self : List[Any] ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase = model_class(_UpperCamelCase ) @jax.jit def encode_jitted(a__ : str , a__ : Union[str, Any]=None , **a__ : List[str] ): return model.encode(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = encode_jitted(**_UpperCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = encode_jitted(**_UpperCamelCase ).to_tuple() self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) ) for jitted_output, output in zip(_UpperCamelCase , _UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __snake_case ( self : List[str] ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = model_class(_UpperCamelCase ) UpperCAmelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) UpperCAmelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(a__ : List[str] , a__ : Any , a__ : List[Any] ): return model.decode( decoder_input_ids=_UpperCamelCase , decoder_attention_mask=_UpperCamelCase , encoder_outputs=_UpperCamelCase , ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = decode_jitted(**_UpperCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = decode_jitted(**_UpperCamelCase ).to_tuple() self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) ) for jitted_output, output in zip(_UpperCamelCase , _UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __snake_case ( self : Dict ): for model_class_name in self.all_model_classes: UpperCAmelCase = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids UpperCAmelCase = np.ones((1, 1) ) * model.config.eos_token_id UpperCAmelCase = model(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def __snake_case ( self : Optional[Any] ): UpperCAmelCase = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} UpperCAmelCase = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} UpperCAmelCase = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=_UpperCamelCase ) UpperCAmelCase = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) UpperCAmelCase = ['''Sam'''] UpperCAmelCase = tokenizer(_UpperCamelCase , return_tensors='''jax''' ) UpperCAmelCase = model.generate(**_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase = '''Sam is a great name. It means "sun" in Gaelic.''' UpperCAmelCase = tokenizer.batch_decode(_UpperCamelCase , **_UpperCamelCase ) assert generated_txt[0].strip() == tgt_text
51
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) class snake_case_ : '''simple docstring''' def __init__( self : int , _UpperCamelCase : Optional[str] = None ) ->Tuple: snake_case_ = ( os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) snake_case_ = Extractor def snake_case__( self : Any , _UpperCamelCase : str ) ->str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" snake_case_ = os.path.abspath(_UpperCamelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) ) def snake_case__( self : int , _UpperCamelCase : str , _UpperCamelCase : bool ) ->bool: return force_extract or ( not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase )) ) def snake_case__( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : bool = False ) ->str: snake_case_ = self.extractor.infer_extractor_format(_UpperCamelCase ) if not extractor_format: return input_path snake_case_ = self._get_output_path(_UpperCamelCase ) if self._do_extract(_UpperCamelCase , _UpperCamelCase ): self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return output_path class snake_case_ ( __A ): '''simple docstring''' @classmethod @abstractmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : str ) ->bool: ... @staticmethod @abstractmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: ... class snake_case_ ( __A , __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[bytes] = [] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->List[Any]: with open(_UpperCamelCase , '''rb''' ) as f: return f.read(_UpperCamelCase ) @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if not magic_number: snake_case_ = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) try: snake_case_ = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase ) except OSError: return False return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) class snake_case_ ( __A ): '''simple docstring''' @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : Any ) ->bool: return tarfile.is_tarfile(_UpperCamelCase ) @staticmethod def snake_case__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) ->List[str]: def resolved(_UpperCamelCase : str ) -> str: return os.path.realpath(os.path.abspath(_UpperCamelCase ) ) def badpath(_UpperCamelCase : str , _UpperCamelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase ) def badlink(_UpperCamelCase : Tuple , _UpperCamelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link snake_case_ = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCamelCase ) snake_case_ = resolved(_UpperCamelCase ) for finfo in members: if badpath(finfo.name , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = tarfile.open(_UpperCamelCase ) tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) ) tar_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [b"\x1F\x8B"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with gzip.open(_UpperCamelCase , '''rb''' ) as gzip_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def snake_case__( cls : List[str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCamelCase , '''rb''' ) as fp: snake_case_ = _EndRecData(_UpperCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: snake_case_ = fp.read(_UpperCamelCase ) # CD is where we expect it to be if len(_UpperCamelCase ) == sizeCentralDir: snake_case_ = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with zipfile.ZipFile(_UpperCamelCase , '''r''' ) as zip_file: zip_file.extractall(_UpperCamelCase ) zip_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with lzma.open(_UpperCamelCase ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = rarfile.RarFile(_UpperCamelCase ) rf.extractall(_UpperCamelCase ) rf.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [b"\x28\xb5\x2F\xFD"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd snake_case_ = zstd.ZstdDecompressor() with open(_UpperCamelCase , '''rb''' ) as ifh, open(_UpperCamelCase , '''wb''' ) as ofh: dctx.copy_stream(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"\x42\x5A\x68"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with bza.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with pyazr.SevenZipFile(_UpperCamelCase , '''r''' ) as archive: archive.extractall(_UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x04\x22\x4D\x18"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def snake_case__( cls : List[Any] ) ->List[str]: return max( len(_UpperCamelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCamelCase , _UpperCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->Tuple: try: return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase ) except OSError: return b"" @classmethod def snake_case__( cls : Optional[Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bool = False ) ->bool: warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = cls.infer_extractor_format(_UpperCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def snake_case__( cls : int , _UpperCamelCase : Union[Path, str] ) ->str: # <Added version="2.4.0"/> snake_case_ = cls._get_magic_number_max_length() snake_case_ = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return extractor_format @classmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[BaseExtractor] = "deprecated" , ) ->None: os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase ) # Prevent parallel extractions snake_case_ = str(Path(_UpperCamelCase ).with_suffix('''.lock''' ) ) with FileLock(_UpperCamelCase ): shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = extractor if extractor != '''deprecated''' else extractor_format else: snake_case_ = cls.extractors[extractor_format] return extractor.extract(_UpperCamelCase , _UpperCamelCase ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=_UpperCamelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCamelCase ): return extractor.extract(_UpperCamelCase , _UpperCamelCase )
39
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder SCREAMING_SNAKE_CASE__ : str = '__DUMMY_TRANSFORMERS_USER__' SCREAMING_SNAKE_CASE__ : Optional[int] = 'Dummy User' SCREAMING_SNAKE_CASE__ : int = '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' SCREAMING_SNAKE_CASE__ : Optional[Any] = 'https://hub-ci.huggingface.co' SCREAMING_SNAKE_CASE__ : str = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' SCREAMING_SNAKE_CASE__ : Optional[int] = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' SCREAMING_SNAKE_CASE__ : List[str] = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def a__ ( snake_case__ : Optional[int] ): monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , SCREAMING_SNAKE_CASE__ ) @pytest.fixture def a__ ( snake_case__ : Optional[Any] ): monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , SCREAMING_SNAKE_CASE__ ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , SCREAMING_SNAKE_CASE__ ) @pytest.fixture def a__ ( snake_case__ : str ): monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , SCREAMING_SNAKE_CASE__ ) @pytest.fixture def a__ ( snake_case__ : List[str] , snake_case__ : Union[str, Any] ): HfFolder.save_token(SCREAMING_SNAKE_CASE__ ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def a__ ( ): return HfApi(endpoint=SCREAMING_SNAKE_CASE__ ) @pytest.fixture(scope="""session""" ) def a__ ( snake_case__ : Dict ): _UpperCAmelCase : List[str] = HfFolder.get_token() HfFolder.save_token(SCREAMING_SNAKE_CASE__ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(SCREAMING_SNAKE_CASE__ ) @pytest.fixture def a__ ( snake_case__ : List[str] ): def _cleanup_repo(snake_case__ : Any ): hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def a__ ( snake_case__ : int ): @contextmanager def _temporary_repo(snake_case__ : str ): try: yield repo_id finally: cleanup_repo(SCREAMING_SNAKE_CASE__ ) return _temporary_repo @pytest.fixture(scope="""session""" ) def a__ ( snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] ): _UpperCAmelCase : List[str] = f'''repo_txt_data-{int(time.time() * 1_0e3 )}''' _UpperCAmelCase : List[Any] = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" , private=SCREAMING_SNAKE_CASE__ ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE__ , path_or_fileobj=str(SCREAMING_SNAKE_CASE__ ) , path_in_repo="""data/text_data.txt""" , repo_id=SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def a__ ( snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : List[str] ): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def a__ ( snake_case__ : int , snake_case__ : Tuple , snake_case__ : List[str] ): _UpperCAmelCase : Optional[int] = f'''repo_zipped_txt_data-{int(time.time() * 1_0e3 )}''' _UpperCAmelCase : Union[str, Any] = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" , private=SCREAMING_SNAKE_CASE__ ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE__ , path_or_fileobj=str(SCREAMING_SNAKE_CASE__ ) , path_in_repo="""data.zip""" , repo_id=SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def a__ ( snake_case__ : List[Any] , snake_case__ : str , snake_case__ : Optional[Any] ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def a__ ( snake_case__ : str , snake_case__ : str , snake_case__ : str ): _UpperCAmelCase : Union[str, Any] = f'''repo_zipped_img_data-{int(time.time() * 1_0e3 )}''' _UpperCAmelCase : Dict = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" , private=SCREAMING_SNAKE_CASE__ ) hf_api.upload_file( token=SCREAMING_SNAKE_CASE__ , path_or_fileobj=str(SCREAMING_SNAKE_CASE__ ) , path_in_repo="""data.zip""" , repo_id=SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def a__ ( snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[Any] ): return hf_private_dataset_repo_zipped_img_data_
643
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
39
0
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def __UpperCamelCase (lowerCAmelCase : str = 3 ) -> List[Any]: if isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(SCREAMING_SNAKE_CASE__ ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) A = QuantumRegister(SCREAMING_SNAKE_CASE__, 'qr' ) A = ClassicalRegister(SCREAMING_SNAKE_CASE__, 'cr' ) A = QuantumCircuit(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) A = number_of_qubits for i in range(SCREAMING_SNAKE_CASE__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(SCREAMING_SNAKE_CASE__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j), SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(SCREAMING_SNAKE_CASE__, number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # simulate with 10000 shots A = Aer.get_backend('qasm_simulator' ) A = execute(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, shots=10_000 ) return job.result().get_counts(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print( F'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
699
import re from filelock import FileLock try: import nltk lowerCAmelCase_ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): re.sub('''<n>''' , '''''' , SCREAMING_SNAKE_CASE__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE__ ) )
39
0
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class _A ( __A ): '''simple docstring''' __lowerCamelCase : Optional[Any] = None __lowerCamelCase : int = None @property def snake_case_ ( self ): '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def snake_case_ ( self ): '''simple docstring''' snake_case : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_UpperCamelCase ,"""feature_size""" ) ) self.assertTrue(hasattr(_UpperCamelCase ,"""sampling_rate""" ) ) self.assertTrue(hasattr(_UpperCamelCase ,"""padding_value""" ) ) def snake_case_ ( self ): '''simple docstring''' snake_case : str = self.feat_extract_tester.prepare_inputs_for_common() snake_case : str = self.feature_extraction_class(**self.feat_extract_dict ) snake_case : Optional[Any] = feat_extract.model_input_names[0] snake_case : Any = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_UpperCamelCase ) == len(_UpperCamelCase ) for x, y in zip(_UpperCamelCase ,processed_features[input_name] ) ) ) snake_case : Tuple = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCamelCase ) snake_case : List[Any] = BatchFeature({input_name: speech_inputs} ,tensor_type="""np""" ) snake_case : List[str] = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case : Dict = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def snake_case_ ( self ): '''simple docstring''' snake_case : str = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCamelCase ) snake_case : str = self.feature_extraction_class(**self.feat_extract_dict ) snake_case : Any = feat_extract.model_input_names[0] snake_case : Optional[Any] = BatchFeature({input_name: speech_inputs} ,tensor_type="""pt""" ) snake_case : Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case : int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def snake_case_ ( self ): '''simple docstring''' snake_case : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCamelCase ) snake_case : str = self.feature_extraction_class(**self.feat_extract_dict ) snake_case : Union[str, Any] = feat_extract.model_input_names[0] snake_case : List[str] = BatchFeature({input_name: speech_inputs} ,tensor_type="""tf""" ) snake_case : List[Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case : int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_=False ): '''simple docstring''' def _inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ): snake_case : List[Any] = len(input[0] ) for input_slice in input[1:]: if len(_UpperCamelCase ) != length: return False return True def _inputs_are_equal(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): if len(_UpperCamelCase ) != len(_UpperCamelCase ): return False for input_slice_a, input_slice_a in zip(_UpperCamelCase ,_UpperCamelCase ): if not np.allclose(np.asarray(_UpperCamelCase ) ,np.asarray(_UpperCamelCase ) ,atol=1E-3 ): return False return True snake_case : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) snake_case : List[Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=_UpperCamelCase ) snake_case : Optional[Any] = feat_extract.model_input_names[0] snake_case : List[Any] = BatchFeature({input_name: speech_inputs} ) snake_case : Dict = self.feat_extract_tester.seq_length_diff snake_case : Optional[int] = self.feat_extract_tester.max_seq_length + pad_diff snake_case : Optional[int] = self.feat_extract_tester.min_seq_length snake_case : str = self.feat_extract_tester.batch_size snake_case : Dict = self.feat_extract_tester.feature_size # test padding for List[int] + numpy snake_case : int = feat_extract.pad(_UpperCamelCase ,padding=_UpperCamelCase ) snake_case : List[Any] = input_a[input_name] snake_case : Tuple = feat_extract.pad(_UpperCamelCase ,padding="""longest""" ) snake_case : Optional[int] = input_a[input_name] snake_case : List[str] = feat_extract.pad(_UpperCamelCase ,padding="""max_length""" ,max_length=len(speech_inputs[-1] ) ) snake_case : Optional[int] = input_a[input_name] snake_case : Any = feat_extract.pad(_UpperCamelCase ,padding="""longest""" ,return_tensors="""np""" ) snake_case : Optional[int] = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_UpperCamelCase ): feat_extract.pad(_UpperCamelCase ,padding="""max_length""" )[input_name] snake_case : Dict = feat_extract.pad( _UpperCamelCase ,padding="""max_length""" ,max_length=_UpperCamelCase ,return_tensors="""np""" ) snake_case : Optional[int] = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_UpperCamelCase ) ) self.assertTrue(_inputs_have_equal_length(_UpperCamelCase ) ) self.assertTrue(_inputs_have_equal_length(_UpperCamelCase ) ) self.assertTrue(_inputs_are_equal(_UpperCamelCase ,_UpperCamelCase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy snake_case : str = feat_extract.pad(_UpperCamelCase ,pad_to_multiple_of=10 ) snake_case : Dict = input_a[input_name] snake_case : Any = feat_extract.pad(_UpperCamelCase ,padding="""longest""" ,pad_to_multiple_of=10 ) snake_case : str = input_a[input_name] snake_case : Dict = feat_extract.pad( _UpperCamelCase ,padding="""max_length""" ,pad_to_multiple_of=10 ,max_length=_UpperCamelCase ) snake_case : Any = input_a[input_name] snake_case : str = feat_extract.pad( _UpperCamelCase ,padding="""max_length""" ,pad_to_multiple_of=10 ,max_length=_UpperCamelCase ,return_tensors="""np""" ,) snake_case : str = input_a[input_name] self.assertTrue(all(len(_UpperCamelCase ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_UpperCamelCase ,_UpperCamelCase ) ) snake_case : Dict = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_UpperCamelCase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] ,(batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct snake_case : Tuple = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_=False ): '''simple docstring''' def _inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ): snake_case : Tuple = len(input[0] ) for input_slice in input[1:]: if len(_UpperCamelCase ) != length: return False return True def _inputs_are_equal(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): if len(_UpperCamelCase ) != len(_UpperCamelCase ): return False for input_slice_a, input_slice_a in zip(_UpperCamelCase ,_UpperCamelCase ): if not np.allclose(np.asarray(_UpperCamelCase ) ,np.asarray(_UpperCamelCase ) ,atol=1E-3 ): return False return True snake_case : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) snake_case : str = self.feat_extract_tester.prepare_inputs_for_common(numpify=_UpperCamelCase ) snake_case : Any = feat_extract.model_input_names[0] snake_case : Any = BatchFeature({input_name: speech_inputs} ) # truncate to smallest snake_case : List[str] = feat_extract.pad( _UpperCamelCase ,padding="""max_length""" ,max_length=len(speech_inputs[0] ) ,truncation=_UpperCamelCase ) snake_case : Dict = input_a[input_name] snake_case : Union[str, Any] = feat_extract.pad(_UpperCamelCase ,padding="""max_length""" ,max_length=len(speech_inputs[0] ) ) snake_case : List[str] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_UpperCamelCase ) ) self.assertFalse(_inputs_have_equal_length(_UpperCamelCase ) ) # truncate to smallest with np snake_case : str = feat_extract.pad( _UpperCamelCase ,padding="""max_length""" ,max_length=len(speech_inputs[0] ) ,return_tensors="""np""" ,truncation=_UpperCamelCase ,) snake_case : str = input_a[input_name] snake_case : Dict = feat_extract.pad( _UpperCamelCase ,padding="""max_length""" ,max_length=len(speech_inputs[0] ) ,return_tensors="""np""" ) snake_case : Tuple = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_UpperCamelCase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_UpperCamelCase ) ) # truncate to middle snake_case : str = feat_extract.pad( _UpperCamelCase ,padding="""max_length""" ,max_length=len(speech_inputs[1] ) ,truncation=_UpperCamelCase ,return_tensors="""np""" ,) snake_case : Optional[Any] = input_a[input_name] snake_case : str = feat_extract.pad( _UpperCamelCase ,padding="""max_length""" ,max_length=len(speech_inputs[1] ) ,truncation=_UpperCamelCase ) snake_case : Optional[Any] = input_a[input_name] snake_case : List[str] = feat_extract.pad( _UpperCamelCase ,padding="""max_length""" ,max_length=len(speech_inputs[1] ) ,return_tensors="""np""" ) snake_case : int = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_UpperCamelCase ) ) self.assertTrue(_inputs_have_equal_length(_UpperCamelCase ) ) self.assertTrue(_inputs_are_equal(_UpperCamelCase ,_UpperCamelCase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_UpperCamelCase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_UpperCamelCase ): feat_extract.pad(_UpperCamelCase ,truncation=_UpperCamelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_UpperCamelCase ): feat_extract.pad(_UpperCamelCase ,padding="""longest""" ,truncation=_UpperCamelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_UpperCamelCase ): feat_extract.pad(_UpperCamelCase ,padding="""longest""" ,truncation=_UpperCamelCase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_UpperCamelCase ): feat_extract.pad(_UpperCamelCase ,padding="""max_length""" ,truncation=_UpperCamelCase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy snake_case : List[Any] = 12 snake_case : List[Any] = feat_extract.pad( _UpperCamelCase ,padding="""max_length""" ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=_UpperCamelCase ,truncation=_UpperCamelCase ,) snake_case : Optional[int] = input_a[input_name] snake_case : List[Any] = feat_extract.pad( _UpperCamelCase ,padding="""max_length""" ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=_UpperCamelCase ,) snake_case : Tuple = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of snake_case : Optional[int] = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: snake_case : Dict = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_UpperCamelCase ) ) self.assertFalse(_inputs_have_equal_length(_UpperCamelCase ) ) def snake_case_ ( self ): '''simple docstring''' self._check_padding(numpify=_UpperCamelCase ) def snake_case_ ( self ): '''simple docstring''' self._check_padding(numpify=_UpperCamelCase ) def snake_case_ ( self ): '''simple docstring''' self._check_truncation(numpify=_UpperCamelCase ) def snake_case_ ( self ): '''simple docstring''' self._check_truncation(numpify=_UpperCamelCase ) @require_torch def snake_case_ ( self ): '''simple docstring''' snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) snake_case : Optional[int] = self.feat_extract_tester.prepare_inputs_for_common() snake_case : Union[str, Any] = feat_extract.model_input_names[0] snake_case : Dict = BatchFeature({input_name: speech_inputs} ) snake_case : str = feat_extract.pad(_UpperCamelCase ,padding="""longest""" ,return_tensors="""np""" )[input_name] snake_case : Union[str, Any] = feat_extract.pad(_UpperCamelCase ,padding="""longest""" ,return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def snake_case_ ( self ): '''simple docstring''' snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) snake_case : Tuple = self.feat_extract_tester.prepare_inputs_for_common() snake_case : List[Any] = feat_extract.model_input_names[0] snake_case : Optional[int] = BatchFeature({input_name: speech_inputs} ) snake_case : Optional[Any] = feat_extract.pad(_UpperCamelCase ,padding="""longest""" ,return_tensors="""np""" )[input_name] snake_case : Optional[int] = feat_extract.pad(_UpperCamelCase ,padding="""longest""" ,return_tensors="""tf""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def snake_case_ ( self ): '''simple docstring''' snake_case : Any = self.feat_extract_dict snake_case : Tuple = True snake_case : Optional[int] = self.feature_extraction_class(**_UpperCamelCase ) snake_case : str = self.feat_extract_tester.prepare_inputs_for_common() snake_case : Optional[int] = [len(_UpperCamelCase ) for x in speech_inputs] snake_case : Optional[int] = feat_extract.model_input_names[0] snake_case : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) snake_case : Optional[int] = feat_extract.pad(_UpperCamelCase ,padding="""longest""" ,return_tensors="""np""" ) self.assertIn("""attention_mask""" ,_UpperCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,_UpperCamelCase ) def snake_case_ ( self ): '''simple docstring''' snake_case : Union[str, Any] = self.feat_extract_dict snake_case : Optional[int] = True snake_case : Union[str, Any] = self.feature_extraction_class(**_UpperCamelCase ) snake_case : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common() snake_case : Any = [len(_UpperCamelCase ) for x in speech_inputs] snake_case : Union[str, Any] = feat_extract.model_input_names[0] snake_case : Optional[Any] = BatchFeature({input_name: speech_inputs} ) snake_case : Optional[int] = min(_UpperCamelCase ) snake_case : Optional[Any] = feat_extract.pad( _UpperCamelCase ,padding="""max_length""" ,max_length=_UpperCamelCase ,truncation=_UpperCamelCase ,return_tensors="""np""" ) self.assertIn("""attention_mask""" ,_UpperCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] )
36
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [0 for i in range(r + 1 )] # nc0 = 1 snake_case_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case_ = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
39
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """shi-labs/dinat-mini-in1k-224""": """https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json""", # See all Dinat models at https://huggingface.co/models?filter=dinat } class __SCREAMING_SNAKE_CASE ( __A , __A ): lowerCamelCase_ = "dinat" lowerCamelCase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[Any] , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : Tuple=3 , UpperCAmelCase__ : Optional[int]=64 , UpperCAmelCase__ : int=[3, 4, 6, 5] , UpperCAmelCase__ : str=[2, 4, 8, 16] , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : Optional[int]=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase__ : List[str]=3.0 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : int=0.0 , UpperCAmelCase__ : List[str]=0.0 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : List[str]="gelu" , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : List[Any]=1E-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Optional[Any]=None , **UpperCAmelCase__ : Any , ): '''simple docstring''' super().__init__(**_UpperCamelCase ) lowercase : Any =patch_size lowercase : Union[str, Any] =num_channels lowercase : List[str] =embed_dim lowercase : List[Any] =depths lowercase : Any =len(_UpperCamelCase ) lowercase : str =num_heads lowercase : Tuple =kernel_size lowercase : Optional[int] =dilations lowercase : Optional[int] =mlp_ratio lowercase : Union[str, Any] =qkv_bias lowercase : int =hidden_dropout_prob lowercase : Union[str, Any] =attention_probs_dropout_prob lowercase : int =drop_path_rate lowercase : Optional[int] =hidden_act lowercase : Union[str, Any] =layer_norm_eps lowercase : Any =initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase : str =int(embed_dim * 2 ** (len(_UpperCamelCase ) - 1) ) lowercase : Any =layer_scale_init_value lowercase : Optional[int] =['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(_UpperCamelCase ) + 1 )] lowercase , lowercase : Any =get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names )
92
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCAmelCase_ = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 13_10_72, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return torch.atana(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / math.pi * 2 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.sin(t * math.pi / 2 ) ** 2 snake_case_ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class snake_case_ ( __A ): '''simple docstring''' pass class snake_case_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : int ) ->Optional[int]: super().__init__() snake_case_ = DiffusionAttnUnetaD(_UpperCamelCase , n_attn_layers=4 ) snake_case_ = deepcopy(self.diffusion ) snake_case_ = torch.quasirandom.SobolEngine(1 , scramble=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = MODELS_MAP[model_name]['''url'''] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCAmelCase_ = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCAmelCase_ = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCAmelCase_ = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCAmelCase_ = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif name.startswith(SCREAMING_SNAKE_CASE__ ): return [name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 ): snake_case_ = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) snake_case_ = 0 if string.startswith('''net.3.''' ): depth += 1 snake_case_ = string[6:] elif string.startswith('''net.''' ): snake_case_ = string[4:] while string.startswith('''main.7.''' ): depth += 1 snake_case_ = string[7:] if string.startswith('''main.''' ): snake_case_ = string[5:] # mid block if string[:2].isdigit(): snake_case_ = string[:2] snake_case_ = string[2:] else: snake_case_ = string[0] snake_case_ = string[1:] if depth == max_depth: snake_case_ = MID_NUM_TO_LAYER[layer_num] snake_case_ = '''mid_block''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) < 7: snake_case_ = DOWN_NUM_TO_LAYER[layer_num] snake_case_ = F'''down_blocks.{depth}''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) > 7: snake_case_ = UP_NUM_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: snake_case_ = DEPTH_0_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - 1}''' if int(SCREAMING_SNAKE_CASE__ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) snake_case_ = string_left[1:] if "resnets" in new_layer: snake_case_ = convert_resconv_naming(SCREAMING_SNAKE_CASE__ ) elif "attentions" in new_layer: snake_case_ = convert_attn_naming(SCREAMING_SNAKE_CASE__ ) snake_case_ = new_string_left if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = prefix + '''.''' + new_layer + '''.''' + string_left else: snake_case_ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue snake_case_ = rename(SCREAMING_SNAKE_CASE__ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = transform_conv_attns(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ = v return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) == 1: if len(v.shape ) == 3: # weight snake_case_ = v[:, :, 0] else: # bias snake_case_ = v else: # qkv matrices snake_case_ = v.shape[0] snake_case_ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: snake_case_ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: snake_case_ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) snake_case_ = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' snake_case_ = download(SCREAMING_SNAKE_CASE__ ) snake_case_ = MODELS_MAP[model_name]['''sample_rate'''] snake_case_ = MODELS_MAP[model_name]['''sample_size'''] snake_case_ = Object() snake_case_ = sample_size snake_case_ = sample_rate snake_case_ = 0 snake_case_ = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE__ , sample_rate=SCREAMING_SNAKE_CASE__ ) snake_case_ = diffusers_model.state_dict() snake_case_ = DiffusionUncond(SCREAMING_SNAKE_CASE__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE__ )['''state_dict'''] ) snake_case_ = orig_model.diffusion_ema.eval() snake_case_ = orig_model.state_dict() snake_case_ = rename_orig_weights(SCREAMING_SNAKE_CASE__ ) snake_case_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) snake_case_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE__ ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith('''kernel''' ) for k in list(SCREAMING_SNAKE_CASE__ ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": snake_case_ = value.squeeze() snake_case_ = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = 100 snake_case_ = 33 snake_case_ = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE__ )[:-1] snake_case_ = get_crash_schedule(SCREAMING_SNAKE_CASE__ ) snake_case_ = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(33 ) snake_case_ = pipe(num_inference_steps=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).audios snake_case_ = sampling.iplms_sample(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {} ) snake_case_ = generated.clamp(-1 , 1 ) snake_case_ = (generated - audio).abs().sum() snake_case_ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , SCREAMING_SNAKE_CASE__ ) print('''Diff max''' , SCREAMING_SNAKE_CASE__ ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCAmelCase_ = parser.parse_args() main(args)
39
0
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer __UpperCamelCase = logging.getLogger(__name__) def _a ( ) -> Dict: """simple docstring""" __snake_case : Tuple = argparse.ArgumentParser( description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" ) parser.add_argument( """--dataset_name""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , ) parser.add_argument( """--dataset_config""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" ) parser.add_argument( """--tokenizer_name_or_path""" , type=SCREAMING_SNAKE_CASE__ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , ) parser.add_argument( """--shard_size""" , type=SCREAMING_SNAKE_CASE__ , default=1000 , help="""Number of entries to go in a single shard.""" , ) parser.add_argument("""--split""" , type=SCREAMING_SNAKE_CASE__ , default="""train""" , choices=["""train""", """test""", """validation"""] ) parser.add_argument( """--limit""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Limit the number of shards (used for debugging).""" , ) parser.add_argument( """--max_length""" , type=SCREAMING_SNAKE_CASE__ , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum""" """ sequence length that is a multiple of 8.""" , ) parser.add_argument( """--output_dir""" , default="""tf-tpu""" , type=SCREAMING_SNAKE_CASE__ , help="""Output directory where the TFRecord shards will be saved. If the""" """ path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord""" """ shards will be directly saved to a Google Cloud Storage bucket.""" , ) __snake_case : Optional[int] = parser.parse_args() return args def _a ( _lowerCamelCase ) -> int: """simple docstring""" def fn(_lowerCamelCase ): return tokenizer(examples["""text"""] ) return fn def _a ( _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Dict = [] for i in range(len(tokenized_data["""input_ids"""] ) ): __snake_case : Optional[int] = { """input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ), """attention_mask""": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ), } __snake_case : List[str] = tf.train.Features(feature=SCREAMING_SNAKE_CASE__ ) __snake_case : Optional[int] = tf.train.Example(features=SCREAMING_SNAKE_CASE__ ) __snake_case : Optional[Any] = example.SerializeToString() records.append(SCREAMING_SNAKE_CASE__ ) return records def _a ( _lowerCamelCase ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: __snake_case : Optional[int] = min(len(SCREAMING_SNAKE_CASE__ ) , args.limit ) __snake_case : Union[str, Any] = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) __snake_case : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) __snake_case : List[str] = os.path.join(args.output_dir , args.split ) if not os.path.exists(SCREAMING_SNAKE_CASE__ ): os.makedirs(SCREAMING_SNAKE_CASE__ ) else: __snake_case : str = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. __snake_case : Optional[int] = tokenize_function(SCREAMING_SNAKE_CASE__ ) __snake_case : List[str] = dataset.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=4 , remove_columns=["""text"""] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_lowerCamelCase ): # Concatenate all texts. __snake_case : Dict = {k: sum(examples[k] , [] ) for k in examples.keys()} __snake_case : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 __snake_case : int = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. __snake_case : Any = { k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE__ , args.max_length )] for k, t in concatenated_examples.items() } return result __snake_case : Tuple = dataset_tokenized.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=1000 , num_proc=4 ) __snake_case : str = 0 __snake_case : Tuple = 0 for shard in range(0 , len(SCREAMING_SNAKE_CASE__ ) , args.shard_size ): __snake_case : List[str] = grouped_dataset[shard : shard + args.shard_size] __snake_case : Optional[int] = len(dataset_snapshot["""input_ids"""] ) __snake_case : Any = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) __snake_case : Dict = get_serialized_examples(SCREAMING_SNAKE_CASE__ ) with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__ ) as out_file: for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __snake_case : str = serialized_examples[i] out_file.write(SCREAMING_SNAKE_CASE__ ) print("""Wrote file {} containing {} records""".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''' , """w""" ) as f: print(F'''Total {args.split} records: {total_records}''' , file=SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": __UpperCamelCase = parse_args() main(args)
26
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __SCREAMING_SNAKE_CASE = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } __SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Any ,lowerCAmelCase_ : Tuple=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] =create_model( 'HTSAT-tiny' ,'roberta' ,SCREAMING_SNAKE_CASE__ ,precision='fp32' ,device='cuda:0' if torch.cuda.is_available() else 'cpu' ,enable_fusion=SCREAMING_SNAKE_CASE__ ,fusion_type='aff_2d' if enable_fusion else None ,) return model, model_cfg def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Dict ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any ={} SCREAMING_SNAKE_CASE_ : Tuple =r'.*sequential.(\d+).*' SCREAMING_SNAKE_CASE_ : List[Any] =r'.*_projection.(\d+).*' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_ : Dict =key.replace(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if re.match(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): # replace sequential layers with list SCREAMING_SNAKE_CASE_ : Any =re.match(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).group(1 ) SCREAMING_SNAKE_CASE_ : str =key.replace(F"""sequential.{sequential_layer}.""" ,F"""layers.{int(SCREAMING_SNAKE_CASE__ )//3}.linear.""" ) elif re.match(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE_ : List[str] =int(re.match(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE_ : Optional[Any] =1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE_ : str =key.replace(F"""_projection.{projecton_layer}.""" ,F"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE_ : Union[str, Any] =value SCREAMING_SNAKE_CASE_ : str =mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE_ : Union[str, Any] =mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE_ : Optional[Any] =mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE_ : List[str] =mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE_ : List[Any] =query_layer SCREAMING_SNAKE_CASE_ : Optional[Any] =key_layer SCREAMING_SNAKE_CASE_ : Dict =value_layer else: SCREAMING_SNAKE_CASE_ : List[Any] =value return model_state_dict def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Any ,lowerCAmelCase_ : Optional[Any] ,lowerCAmelCase_ : Tuple ,lowerCAmelCase_ : Optional[int]=False ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any =init_clap(SCREAMING_SNAKE_CASE__ ,enable_fusion=SCREAMING_SNAKE_CASE__ ) clap_model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] =clap_model.state_dict() SCREAMING_SNAKE_CASE_ : Union[str, Any] =rename_state_dict(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE_ : int =ClapConfig() SCREAMING_SNAKE_CASE_ : Union[str, Any] =enable_fusion SCREAMING_SNAKE_CASE_ : str =ClapModel(SCREAMING_SNAKE_CASE__ ) # ignore the spectrogram embedding layer model.load_state_dict(SCREAMING_SNAKE_CASE__ ,strict=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) transformers_config.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') __SCREAMING_SNAKE_CASE = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
220
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->Any: snake_case_ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case_ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case_ = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case_ = output[output != -float('''inf''' )] snake_case_ = tf.cast( tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-12 ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @require_tf class snake_case_ ( unittest.TestCase , __A ): '''simple docstring''' if is_tf_available(): SCREAMING_SNAKE_CASE : Optional[int] = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def snake_case__( self : List[Any] ) ->Optional[int]: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 2 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->List[Any]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) ->List[Any]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2, 0], [1_0_2, 1_0_3]] snake_case_ = [[1, 0], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for batch_size in range(1 , len(_UpperCamelCase ) + 1 ): snake_case_ = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow def snake_case__( self : List[str] ) ->int: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 1 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : Any ) ->List[str]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) ->Optional[int]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2], [1_0_2, 1_0_3]] snake_case_ = [[1], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for input_row in range(len(_UpperCamelCase ) ): snake_case_ = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow @require_tensorflow_text def snake_case__( self : Optional[Any] ) ->List[Any]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_UpperCamelCase ) class snake_case_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ) ->List[Any]: super().__init__() snake_case_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , '''spiece.model''' ) , '''rb''' ).read() ) snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->List[Any]: snake_case_ = self.tokenizer.tokenize(_UpperCamelCase ) snake_case_, snake_case_ = text.pad_model_inputs( _UpperCamelCase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) snake_case_ = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) return self.tokenizer.detokenize(_UpperCamelCase ) snake_case_ = CompleteSentenceTransformer() snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) snake_case_ = complete_model(_UpperCamelCase ) snake_case_ = tf.keras.Model(_UpperCamelCase , _UpperCamelCase ) keras_model.save(_UpperCamelCase ) def snake_case__( self : Any ) ->List[Any]: # Has PT equivalent: this test relies on random sampling snake_case_ = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 1_0, '''temperature''': 0.7, } snake_case_ = 1_4 snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = '''Hello, my dog is cute and''' snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''tf''' ) snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case_ = [6_3_8, 1_9_8] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def snake_case__( self : str ) ->Dict: # Has PT equivalent: ample use of framework-specific code snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = '''Hugging Face is a technology company based in New York and Paris.''' snake_case_ = bart_tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids snake_case_ = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Optional[int] ) ->List[str]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) ) class snake_case_ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , **_UpperCamelCase : Tuple ) ->Optional[Any]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() with self.assertRaises(_UpperCamelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_UpperCamelCase , foo='''bar''' )
39
0
"""simple docstring""" import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A_: """simple docstring""" def __init__( self , A , A=3 , A=32 , A=3 , A=10 , A=[8, 16, 32, 64] , A=[1, 1, 2, 1] , A=True , A=True , A="relu" , A=3 , A=None , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=1 , ): _lowerCamelCase : Any = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Any = image_size _lowerCamelCase : str = num_channels _lowerCamelCase : List[Any] = embeddings_size _lowerCamelCase : Optional[int] = hidden_sizes _lowerCamelCase : List[str] = depths _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : int = num_labels _lowerCamelCase : Dict = scope _lowerCamelCase : List[Any] = len(_UpperCamelCase ) _lowerCamelCase : Optional[int] = out_features _lowerCamelCase : Dict = out_indices _lowerCamelCase : Tuple = num_groups def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : Optional[Any] = None if self.use_labels: _lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_labels ) _lowerCamelCase : List[Any] = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _lowerCAmelCase ( self , A , A , A ): _lowerCamelCase : str = BitModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowerCamelCase : Tuple = model(_UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCAmelCase ( self , A , A , A ): _lowerCamelCase : Dict = self.num_labels _lowerCamelCase : Optional[int] = BitForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowerCamelCase : Dict = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self , A , A , A ): _lowerCamelCase : Optional[Any] = BitBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = BitBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCAmelCase ( self ): _lowerCamelCase : Dict = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = config_and_inputs _lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A_(__A , __A , unittest.TestCase ): """simple docstring""" a_ : List[str] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a_ : List[str] = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) a_ : List[str] = False a_ : Any = False a_ : List[str] = False a_ : Tuple = False a_ : Dict = False def _lowerCAmelCase ( self ): _lowerCamelCase : Tuple = BitModelTester(self ) _lowerCamelCase : int = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase ) def _lowerCAmelCase ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCAmelCase ( self ): return @unittest.skip(reason='Bit does not output attentions' ) def _lowerCAmelCase ( self ): pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def _lowerCAmelCase ( self ): pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def _lowerCAmelCase ( self ): pass def _lowerCAmelCase ( self ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(_UpperCamelCase ) _lowerCamelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def _lowerCAmelCase ( self ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def _lowerCAmelCase ( self ): _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCamelCase ) def _lowerCAmelCase ( self ): _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[Any] = model_class(config=_UpperCamelCase ) for name, module in model.named_modules(): if isinstance(_UpperCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) def _lowerCAmelCase ( self ): def check_hidden_states_output(A , A , A ): _lowerCamelCase : Tuple = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): _lowerCamelCase : str = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) _lowerCamelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowerCamelCase , _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : List[Any] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCamelCase : Optional[int] = layer_type _lowerCamelCase : Union[str, Any] = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[Any] = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def _lowerCAmelCase ( self ): pass def _lowerCAmelCase ( self ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @slow def _lowerCAmelCase ( self ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : str = BitModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def UpperCAmelCase_ ( ): '''simple docstring''' _lowerCamelCase : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A_(unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowerCAmelCase ( self ): _lowerCamelCase : Any = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_UpperCamelCase ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : List[str] = image_processor(images=_UpperCamelCase , return_tensors='pt' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**_UpperCamelCase ) # verify the logits _lowerCamelCase : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) _lowerCamelCase : Dict = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1E-4 ) ) @require_torch class A_(__A , unittest.TestCase ): """simple docstring""" a_ : Tuple = (BitBackbone,) if is_torch_available() else () a_ : Optional[Any] = BitConfig a_ : Optional[int] = False def _lowerCAmelCase ( self ): _lowerCamelCase : Tuple = BitModelTester(self )
437
import unittest from transformers import DonutProcessor lowerCAmelCase_ = '''naver-clova-ix/donut-base''' class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = DonutProcessor.from_pretrained(_UpperCamelCase ) def snake_case__( self : Dict ) ->str: snake_case_ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } snake_case_ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) snake_case_ = self.processor.tokenajson(_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , _UpperCamelCase )
39
0
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = "pytorch_model.bin" @dataclasses.dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) SCREAMING_SNAKE_CASE__ :Optional[str] = dataclasses.field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) SCREAMING_SNAKE_CASE__ :str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) SCREAMING_SNAKE_CASE__ :Optional[str] = dataclasses.field( default=__A , metadata={"help": "A csv or a json file containing the validation data."} ) SCREAMING_SNAKE_CASE__ :Optional[str] = dataclasses.field( default=__A , metadata={"help": "The name of the task to train on."} , ) SCREAMING_SNAKE_CASE__ :Optional[List[str]] = dataclasses.field( default=__A , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) SCREAMING_SNAKE_CASE__ :Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) SCREAMING_SNAKE_CASE__ :Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) SCREAMING_SNAKE_CASE__ :Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE__ :Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) SCREAMING_SNAKE_CASE__ :Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) SCREAMING_SNAKE_CASE__ :Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) SCREAMING_SNAKE_CASE__ :Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) SCREAMING_SNAKE_CASE__ :Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) SCREAMING_SNAKE_CASE__ :Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE__ :Optional[int] = dataclasses.field( default=__A , metadata={"help": "Random seed for initialization."} , ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : Union[str, Any] = datasets.concatenate_datasets([infer_input, infer_output] ,axis=1 ) if args.do_filter_by_confidence: _UpperCamelCase : Union[str, Any] = dataset.filter(lambda lowercase_ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _UpperCamelCase : Tuple = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) ) print(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase : List[str] = dataset.sort("probability" ,reverse=SCREAMING_SNAKE_CASE__ ) _UpperCamelCase : int = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) _UpperCamelCase : Any = dataset.remove_columns(["label", "probability"] ) _UpperCamelCase : Dict = dataset.rename_column("prediction" ,"label" ) _UpperCamelCase : Dict = dataset.map(lambda lowercase_ : {"label": idalabel[example["label"]]} ) _UpperCamelCase : Any = dataset.shuffle(seed=args.seed ) _UpperCamelCase : Dict = os.path.join(SCREAMING_SNAKE_CASE__ ,F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(SCREAMING_SNAKE_CASE__ ,index=SCREAMING_SNAKE_CASE__ ) else: dataset.to_json(SCREAMING_SNAKE_CASE__ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,**lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : str = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,level=logging.INFO ,) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _UpperCamelCase : Dict = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ ) _UpperCamelCase : List[str] = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ ,infer_file=SCREAMING_SNAKE_CASE__ ) _UpperCamelCase : List[Any] = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ ) _UpperCamelCase : str = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(SCREAMING_SNAKE_CASE__ ).items(): setattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): setattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Sanity checks _UpperCamelCase : str = {} _UpperCamelCase : Any = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _UpperCamelCase : Union[str, Any] = args.train_file _UpperCamelCase : Tuple = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _UpperCamelCase : Union[str, Any] = args.eval_file for key in data_files: _UpperCamelCase : Optional[int] = data_files[key].split("." )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: _UpperCamelCase : str = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) _UpperCamelCase : List[str] = F'''{args.output_dir}/self-train_iter-{{}}'''.format _UpperCamelCase : str = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir ,exist_ok=SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ ,exist_ok=SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() _UpperCamelCase : Optional[int] = None _UpperCamelCase : List[Any] = None _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : Tuple = False # Show the progress bar _UpperCamelCase : Optional[Any] = tqdm(range(args.max_selftrain_iterations ) ,disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 ,int(args.max_selftrain_iterations ) ): _UpperCamelCase : int = data_dir_format(SCREAMING_SNAKE_CASE__ ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _UpperCamelCase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ ,"stage-1" ) _UpperCamelCase : Any = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): arguments_dict.update({key: value} ) _UpperCamelCase : Dict = os.path.join(SCREAMING_SNAKE_CASE__ ,"best-checkpoint" ,SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" ,SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info("Self-training job completed: iteration: %d, stage: 1." ,SCREAMING_SNAKE_CASE__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _UpperCamelCase : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,"best-checkpoint" ) _UpperCamelCase : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ ,"stage-2" ) # Update arguments_dict _UpperCamelCase : Optional[int] = model_path _UpperCamelCase : Optional[Any] = data_files["train"] _UpperCamelCase : List[Any] = current_output_dir _UpperCamelCase : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ ,"best-checkpoint" ,SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" ,SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info("Self-training job completed: iteration: %d, stage: 2." ,SCREAMING_SNAKE_CASE__ ) _UpperCamelCase : int = iteration _UpperCamelCase : str = data_dir_format(iteration + 1 ) _UpperCamelCase : Optional[Any] = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ ,"best-checkpoint" ) ) _UpperCamelCase : Any = config.idalabel _UpperCamelCase : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,"eval_results_best-checkpoint.json" ) _UpperCamelCase : Dict = os.path.join(SCREAMING_SNAKE_CASE__ ,"test_results_best-checkpoint.json" ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ ,"r" ) as f: _UpperCamelCase : str = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] ) _UpperCamelCase : Any = os.path.join(SCREAMING_SNAKE_CASE__ ,"infer_output_best-checkpoint.csv" ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Loading the dataset from local csv or json files. _UpperCamelCase : Optional[int] = load_dataset(args.data_file_extension ,data_files={"data": data_files["infer"]} )["data"] _UpperCamelCase : Any = load_dataset("csv" ,data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(SCREAMING_SNAKE_CASE__ ,exist_ok=SCREAMING_SNAKE_CASE__ ) shutil.copy(SCREAMING_SNAKE_CASE__ ,os.path.join(SCREAMING_SNAKE_CASE__ ,F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): shutil.copy(SCREAMING_SNAKE_CASE__ ,os.path.join(SCREAMING_SNAKE_CASE__ ,F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() _UpperCamelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: _UpperCamelCase : str = eval_result if best_iteration is None: _UpperCamelCase : Optional[Any] = new_iteration _UpperCamelCase : Optional[Any] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _UpperCamelCase : Union[str, Any] = new_iteration _UpperCamelCase : Any = new_eval_result _UpperCamelCase : Any = 0 else: if new_eval_result == best_eval_result: _UpperCamelCase : Optional[int] = new_iteration _UpperCamelCase : Optional[int] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _UpperCamelCase : int = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" ,SCREAMING_SNAKE_CASE__ ) logger.info("Best evaluation result: %s = %f" ,args.eval_metric ,SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ ,F'''eval_results_iter-{iteration}.json''' ) ,os.path.join(SCREAMING_SNAKE_CASE__ ,"eval_results_best-iteration.json" ) ,) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" ,args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" ,args.eval_metric ,SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ ,F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) ,os.path.join(SCREAMING_SNAKE_CASE__ ,"eval_results_best-iteration.json" ) ,)
624
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not nums: raise ValueError('''List is empty''' ) return sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
39
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class UpperCAmelCase : """simple docstring""" lowerCAmelCase_ = 42 lowerCAmelCase_ = None lowerCAmelCase_ = None def _a (): """simple docstring""" _UpperCamelCase =Node(1 ) _UpperCamelCase =Node(2 ) _UpperCamelCase =Node(3 ) _UpperCamelCase =Node(4 ) _UpperCamelCase =Node(5 ) return tree def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =[] if root is None: return output _UpperCamelCase =deque([root] ) while process_queue: _UpperCamelCase =process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =[] def populate_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return output def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =[] def populate_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return output def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" if root is None: return [] _UpperCamelCase =[] _UpperCamelCase =0 _UpperCamelCase =height(SCREAMING_SNAKE_CASE__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) _UpperCamelCase =1 else: output.append(get_nodes_from_right_to_left(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) _UpperCamelCase =0 return output def _a (): # Main function for testing. """simple docstring""" _UpperCamelCase =make_tree() print(f'''In-order Traversal: {inorder(SCREAMING_SNAKE_CASE__ )}''' ) print(f'''Pre-order Traversal: {preorder(SCREAMING_SNAKE_CASE__ )}''' ) print(f'''Post-order Traversal: {postorder(SCREAMING_SNAKE_CASE__ )}''' , '''\n''' ) print(f'''Height of Tree: {height(SCREAMING_SNAKE_CASE__ )}''' , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(SCREAMING_SNAKE_CASE__ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(SCREAMING_SNAKE_CASE__ ) + 1 ): print(f'''Level {level}:''' , get_nodes_from_left_to_right(SCREAMING_SNAKE_CASE__ , level=SCREAMING_SNAKE_CASE__ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
404
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : List[str] ) ->str: snake_case_ = inspect.getfile(accelerate.test_utils ) snake_case_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 snake_case_ = test_metrics @require_cpu def snake_case__( self : str ) ->int: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case__( self : Union[str, Any] ) ->Any: debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case__( self : List[Any] ) ->Tuple: self.test_metrics.main() @require_multi_gpu def snake_case__( self : Any ) ->Union[str, Any]: print(f'''Found {torch.cuda.device_count()} devices.''' ) snake_case_ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
39
0
import os import re import shutil import sys import tempfile import unittest import black _A = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _A = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir, '''schedulers/''' ) ) lowerCAmelCase_ = self.diffusers_dir shutil.copy( os.path.join(_UpperCamelCase, '''src/diffusers/schedulers/scheduling_ddpm.py''' ), os.path.join(self.diffusers_dir, '''schedulers/scheduling_ddpm.py''' ), ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__=None ): """simple docstring""" lowerCAmelCase_ = comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: lowerCAmelCase_ = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result lowerCAmelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119 ) lowerCAmelCase_ = black.format_str(_UpperCamelCase, mode=_UpperCamelCase ) lowerCAmelCase_ = os.path.join(self.diffusers_dir, '''new_code.py''' ) with open(_UpperCamelCase, '''w''', newline='''\n''' ) as f: f.write(_UpperCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name, overwrite=_UpperCamelCase ) with open(_UpperCamelCase, '''r''' ) as f: self.assertTrue(f.read(), _UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(_UpperCamelCase, _UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''', '''DDPMSchedulerOutput''', REFERENCE_CODE + '''\n''', ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''', '''DDPMSchedulerOutput''', _UpperCamelCase, ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''', '''TestSchedulerOutput''', re.sub('''DDPM''', '''Test''', _UpperCamelCase ), ) # Copy consistency with a really long name lowerCAmelCase_ = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( f"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}", f"{long_class_name}SchedulerOutput", re.sub('''Bert''', _UpperCamelCase, _UpperCamelCase ), ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''', '''TestSchedulerOutput''', _UpperCamelCase, overwrite_result=re.sub('''DDPM''', '''Test''', _UpperCamelCase ), )
431
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = "informer" SCREAMING_SNAKE_CASE : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Dict , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "student_t" , _UpperCamelCase : str = "nll" , _UpperCamelCase : int = 1 , _UpperCamelCase : List[int] = None , _UpperCamelCase : Optional[Union[str, bool]] = "mean" , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : int = 6_4 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.05 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : Dict=True , _UpperCamelCase : str = "prob" , _UpperCamelCase : int = 5 , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Optional[int]: # time series specific configuration snake_case_ = prediction_length snake_case_ = context_length or prediction_length snake_case_ = distribution_output snake_case_ = loss snake_case_ = input_size snake_case_ = num_time_features snake_case_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case_ = scaling snake_case_ = num_dynamic_real_features snake_case_ = num_static_real_features snake_case_ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = cardinality else: snake_case_ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = embedding_dimension else: snake_case_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ = num_parallel_samples # Transformer architecture configuration snake_case_ = input_size * len(self.lags_sequence ) + self._number_of_features snake_case_ = d_model snake_case_ = encoder_attention_heads snake_case_ = decoder_attention_heads snake_case_ = encoder_ffn_dim snake_case_ = decoder_ffn_dim snake_case_ = encoder_layers snake_case_ = decoder_layers snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = activation_function snake_case_ = init_std snake_case_ = use_cache # Informer snake_case_ = attention_type snake_case_ = sampling_factor snake_case_ = distil super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def snake_case__( self : Optional[Any] ) ->int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
39
0
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests a__ : Optional[Any] = open # noqa: we just need to have a builtin inside this module to test it properly
51
import cmath import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) # Convert voltage and current to rectangular form snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
39
0
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger SCREAMING_SNAKE_CASE__ : List[Any] = get_logger(__name__) class _SCREAMING_SNAKE_CASE : def __init__( self , A_ = None ): _UpperCAmelCase : Dict = ( os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _UpperCAmelCase : Dict = Extractor def __snake_case( self , A_ ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _UpperCAmelCase : Optional[int] = os.path.abspath(_UpperCamelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) ) def __snake_case( self , A_ , A_ ): return force_extract or ( not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase )) ) def __snake_case( self , A_ , A_ = False ): _UpperCAmelCase : int = self.extractor.infer_extractor_format(_UpperCamelCase ) if not extractor_format: return input_path _UpperCAmelCase : List[str] = self._get_output_path(_UpperCamelCase ) if self._do_extract(_UpperCamelCase , _UpperCamelCase ): self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return output_path class _SCREAMING_SNAKE_CASE ( __A ): @classmethod @abstractmethod def __snake_case( cls , A_ , **A_ ): ... @staticmethod @abstractmethod def __snake_case( A_ , A_ ): ... class _SCREAMING_SNAKE_CASE ( __A , __A ): __SCREAMING_SNAKE_CASE = [] @staticmethod def __snake_case( A_ , A_ ): with open(_UpperCamelCase , """rb""" ) as f: return f.read(_UpperCamelCase ) @classmethod def __snake_case( cls , A_ , A_ = b"" ): if not magic_number: _UpperCAmelCase : Any = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) try: _UpperCAmelCase : List[Any] = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase ) except OSError: return False return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) class _SCREAMING_SNAKE_CASE ( __A ): @classmethod def __snake_case( cls , A_ , **A_ ): return tarfile.is_tarfile(_UpperCamelCase ) @staticmethod def __snake_case( A_ , A_ ): def resolved(A_ ) -> str: return os.path.realpath(os.path.abspath(_UpperCamelCase ) ) def badpath(A_ , A_ ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase ) def badlink(A_ , A_ ) -> bool: # Links are interpreted relative to the directory containing the link _UpperCAmelCase : Optional[Any] = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCamelCase ) _UpperCAmelCase : Optional[int] = resolved(_UpperCamelCase ) for finfo in members: if badpath(finfo.name , _UpperCamelCase ): logger.error(F'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(F'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(F'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def __snake_case( A_ , A_ ): os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) _UpperCAmelCase : Dict = tarfile.open(_UpperCamelCase ) tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) ) tar_file.close() class _SCREAMING_SNAKE_CASE ( __A ): __SCREAMING_SNAKE_CASE = [b"\x1F\x8B"] @staticmethod def __snake_case( A_ , A_ ): with gzip.open(_UpperCamelCase , """rb""" ) as gzip_file: with open(_UpperCamelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class _SCREAMING_SNAKE_CASE ( __A ): __SCREAMING_SNAKE_CASE = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def __snake_case( cls , A_ , A_ = b"" ): if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCamelCase , """rb""" ) as fp: _UpperCAmelCase : List[str] = _EndRecData(_UpperCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _UpperCAmelCase : Any = fp.read(_UpperCamelCase ) # CD is where we expect it to be if len(_UpperCamelCase ) == sizeCentralDir: _UpperCAmelCase : Any = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def __snake_case( A_ , A_ ): os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with zipfile.ZipFile(_UpperCamelCase , """r""" ) as zip_file: zip_file.extractall(_UpperCamelCase ) zip_file.close() class _SCREAMING_SNAKE_CASE ( __A ): __SCREAMING_SNAKE_CASE = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def __snake_case( A_ , A_ ): with lzma.open(_UpperCamelCase ) as compressed_file: with open(_UpperCamelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class _SCREAMING_SNAKE_CASE ( __A ): __SCREAMING_SNAKE_CASE = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def __snake_case( A_ , A_ ): if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) _UpperCAmelCase : Optional[int] = rarfile.RarFile(_UpperCamelCase ) rf.extractall(_UpperCamelCase ) rf.close() class _SCREAMING_SNAKE_CASE ( __A ): __SCREAMING_SNAKE_CASE = [b"\x28\xb5\x2F\xFD"] @staticmethod def __snake_case( A_ , A_ ): if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd _UpperCAmelCase : Tuple = zstd.ZstdDecompressor() with open(_UpperCamelCase , """rb""" ) as ifh, open(_UpperCamelCase , """wb""" ) as ofh: dctx.copy_stream(_UpperCamelCase , _UpperCamelCase ) class _SCREAMING_SNAKE_CASE ( __A ): __SCREAMING_SNAKE_CASE = [b"\x42\x5A\x68"] @staticmethod def __snake_case( A_ , A_ ): with bza.open(_UpperCamelCase , """rb""" ) as compressed_file: with open(_UpperCamelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class _SCREAMING_SNAKE_CASE ( __A ): __SCREAMING_SNAKE_CASE = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def __snake_case( A_ , A_ ): if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with pyazr.SevenZipFile(_UpperCamelCase , """r""" ) as archive: archive.extractall(_UpperCamelCase ) class _SCREAMING_SNAKE_CASE ( __A ): __SCREAMING_SNAKE_CASE = [b"\x04\x22\x4D\x18"] @staticmethod def __snake_case( A_ , A_ ): if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(_UpperCamelCase , """rb""" ) as compressed_file: with open(_UpperCamelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class _SCREAMING_SNAKE_CASE : __SCREAMING_SNAKE_CASE = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def __snake_case( cls ): return max( len(_UpperCamelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCamelCase , _UpperCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def __snake_case( A_ , A_ ): try: return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase ) except OSError: return b"" @classmethod def __snake_case( cls , A_ , A_ = False ): warnings.warn( """Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use \'infer_extractor_format\' instead.""" , category=_UpperCamelCase , ) _UpperCAmelCase : Optional[Any] = cls.infer_extractor_format(_UpperCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def __snake_case( cls , A_ ): # <Added version="2.4.0"/> _UpperCAmelCase : str = cls._get_magic_number_max_length() _UpperCAmelCase : Union[str, Any] = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return extractor_format @classmethod def __snake_case( cls , A_ , A_ , A_ = None , A_ = "deprecated" , ): os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase ) # Prevent parallel extractions _UpperCAmelCase : str = str(Path(_UpperCamelCase ).with_suffix(""".lock""" ) ) with FileLock(_UpperCamelCase ): shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg warnings.warn( """Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use \'extractor_format\' instead.""" , category=_UpperCamelCase , ) _UpperCAmelCase : Optional[int] = extractor if extractor != """deprecated""" else extractor_format else: _UpperCAmelCase : str = cls.extractors[extractor_format] return extractor.extract(_UpperCamelCase , _UpperCamelCase ) else: warnings.warn( """Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=_UpperCamelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCamelCase ): return extractor.extract(_UpperCamelCase , _UpperCamelCase )
643
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=1_3 , _UpperCamelCase : str=7 , _UpperCamelCase : int=True , _UpperCamelCase : Dict=True , _UpperCamelCase : int=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : str=3_2 , _UpperCamelCase : str=5 , _UpperCamelCase : str=4 , _UpperCamelCase : int=3_7 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : str=5_1_2 , _UpperCamelCase : Optional[int]=1_6 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Any=0.02 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : str=None , ) ->Dict: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def snake_case__( self : str ) ->List[Any]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self : List[str] ) ->Tuple: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) ->Dict: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , ) ->Optional[int]: snake_case_ = BioGptForCausalLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , *_UpperCamelCase : List[Any] ) ->Union[str, Any]: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # create attention mask snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) snake_case_ = self.seq_length // 2 snake_case_ = 0 # first forward pass snake_case_, snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids snake_case_ = ids_tensor((1,) , _UpperCamelCase ).item() + 1 snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) snake_case_ = random_other_next_tokens # append to next input_ids and attn_mask snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCamelCase )] , dim=1 , ) # get two different outputs snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , past_key_values=_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , *_UpperCamelCase : List[Any] ) ->int: snake_case_ = BioGptModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval() snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) # first forward pass snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase ) snake_case_, snake_case_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[ '''last_hidden_state''' ] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , *_UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=False ) ->Dict: snake_case_ = BioGptForCausalLM(_UpperCamelCase ) model.to(_UpperCamelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def snake_case__( self : List[Any] , _UpperCamelCase : Optional[int] , *_UpperCamelCase : Dict ) ->Dict: snake_case_ = BioGptModel(_UpperCamelCase ) snake_case_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def snake_case__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , *_UpperCamelCase : List[str] ) ->int: snake_case_ = self.num_labels snake_case_ = BioGptForTokenClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = (BioGptForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Optional[Any] = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Tuple = False def snake_case__( self : List[str] ) ->Union[str, Any]: snake_case_ = BioGptModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : str ) ->int: self.config_tester.run_common_tests() def snake_case__( self : str ) ->Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_UpperCamelCase , gradient_checkpointing=_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCamelCase ) def snake_case__( self : List[Any] ) ->Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCamelCase ) @slow def snake_case__( self : int ) ->Optional[Any]: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = '''left''' # Define PAD Token = EOS Token = 50256 snake_case_ = tokenizer.eos_token snake_case_ = model.config.eos_token_id # use different length sentences to test batching snake_case_ = [ '''Hello, my dog is a little''', '''Today, I''', ] snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase ) snake_case_ = inputs['''input_ids'''].to(_UpperCamelCase ) snake_case_ = model.generate( input_ids=_UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(_UpperCamelCase ) , ) snake_case_ = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase ) snake_case_ = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() snake_case_ = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings ) snake_case_ = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] ) @slow def snake_case__( self : Optional[int] ) ->List[str]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = BioGptModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__( self : str ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = '''multi_label_classification''' snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__( self : int ) ->Any: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) snake_case_ = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) snake_case_ = model(_UpperCamelCase )[0] snake_case_ = 4_2_3_8_4 snake_case_ = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def snake_case__( self : List[str] ) ->Optional[int]: snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_UpperCamelCase ) snake_case_ = model.generate( **_UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=_UpperCamelCase , ) snake_case_ = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(_UpperCamelCase , _UpperCamelCase )
39
0
from queue import PriorityQueue from typing import Any import numpy as np def __UpperCamelCase (lowerCAmelCase : Tuple, lowerCAmelCase : Dict, lowerCAmelCase : List[str], lowerCAmelCase : Tuple, lowerCAmelCase : Optional[Any], lowerCAmelCase : Tuple, lowerCAmelCase : List[str], lowerCAmelCase : Any, lowerCAmelCase : Any, ) -> Optional[Any]: for nxt, d in graph[v]: if nxt in visited_forward: continue A = cst_fwd.get(SCREAMING_SNAKE_CASE__, np.inf ) A = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A = new_cost_f A = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __UpperCamelCase (lowerCAmelCase : Dict, lowerCAmelCase : Any, lowerCAmelCase : str, lowerCAmelCase : List[str] ) -> Any: A = -1 A = set() A = set() A = {source: 0} A = {destination: 0} A = {source: None} A = {destination: None} A = PriorityQueue() A = PriorityQueue() A = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A , A = queue_forward.get() visited_forward.add(SCREAMING_SNAKE_CASE__ ) A , A = queue_backward.get() visited_backward.add(SCREAMING_SNAKE_CASE__ ) A = pass_and_relaxation( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, ) A = pass_and_relaxation( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A = shortest_distance return shortest_path_distance _UpperCAmelCase = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } _UpperCAmelCase = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
699
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) snake_case_ = (boundary[1] - boundary[0]) / steps snake_case_ = boundary[0] snake_case_ = boundary[1] snake_case_ = make_points(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = 0.0 y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) for i in x_i: # print(i) y += h * f(SCREAMING_SNAKE_CASE__ ) y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) return y def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = a + h while x < (b - h): yield x snake_case_ = x + h def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # enter your function here snake_case_ = (x - 0) * (x - 0) return y def __SCREAMING_SNAKE_CASE (): snake_case_ = 0.0 # Lower bound of integration snake_case_ = 1.0 # Upper bound of integration snake_case_ = 10.0 # define number of steps or resolution snake_case_ = [a, b] # define boundary of integration snake_case_ = method_a(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
39
0
__lowercase : List[Any] = range(2, 20 + 1) __lowercase : Dict = [10**k for k in range(ks[-1] + 1)] __lowercase : str = {} def lowercase ( __A : str , __A : Any , __A : Union[str, Any] , __A : Optional[int] ) -> List[str]: '''simple docstring''' snake_case : Optional[int] = sum(a_i[j] for j in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) ) snake_case : Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case : Dict = 0, 0 snake_case : Union[str, Any] = n - i snake_case : Union[str, Any] = memo.get(SCREAMING_SNAKE_CASE__ ) if sub_memo is not None: snake_case : List[Any] = sub_memo.get(SCREAMING_SNAKE_CASE__ ) if jumps is not None and len(SCREAMING_SNAKE_CASE__ ) > 0: # find and make the largest jump without going over snake_case : Tuple = -1 for _k in range(len(SCREAMING_SNAKE_CASE__ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: snake_case : List[str] = _k break if max_jump >= 0: snake_case , snake_case , snake_case : Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c snake_case : Any = diff + c for j in range(min(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) ): snake_case , snake_case : Dict = divmod(SCREAMING_SNAKE_CASE__ , 10 ) if new_c > 0: add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case : Tuple = [] else: snake_case : Optional[int] = {c: []} snake_case : List[Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps snake_case , snake_case : Union[str, Any] = next_term(SCREAMING_SNAKE_CASE__ , k - 1 , i + dn , SCREAMING_SNAKE_CASE__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead snake_case , snake_case : Optional[int] = compute(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i + dn , SCREAMING_SNAKE_CASE__ ) diff += _diff dn += terms_jumped snake_case : Optional[int] = sub_memo[c] # keep jumps sorted by # of terms skipped snake_case : Any = 0 while j < len(SCREAMING_SNAKE_CASE__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(SCREAMING_SNAKE_CASE__ , (diff, dn, k) ) return (diff, dn) def lowercase ( __A : int , __A : Any , __A : Optional[Any] , __A : Tuple ) -> Tuple: '''simple docstring''' if i >= n: return 0, i if k > len(SCREAMING_SNAKE_CASE__ ): a_i.extend([0 for _ in range(k - len(SCREAMING_SNAKE_CASE__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) snake_case : Union[str, Any] = i snake_case , snake_case , snake_case : Union[str, Any] = 0, 0, 0 for j in range(len(SCREAMING_SNAKE_CASE__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 snake_case : str = ds_c + ds_b diff += addend snake_case : List[Any] = 0 for j in range(SCREAMING_SNAKE_CASE__ ): snake_case : int = a_i[j] + addend snake_case , snake_case : Dict = divmod(SCREAMING_SNAKE_CASE__ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return diff, i - start_i def lowercase ( __A : Any , __A : List[Any] , __A : Optional[Any] ) -> Dict: '''simple docstring''' for j in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ): snake_case : int = digits[j] + addend if s >= 10: snake_case , snake_case : List[str] = divmod(SCREAMING_SNAKE_CASE__ , 10 ) snake_case : List[str] = addend // 10 + quotient else: snake_case : Any = s snake_case : Any = addend // 10 if addend == 0: break while addend > 0: snake_case , snake_case : List[Any] = divmod(SCREAMING_SNAKE_CASE__ , 10 ) digits.append(SCREAMING_SNAKE_CASE__ ) def lowercase ( __A : Optional[Any] = 10**15 ) -> Dict: '''simple docstring''' snake_case : List[str] = [1] snake_case : Dict = 1 snake_case : Dict = 0 while True: snake_case , snake_case : Dict = next_term(SCREAMING_SNAKE_CASE__ , 20 , i + dn , SCREAMING_SNAKE_CASE__ ) dn += terms_jumped if dn == n - i: break snake_case : Dict = 0 for j in range(len(SCREAMING_SNAKE_CASE__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
36
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / '''model_card_template.md''' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None ): snake_case_ = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if token is None: snake_case_ = HfFolder.get_token() if organization is None: snake_case_ = whoami(SCREAMING_SNAKE_CASE__ )['''name'''] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(SCREAMING_SNAKE_CASE__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , '''hub_token''' ) else None snake_case_ = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) snake_case_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ = os.path.join(args.output_dir , '''README.md''' ) model_card.save(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) snake_case_ = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE__ ) if search is None: return None snake_case_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, '''diffusers''') def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if new_cache_dir is None: snake_case_ = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ = old_diffusers_cache snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ '''the directory exists and can be written to.''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if variant is not None: snake_case_ = weights_name.split('''.''' ) snake_case_ = splits[:-1] + [variant] + splits[-1:] snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ ) return weights_name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ): snake_case_ = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' '''this model name. Check the model page at ''' F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
39
0
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class __SCREAMING_SNAKE_CASE ( __A ): lowerCamelCase_ = "informer" lowerCamelCase_ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Dict , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : str = "student_t" , UpperCAmelCase__ : str = "nll" , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : List[int] = None , UpperCAmelCase__ : Optional[Union[str, bool]] = "mean" , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.05 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 100 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : str = "prob" , UpperCAmelCase__ : int = 5 , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : Optional[Any] , ): '''simple docstring''' # time series specific configuration lowercase : str =prediction_length lowercase : int =context_length or prediction_length lowercase : int =distribution_output lowercase : List[Any] =loss lowercase : Any =input_size lowercase : List[Any] =num_time_features lowercase : Optional[int] =lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowercase : Union[str, Any] =scaling lowercase : Optional[int] =num_dynamic_real_features lowercase : str =num_static_real_features lowercase : int =num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) lowercase : int =cardinality else: lowercase : Dict =[0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) lowercase : Tuple =embedding_dimension else: lowercase : Tuple =[min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowercase : Optional[Any] =num_parallel_samples # Transformer architecture configuration lowercase : Optional[Any] =input_size * len(self.lags_sequence ) + self._number_of_features lowercase : str =d_model lowercase : Dict =encoder_attention_heads lowercase : Optional[int] =decoder_attention_heads lowercase : Any =encoder_ffn_dim lowercase : Optional[int] =decoder_ffn_dim lowercase : Tuple =encoder_layers lowercase : Union[str, Any] =decoder_layers lowercase : List[Any] =dropout lowercase : Optional[Any] =attention_dropout lowercase : Optional[int] =activation_dropout lowercase : Optional[Any] =encoder_layerdrop lowercase : int =decoder_layerdrop lowercase : Dict =activation_function lowercase : Union[str, Any] =init_std lowercase : Any =use_cache # Informer lowercase : int =attention_type lowercase : int =sampling_factor lowercase : Optional[int] =distil super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
92
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt" def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) snake_case_ = backbone_featmap_shape snake_case_ = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: snake_case_ = None snake_case_ = None snake_case_ = [] snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) snake_case_ = readout_type snake_case_ = reassemble_factors snake_case_ = neck_hidden_sizes snake_case_ = fusion_hidden_size snake_case_ = head_in_index snake_case_ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = semantic_loss_ignore_index snake_case_ = semantic_classifier_dropout def snake_case__( self : List[str] ) ->List[Any]: snake_case_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
39
0
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( __A , __A , __A ): lowercase__: Optional[int] = [R"h\.\d+\.attn\.bias", R"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Optional[int] = None , __magic_name__ : int = 5_02_57 , __magic_name__ : int = 10_24 , __magic_name__ : int = 7_68 , __magic_name__ : int = 12 , __magic_name__ : int = 12 , __magic_name__ : Optional[int] = None , __magic_name__ : str = "gelu_new" , __magic_name__ : float = 0.1 , __magic_name__ : float = 0.1 , __magic_name__ : float = 0.1 , __magic_name__ : float = 1E-5 , __magic_name__ : float = 0.02 , __magic_name__ : bool = True , __magic_name__ : bool = True , __magic_name__ : bool = False , __magic_name__ : bool = False , ) -> Tuple: """simple docstring""" super().__init__() __snake_case : List[Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) __snake_case : Dict = prefix_inner_dim __snake_case : Tuple = prefix_hidden_dim __snake_case : Optional[int] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) __snake_case : Any = ( nn.Linear(self.prefix_hidden_dim , _UpperCamelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) __snake_case : int = GPTaConfig( vocab_size=_UpperCamelCase , n_positions=_UpperCamelCase , n_embd=_UpperCamelCase , n_layer=_UpperCamelCase , n_head=_UpperCamelCase , n_inner=_UpperCamelCase , activation_function=_UpperCamelCase , resid_pdrop=_UpperCamelCase , embd_pdrop=_UpperCamelCase , attn_pdrop=_UpperCamelCase , layer_norm_epsilon=_UpperCamelCase , initializer_range=_UpperCamelCase , scale_attn_weights=_UpperCamelCase , use_cache=_UpperCamelCase , scale_attn_by_inverse_layer_idx=_UpperCamelCase , reorder_and_upcast_attn=_UpperCamelCase , ) __snake_case : Tuple = GPTaLMHeadModel(_UpperCamelCase ) def lowercase__ ( self : str , __magic_name__ : torch.Tensor , __magic_name__ : torch.Tensor , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[torch.Tensor] = None , ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = self.transformer.transformer.wte(_UpperCamelCase ) __snake_case : str = self.encode_prefix(_UpperCamelCase ) __snake_case : List[str] = self.decode_prefix(_UpperCamelCase ) __snake_case : List[Any] = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: __snake_case : Optional[int] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) __snake_case : Tuple = torch.cat((dummy_token, input_ids) , dim=1 ) __snake_case : Any = self.transformer(inputs_embeds=_UpperCamelCase , labels=_UpperCamelCase , attention_mask=_UpperCamelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowercase__ ( self : Any , __magic_name__ : int , __magic_name__ : torch.device ) -> torch.Tensor: """simple docstring""" return torch.zeros(_UpperCamelCase , self.prefix_length , dtype=torch.intaa , device=_UpperCamelCase ) def lowercase__ ( self : int , __magic_name__ : List[str] ) -> List[Any]: """simple docstring""" return self.encode_prefix(_UpperCamelCase ) @torch.no_grad() def lowercase__ ( self : List[str] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : str ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = torch.split(_UpperCamelCase , 1 , dim=0 ) __snake_case : List[Any] = [] __snake_case : Optional[int] = [] for feature in features: __snake_case : List[Any] = self.decode_prefix(feature.to(_UpperCamelCase ) ) # back to the clip feature # Only support beam search for now __snake_case , __snake_case : int = self.generate_beam( input_embeds=_UpperCamelCase , device=_UpperCamelCase , eos_token_id=_UpperCamelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) __snake_case : Union[str, Any] = torch.stack(_UpperCamelCase ) __snake_case : List[Any] = torch.stack(_UpperCamelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowercase__ ( self : Any , __magic_name__ : List[Any]=None , __magic_name__ : int=None , __magic_name__ : List[str]=None , __magic_name__ : int = 5 , __magic_name__ : int = 67 , __magic_name__ : float = 1.0 , __magic_name__ : Optional[int] = None , ) -> List[str]: """simple docstring""" __snake_case : int = eos_token_id __snake_case : int = None __snake_case : Union[str, Any] = None __snake_case : List[str] = torch.ones(_UpperCamelCase , device=_UpperCamelCase , dtype=torch.int ) __snake_case : Union[str, Any] = torch.zeros(_UpperCamelCase , device=_UpperCamelCase , dtype=torch.bool ) if input_embeds is not None: __snake_case : int = input_embeds else: __snake_case : str = self.transformer.transformer.wte(_UpperCamelCase ) for i in range(_UpperCamelCase ): __snake_case : Tuple = self.transformer(inputs_embeds=_UpperCamelCase ) __snake_case : str = outputs.logits __snake_case : Dict = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) __snake_case : Dict = logits.softmax(-1 ).log() if scores is None: __snake_case , __snake_case : Optional[int] = logits.topk(_UpperCamelCase , -1 ) __snake_case : Tuple = generated.expand(_UpperCamelCase , *generated.shape[1:] ) __snake_case , __snake_case : Optional[int] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: __snake_case : List[Any] = next_tokens else: __snake_case : Any = tokens.expand(_UpperCamelCase , *tokens.shape[1:] ) __snake_case : Dict = torch.cat((tokens, next_tokens) , dim=1 ) else: __snake_case : Optional[int] = -float(np.inf ) __snake_case : List[str] = 0 __snake_case : Optional[int] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 __snake_case : List[str] = scores_sum / seq_lengths[:, None] __snake_case , __snake_case : Union[str, Any] = scores_sum_average.view(-1 ).topk(_UpperCamelCase , -1 ) __snake_case : Optional[int] = next_tokens // scores_sum.shape[1] __snake_case : List[str] = seq_lengths[next_tokens_source] __snake_case : Dict = next_tokens % scores_sum.shape[1] __snake_case : int = next_tokens.unsqueeze(1 ) __snake_case : int = tokens[next_tokens_source] __snake_case : int = torch.cat((tokens, next_tokens) , dim=1 ) __snake_case : Optional[int] = generated[next_tokens_source] __snake_case : str = scores_sum_average * seq_lengths __snake_case : Dict = is_stopped[next_tokens_source] __snake_case : Union[str, Any] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) __snake_case : Optional[int] = torch.cat((generated, next_token_embed) , dim=1 ) __snake_case : Any = is_stopped + next_tokens.eq(_UpperCamelCase ).squeeze() if is_stopped.all(): break __snake_case : List[Any] = scores / seq_lengths __snake_case : Optional[int] = scores.argsort(descending=_UpperCamelCase ) # tokens tensors are already padded to max_seq_length __snake_case : Optional[int] = [tokens[i] for i in order] __snake_case : List[Any] = torch.stack(_UpperCamelCase , dim=0 ) __snake_case : List[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
26
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = '''pytorch_model.bin''' @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "A csv or a json file containing the validation data."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "The name of the task to train on."} , ) SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field( default=__A , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=__A , metadata={"help": "Random seed for initialization."} , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case_ = dataset.filter(lambda SCREAMING_SNAKE_CASE__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case_ = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) ) print(SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = dataset.remove_columns(['''label''', '''probability'''] ) snake_case_ = dataset.rename_column('''prediction''' , '''label''' ) snake_case_ = dataset.map(lambda SCREAMING_SNAKE_CASE__ : {"label": idalabel[example["label"]]} ) snake_case_ = dataset.shuffle(seed=args.seed ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) else: dataset.to_json(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): snake_case_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case_ = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ ) snake_case_ = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ , infer_file=SCREAMING_SNAKE_CASE__ ) snake_case_ = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ ) snake_case_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(SCREAMING_SNAKE_CASE__ ).items(): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Sanity checks snake_case_ = {} snake_case_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case_ = args.train_file snake_case_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case_ = args.eval_file for key in data_files: snake_case_ = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: snake_case_ = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) snake_case_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format snake_case_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = None snake_case_ = None snake_case_ = 0 snake_case_ = False # Show the progress bar snake_case_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case_ = data_dir_format(SCREAMING_SNAKE_CASE__ ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-1''' ) snake_case_ = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): arguments_dict.update({key: value} ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-2''' ) # Update arguments_dict snake_case_ = model_path snake_case_ = data_files['''train'''] snake_case_ = current_output_dir snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = iteration snake_case_ = data_dir_format(iteration + 1 ) snake_case_ = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) ) snake_case_ = config.idalabel snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-checkpoint.json''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: snake_case_ = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Loading the dataset from local csv or json files. snake_case_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] snake_case_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case_ = eval_result if best_iteration is None: snake_case_ = new_iteration snake_case_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case_ = new_iteration snake_case_ = new_eval_result snake_case_ = 0 else: if new_eval_result == best_eval_result: snake_case_ = new_iteration snake_case_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE__ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , )
39
0
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __SCREAMING_SNAKE_CASE = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. __SCREAMING_SNAKE_CASE = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __SCREAMING_SNAKE_CASE = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') __SCREAMING_SNAKE_CASE = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __SCREAMING_SNAKE_CASE = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __SCREAMING_SNAKE_CASE = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Optional[int] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any =re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' ,SCREAMING_SNAKE_CASE__ ) return [m.group(0 ) for m in matches] def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] =transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ : Tuple ={ config.replace('Config' ,'' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. SCREAMING_SNAKE_CASE_ : List[str] =collections.defaultdict(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =collections.defaultdict(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE_ : Tuple =collections.defaultdict(SCREAMING_SNAKE_CASE__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE_ : Any =None if _re_tf_models.match(SCREAMING_SNAKE_CASE__ ) is not None: SCREAMING_SNAKE_CASE_ : Optional[int] =tf_models SCREAMING_SNAKE_CASE_ : Any =_re_tf_models.match(SCREAMING_SNAKE_CASE__ ).groups()[0] elif _re_flax_models.match(SCREAMING_SNAKE_CASE__ ) is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] =flax_models SCREAMING_SNAKE_CASE_ : int =_re_flax_models.match(SCREAMING_SNAKE_CASE__ ).groups()[0] elif _re_pt_models.match(SCREAMING_SNAKE_CASE__ ) is not None: SCREAMING_SNAKE_CASE_ : Any =pt_models SCREAMING_SNAKE_CASE_ : Optional[Any] =_re_pt_models.match(SCREAMING_SNAKE_CASE__ ).groups()[0] if lookup_dict is not None: while len(SCREAMING_SNAKE_CASE__ ) > 0: if attr_name in model_prefix_to_model_type: SCREAMING_SNAKE_CASE_ : Any =True break # Try again after removing the last word in the name SCREAMING_SNAKE_CASE_ : Optional[Any] =''.join(camel_case_split(SCREAMING_SNAKE_CASE__ )[:-1] ) SCREAMING_SNAKE_CASE_ : str =set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) SCREAMING_SNAKE_CASE_ : str =list(SCREAMING_SNAKE_CASE__ ) all_models.sort() SCREAMING_SNAKE_CASE_ : str ={'model_type': all_models} SCREAMING_SNAKE_CASE_ : Any =[pt_models[t] for t in all_models] SCREAMING_SNAKE_CASE_ : List[str] =[tf_models[t] for t in all_models] SCREAMING_SNAKE_CASE_ : Any =[flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure SCREAMING_SNAKE_CASE_ : Any ={} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: SCREAMING_SNAKE_CASE_ : List[Any] ='AutoProcessor' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: SCREAMING_SNAKE_CASE_ : Any ='AutoTokenizer' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: SCREAMING_SNAKE_CASE_ : List[Any] ='AutoFeatureExtractor' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. SCREAMING_SNAKE_CASE_ : Dict ='AutoTokenizer' SCREAMING_SNAKE_CASE_ : List[Any] =[processors[t] for t in all_models] return pd.DataFrame(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : str =[ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: SCREAMING_SNAKE_CASE_ : Dict =[model_mapping, F"""TF_{model_mapping}""", F"""FLAX_{model_mapping}"""] SCREAMING_SNAKE_CASE_ : List[Any] =[auto_class, F"""TF_{auto_class}""", F"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): # The type of pipeline may not exist in this framework if not hasattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): continue # First extract all model_names SCREAMING_SNAKE_CASE_ : str =[] for name in getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ).values(): if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): model_names.append(SCREAMING_SNAKE_CASE__ ) else: model_names.extend(list(SCREAMING_SNAKE_CASE__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Dict ,lowerCAmelCase_ : Any ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =get_frameworks_table() SCREAMING_SNAKE_CASE_ : List[Any] =Dataset.from_pandas(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE_ : List[Any] =hf_hub_download( 'huggingface/transformers-metadata' ,'pipeline_tags.json' ,repo_type='dataset' ,token=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE_ : List[Any] =Dataset.from_json(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] ={ tags_dataset[i]['model_class']: (tags_dataset[i]['pipeline_tag'], tags_dataset[i]['auto_class']) for i in range(len(SCREAMING_SNAKE_CASE__ ) ) } SCREAMING_SNAKE_CASE_ : Union[str, Any] =update_pipeline_and_auto_class_table(SCREAMING_SNAKE_CASE__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. SCREAMING_SNAKE_CASE_ : List[str] =sorted(table.keys() ) SCREAMING_SNAKE_CASE_ : int =pd.DataFrame( { 'model_class': model_classes, 'pipeline_tag': [table[m][0] for m in model_classes], 'auto_class': [table[m][1] for m in model_classes], } ) SCREAMING_SNAKE_CASE_ : List[str] =Dataset.from_pandas(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(SCREAMING_SNAKE_CASE__ ,'frameworks.json' ) ) tags_dataset.to_json(os.path.join(SCREAMING_SNAKE_CASE__ ,'pipeline_tags.json' ) ) if commit_sha is not None: SCREAMING_SNAKE_CASE_ : List[Any] =( F"""Update with commit {commit_sha}\n\nSee: """ F"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: SCREAMING_SNAKE_CASE_ : List[Any] ='Update' upload_folder( repo_id='huggingface/transformers-metadata' ,folder_path=SCREAMING_SNAKE_CASE__ ,repo_type='dataset' ,token=SCREAMING_SNAKE_CASE__ ,commit_message=SCREAMING_SNAKE_CASE__ ,) def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any ={tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} SCREAMING_SNAKE_CASE_ : Dict =transformers_module.pipelines.SUPPORTED_TASKS SCREAMING_SNAKE_CASE_ : List[str] =[] for key in pipeline_tasks: if key not in in_table: SCREAMING_SNAKE_CASE_ : Optional[int] =pipeline_tasks[key]['pt'] if isinstance(SCREAMING_SNAKE_CASE__ ,(list, tuple) ): SCREAMING_SNAKE_CASE_ : Dict =model[0] SCREAMING_SNAKE_CASE_ : List[str] =model.__name__ if model not in in_table.values(): missing.append(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: SCREAMING_SNAKE_CASE_ : Any =', '.join(SCREAMING_SNAKE_CASE__ ) raise ValueError( 'The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ' F"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') __SCREAMING_SNAKE_CASE = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
220
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AltDiffusionPipeline SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__( self : Dict ) ->int: torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) snake_case_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) snake_case_ = CLIPTextModel(_UpperCamelCase ) snake_case_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) snake_case_ = 7_7 snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__( self : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0 ) ->Any: if str(_UpperCamelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCamelCase ) else: snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case__( self : Dict ) ->List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def snake_case__( self : List[str] ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case__( self : Dict ) ->Any: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = '''A photo of an astronaut''' snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : Tuple ) ->Union[str, Any]: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : int ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self : List[str] ) ->Tuple: # make sure here that pndm scheduler skips prk snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='''np''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : List[str] ) ->Optional[Any]: snake_case_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , num_inference_steps=2 , output_type='''numpy''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
0
"""simple docstring""" def UpperCAmelCase_ ( __a : str , __a : str ): '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _lowerCamelCase : List[str] = str(bin(SCREAMING_SNAKE_CASE__ ) )[2:] # remove the leading "0b" _lowerCamelCase : int = str(bin(SCREAMING_SNAKE_CASE__ ) )[2:] _lowerCamelCase : List[str] = max(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) return "0b" + "".join( str(int('1' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE__ ) , b_binary.zfill(SCREAMING_SNAKE_CASE__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
437
from math import factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( '''If a class of 40 students must be arranged into groups of''', f"""4 for group projects, there are {combinations(40, 4)} ways""", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f"""are {combinations(10, 3)} ways that first, second and""", '''third place can be awarded.''', )
39
0
"""simple docstring""" # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowerCamelCase__ = "pytorch_model.bin" lowerCamelCase__ = "pytorch_model.bin.index.json" lowerCamelCase__ = "adapter_config.json" lowerCamelCase__ = "adapter_model.bin" lowerCamelCase__ = "adapter_model.safetensors" lowerCamelCase__ = "tf_model.h5" lowerCamelCase__ = "tf_model.h5.index.json" lowerCamelCase__ = "model.ckpt" lowerCamelCase__ = "flax_model.msgpack" lowerCamelCase__ = "flax_model.msgpack.index.json" lowerCamelCase__ = "model.safetensors" lowerCamelCase__ = "model.safetensors.index.json" lowerCamelCase__ = "config.json" lowerCamelCase__ = "preprocessor_config.json" lowerCamelCase__ = FEATURE_EXTRACTOR_NAME lowerCamelCase__ = "generation_config.json" lowerCamelCase__ = "modelcard.json" lowerCamelCase__ = "▁" lowerCamelCase__ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowerCamelCase__ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowerCamelCase__ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowerCamelCase__ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def lowercase__ ( lowercase_ ) -> str: """simple docstring""" if version.parse(SCREAMING_SNAKE_CASE__ ) < version.parse(SCREAMING_SNAKE_CASE__ ): if "dev" in min_version: _UpperCamelCase : Optional[Any] = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: _UpperCamelCase : Optional[int] = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers." )
624
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCAmelCase_ = sys.version_info >= (3, 10) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ): return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : bool @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int = 42 SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : Optional[bool] = None class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = "titi" SCREAMING_SNAKE_CASE : Any = "toto" class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = "titi" SCREAMING_SNAKE_CASE : Optional[Any] = "toto" SCREAMING_SNAKE_CASE : Any = 42 @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : BasicEnum = "toto" def snake_case__( self : Tuple ) ->List[str]: snake_case_ = BasicEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto" def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = MixedTypeEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[float] = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : Optional[str] = None SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] ) SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] ) SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] ) SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = field() SCREAMING_SNAKE_CASE : str = field() SCREAMING_SNAKE_CASE : BasicEnum = field() def snake_case__( self : Optional[Any] ) ->Tuple: snake_case_ = BasicEnum(self.required_enum ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : "BasicEnum" = field() SCREAMING_SNAKE_CASE : "Optional[bool]" = None SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : bool | None = None @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int | None = None SCREAMING_SNAKE_CASE : float | None = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : str | None = None SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] ) SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] ) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Dict , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser ) ->str: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _UpperCamelCase ) and yy.get('''choices''' , _UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_UpperCamelCase ) , yy['''type'''](_UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--bar''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--baz''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--flag''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((snake_case_), ) = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase ) self.assertFalse(example.flag ) def snake_case__( self : Tuple ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) snake_case_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case__( self : Tuple ) ->Union[str, Any]: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto" snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual( _UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def snake_case__( self : Optional[Any] ) ->List[Any]: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--bar''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) snake_case_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[] ) ) snake_case_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def snake_case__( self : Union[str, Any] ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--required_str''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Dict ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } snake_case_ = parser.parse_dict(_UpperCamelCase )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : int ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase ) def snake_case__( self : str ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_json''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_yaml''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Any ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase )
39
0
'''simple docstring''' from __future__ import annotations def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =[] _UpperCamelCase =[] _UpperCamelCase =0 _UpperCamelCase =sum(SCREAMING_SNAKE_CASE__ ) create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return result def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): """simple docstring""" if sum(SCREAMING_SNAKE_CASE__ ) > max_sum or (remaining_nums_sum + sum(SCREAMING_SNAKE_CASE__ )) < max_sum: return if sum(SCREAMING_SNAKE_CASE__ ) == max_sum: result.append(SCREAMING_SNAKE_CASE__ ) return for index in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ): create_state_space_tree( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 , [*path, nums[index]] , SCREAMING_SNAKE_CASE__ , remaining_nums_sum - nums[index] , ) __lowerCamelCase : Optional[int] = [3, 34, 4, 12, 5, 2] __lowerCamelCase : Dict = 9 __lowerCamelCase : str = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
404
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Dict , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
39
0
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging _A = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] _A = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() _A = logging.get_logger(__name__) _A = ''' Hello world! cécé herlolip''' _A = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def __UpperCamelCase ( _A ): lowerCAmelCase_ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = dct.pop(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = val def __UpperCamelCase ( _A ): lowerCAmelCase_ = torch.load(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' ) lowerCAmelCase_ = torch.hub.load('''pytorch/fairseq''' , '''bart.large.cnn''' ).eval() hub_interface.model.load_state_dict(sd['''model'''] ) return hub_interface def __UpperCamelCase ( _A ): lowerCAmelCase_ , lowerCAmelCase_ = emb.weight.shape lowerCAmelCase_ = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = emb.weight.data return lin_layer @torch.no_grad() def __UpperCamelCase ( _A , _A , _A=None ): if not os.path.exists(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase_ = torch.hub.load('''pytorch/fairseq''' , SCREAMING_SNAKE_CASE__ ).eval() else: lowerCAmelCase_ = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: lowerCAmelCase_ = checkpoint_path.replace('''.''' , '''-''' ) lowerCAmelCase_ = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) lowerCAmelCase_ = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( f"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" ) if checkpoint_path == "bart.large.mnli": lowerCAmelCase_ = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = state_dict['''model.decoder.embed_tokens.weight'''] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = bart.predict('''mnli''' , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about lowerCAmelCase_ = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = state_dict['''decoder.embed_tokens.weight'''] lowerCAmelCase_ = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": lowerCAmelCase_ = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = model(SCREAMING_SNAKE_CASE__ ).model[0] else: lowerCAmelCase_ = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , '''lm_head''' ): lowerCAmelCase_ = make_linear_from_emb(model.model.shared ) lowerCAmelCase_ = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('''Some values in `fairseq_output` are different from `new_model_outputs`''' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) _A = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
431
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv" SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]: snake_case_ = vocab_size snake_case_ = context_length snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case_ = layer_norm_epsilon snake_case_ = rescale_every snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
39
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a__ : Optional[Any] = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) class snake_case_ : '''simple docstring''' def __init__( self : int , _UpperCamelCase : Optional[str] = None ) ->Tuple: snake_case_ = ( os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) snake_case_ = Extractor def snake_case__( self : Any , _UpperCamelCase : str ) ->str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" snake_case_ = os.path.abspath(_UpperCamelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) ) def snake_case__( self : int , _UpperCamelCase : str , _UpperCamelCase : bool ) ->bool: return force_extract or ( not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase )) ) def snake_case__( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : bool = False ) ->str: snake_case_ = self.extractor.infer_extractor_format(_UpperCamelCase ) if not extractor_format: return input_path snake_case_ = self._get_output_path(_UpperCamelCase ) if self._do_extract(_UpperCamelCase , _UpperCamelCase ): self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return output_path class snake_case_ ( __A ): '''simple docstring''' @classmethod @abstractmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : str ) ->bool: ... @staticmethod @abstractmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: ... class snake_case_ ( __A , __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[bytes] = [] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->List[Any]: with open(_UpperCamelCase , '''rb''' ) as f: return f.read(_UpperCamelCase ) @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if not magic_number: snake_case_ = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) try: snake_case_ = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase ) except OSError: return False return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) class snake_case_ ( __A ): '''simple docstring''' @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : Any ) ->bool: return tarfile.is_tarfile(_UpperCamelCase ) @staticmethod def snake_case__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) ->List[str]: def resolved(_UpperCamelCase : str ) -> str: return os.path.realpath(os.path.abspath(_UpperCamelCase ) ) def badpath(_UpperCamelCase : str , _UpperCamelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase ) def badlink(_UpperCamelCase : Tuple , _UpperCamelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link snake_case_ = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCamelCase ) snake_case_ = resolved(_UpperCamelCase ) for finfo in members: if badpath(finfo.name , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = tarfile.open(_UpperCamelCase ) tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) ) tar_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [b"\x1F\x8B"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with gzip.open(_UpperCamelCase , '''rb''' ) as gzip_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def snake_case__( cls : List[str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCamelCase , '''rb''' ) as fp: snake_case_ = _EndRecData(_UpperCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: snake_case_ = fp.read(_UpperCamelCase ) # CD is where we expect it to be if len(_UpperCamelCase ) == sizeCentralDir: snake_case_ = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with zipfile.ZipFile(_UpperCamelCase , '''r''' ) as zip_file: zip_file.extractall(_UpperCamelCase ) zip_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with lzma.open(_UpperCamelCase ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = rarfile.RarFile(_UpperCamelCase ) rf.extractall(_UpperCamelCase ) rf.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [b"\x28\xb5\x2F\xFD"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd snake_case_ = zstd.ZstdDecompressor() with open(_UpperCamelCase , '''rb''' ) as ifh, open(_UpperCamelCase , '''wb''' ) as ofh: dctx.copy_stream(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"\x42\x5A\x68"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with bza.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with pyazr.SevenZipFile(_UpperCamelCase , '''r''' ) as archive: archive.extractall(_UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x04\x22\x4D\x18"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def snake_case__( cls : List[Any] ) ->List[str]: return max( len(_UpperCamelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCamelCase , _UpperCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->Tuple: try: return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase ) except OSError: return b"" @classmethod def snake_case__( cls : Optional[Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bool = False ) ->bool: warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = cls.infer_extractor_format(_UpperCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def snake_case__( cls : int , _UpperCamelCase : Union[Path, str] ) ->str: # <Added version="2.4.0"/> snake_case_ = cls._get_magic_number_max_length() snake_case_ = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return extractor_format @classmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[BaseExtractor] = "deprecated" , ) ->None: os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase ) # Prevent parallel extractions snake_case_ = str(Path(_UpperCamelCase ).with_suffix('''.lock''' ) ) with FileLock(_UpperCamelCase ): shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = extractor if extractor != '''deprecated''' else extractor_format else: snake_case_ = cls.extractors[extractor_format] return extractor.extract(_UpperCamelCase , _UpperCamelCase ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=_UpperCamelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCamelCase ): return extractor.extract(_UpperCamelCase , _UpperCamelCase )
39
0
from math import factorial def a__ ( snake_case__ : Optional[int] , snake_case__ : Optional[Any] ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError("""Please enter positive integers for n and k where n >= k""" ) return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', F'fifty-two card deck is: {combinations(52, 5)}\n', ) print( 'If a class of 40 students must be arranged into groups of', F'4 for group projects, there are {combinations(40, 4)} ways', 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', F'are {combinations(10, 3)} ways that first, second and', 'third place can be awarded.', )
643
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
39
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = XGLMTokenizerFast SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : List[Any] = True def UpperCamelCase ( self : int ): super().setUp() # We have a SentencePiece fixture for testing A = XGLMTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self : Any ): A = '<pad>' A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase ) def UpperCamelCase ( self : Optional[int] ): A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(len(_UpperCamelCase ) , 1008 ) def UpperCamelCase ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def UpperCamelCase ( self : int ): A = XGLMTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) A = tokenizer.tokenize('This is a test' ) self.assertListEqual(_UpperCamelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) A = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A = tokenizer.convert_ids_to_tokens(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCamelCase ( self : Any ): return XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) def UpperCamelCase ( self : int ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_UpperCamelCase , f.name ) A = XGLMTokenizer(f.name , keep_accents=_UpperCamelCase ) A = pickle.dumps(_UpperCamelCase ) pickle.loads(_UpperCamelCase ) def UpperCamelCase ( self : Any ): if not self.test_rust_tokenizer: return A = self.get_tokenizer() A = self.get_rust_tokenizer() A = 'I was born in 92000, and this is falsé.' A = tokenizer.tokenize(_UpperCamelCase ) A = rust_tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) A = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) A = rust_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) A = self.get_rust_tokenizer() A = tokenizer.encode(_UpperCamelCase ) A = rust_tokenizer.encode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) @slow def UpperCamelCase ( self : List[str] ): A = 'Hello World!' A = [2, 31227, 4447, 35] self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @slow def UpperCamelCase ( self : Union[str, Any] ): A = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off A = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @slow def UpperCamelCase ( self : List[Any] ): # fmt: off A = { 'input_ids': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name='facebook/xglm-564M' , padding=_UpperCamelCase , )
699
import re from filelock import FileLock try: import nltk lowerCAmelCase_ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): re.sub('''<n>''' , '''''' , SCREAMING_SNAKE_CASE__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE__ ) )
39
0
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowercase ( __A : Dict ) -> Dict: '''simple docstring''' def wrapper(*__A : Optional[Any] , **__A : Any ): snake_case : Tuple = timeit.default_timer() snake_case : List[str] = func(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case : Optional[Any] = timeit.default_timer() - starttime return delta snake_case : Optional[int] = func.__name__ return wrapper def lowercase ( __A : Optional[Any] , __A : Optional[int]=100 , __A : Tuple=None ) -> Any: '''simple docstring''' snake_case : Optional[int] = [] snake_case : Optional[int] = seq_shapes or {} for i in range(SCREAMING_SNAKE_CASE__ ): snake_case : List[str] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(SCREAMING_SNAKE_CASE__ , _ArrayXD ): snake_case : Dict = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(SCREAMING_SNAKE_CASE__ , datasets.Value ): if v.dtype == "string": snake_case : Tuple = """The small grey turtle was surprisingly fast when challenged.""" else: snake_case : Optional[Any] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(SCREAMING_SNAKE_CASE__ , datasets.Sequence ): while isinstance(SCREAMING_SNAKE_CASE__ , datasets.Sequence ): snake_case : Optional[Any] = v.feature snake_case : List[Any] = seq_shapes[k] snake_case : Union[str, Any] = np.random.rand(*SCREAMING_SNAKE_CASE__ ).astype(v.dtype ) snake_case : Any = data dummy_data.append((i, example) ) return dummy_data def lowercase ( __A : List[Any] , __A : List[Any] , __A : Any=100 , __A : List[str]=None ) -> Any: '''simple docstring''' snake_case : int = generate_examples(SCREAMING_SNAKE_CASE__ , num_examples=SCREAMING_SNAKE_CASE__ , seq_shapes=SCREAMING_SNAKE_CASE__ ) with ArrowWriter(features=SCREAMING_SNAKE_CASE__ , path=SCREAMING_SNAKE_CASE__ ) as writer: for key, record in dummy_data: snake_case : str = features.encode_example(SCREAMING_SNAKE_CASE__ ) writer.write(SCREAMING_SNAKE_CASE__ ) snake_case , snake_case : Optional[int] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) snake_case : int = datasets.Dataset.from_file(filename=SCREAMING_SNAKE_CASE__ , info=datasets.DatasetInfo(features=SCREAMING_SNAKE_CASE__ ) ) return dataset
36
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [0 for i in range(r + 1 )] # nc0 = 1 snake_case_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case_ = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
39
0
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 UpperCamelCase_ = { # 1536-bit 5: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 2048-bit 14: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AACAA68FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 3072-bit 15: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 4096-bit 16: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199""" + """FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 6144-bit 17: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08""" + """8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B""" + """302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9""" + """A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6""" + """49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8""" + """FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C""" + """180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718""" + """3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D""" + """04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D""" + """B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226""" + """1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC""" + """E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26""" + """99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB""" + """04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2""" + """233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127""" + """D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406""" + """AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918""" + """DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151""" + """2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03""" + """F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F""" + """BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B""" + """B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632""" + """387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E""" + """6DCC4024FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 8192-bit 18: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD""" + """F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831""" + """179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B""" + """DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF""" + """5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6""" + """D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3""" + """23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328""" + """06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C""" + """DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE""" + """12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4""" + """38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300""" + """741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568""" + """3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9""" + """22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B""" + """4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A""" + """062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36""" + """4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1""" + """B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92""" + """4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47""" + """9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71""" + """60C980DD98EDD3DFFFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, } class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , UpperCAmelCase__ : int = 14 ): '''simple docstring''' if group not in primes: raise ValueError('''Unsupported Group''' ) lowercase : str =primes[group]['''prime'''] lowercase : Tuple =primes[group]['''generator'''] lowercase : List[str] =int(hexlify(urandom(32 ) ) , base=16 ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return hex(self.__private_key )[2:] def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : Optional[int] =pow(self.generator , self.__private_key , self.prime ) return hex(_UpperCamelCase )[2:] def lowerCamelCase_ ( self : Dict , UpperCAmelCase__ : int ): '''simple docstring''' # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_UpperCamelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : str ): '''simple docstring''' lowercase : Tuple =int(_UpperCamelCase , base=16 ) if not self.is_valid_public_key(_UpperCamelCase ): raise ValueError('''Invalid public key''' ) lowercase : Union[str, Any] =pow(_UpperCamelCase , self.__private_key , self.prime ) return shaaaa(str(_UpperCamelCase ).encode() ).hexdigest() @staticmethod def lowerCamelCase_ ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ): '''simple docstring''' # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_UpperCamelCase , (prime - 1) // 2 , _UpperCamelCase ) == 1 ) @staticmethod def lowerCamelCase_ ( UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : int = 14 ): '''simple docstring''' lowercase : List[Any] =int(_UpperCamelCase , base=16 ) lowercase : Union[str, Any] =int(_UpperCamelCase , base=16 ) lowercase : List[Any] =primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(_UpperCamelCase , _UpperCamelCase ): raise ValueError('''Invalid public key''' ) lowercase : Optional[int] =pow(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return shaaaa(str(_UpperCamelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
92
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCAmelCase_ = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 13_10_72, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return torch.atana(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / math.pi * 2 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.sin(t * math.pi / 2 ) ** 2 snake_case_ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class snake_case_ ( __A ): '''simple docstring''' pass class snake_case_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : int ) ->Optional[int]: super().__init__() snake_case_ = DiffusionAttnUnetaD(_UpperCamelCase , n_attn_layers=4 ) snake_case_ = deepcopy(self.diffusion ) snake_case_ = torch.quasirandom.SobolEngine(1 , scramble=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = MODELS_MAP[model_name]['''url'''] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCAmelCase_ = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCAmelCase_ = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCAmelCase_ = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCAmelCase_ = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif name.startswith(SCREAMING_SNAKE_CASE__ ): return [name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 ): snake_case_ = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) snake_case_ = 0 if string.startswith('''net.3.''' ): depth += 1 snake_case_ = string[6:] elif string.startswith('''net.''' ): snake_case_ = string[4:] while string.startswith('''main.7.''' ): depth += 1 snake_case_ = string[7:] if string.startswith('''main.''' ): snake_case_ = string[5:] # mid block if string[:2].isdigit(): snake_case_ = string[:2] snake_case_ = string[2:] else: snake_case_ = string[0] snake_case_ = string[1:] if depth == max_depth: snake_case_ = MID_NUM_TO_LAYER[layer_num] snake_case_ = '''mid_block''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) < 7: snake_case_ = DOWN_NUM_TO_LAYER[layer_num] snake_case_ = F'''down_blocks.{depth}''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) > 7: snake_case_ = UP_NUM_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: snake_case_ = DEPTH_0_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - 1}''' if int(SCREAMING_SNAKE_CASE__ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) snake_case_ = string_left[1:] if "resnets" in new_layer: snake_case_ = convert_resconv_naming(SCREAMING_SNAKE_CASE__ ) elif "attentions" in new_layer: snake_case_ = convert_attn_naming(SCREAMING_SNAKE_CASE__ ) snake_case_ = new_string_left if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = prefix + '''.''' + new_layer + '''.''' + string_left else: snake_case_ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue snake_case_ = rename(SCREAMING_SNAKE_CASE__ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = transform_conv_attns(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ = v return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) == 1: if len(v.shape ) == 3: # weight snake_case_ = v[:, :, 0] else: # bias snake_case_ = v else: # qkv matrices snake_case_ = v.shape[0] snake_case_ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: snake_case_ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: snake_case_ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) snake_case_ = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' snake_case_ = download(SCREAMING_SNAKE_CASE__ ) snake_case_ = MODELS_MAP[model_name]['''sample_rate'''] snake_case_ = MODELS_MAP[model_name]['''sample_size'''] snake_case_ = Object() snake_case_ = sample_size snake_case_ = sample_rate snake_case_ = 0 snake_case_ = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE__ , sample_rate=SCREAMING_SNAKE_CASE__ ) snake_case_ = diffusers_model.state_dict() snake_case_ = DiffusionUncond(SCREAMING_SNAKE_CASE__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE__ )['''state_dict'''] ) snake_case_ = orig_model.diffusion_ema.eval() snake_case_ = orig_model.state_dict() snake_case_ = rename_orig_weights(SCREAMING_SNAKE_CASE__ ) snake_case_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) snake_case_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE__ ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith('''kernel''' ) for k in list(SCREAMING_SNAKE_CASE__ ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": snake_case_ = value.squeeze() snake_case_ = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = 100 snake_case_ = 33 snake_case_ = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE__ )[:-1] snake_case_ = get_crash_schedule(SCREAMING_SNAKE_CASE__ ) snake_case_ = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(33 ) snake_case_ = pipe(num_inference_steps=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).audios snake_case_ = sampling.iplms_sample(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {} ) snake_case_ = generated.clamp(-1 , 1 ) snake_case_ = (generated - audio).abs().sum() snake_case_ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , SCREAMING_SNAKE_CASE__ ) print('''Diff max''' , SCREAMING_SNAKE_CASE__ ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCAmelCase_ = parser.parse_args() main(args)
39
0
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case , __snake_case , __snake_case : Optional[int] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def _a ( _lowerCamelCase ) -> List[Any]: """simple docstring""" return (gray > 127) & (gray <= 255) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : Optional[Any] = np.zeros_like(SCREAMING_SNAKE_CASE__ ) __snake_case : str = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __snake_case : List[str] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __snake_case : Any = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __snake_case : Optional[Any] = int(summation > 0 ) return output if __name__ == "__main__": # read original image __UpperCamelCase = Path(__file__).resolve().parent / "image_data" / "lena.jpg" __UpperCamelCase = np.array(Image.open(lena_path)) # kernel to be applied __UpperCamelCase = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __UpperCamelCase = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __UpperCamelCase = Image.fromarray(output).convert("RGB") pil_img.save("result_dilation.png")
26
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
0
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = ["input_values", "attention_mask"] def __init__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 16_000 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = False , __UpperCAmelCase = 80 , __UpperCAmelCase = 16 , __UpperCAmelCase = 64 , __UpperCAmelCase = "hann_window" , __UpperCAmelCase = 1.0 , __UpperCAmelCase = 80 , __UpperCAmelCase = 7_600 , __UpperCAmelCase = 1E-10 , __UpperCAmelCase = 2 , __UpperCAmelCase = True , **__UpperCAmelCase , ): super().__init__(feature_size=_UpperCamelCase , sampling_rate=_UpperCamelCase , padding_value=_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =do_normalize SCREAMING_SNAKE_CASE_ : List[Any] =return_attention_mask SCREAMING_SNAKE_CASE_ : Dict =num_mel_bins SCREAMING_SNAKE_CASE_ : Optional[Any] =hop_length SCREAMING_SNAKE_CASE_ : str =win_length SCREAMING_SNAKE_CASE_ : List[str] =win_function SCREAMING_SNAKE_CASE_ : int =frame_signal_scale SCREAMING_SNAKE_CASE_ : Any =fmin SCREAMING_SNAKE_CASE_ : Optional[int] =fmax SCREAMING_SNAKE_CASE_ : List[str] =mel_floor SCREAMING_SNAKE_CASE_ : Dict =reduction_factor SCREAMING_SNAKE_CASE_ : Tuple =win_length * sampling_rate // 1_000 SCREAMING_SNAKE_CASE_ : List[Any] =hop_length * sampling_rate // 1_000 SCREAMING_SNAKE_CASE_ : Optional[Any] =optimal_fft_length(self.sample_size ) SCREAMING_SNAKE_CASE_ : Any =(self.n_fft // 2) + 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] =window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Any =mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCamelCase , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCamelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __lowerCamelCase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.0 ): if attention_mask is not None: SCREAMING_SNAKE_CASE_ : Any =np.array(_UpperCamelCase , np.intaa ) SCREAMING_SNAKE_CASE_ : Optional[int] =[] for vector, length in zip(_UpperCamelCase , attention_mask.sum(-1 ) ): SCREAMING_SNAKE_CASE_ : List[str] =(vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: SCREAMING_SNAKE_CASE_ : Union[str, Any] =padding_value normed_input_values.append(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ : Optional[int] =[(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __lowerCamelCase ( self , __UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : Tuple =spectrogram( _UpperCamelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] =self._process_audio( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase , ) else: SCREAMING_SNAKE_CASE_ : Dict =None if audio_target is not None: SCREAMING_SNAKE_CASE_ : int =self._process_audio( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase , ) if inputs is None: return inputs_target else: SCREAMING_SNAKE_CASE_ : Any =inputs_target['input_values'] SCREAMING_SNAKE_CASE_ : Optional[int] =inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE_ : int =decoder_attention_mask return inputs def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : Optional[int] =isinstance(_UpperCamelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) SCREAMING_SNAKE_CASE_ : Any =is_batched_numpy or ( isinstance(_UpperCamelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ : int =[np.asarray(_UpperCamelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_UpperCamelCase , np.ndarray ): SCREAMING_SNAKE_CASE_ : Optional[int] =np.asarray(_UpperCamelCase , dtype=np.floataa ) elif isinstance(_UpperCamelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ : int =speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ : Dict =[speech] # needed to make pad() work on spectrogram inputs SCREAMING_SNAKE_CASE_ : Optional[int] =self.feature_size # convert into correct format for padding if is_target: SCREAMING_SNAKE_CASE_ : Any =[self._extract_mel_features(_UpperCamelCase ) for waveform in speech] SCREAMING_SNAKE_CASE_ : Union[str, Any] =BatchFeature({'input_values': features} ) SCREAMING_SNAKE_CASE_ : Tuple =self.num_mel_bins else: SCREAMING_SNAKE_CASE_ : Any =BatchFeature({'input_values': speech} ) SCREAMING_SNAKE_CASE_ : int =self.pad( _UpperCamelCase , padding=_UpperCamelCase , max_length=_UpperCamelCase , truncation=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_attention_mask=_UpperCamelCase , **_UpperCamelCase , ) SCREAMING_SNAKE_CASE_ : Any =feature_size_hack # convert input values to correct format SCREAMING_SNAKE_CASE_ : Any =padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): SCREAMING_SNAKE_CASE_ : Tuple =[np.asarray(_UpperCamelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_UpperCamelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): SCREAMING_SNAKE_CASE_ : List[Any] =[array.astype(np.floataa ) for array in input_values] elif isinstance(_UpperCamelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ : str =input_values.astype(np.floataa ) # convert attention_mask to correct format SCREAMING_SNAKE_CASE_ : List[Any] =padded_inputs.get('attention_mask' ) if attention_mask is not None: SCREAMING_SNAKE_CASE_ : int =[np.asarray(_UpperCamelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: SCREAMING_SNAKE_CASE_ : List[str] =( attention_mask if self._get_padding_strategies(_UpperCamelCase , max_length=_UpperCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) SCREAMING_SNAKE_CASE_ : Tuple =self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_UpperCamelCase , padding_value=self.padding_value ) if return_tensors is not None: SCREAMING_SNAKE_CASE_ : Tuple =padded_inputs.convert_to_tensors(_UpperCamelCase ) return padded_inputs def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : List[Any] =super().to_dict() # Don't serialize these as they are derived from the other properties. SCREAMING_SNAKE_CASE_ : List[Any] =['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
220
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->Any: snake_case_ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case_ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case_ = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case_ = output[output != -float('''inf''' )] snake_case_ = tf.cast( tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-12 ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @require_tf class snake_case_ ( unittest.TestCase , __A ): '''simple docstring''' if is_tf_available(): SCREAMING_SNAKE_CASE : Optional[int] = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def snake_case__( self : List[Any] ) ->Optional[int]: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 2 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->List[Any]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) ->List[Any]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2, 0], [1_0_2, 1_0_3]] snake_case_ = [[1, 0], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for batch_size in range(1 , len(_UpperCamelCase ) + 1 ): snake_case_ = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow def snake_case__( self : List[str] ) ->int: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 1 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : Any ) ->List[str]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) ->Optional[int]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2], [1_0_2, 1_0_3]] snake_case_ = [[1], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for input_row in range(len(_UpperCamelCase ) ): snake_case_ = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow @require_tensorflow_text def snake_case__( self : Optional[Any] ) ->List[Any]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_UpperCamelCase ) class snake_case_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ) ->List[Any]: super().__init__() snake_case_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , '''spiece.model''' ) , '''rb''' ).read() ) snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->List[Any]: snake_case_ = self.tokenizer.tokenize(_UpperCamelCase ) snake_case_, snake_case_ = text.pad_model_inputs( _UpperCamelCase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) snake_case_ = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) return self.tokenizer.detokenize(_UpperCamelCase ) snake_case_ = CompleteSentenceTransformer() snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) snake_case_ = complete_model(_UpperCamelCase ) snake_case_ = tf.keras.Model(_UpperCamelCase , _UpperCamelCase ) keras_model.save(_UpperCamelCase ) def snake_case__( self : Any ) ->List[Any]: # Has PT equivalent: this test relies on random sampling snake_case_ = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 1_0, '''temperature''': 0.7, } snake_case_ = 1_4 snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = '''Hello, my dog is cute and''' snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''tf''' ) snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case_ = [6_3_8, 1_9_8] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def snake_case__( self : str ) ->Dict: # Has PT equivalent: ample use of framework-specific code snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = '''Hugging Face is a technology company based in New York and Paris.''' snake_case_ = bart_tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids snake_case_ = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Optional[int] ) ->List[str]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) ) class snake_case_ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , **_UpperCamelCase : Tuple ) ->Optional[Any]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() with self.assertRaises(_UpperCamelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_UpperCamelCase , foo='''bar''' )
39
0
"""simple docstring""" import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A_(__A , unittest.TestCase ): """simple docstring""" a_ : Any = KandinskyVaaPriorPipeline a_ : Union[str, Any] = ["prompt"] a_ : str = ["prompt", "negative_prompt"] a_ : Union[str, Any] = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] a_ : Any = False @property def _lowerCAmelCase ( self ): return 32 @property def _lowerCAmelCase ( self ): return 32 @property def _lowerCAmelCase ( self ): return self.time_input_dim @property def _lowerCAmelCase ( self ): return self.time_input_dim * 4 @property def _lowerCAmelCase ( self ): return 100 @property def _lowerCAmelCase ( self ): _lowerCamelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCamelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_UpperCamelCase ) @property def _lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCamelCase : Dict = { 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } _lowerCamelCase : List[str] = PriorTransformer(**_UpperCamelCase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _lowerCamelCase : List[str] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def _lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) _lowerCamelCase : str = CLIPVisionModelWithProjection(_UpperCamelCase ) return model @property def _lowerCAmelCase ( self ): _lowerCamelCase : Tuple = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCamelCase , do_normalize=_UpperCamelCase , do_resize=_UpperCamelCase , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=224 , ) return image_processor def _lowerCAmelCase ( self ): _lowerCamelCase : int = self.dummy_prior _lowerCamelCase : str = self.dummy_image_encoder _lowerCamelCase : Optional[int] = self.dummy_text_encoder _lowerCamelCase : Union[str, Any] = self.dummy_tokenizer _lowerCamelCase : Any = self.dummy_image_processor _lowerCamelCase : Optional[Any] = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=_UpperCamelCase , clip_sample_range=1_0.0 , ) _lowerCamelCase : Any = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def _lowerCAmelCase ( self , A , A=0 ): if str(_UpperCamelCase ).startswith('mps' ): _lowerCamelCase : Optional[int] = torch.manual_seed(_UpperCamelCase ) else: _lowerCamelCase : str = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _lowerCamelCase : List[str] = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[Any] = 'cpu' _lowerCamelCase : Any = self.get_dummy_components() _lowerCamelCase : List[Any] = self.pipeline_class(**_UpperCamelCase ) _lowerCamelCase : List[Any] = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _lowerCamelCase : Optional[Any] = pipe(**self.get_dummy_inputs(_UpperCamelCase ) ) _lowerCamelCase : Any = output.image_embeds _lowerCamelCase : Tuple = pipe( **self.get_dummy_inputs(_UpperCamelCase ) , return_dict=_UpperCamelCase , )[0] _lowerCamelCase : Dict = image[0, -10:] _lowerCamelCase : int = image_from_tuple[0, -10:] assert image.shape == (1, 32) _lowerCamelCase : Optional[Any] = np.array( [-0.0_5_3_2, 1.7_1_2_0, 0.3_6_5_6, -1.0_8_5_2, -0.8_9_4_6, -1.1_7_5_6, 0.4_3_4_8, 0.2_4_8_2, 0.5_1_4_6, -0.1_1_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _lowerCAmelCase ( self ): _lowerCamelCase : Any = torch_device == 'cpu' _lowerCamelCase : Optional[int] = True _lowerCamelCase : int = False self._test_inference_batch_single_identical( test_max_difference=_UpperCamelCase , relax_max_difference=_UpperCamelCase , test_mean_pixel_difference=_UpperCamelCase , ) @skip_mps def _lowerCAmelCase ( self ): _lowerCamelCase : int = torch_device == 'cpu' _lowerCamelCase : Optional[int] = False self._test_attention_slicing_forward_pass( test_max_difference=_UpperCamelCase , test_mean_pixel_difference=_UpperCamelCase , )
437
import unittest from transformers import DonutProcessor lowerCAmelCase_ = '''naver-clova-ix/donut-base''' class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = DonutProcessor.from_pretrained(_UpperCamelCase ) def snake_case__( self : Dict ) ->str: snake_case_ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } snake_case_ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) snake_case_ = self.processor.tokenajson(_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , _UpperCamelCase )
39
0
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCamelCase__ = "\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" lowerCamelCase__ = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" lowerCamelCase__ = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[List[List[str]]] , __a : List[List[str]] , __a : int = 1 , __a : int = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_UpperCamelCase , hypotheses=_UpperCamelCase , min_len=_UpperCamelCase , max_len=_UpperCamelCase ) }
624
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not nums: raise ValueError('''List is empty''' ) return sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
39
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" _UpperCamelCase =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCamelCase =[(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCamelCase ='''''' else: _UpperCamelCase ='''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCamelCase =state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) _UpperCamelCase =state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase =in_proj_weight[ : config.hidden_size, : ] _UpperCamelCase =in_proj_bias[: config.hidden_size] _UpperCamelCase =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCamelCase =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCamelCase =in_proj_weight[ -config.hidden_size :, : ] _UpperCamelCase =in_proj_bias[-config.hidden_size :] def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =dct.pop(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase =val def _a (): """simple docstring""" _UpperCamelCase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase =Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True ): """simple docstring""" _UpperCamelCase =ViTConfig() # patch_size if model_name[-1] == "8": _UpperCamelCase =8 # set labels if required if not base_model: _UpperCamelCase =1000 _UpperCamelCase ='''huggingface/label-files''' _UpperCamelCase ='''imagenet-1k-id2label.json''' _UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) , '''r''' ) ) _UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} _UpperCamelCase =idalabel _UpperCamelCase ={v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _UpperCamelCase =384 _UpperCamelCase =1536 _UpperCamelCase =12 _UpperCamelCase =6 # load original model from torch hub _UpperCamelCase =torch.hub.load('''facebookresearch/dino:main''' , SCREAMING_SNAKE_CASE__ ) original_model.eval() # load state_dict of original model, remove and rename some keys _UpperCamelCase =original_model.state_dict() if base_model: remove_classification_head_(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase =create_rename_keys(SCREAMING_SNAKE_CASE__ , base_model=SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) read_in_q_k_v(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # load HuggingFace model if base_model: _UpperCamelCase =ViTModel(SCREAMING_SNAKE_CASE__ , add_pooling_layer=SCREAMING_SNAKE_CASE__ ).eval() else: _UpperCamelCase =ViTForImageClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # Check outputs on an image, prepared by ViTImageProcessor _UpperCamelCase =ViTImageProcessor() _UpperCamelCase =image_processor(images=prepare_img() , return_tensors='''pt''' ) _UpperCamelCase =encoding['''pixel_values'''] _UpperCamelCase =model(SCREAMING_SNAKE_CASE__ ) if base_model: _UpperCamelCase =original_model(SCREAMING_SNAKE_CASE__ ) assert torch.allclose(SCREAMING_SNAKE_CASE__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _UpperCamelCase =original_model(SCREAMING_SNAKE_CASE__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE__ , outputs.logits , atol=1E-3 ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __lowerCamelCase : str = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
404
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : List[str] ) ->str: snake_case_ = inspect.getfile(accelerate.test_utils ) snake_case_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 snake_case_ = test_metrics @require_cpu def snake_case__( self : str ) ->int: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case__( self : Union[str, Any] ) ->Any: debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case__( self : List[Any] ) ->Tuple: self.test_metrics.main() @require_multi_gpu def snake_case__( self : Any ) ->Union[str, Any]: print(f'''Found {torch.cuda.device_count()} devices.''' ) snake_case_ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
39
0
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class A ( __A , unittest.TestCase ): __snake_case = TransfoXLTokenizer __snake_case = False __snake_case = False def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase_ = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] lowerCAmelCase_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname, **_UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = '''<unk> UNwanted , running''' lowerCAmelCase_ = '''<unk> unwanted, running''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = TransfoXLTokenizer(vocab_file=self.vocab_file, lower_case=_UpperCamelCase ) lowerCAmelCase_ = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(_UpperCamelCase, ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ), [0, 4, 8, 7] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = TransfoXLTokenizer(lower_case=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ), ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = TransfoXLTokenizer(lower_case=_UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ), ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = TransfoXLTokenizer(lower_case=_UpperCamelCase ) lowerCAmelCase_ = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' lowerCAmelCase_ = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(_UpperCamelCase ), _UpperCamelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(_UpperCamelCase ), _UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = len(_UpperCamelCase ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''', 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(_UpperCamelCase ), original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ), [1] ) self.assertEqual(tokenizer.decode([1] ), '''new1''' )
431
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = "informer" SCREAMING_SNAKE_CASE : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Dict , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "student_t" , _UpperCamelCase : str = "nll" , _UpperCamelCase : int = 1 , _UpperCamelCase : List[int] = None , _UpperCamelCase : Optional[Union[str, bool]] = "mean" , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : int = 6_4 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.05 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : Dict=True , _UpperCamelCase : str = "prob" , _UpperCamelCase : int = 5 , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Optional[int]: # time series specific configuration snake_case_ = prediction_length snake_case_ = context_length or prediction_length snake_case_ = distribution_output snake_case_ = loss snake_case_ = input_size snake_case_ = num_time_features snake_case_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case_ = scaling snake_case_ = num_dynamic_real_features snake_case_ = num_static_real_features snake_case_ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = cardinality else: snake_case_ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = embedding_dimension else: snake_case_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ = num_parallel_samples # Transformer architecture configuration snake_case_ = input_size * len(self.lags_sequence ) + self._number_of_features snake_case_ = d_model snake_case_ = encoder_attention_heads snake_case_ = decoder_attention_heads snake_case_ = encoder_ffn_dim snake_case_ = decoder_ffn_dim snake_case_ = encoder_layers snake_case_ = decoder_layers snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = activation_function snake_case_ = init_std snake_case_ = use_cache # Informer snake_case_ = attention_type snake_case_ = sampling_factor snake_case_ = distil super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def snake_case__( self : Optional[Any] ) ->int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
39
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a__ : Any = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : int ) -> Tuple: """simple docstring""" UpperCAmelCase = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) UpperCAmelCase = DetaConfig( backbone_config=SCREAMING_SNAKE_CASE__ , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=SCREAMING_SNAKE_CASE__ , with_box_refine=SCREAMING_SNAKE_CASE__ , two_stage=SCREAMING_SNAKE_CASE__ , ) # set labels UpperCAmelCase = '''huggingface/label-files''' if "o365" in model_name: UpperCAmelCase = 366 UpperCAmelCase = '''object365-id2label.json''' else: UpperCAmelCase = 91 UpperCAmelCase = '''coco-detection-id2label.json''' UpperCAmelCase = num_labels UpperCAmelCase = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: """simple docstring""" UpperCAmelCase = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((f"backbone.0.body.layers.{i}.downsample.reduction.weight", f"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.weight", f"model.backbone.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.bias", f"model.backbone.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", f"model.encoder.layers.{i}.self_attn.sampling_offsets.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", f"model.encoder.layers.{i}.self_attn.sampling_offsets.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", f"model.encoder.layers.{i}.self_attn.attention_weights.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", f"model.encoder.layers.{i}.self_attn.attention_weights.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.weight", f"model.encoder.layers.{i}.self_attn.value_proj.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.bias", f"model.encoder.layers.{i}.self_attn.value_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.weight", f"model.encoder.layers.{i}.self_attn.output_proj.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.bias", f"model.encoder.layers.{i}.self_attn.output_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.weight", f"model.encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"model.encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"model.encoder.layers.{i}.fc1.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"model.encoder.layers.{i}.fc1.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"model.encoder.layers.{i}.fc2.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"model.encoder.layers.{i}.fc2.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"model.encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"model.encoder.layers.{i}.final_layer_norm.bias") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", f"model.decoder.layers.{i}.encoder_attn.attention_weights.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", f"model.decoder.layers.{i}.encoder_attn.attention_weights.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", f"model.decoder.layers.{i}.encoder_attn.value_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", f"model.decoder.layers.{i}.encoder_attn.value_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", f"model.decoder.layers.{i}.encoder_attn.output_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", f"model.decoder.layers.{i}.encoder_attn.output_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.weight", f"model.decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"model.decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"model.decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"model.decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.weight", f"model.decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.bias", f"model.decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"model.decoder.layers.{i}.fc1.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"model.decoder.layers.{i}.fc1.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"model.decoder.layers.{i}.fc2.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"model.decoder.layers.{i}.fc2.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"model.decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"model.decoder.layers.{i}.final_layer_norm.bias") ) # fmt: on return rename_keys def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple ) -> Any: """simple docstring""" UpperCAmelCase = dct.pop(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase = val def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: """simple docstring""" UpperCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight" ) UpperCAmelCase = state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[:dim, :] UpperCAmelCase = in_proj_bias[: dim] UpperCAmelCase = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase = in_proj_weight[ -dim :, : ] UpperCAmelCase = in_proj_bias[-dim :] # fmt: on def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase = state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) UpperCAmelCase = state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[:hidden_size, :] UpperCAmelCase = in_proj_bias[:hidden_size] UpperCAmelCase = in_proj_weight[ hidden_size : hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase = in_proj_weight[-hidden_size:, :] UpperCAmelCase = in_proj_bias[-hidden_size:] def __snake_case ( ) -> Any: """simple docstring""" UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase = get_deta_config(SCREAMING_SNAKE_CASE__ ) # load original state dict if model_name == "deta-swin-large": UpperCAmelCase = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": UpperCAmelCase = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f"Model name {model_name} not supported" ) UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(SCREAMING_SNAKE_CASE__ , param.shape ) # rename keys UpperCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) read_in_swin_q_k_v(SCREAMING_SNAKE_CASE__ , config.backbone_config ) read_in_decoder_q_k_v(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: UpperCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase = val if "input_proj" in key: UpperCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: UpperCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase = val # finally, create HuggingFace model and load state dict UpperCAmelCase = DetaForObjectDetection(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() UpperCAmelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(SCREAMING_SNAKE_CASE__ ) # load image processor UpperCAmelCase = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image UpperCAmelCase = prepare_img() UpperCAmelCase = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ) UpperCAmelCase = encoding['''pixel_values'''] UpperCAmelCase = model(pixel_values.to(SCREAMING_SNAKE_CASE__ ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": UpperCAmelCase = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) UpperCAmelCase = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": UpperCAmelCase = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) UpperCAmelCase = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(SCREAMING_SNAKE_CASE__ ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(SCREAMING_SNAKE_CASE__ ) , atol=1e-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f"Saving PyTorch model and processor to {pytorch_dump_folder_path}..." ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f"jozhang97/{model_name}" ) processor.push_to_hub(f"jozhang97/{model_name}" ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a__ : str = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
51
import cmath import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) # Convert voltage and current to rectangular form snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
39
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE__ : List[str] = logging.getLogger() def a__ ( ): _UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) _UpperCAmelCase : Tuple = parser.parse_args() return args.f class _SCREAMING_SNAKE_CASE ( __A ): def __snake_case( self ): _UpperCAmelCase : Union[str, Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCamelCase ) def __snake_case( self , A_ ): _UpperCAmelCase : Tuple = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(_UpperCamelCase , """argv""" , _UpperCamelCase ): _UpperCAmelCase : str = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_UpperCamelCase , 0.6_6_6 ) @slow @require_torch_non_multi_gpu def __snake_case( self ): _UpperCAmelCase : str = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(_UpperCamelCase ) _UpperCAmelCase : Union[str, Any] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_UpperCamelCase ) _UpperCAmelCase : int = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_UpperCamelCase )
643
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=1_3 , _UpperCamelCase : str=7 , _UpperCamelCase : int=True , _UpperCamelCase : Dict=True , _UpperCamelCase : int=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : str=3_2 , _UpperCamelCase : str=5 , _UpperCamelCase : str=4 , _UpperCamelCase : int=3_7 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : str=5_1_2 , _UpperCamelCase : Optional[int]=1_6 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Any=0.02 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : str=None , ) ->Dict: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def snake_case__( self : str ) ->List[Any]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self : List[str] ) ->Tuple: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) ->Dict: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , ) ->Optional[int]: snake_case_ = BioGptForCausalLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , *_UpperCamelCase : List[Any] ) ->Union[str, Any]: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # create attention mask snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) snake_case_ = self.seq_length // 2 snake_case_ = 0 # first forward pass snake_case_, snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids snake_case_ = ids_tensor((1,) , _UpperCamelCase ).item() + 1 snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) snake_case_ = random_other_next_tokens # append to next input_ids and attn_mask snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCamelCase )] , dim=1 , ) # get two different outputs snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , past_key_values=_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , *_UpperCamelCase : List[Any] ) ->int: snake_case_ = BioGptModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval() snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) # first forward pass snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase ) snake_case_, snake_case_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[ '''last_hidden_state''' ] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , *_UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=False ) ->Dict: snake_case_ = BioGptForCausalLM(_UpperCamelCase ) model.to(_UpperCamelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def snake_case__( self : List[Any] , _UpperCamelCase : Optional[int] , *_UpperCamelCase : Dict ) ->Dict: snake_case_ = BioGptModel(_UpperCamelCase ) snake_case_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def snake_case__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , *_UpperCamelCase : List[str] ) ->int: snake_case_ = self.num_labels snake_case_ = BioGptForTokenClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = (BioGptForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Optional[Any] = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Tuple = False def snake_case__( self : List[str] ) ->Union[str, Any]: snake_case_ = BioGptModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : str ) ->int: self.config_tester.run_common_tests() def snake_case__( self : str ) ->Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_UpperCamelCase , gradient_checkpointing=_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCamelCase ) def snake_case__( self : List[Any] ) ->Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCamelCase ) @slow def snake_case__( self : int ) ->Optional[Any]: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = '''left''' # Define PAD Token = EOS Token = 50256 snake_case_ = tokenizer.eos_token snake_case_ = model.config.eos_token_id # use different length sentences to test batching snake_case_ = [ '''Hello, my dog is a little''', '''Today, I''', ] snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase ) snake_case_ = inputs['''input_ids'''].to(_UpperCamelCase ) snake_case_ = model.generate( input_ids=_UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(_UpperCamelCase ) , ) snake_case_ = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase ) snake_case_ = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() snake_case_ = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings ) snake_case_ = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] ) @slow def snake_case__( self : Optional[int] ) ->List[str]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = BioGptModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__( self : str ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = '''multi_label_classification''' snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__( self : int ) ->Any: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) snake_case_ = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) snake_case_ = model(_UpperCamelCase )[0] snake_case_ = 4_2_3_8_4 snake_case_ = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def snake_case__( self : List[str] ) ->Optional[int]: snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_UpperCamelCase ) snake_case_ = model.generate( **_UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=_UpperCamelCase , ) snake_case_ = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(_UpperCamelCase , _UpperCamelCase )
39
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = KandinskyImgaImgPipeline SCREAMING_SNAKE_CASE : int = ["prompt", "image_embeds", "negative_image_embeds", "image"] SCREAMING_SNAKE_CASE : str = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] SCREAMING_SNAKE_CASE : List[Any] = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] SCREAMING_SNAKE_CASE : Optional[Any] = False @property def UpperCamelCase ( self : Union[str, Any] ): return 32 @property def UpperCamelCase ( self : Any ): return 32 @property def UpperCamelCase ( self : Any ): return self.time_input_dim @property def UpperCamelCase ( self : Any ): return self.time_input_dim * 4 @property def UpperCamelCase ( self : Dict ): return 100 @property def UpperCamelCase ( self : Optional[Any] ): A = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def UpperCamelCase ( self : int ): torch.manual_seed(0 ) A = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) A = MultilingualCLIP(_UpperCamelCase ) A = text_encoder.eval() return text_encoder @property def UpperCamelCase ( self : Union[str, Any] ): torch.manual_seed(0 ) A = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } A = UNetaDConditionModel(**_UpperCamelCase ) return model @property def UpperCamelCase ( self : int ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase ( self : Any ): torch.manual_seed(0 ) A = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase ( self : Tuple ): A = self.dummy_text_encoder A = self.dummy_tokenizer A = self.dummy_unet A = self.dummy_movq A = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } A = DDIMScheduler(**_UpperCamelCase ) A = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=0 ): A = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) A = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_UpperCamelCase ) # create init_image A = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) A = image.cpu().permute(0 , 2 , 3 , 1 )[0] A = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('RGB' ).resize((256, 256) ) if str(_UpperCamelCase ).startswith('mps' ): A = torch.manual_seed(_UpperCamelCase ) else: A = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) A = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def UpperCamelCase ( self : str ): A = 'cpu' A = self.get_dummy_components() A = self.pipeline_class(**_UpperCamelCase ) A = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) A = pipe(**self.get_dummy_inputs(_UpperCamelCase ) ) A = output.images A = pipe( **self.get_dummy_inputs(_UpperCamelCase ) , return_dict=_UpperCamelCase , )[0] A = image[0, -3:, -3:, -1] A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A = np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : Dict ): A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy' ) A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) A = 'A red cartoon frog, 4k' A = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCamelCase ) A = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' , torch_dtype=torch.floataa ) A = pipeline.to(_UpperCamelCase ) pipeline.set_progress_bar_config(disable=_UpperCamelCase ) A = torch.Generator(device='cpu' ).manual_seed(0 ) A , A = pipe_prior( _UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() A = pipeline( _UpperCamelCase , image=_UpperCamelCase , image_embeds=_UpperCamelCase , negative_image_embeds=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) A = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase )
699
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) snake_case_ = (boundary[1] - boundary[0]) / steps snake_case_ = boundary[0] snake_case_ = boundary[1] snake_case_ = make_points(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = 0.0 y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) for i in x_i: # print(i) y += h * f(SCREAMING_SNAKE_CASE__ ) y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) return y def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = a + h while x < (b - h): yield x snake_case_ = x + h def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # enter your function here snake_case_ = (x - 0) * (x - 0) return y def __SCREAMING_SNAKE_CASE (): snake_case_ = 0.0 # Lower bound of integration snake_case_ = 1.0 # Upper bound of integration snake_case_ = 10.0 # define number of steps or resolution snake_case_ = [a, b] # define boundary of integration snake_case_ = method_a(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
39
0
from itertools import product def lowercase ( __A : List[Any] , __A : Optional[Any] ) -> Any: '''simple docstring''' snake_case : Any = sides_number snake_case : Dict = max_face_number * dice_number snake_case : Optional[Any] = [0] * (max_total + 1) snake_case : List[str] = 1 snake_case : int = range(SCREAMING_SNAKE_CASE__ , max_face_number + 1 ) for dice_numbers in product(SCREAMING_SNAKE_CASE__ , repeat=SCREAMING_SNAKE_CASE__ ): snake_case : int = sum(SCREAMING_SNAKE_CASE__ ) totals_frequencies[total] += 1 return totals_frequencies def lowercase ( ) -> List[str]: '''simple docstring''' snake_case : List[str] = total_frequency_distribution( sides_number=4 , dice_number=9 ) snake_case : Union[str, Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) snake_case : List[Any] = 0 snake_case : Optional[Any] = 9 snake_case : str = 4 * 9 snake_case : int = 6 for peter_total in range(SCREAMING_SNAKE_CASE__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : Tuple = (4**9) * (6**6) snake_case : Optional[Any] = peter_wins_count / total_games_number snake_case : Tuple = round(SCREAMING_SNAKE_CASE__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'''{solution() = }''')
36
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / '''model_card_template.md''' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None ): snake_case_ = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if token is None: snake_case_ = HfFolder.get_token() if organization is None: snake_case_ = whoami(SCREAMING_SNAKE_CASE__ )['''name'''] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(SCREAMING_SNAKE_CASE__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , '''hub_token''' ) else None snake_case_ = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) snake_case_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ = os.path.join(args.output_dir , '''README.md''' ) model_card.save(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) snake_case_ = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE__ ) if search is None: return None snake_case_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, '''diffusers''') def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if new_cache_dir is None: snake_case_ = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ = old_diffusers_cache snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ '''the directory exists and can be written to.''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if variant is not None: snake_case_ = weights_name.split('''.''' ) snake_case_ = splits[:-1] + [variant] + splits[-1:] snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ ) return weights_name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ): snake_case_ = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' '''this model name. Check the model page at ''' F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
39
0
'''simple docstring''' import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCamelCase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def _lowerCAmelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : List[str]=False , ) -> Any: output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , use_external_data_format=SCREAMING_SNAKE_CASE__ , enable_onnx_checker=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , ) else: export( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE__ , output_names=SCREAMING_SNAKE_CASE__ , dynamic_axes=SCREAMING_SNAKE_CASE__ , do_constant_folding=SCREAMING_SNAKE_CASE__ , opset_version=SCREAMING_SNAKE_CASE__ , ) @torch.no_grad() def _lowerCAmelCase ( __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Dict = False ) -> str: lowercase : List[str] =torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase : Any ='''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: lowercase : int ='''cpu''' lowercase : Optional[int] =StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__ , torch_dtype=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple =Path(SCREAMING_SNAKE_CASE__ ) # TEXT ENCODER lowercase : Any =pipeline.text_encoder.config.max_position_embeddings lowercase : Any =pipeline.text_encoder.config.hidden_size lowercase : Dict =pipeline.tokenizer( '''A sample prompt''' , padding='''max_length''' , max_length=pipeline.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=SCREAMING_SNAKE_CASE__ , dtype=torch.intaa )) , output_path=output_path / '''text_encoder''' / '''model.onnx''' , ordered_input_names=['''input_ids'''] , output_names=['''last_hidden_state''', '''pooler_output'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''sequence'''}, } , opset=SCREAMING_SNAKE_CASE__ , ) del pipeline.text_encoder # UNET lowercase : List[Any] =pipeline.unet.config.in_channels lowercase : Dict =pipeline.unet.config.sample_size lowercase : Optional[int] =output_path / '''unet''' / '''model.onnx''' onnx_export( pipeline.unet , model_args=( torch.randn(2 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ), torch.randn(2 ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ), torch.randn(2 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ), False, ) , output_path=SCREAMING_SNAKE_CASE__ , ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''] , output_names=['''out_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''timestep''': {0: '''batch'''}, '''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''}, } , opset=SCREAMING_SNAKE_CASE__ , use_external_data_format=SCREAMING_SNAKE_CASE__ , ) lowercase : str =str(unet_path.absolute().as_posix() ) lowercase : Tuple =os.path.dirname(SCREAMING_SNAKE_CASE__ ) lowercase : str =onnx.load(SCREAMING_SNAKE_CASE__ ) # clean up existing tensor files shutil.rmtree(SCREAMING_SNAKE_CASE__ ) os.mkdir(SCREAMING_SNAKE_CASE__ ) # collate external tensor files into one onnx.save_model( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , save_as_external_data=SCREAMING_SNAKE_CASE__ , all_tensors_to_one_file=SCREAMING_SNAKE_CASE__ , location='''weights.pb''' , convert_attribute=SCREAMING_SNAKE_CASE__ , ) del pipeline.unet # VAE ENCODER lowercase : str =pipeline.vae lowercase : List[str] =vae_encoder.config.in_channels lowercase : List[Any] =vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder lowercase : str =lambda __magic_name__ , __magic_name__ : vae_encoder.encode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0].sample() onnx_export( SCREAMING_SNAKE_CASE__ , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ), False, ) , output_path=output_path / '''vae_encoder''' / '''model.onnx''' , ordered_input_names=['''sample''', '''return_dict'''] , output_names=['''latent_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=SCREAMING_SNAKE_CASE__ , ) # VAE DECODER lowercase : List[str] =pipeline.vae lowercase : List[str] =vae_decoder.config.latent_channels lowercase : Union[str, Any] =vae_decoder.config.out_channels # forward only through the decoder part lowercase : Dict =vae_encoder.decode onnx_export( SCREAMING_SNAKE_CASE__ , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=SCREAMING_SNAKE_CASE__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: lowercase : Dict =pipeline.safety_checker lowercase : Dict =safety_checker.config.vision_config.num_channels lowercase : Any =safety_checker.config.vision_config.image_size lowercase : Optional[Any] =safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ), torch.randn(1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).to(device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ), ) , output_path=output_path / '''safety_checker''' / '''model.onnx''' , ordered_input_names=['''clip_input''', '''images'''] , output_names=['''out_images''', '''has_nsfw_concepts'''] , dynamic_axes={ '''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''}, } , opset=SCREAMING_SNAKE_CASE__ , ) del pipeline.safety_checker lowercase : Any =OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''' ) lowercase : List[str] =pipeline.feature_extractor else: lowercase : Optional[Any] =None lowercase : Optional[int] =None lowercase : Optional[int] =OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''' ) , scheduler=pipeline.scheduler , safety_checker=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('''ONNX pipeline saved to''' , SCREAMING_SNAKE_CASE__ ) del pipeline del onnx_pipeline lowercase : Tuple =OnnxStableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__ , provider='''CPUExecutionProvider''' ) print('''ONNX pipeline is loadable''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") UpperCamelCase_ = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
92
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt" def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) snake_case_ = backbone_featmap_shape snake_case_ = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: snake_case_ = None snake_case_ = None snake_case_ = [] snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) snake_case_ = readout_type snake_case_ = reassemble_factors snake_case_ = neck_hidden_sizes snake_case_ = fusion_hidden_size snake_case_ = head_in_index snake_case_ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = semantic_loss_ignore_index snake_case_ = semantic_classifier_dropout def snake_case__( self : List[str] ) ->List[Any]: snake_case_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
39
0
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _A : def __init__( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : List[Any]=2 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Any=7 , __magic_name__ : int=True , __magic_name__ : Any=True , __magic_name__ : Tuple=True , __magic_name__ : Optional[int]=True , __magic_name__ : Any=99 , __magic_name__ : int=36 , __magic_name__ : str=3 , __magic_name__ : str=4 , __magic_name__ : List[str]=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : Dict=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Dict=5_12 , __magic_name__ : str=16 , __magic_name__ : Optional[int]=2 , __magic_name__ : int=0.02 , __magic_name__ : Any=6 , __magic_name__ : Optional[Any]=6 , __magic_name__ : Optional[int]=3 , __magic_name__ : Any=4 , __magic_name__ : List[Any]=None , __magic_name__ : List[Any]=10_00 , ) -> Dict: """simple docstring""" __snake_case : Optional[int] = parent __snake_case : Optional[int] = batch_size __snake_case : int = num_channels __snake_case : int = image_size __snake_case : str = patch_size __snake_case : Union[str, Any] = text_seq_length __snake_case : Union[str, Any] = is_training __snake_case : List[str] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : str = use_labels __snake_case : List[Any] = vocab_size __snake_case : List[str] = hidden_size __snake_case : str = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Optional[Any] = intermediate_size __snake_case : List[Any] = hidden_act __snake_case : Tuple = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : int = type_vocab_size __snake_case : List[str] = type_sequence_label_size __snake_case : List[str] = initializer_range __snake_case : Union[str, Any] = coordinate_size __snake_case : Tuple = shape_size __snake_case : Dict = num_labels __snake_case : Optional[Any] = num_choices __snake_case : Union[str, Any] = scope __snake_case : Optional[int] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case : Union[str, Any] = text_seq_length __snake_case : Union[str, Any] = (image_size // patch_size) ** 2 + 1 __snake_case : Any = self.text_seq_length + self.image_seq_length def lowercase__ ( self : str ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __snake_case : int = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : Dict = bbox[i, j, 3] __snake_case : Optional[int] = bbox[i, j, 1] __snake_case : Dict = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : Optional[int] = bbox[i, j, 2] __snake_case : Union[str, Any] = bbox[i, j, 0] __snake_case : List[Any] = t __snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = None if self.use_input_mask: __snake_case : int = random_attention_mask([self.batch_size, self.text_seq_length] ) __snake_case : Tuple = None if self.use_token_type_ids: __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __snake_case : Any = None __snake_case : List[str] = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __snake_case : List[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self : Optional[int] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> Any: """simple docstring""" __snake_case : Optional[int] = LayoutLMvaModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # text + image __snake_case : Tuple = model(_UpperCamelCase , pixel_values=_UpperCamelCase ) __snake_case : Any = model( _UpperCamelCase , bbox=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) __snake_case : str = model(_UpperCamelCase , bbox=_UpperCamelCase , pixel_values=_UpperCamelCase , token_type_ids=_UpperCamelCase ) __snake_case : Union[str, Any] = model(_UpperCamelCase , bbox=_UpperCamelCase , pixel_values=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __snake_case : int = model(_UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __snake_case : str = model(pixel_values=_UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : str ) -> Dict: """simple docstring""" __snake_case : Union[str, Any] = self.num_labels __snake_case : Union[str, Any] = LayoutLMvaForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() __snake_case : Optional[Any] = model( _UpperCamelCase , bbox=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case : Any = self.num_labels __snake_case : Optional[Any] = LayoutLMvaForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() __snake_case : str = model( _UpperCamelCase , bbox=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase__ ( self : Any , __magic_name__ : List[str] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Any ) -> Any: """simple docstring""" __snake_case : Optional[Any] = LayoutLMvaForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() __snake_case : int = model( _UpperCamelCase , bbox=_UpperCamelCase , pixel_values=_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Any = config_and_inputs __snake_case : Tuple = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class _A ( __A , __A , unittest.TestCase ): lowercase__: Union[str, Any] = False lowercase__: Any = False lowercase__: Optional[Any] = False lowercase__: Any = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowercase__: List[Any] = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def lowercase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[str] ) -> int: """simple docstring""" return True def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[Any] = LayoutLMvaModelTester(self ) __snake_case : Any = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def lowercase__ ( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : int=False ) -> List[str]: """simple docstring""" __snake_case : Any = copy.deepcopy(_UpperCamelCase ) if model_class in get_values(_UpperCamelCase ): __snake_case : Union[str, Any] = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(_UpperCamelCase , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_UpperCamelCase ): __snake_case : Any = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase ) elif model_class in get_values(_UpperCamelCase ): __snake_case : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase ) __snake_case : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase ) elif model_class in [ *get_values(_UpperCamelCase ), ]: __snake_case : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase ) elif model_class in [ *get_values(_UpperCamelCase ), ]: __snake_case : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_UpperCamelCase , ) return inputs_dict def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : Any ) -> Optional[int]: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def lowercase__ ( self : int ) -> Optional[int]: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : List[str] = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCamelCase ) def lowercase__ ( self : Optional[Any] ) -> Any: """simple docstring""" __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) def lowercase__ ( self : str ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) @slow def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[Any] = LayoutLMvaModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def _a ( ) -> str: """simple docstring""" __snake_case : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=_UpperCamelCase ) if is_vision_available() else None @slow def lowercase__ ( self : Dict ) -> int: """simple docstring""" __snake_case : Tuple = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(_UpperCamelCase ) __snake_case : Dict = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : Dict = image_processor(images=_UpperCamelCase , return_tensors="""pt""" ).pixel_values.to(_UpperCamelCase ) __snake_case : Dict = torch.tensor([[1, 2]] ) __snake_case : Any = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __snake_case : str = model( input_ids=input_ids.to(_UpperCamelCase ) , bbox=bbox.to(_UpperCamelCase ) , pixel_values=pixel_values.to(_UpperCamelCase ) , ) # verify the logits __snake_case : Optional[Any] = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape , _UpperCamelCase ) __snake_case : Tuple = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _UpperCamelCase , atol=1E-4 ) )
26
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = '''pytorch_model.bin''' @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "A csv or a json file containing the validation data."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "The name of the task to train on."} , ) SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field( default=__A , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=__A , metadata={"help": "Random seed for initialization."} , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case_ = dataset.filter(lambda SCREAMING_SNAKE_CASE__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case_ = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) ) print(SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = dataset.remove_columns(['''label''', '''probability'''] ) snake_case_ = dataset.rename_column('''prediction''' , '''label''' ) snake_case_ = dataset.map(lambda SCREAMING_SNAKE_CASE__ : {"label": idalabel[example["label"]]} ) snake_case_ = dataset.shuffle(seed=args.seed ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) else: dataset.to_json(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): snake_case_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case_ = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ ) snake_case_ = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ , infer_file=SCREAMING_SNAKE_CASE__ ) snake_case_ = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ ) snake_case_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(SCREAMING_SNAKE_CASE__ ).items(): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Sanity checks snake_case_ = {} snake_case_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case_ = args.train_file snake_case_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case_ = args.eval_file for key in data_files: snake_case_ = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: snake_case_ = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) snake_case_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format snake_case_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = None snake_case_ = None snake_case_ = 0 snake_case_ = False # Show the progress bar snake_case_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case_ = data_dir_format(SCREAMING_SNAKE_CASE__ ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-1''' ) snake_case_ = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): arguments_dict.update({key: value} ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-2''' ) # Update arguments_dict snake_case_ = model_path snake_case_ = data_files['''train'''] snake_case_ = current_output_dir snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = iteration snake_case_ = data_dir_format(iteration + 1 ) snake_case_ = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) ) snake_case_ = config.idalabel snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-checkpoint.json''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: snake_case_ = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Loading the dataset from local csv or json files. snake_case_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] snake_case_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case_ = eval_result if best_iteration is None: snake_case_ = new_iteration snake_case_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case_ = new_iteration snake_case_ = new_eval_result snake_case_ = 0 else: if new_eval_result == best_eval_result: snake_case_ = new_iteration snake_case_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE__ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , )
39
0
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch __SCREAMING_SNAKE_CASE = random.Random() def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : str ,lowerCAmelCase_ : Any=1.0 ,lowerCAmelCase_ : int=None ,lowerCAmelCase_ : List[str]=None ) -> Union[str, Any]: """simple docstring""" if rng is None: SCREAMING_SNAKE_CASE_ : List[Any] =global_rng SCREAMING_SNAKE_CASE_ : str =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=400 , __UpperCAmelCase=2_000 , __UpperCAmelCase=1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=16_000 , __UpperCAmelCase=True , __UpperCAmelCase=80 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase="hann_window" , __UpperCAmelCase=80 , __UpperCAmelCase=7_600 , __UpperCAmelCase=1E-10 , __UpperCAmelCase=True , ): SCREAMING_SNAKE_CASE_ : Any =parent SCREAMING_SNAKE_CASE_ : List[str] =batch_size SCREAMING_SNAKE_CASE_ : Optional[int] =min_seq_length SCREAMING_SNAKE_CASE_ : List[Any] =max_seq_length SCREAMING_SNAKE_CASE_ : Tuple =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE_ : Any =feature_size SCREAMING_SNAKE_CASE_ : int =padding_value SCREAMING_SNAKE_CASE_ : Dict =sampling_rate SCREAMING_SNAKE_CASE_ : Union[str, Any] =do_normalize SCREAMING_SNAKE_CASE_ : Union[str, Any] =num_mel_bins SCREAMING_SNAKE_CASE_ : Optional[Any] =hop_length SCREAMING_SNAKE_CASE_ : Optional[Any] =win_length SCREAMING_SNAKE_CASE_ : List[str] =win_function SCREAMING_SNAKE_CASE_ : Optional[Any] =fmin SCREAMING_SNAKE_CASE_ : Any =fmax SCREAMING_SNAKE_CASE_ : List[str] =mel_floor SCREAMING_SNAKE_CASE_ : Optional[Any] =return_attention_mask def __lowerCamelCase ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __lowerCamelCase ( self , __UpperCAmelCase=False , __UpperCAmelCase=False ): def _flatten(__UpperCAmelCase ): return list(itertools.chain(*_UpperCamelCase ) ) if equal_length: SCREAMING_SNAKE_CASE_ : List[Any] =floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ : Tuple =[ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ : Dict =[np.asarray(_UpperCamelCase ) for x in speech_inputs] return speech_inputs def __lowerCamelCase ( self , __UpperCAmelCase=False , __UpperCAmelCase=False ): if equal_length: SCREAMING_SNAKE_CASE_ : Union[str, Any] =[floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ : str =[ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ : Optional[Any] =[np.asarray(_UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch class lowerCAmelCase_ ( __A , unittest.TestCase ): '''simple docstring''' _lowercase = SpeechTaFeatureExtractor def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : str =SpeechTaFeatureExtractionTester(self ) def __lowerCamelCase ( self , __UpperCAmelCase ): self.assertTrue(np.all(np.mean(_UpperCamelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_UpperCamelCase , axis=0 ) - 1 ) < 1E-3 ) ) def __lowerCamelCase ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ : List[str] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ : List[Any] =[floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ : Optional[int] =[np.asarray(_UpperCamelCase ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE_ : int =feat_extract(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ : List[str] =feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ : str =feat_extract(_UpperCamelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ : Any =feat_extract(_UpperCamelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCamelCase , _UpperCamelCase ): self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ) ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : int =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ : Optional[Any] =[floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ : Optional[Any] =['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ : Optional[int] =[None, 1_600, None] for max_length, padding in zip(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] =feat_extract(_UpperCamelCase , padding=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors='np' ) SCREAMING_SNAKE_CASE_ : List[str] =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Tuple =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ : int =range(800 , 1_400 , 200 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =[floats_list((1, x) )[0] for x in lengths] SCREAMING_SNAKE_CASE_ : List[Any] =['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE_ : Optional[int] =[None, 1_600, None] for max_length, padding in zip(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE_ : str =feat_extract(_UpperCamelCase , max_length=_UpperCamelCase , padding=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : int =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ : Tuple =[floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ : int =feat_extract( _UpperCamelCase , truncation=_UpperCamelCase , max_length=1_000 , padding='max_length' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ : Dict =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : List[str] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ : Tuple =[floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ : Optional[Any] =feat_extract( _UpperCamelCase , truncation=_UpperCamelCase , max_length=1_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ : Optional[int] =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) SCREAMING_SNAKE_CASE_ : Tuple =[floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ : Union[str, Any] =feat_extract( _UpperCamelCase , truncation=_UpperCamelCase , max_length=2_000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE_ : Optional[int] =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Dict =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE_ : int =np.random.rand(100 ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ : Optional[int] =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE_ : Tuple =feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE_ : int =feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __lowerCamelCase ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_ : Optional[int] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ : List[str] =[floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] SCREAMING_SNAKE_CASE_ : str =[np.asarray(_UpperCamelCase ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE_ : Union[str, Any] =feature_extractor(audio_target=_UpperCamelCase , padding=_UpperCamelCase , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input SCREAMING_SNAKE_CASE_ : List[Any] =feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ : Dict =feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ) ) # Test batched SCREAMING_SNAKE_CASE_ : int =feature_extractor(_UpperCamelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ : Union[str, Any] =feature_extractor(_UpperCamelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCamelCase , _UpperCamelCase ): self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE_ : List[str] =[floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE_ : Dict =np.asarray(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : str =feature_extractor(_UpperCamelCase , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE_ : List[str] =feature_extractor(_UpperCamelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCamelCase , _UpperCamelCase ): self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ) ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Any =self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ : Optional[Any] =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ : List[str] =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ : Dict =BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_UpperCamelCase ) == len(_UpperCamelCase ) for x, y in zip(_UpperCamelCase , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE_ : Tuple =self.feat_extract_tester.prepare_inputs_for_target(equal_length=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : List[str] =BatchFeature({input_name: speech_inputs} , tensor_type='np' ) SCREAMING_SNAKE_CASE_ : List[Any] =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ : List[Any] =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : int =self.feat_extract_tester.prepare_inputs_for_target(equal_length=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : List[Any] =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ : List[str] =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ : Any =BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) SCREAMING_SNAKE_CASE_ : Optional[Any] =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE_ : Optional[Any] =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Tuple =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ : Optional[int] =self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ : Union[str, Any] =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ : Optional[Any] =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ : int =feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ : Union[str, Any] =feat_extract.pad(_UpperCamelCase , padding='longest' , return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE_ : List[str] =feat_extract.pad(_UpperCamelCase , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] =self.feat_extract_dict SCREAMING_SNAKE_CASE_ : Tuple =True SCREAMING_SNAKE_CASE_ : Dict =self.feature_extraction_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : int =self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ : Dict =[len(_UpperCamelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ : Any =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ : Optional[int] =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ : List[str] =feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ : List[Any] =feat_extract.pad(_UpperCamelCase , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , _UpperCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _UpperCamelCase ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : List[str] =self.feat_extract_dict SCREAMING_SNAKE_CASE_ : List[str] =True SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.feature_extraction_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : str =self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE_ : Any =[len(_UpperCamelCase ) for x in speech_inputs] SCREAMING_SNAKE_CASE_ : str =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE_ : int =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE_ : Any =min(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE_ : Tuple =feat_extract.pad( _UpperCamelCase , padding='max_length' , max_length=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors='np' ) self.assertIn('attention_mask' , _UpperCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __lowerCamelCase ( self , __UpperCAmelCase ): from datasets import load_dataset SCREAMING_SNAKE_CASE_ : List[Any] =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE_ : Any =ds.sort('id' ).select(range(_UpperCamelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def __lowerCamelCase ( self ): # fmt: off SCREAMING_SNAKE_CASE_ : Optional[Any] =torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on SCREAMING_SNAKE_CASE_ : Optional[Any] =self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ : List[Any] =SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ : List[str] =feature_extractor(_UpperCamelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , _UpperCamelCase , atol=1E-6 ) ) def __lowerCamelCase ( self ): # fmt: off SCREAMING_SNAKE_CASE_ : Optional[Any] =torch.tensor( [-2.6_870, -3.0_104, -3.1_356, -3.5_352, -3.0_044, -3.0_353, -3.4_719, -3.6_777, -3.1_520, -2.9_435, -2.6_553, -2.8_795, -2.9_944, -2.5_921, -3.0_279, -3.0_386, -3.0_864, -3.1_291, -3.2_353, -2.7_444, -2.6_831, -2.7_287, -3.1_761, -3.1_571, -3.2_726, -3.0_582, -3.1_007, -3.4_533, -3.4_695, -3.0_998] ) # fmt: on SCREAMING_SNAKE_CASE_ : Optional[int] =self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] =SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE_ : Tuple =feature_extractor(audio_target=_UpperCamelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _UpperCamelCase , atol=1E-4 ) )
220
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AltDiffusionPipeline SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__( self : Dict ) ->int: torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) snake_case_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) snake_case_ = CLIPTextModel(_UpperCamelCase ) snake_case_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) snake_case_ = 7_7 snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__( self : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0 ) ->Any: if str(_UpperCamelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCamelCase ) else: snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case__( self : Dict ) ->List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def snake_case__( self : List[str] ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case__( self : Dict ) ->Any: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = '''A photo of an astronaut''' snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : Tuple ) ->Union[str, Any]: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : int ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self : List[str] ) ->Tuple: # make sure here that pndm scheduler skips prk snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='''np''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : List[str] ) ->Optional[Any]: snake_case_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , num_inference_steps=2 , output_type='''numpy''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
0
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase_ ( __a : Optional[Any] , __a : Tuple ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCAmelCase_ ( __a : Tuple , __a : Dict , __a : Dict ): '''simple docstring''' _lowerCamelCase : Dict = tmp_path / 'cache' _lowerCamelCase : Union[str, Any] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCamelCase : Any = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def UpperCAmelCase_ ( __a : str , __a : Dict , __a : List[str] ): '''simple docstring''' _lowerCamelCase : List[Any] = tmp_path / 'cache' _lowerCamelCase : Optional[int] = {'text': 'string'} _lowerCamelCase : Any = features.copy() if features else default_expected_features _lowerCamelCase : Dict = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCamelCase : List[str] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCAmelCase_ ( __a : Dict , __a : Optional[Any] , __a : Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = tmp_path / 'cache' _lowerCamelCase : Any = {'text': 'string'} _lowerCamelCase : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def UpperCAmelCase_ ( __a : Union[str, Any] , __a : Union[str, Any] , __a : Optional[Any] ): '''simple docstring''' if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _lowerCamelCase : Union[str, Any] = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _lowerCamelCase : List[Any] = [text_path] _lowerCamelCase : List[Any] = tmp_path / 'cache' _lowerCamelCase : str = {'text': 'string'} _lowerCamelCase : int = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def UpperCAmelCase_ ( __a : List[Any] , __a : Tuple , __a : Optional[int]=("train",) ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: _lowerCamelCase : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCAmelCase_ ( __a : List[Any] , __a : List[Any] , __a : Any ): '''simple docstring''' _lowerCamelCase : List[str] = tmp_path / 'cache' _lowerCamelCase : Optional[int] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCamelCase : Optional[int] = TextDatasetReader({'train': text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def UpperCAmelCase_ ( __a : Optional[Any] , __a : Union[str, Any] , __a : List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" _lowerCamelCase : List[Any] = {'text': 'string'} _lowerCamelCase : Tuple = features.copy() if features else default_expected_features _lowerCamelCase : Optional[int] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCamelCase : Tuple = TextDatasetReader({'train': text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCAmelCase_ ( __a : Optional[Any] , __a : Optional[int] , __a : Optional[Any] ): '''simple docstring''' if split: _lowerCamelCase : Dict = {split: text_path} else: _lowerCamelCase : Union[str, Any] = 'train' _lowerCamelCase : Optional[Any] = {'train': text_path, 'test': text_path} _lowerCamelCase : Union[str, Any] = tmp_path / 'cache' _lowerCamelCase : Optional[Any] = {'text': 'string'} _lowerCamelCase : str = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
437
from math import factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( '''If a class of 40 students must be arranged into groups of''', f"""4 for group projects, there are {combinations(40, 4)} ways""", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f"""are {combinations(10, 3)} ways that first, second and""", '''third place can be awarded.''', )
39
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "SEW_PRETRAINED_MODEL_ARCHIVE_LIST", "SEWForCTC", "SEWForSequenceClassification", "SEWModel", "SEWPreTrainedModel", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
624
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCAmelCase_ = sys.version_info >= (3, 10) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ): return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : bool @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int = 42 SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : Optional[bool] = None class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = "titi" SCREAMING_SNAKE_CASE : Any = "toto" class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = "titi" SCREAMING_SNAKE_CASE : Optional[Any] = "toto" SCREAMING_SNAKE_CASE : Any = 42 @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : BasicEnum = "toto" def snake_case__( self : Tuple ) ->List[str]: snake_case_ = BasicEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto" def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = MixedTypeEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[float] = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : Optional[str] = None SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] ) SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] ) SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] ) SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = field() SCREAMING_SNAKE_CASE : str = field() SCREAMING_SNAKE_CASE : BasicEnum = field() def snake_case__( self : Optional[Any] ) ->Tuple: snake_case_ = BasicEnum(self.required_enum ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : "BasicEnum" = field() SCREAMING_SNAKE_CASE : "Optional[bool]" = None SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : bool | None = None @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int | None = None SCREAMING_SNAKE_CASE : float | None = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : str | None = None SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] ) SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] ) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Dict , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser ) ->str: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _UpperCamelCase ) and yy.get('''choices''' , _UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_UpperCamelCase ) , yy['''type'''](_UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--bar''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--baz''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--flag''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((snake_case_), ) = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase ) self.assertFalse(example.flag ) def snake_case__( self : Tuple ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) snake_case_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case__( self : Tuple ) ->Union[str, Any]: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto" snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual( _UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def snake_case__( self : Optional[Any] ) ->List[Any]: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--bar''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) snake_case_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[] ) ) snake_case_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def snake_case__( self : Union[str, Any] ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--required_str''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Dict ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } snake_case_ = parser.parse_dict(_UpperCamelCase )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : int ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase ) def snake_case__( self : str ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_json''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_yaml''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Any ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase )
39
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __A , unittest.TestCase): """simple docstring""" lowerCAmelCase_ = LongformerTokenizer lowerCAmelCase_ = True lowerCAmelCase_ = LongformerTokenizerFast lowerCAmelCase_ = True def UpperCamelCase__ ( self : List[str] ) -> Optional[int]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCamelCase =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _UpperCamelCase =dict(zip(_UpperCamelCase , range(len(_UpperCamelCase ) ) ) ) _UpperCamelCase =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _UpperCamelCase ={'''unk_token''': '''<unk>'''} _UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_UpperCamelCase ) ) def UpperCamelCase__ ( self : Union[str, Any] , **UpperCamelCase__ : int ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def UpperCamelCase__ ( self : int , **UpperCamelCase__ : Dict ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def UpperCamelCase__ ( self : str , UpperCamelCase__ : Optional[Any] ) -> str: _UpperCamelCase ='''lower newer''' _UpperCamelCase ='''lower newer''' return input_text, output_text def UpperCamelCase__ ( self : List[Any] ) -> int: _UpperCamelCase =self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCamelCase ='''lower newer''' _UpperCamelCase =['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _UpperCamelCase =tokenizer.tokenize(_UpperCamelCase ) # , add_prefix_space=True) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _UpperCamelCase =tokens + [tokenizer.unk_token] _UpperCamelCase =[0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , _UpperCamelCase ) def UpperCamelCase__ ( self : Optional[int] ) -> Any: _UpperCamelCase =self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=_UpperCamelCase ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=_UpperCamelCase ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def UpperCamelCase__ ( self : Optional[int] ) -> int: _UpperCamelCase =self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) _UpperCamelCase =tokenizer.encode('''sequence builders''' , add_special_tokens=_UpperCamelCase ) _UpperCamelCase =tokenizer.encode('''multi-sequence build''' , add_special_tokens=_UpperCamelCase ) _UpperCamelCase =tokenizer.encode( '''sequence builders''' , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) _UpperCamelCase =tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) _UpperCamelCase =tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) _UpperCamelCase =tokenizer.build_inputs_with_special_tokens(_UpperCamelCase , _UpperCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase__ ( self : Any ) -> Tuple: _UpperCamelCase =self.get_tokenizer() _UpperCamelCase ='''Encode this sequence.''' _UpperCamelCase =tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments _UpperCamelCase =tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) _UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) _UpperCamelCase =tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase ) _UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) _UpperCamelCase =tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) _UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) # Testing spaces after special tokens _UpperCamelCase ='''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase )} ) # mask token has a left space _UpperCamelCase =tokenizer.convert_tokens_to_ids(_UpperCamelCase ) _UpperCamelCase ='''Encode <mask> sequence''' _UpperCamelCase ='''Encode <mask>sequence''' _UpperCamelCase =tokenizer.encode(_UpperCamelCase ) _UpperCamelCase =encoded.index(_UpperCamelCase ) _UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) _UpperCamelCase =tokenizer.encode(_UpperCamelCase ) _UpperCamelCase =encoded.index(_UpperCamelCase ) _UpperCamelCase =tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase__ ( self : Optional[int] ) -> Optional[int]: pass def UpperCamelCase__ ( self : List[Any] ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase =self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) _UpperCamelCase =self.tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) _UpperCamelCase ='''A, <mask> AllenNLP sentence.''' _UpperCamelCase =tokenizer_r.encode_plus(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase ) _UpperCamelCase =tokenizer_p.encode_plus(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _UpperCamelCase =tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _UpperCamelCase =tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( _UpperCamelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( _UpperCamelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def UpperCamelCase__ ( self : str ) -> int: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _UpperCamelCase =self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _UpperCamelCase =json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _UpperCamelCase =json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , _UpperCamelCase ) self.assertEqual(post_processor_state['''add_prefix_space'''] , _UpperCamelCase ) self.assertEqual(post_processor_state['''trim_offsets'''] , _UpperCamelCase ) def UpperCamelCase__ ( self : str ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase ='''hello''' # `hello` is a token in the vocabulary of `pretrained_name` _UpperCamelCase =F'''{text_of_1_token} {text_of_1_token}''' _UpperCamelCase =self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _UpperCamelCase =tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ) + 1, len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _UpperCamelCase =self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _UpperCamelCase =tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ) + 1, len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _UpperCamelCase =self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _UpperCamelCase =tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ), len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _UpperCamelCase =self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _UpperCamelCase =tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase ), len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _UpperCamelCase =F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _UpperCamelCase =self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _UpperCamelCase =tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ) + 1, 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _UpperCamelCase =self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _UpperCamelCase =tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ), 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , ) _UpperCamelCase =self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase ) _UpperCamelCase =tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase ), 1 + len(_UpperCamelCase ) + 1 + len(_UpperCamelCase )) , )
404
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Dict , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
39
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _A = logging.get_logger(__name__) _A = { '''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''', } class A ( __A ): __snake_case = "deta" __snake_case = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self, UpperCamelCase__=None, UpperCamelCase__=900, UpperCamelCase__=2048, UpperCamelCase__=6, UpperCamelCase__=2048, UpperCamelCase__=8, UpperCamelCase__=6, UpperCamelCase__=1024, UpperCamelCase__=8, UpperCamelCase__=0.0, UpperCamelCase__=True, UpperCamelCase__="relu", UpperCamelCase__=256, UpperCamelCase__=0.1, UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=0.02, UpperCamelCase__=1.0, UpperCamelCase__=True, UpperCamelCase__=False, UpperCamelCase__="sine", UpperCamelCase__=5, UpperCamelCase__=4, UpperCamelCase__=4, UpperCamelCase__=True, UpperCamelCase__=300, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__=1, UpperCamelCase__=5, UpperCamelCase__=2, UpperCamelCase__=1, UpperCamelCase__=1, UpperCamelCase__=5, UpperCamelCase__=2, UpperCamelCase__=0.1, UpperCamelCase__=0.25, **UpperCamelCase__, ): """simple docstring""" if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowerCAmelCase_ = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(_UpperCamelCase, _UpperCamelCase ): lowerCAmelCase_ = backbone_config.pop('''model_type''' ) lowerCAmelCase_ = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ = config_class.from_dict(_UpperCamelCase ) lowerCAmelCase_ = backbone_config lowerCAmelCase_ = num_queries lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = d_model lowerCAmelCase_ = encoder_ffn_dim lowerCAmelCase_ = encoder_layers lowerCAmelCase_ = encoder_attention_heads lowerCAmelCase_ = decoder_ffn_dim lowerCAmelCase_ = decoder_layers lowerCAmelCase_ = decoder_attention_heads lowerCAmelCase_ = dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = activation_dropout lowerCAmelCase_ = activation_function lowerCAmelCase_ = init_std lowerCAmelCase_ = init_xavier_std lowerCAmelCase_ = encoder_layerdrop lowerCAmelCase_ = auxiliary_loss lowerCAmelCase_ = position_embedding_type # deformable attributes lowerCAmelCase_ = num_feature_levels lowerCAmelCase_ = encoder_n_points lowerCAmelCase_ = decoder_n_points lowerCAmelCase_ = two_stage lowerCAmelCase_ = two_stage_num_proposals lowerCAmelCase_ = with_box_refine lowerCAmelCase_ = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher lowerCAmelCase_ = class_cost lowerCAmelCase_ = bbox_cost lowerCAmelCase_ = giou_cost # Loss coefficients lowerCAmelCase_ = mask_loss_coefficient lowerCAmelCase_ = dice_loss_coefficient lowerCAmelCase_ = bbox_loss_coefficient lowerCAmelCase_ = giou_loss_coefficient lowerCAmelCase_ = eos_coefficient lowerCAmelCase_ = focal_alpha super().__init__(is_encoder_decoder=_UpperCamelCase, **_UpperCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.d_model def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ = self.backbone_config.to_dict() lowerCAmelCase_ = self.__class__.model_type return output
431
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv" SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]: snake_case_ = vocab_size snake_case_ = context_length snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case_ = layer_norm_epsilon snake_case_ = rescale_every snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
39
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : Union[str, Any] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class lowerCAmelCase__ ( __A ): '''simple docstring''' _lowerCamelCase ="gpt_neox_japanese" def __init__( self : Any , a__ : List[str]=32000 , a__ : Union[str, Any]=2560 , a__ : List[Any]=32 , a__ : int=32 , a__ : Optional[int]=4 , a__ : List[str]="gelu" , a__ : Union[str, Any]=1.00 , a__ : Dict=10000 , a__ : List[str]=2048 , a__ : Optional[int]=0.02 , a__ : Dict=1e-5 , a__ : List[Any]=True , a__ : List[str]=31996 , a__ : Optional[int]=31999 , a__ : Any=0.1 , a__ : List[str]=0.0 , **a__ : Optional[Any] , ): super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_multiple_size UpperCAmelCase = hidden_act UpperCAmelCase = rotary_pct UpperCAmelCase = rotary_emb_base UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = use_cache UpperCAmelCase = attention_dropout UpperCAmelCase = hidden_dropout
51
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) class snake_case_ : '''simple docstring''' def __init__( self : int , _UpperCamelCase : Optional[str] = None ) ->Tuple: snake_case_ = ( os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) snake_case_ = Extractor def snake_case__( self : Any , _UpperCamelCase : str ) ->str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" snake_case_ = os.path.abspath(_UpperCamelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) ) def snake_case__( self : int , _UpperCamelCase : str , _UpperCamelCase : bool ) ->bool: return force_extract or ( not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase )) ) def snake_case__( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : bool = False ) ->str: snake_case_ = self.extractor.infer_extractor_format(_UpperCamelCase ) if not extractor_format: return input_path snake_case_ = self._get_output_path(_UpperCamelCase ) if self._do_extract(_UpperCamelCase , _UpperCamelCase ): self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return output_path class snake_case_ ( __A ): '''simple docstring''' @classmethod @abstractmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : str ) ->bool: ... @staticmethod @abstractmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: ... class snake_case_ ( __A , __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[bytes] = [] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->List[Any]: with open(_UpperCamelCase , '''rb''' ) as f: return f.read(_UpperCamelCase ) @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if not magic_number: snake_case_ = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) try: snake_case_ = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase ) except OSError: return False return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) class snake_case_ ( __A ): '''simple docstring''' @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : Any ) ->bool: return tarfile.is_tarfile(_UpperCamelCase ) @staticmethod def snake_case__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) ->List[str]: def resolved(_UpperCamelCase : str ) -> str: return os.path.realpath(os.path.abspath(_UpperCamelCase ) ) def badpath(_UpperCamelCase : str , _UpperCamelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase ) def badlink(_UpperCamelCase : Tuple , _UpperCamelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link snake_case_ = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCamelCase ) snake_case_ = resolved(_UpperCamelCase ) for finfo in members: if badpath(finfo.name , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = tarfile.open(_UpperCamelCase ) tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) ) tar_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [b"\x1F\x8B"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with gzip.open(_UpperCamelCase , '''rb''' ) as gzip_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def snake_case__( cls : List[str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCamelCase , '''rb''' ) as fp: snake_case_ = _EndRecData(_UpperCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: snake_case_ = fp.read(_UpperCamelCase ) # CD is where we expect it to be if len(_UpperCamelCase ) == sizeCentralDir: snake_case_ = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with zipfile.ZipFile(_UpperCamelCase , '''r''' ) as zip_file: zip_file.extractall(_UpperCamelCase ) zip_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with lzma.open(_UpperCamelCase ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = rarfile.RarFile(_UpperCamelCase ) rf.extractall(_UpperCamelCase ) rf.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [b"\x28\xb5\x2F\xFD"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd snake_case_ = zstd.ZstdDecompressor() with open(_UpperCamelCase , '''rb''' ) as ifh, open(_UpperCamelCase , '''wb''' ) as ofh: dctx.copy_stream(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"\x42\x5A\x68"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with bza.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with pyazr.SevenZipFile(_UpperCamelCase , '''r''' ) as archive: archive.extractall(_UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x04\x22\x4D\x18"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def snake_case__( cls : List[Any] ) ->List[str]: return max( len(_UpperCamelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCamelCase , _UpperCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->Tuple: try: return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase ) except OSError: return b"" @classmethod def snake_case__( cls : Optional[Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bool = False ) ->bool: warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = cls.infer_extractor_format(_UpperCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def snake_case__( cls : int , _UpperCamelCase : Union[Path, str] ) ->str: # <Added version="2.4.0"/> snake_case_ = cls._get_magic_number_max_length() snake_case_ = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return extractor_format @classmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[BaseExtractor] = "deprecated" , ) ->None: os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase ) # Prevent parallel extractions snake_case_ = str(Path(_UpperCamelCase ).with_suffix('''.lock''' ) ) with FileLock(_UpperCamelCase ): shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = extractor if extractor != '''deprecated''' else extractor_format else: snake_case_ = cls.extractors[extractor_format] return extractor.extract(_UpperCamelCase , _UpperCamelCase ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=_UpperCamelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCamelCase ): return extractor.extract(_UpperCamelCase , _UpperCamelCase )
39
0
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( __A ): def __init__( self , *A_ , **A_ ): warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
643
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
39
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _UpperCAmelCase = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } _UpperCAmelCase = { "gpt2": 1_024, "gpt2-medium": 1_024, "gpt2-large": 1_024, "gpt2-xl": 1_024, "distilgpt2": 1_024, } class _UpperCAmelCase ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Union[str, Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaTokenizer def __init__( self : List[str] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : int="<|endoftext|>" , UpperCamelCase__ : List[Any]="<|endoftext|>" , UpperCamelCase__ : Any="<|endoftext|>" , UpperCamelCase__ : List[str]=False , **UpperCamelCase__ : Tuple , ): super().__init__( _UpperCamelCase , _UpperCamelCase , tokenizer_file=_UpperCamelCase , unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , add_prefix_space=_UpperCamelCase , **_UpperCamelCase , ) A = kwargs.pop('add_bos_token' , _UpperCamelCase ) A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _UpperCamelCase ) != add_prefix_space: A = getattr(_UpperCamelCase , pre_tok_state.pop('type' ) ) A = add_prefix_space A = pre_tok_class(**_UpperCamelCase ) A = add_prefix_space def UpperCamelCase ( self : Tuple , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : List[str] ): A = kwargs.get('is_split_into_words' , _UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase ( self : str , *UpperCamelCase__ : Any , **UpperCamelCase__ : List[str] ): A = kwargs.get('is_split_into_words' , _UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase ( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): A = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase ) def UpperCamelCase ( self : str , UpperCamelCase__ : "Conversation" ): A = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) + [self.eos_token_id] ) if len(_UpperCamelCase ) > self.model_max_length: A = input_ids[-self.model_max_length :] return input_ids
699
import re from filelock import FileLock try: import nltk lowerCAmelCase_ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): re.sub('''<n>''' , '''''' , SCREAMING_SNAKE_CASE__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE__ ) )
39
0
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _A ( __A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = CpmAntTokenizer __lowerCamelCase : Optional[Any] = False def snake_case_ ( self ): '''simple docstring''' super().setUp() snake_case : Union[str, Any] = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] snake_case : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def snake_case_ ( self ): '''simple docstring''' snake_case : Union[str, Any] = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) snake_case : List[str] = """今天天气真好!""" snake_case : Dict = ["""今天""", """天气""", """真""", """好""", """!"""] snake_case : Tuple = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase ,_UpperCamelCase ) snake_case : int = """今天天气真好!""" snake_case : List[str] = [tokenizer.bos_token] + tokens snake_case : Dict = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) ,_UpperCamelCase ) snake_case : Optional[int] = tokenizer.decode(_UpperCamelCase ) self.assertEqual(_UpperCamelCase ,_UpperCamelCase )
36
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [0 for i in range(r + 1 )] # nc0 = 1 snake_case_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case_ = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
39
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = """▁""" UpperCamelCase_ = {"""vocab_file""": """sentencepiece.bpe.model"""} UpperCamelCase_ = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } UpperCamelCase_ = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off UpperCamelCase_ = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class __SCREAMING_SNAKE_CASE ( __A ): lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = ["input_ids", "attention_mask"] lowerCamelCase_ = [] lowerCamelCase_ = [] def __init__( self : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Any="</s>" , UpperCAmelCase__ : int="</s>" , UpperCAmelCase__ : List[Any]="<s>" , UpperCAmelCase__ : Optional[int]="<unk>" , UpperCAmelCase__ : Optional[Any]="<pad>" , UpperCAmelCase__ : Tuple="<mask>" , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : List[Any] , ): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it lowercase : int =AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token lowercase : Any ={} if sp_model_kwargs is None else sp_model_kwargs lowercase : int =kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_UpperCamelCase , tgt_lang=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) lowercase : Optional[Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) lowercase : Tuple =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowercase : Tuple ={'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase : Optional[Any] =1 lowercase : Optional[Any] =len(self.sp_model ) lowercase : str ={ code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_UpperCamelCase ) } lowercase : str ={v: k for k, v in self.lang_code_to_id.items()} lowercase : Optional[Any] =len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase : str ={v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase : List[str] =src_lang if src_lang is not None else '''en_XX''' lowercase : Any =self.lang_code_to_id[self._src_lang] lowercase : Any =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' return self._src_lang @src_lang.setter def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : str ): '''simple docstring''' lowercase : Optional[Any] =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[str] ): '''simple docstring''' lowercase : int =self.__dict__.copy() lowercase : List[str] =None return state def __setstate__( self : List[Any] , UpperCAmelCase__ : Dict ): '''simple docstring''' lowercase : Any =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase : str ={} lowercase : List[str] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : List[str] ={self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase__ : str ): '''simple docstring''' return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase__ : str ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase : int =self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase__ : int ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase_ ( self : str , UpperCAmelCase__ : Optional[int] ): '''simple docstring''' lowercase : List[Any] =[] lowercase : int ='''''' lowercase : Union[str, Any] =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token lowercase : Optional[int] =True lowercase : List[Any] =[] else: current_sub_tokens.append(_UpperCamelCase ) lowercase : List[Any] =False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase : int =os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: lowercase : Optional[int] =self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) lowercase : Optional[int] =[1] * len(self.prefix_tokens ) lowercase : Any =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCamelCase )) + ([0] * len(_UpperCamelCase )) + suffix_ones def lowerCamelCase_ ( self : Dict , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] , UpperCAmelCase__ : Optional[str] , **UpperCAmelCase__ : Dict ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowercase : str =src_lang lowercase : List[Any] =self(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) lowercase : str =self.convert_tokens_to_ids(_UpperCamelCase ) lowercase : Optional[Any] =tgt_lang_id return inputs def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str = "en_XX" , UpperCAmelCase__ : Optional[List[str]] = None , UpperCAmelCase__ : str = "ro_RO" , **UpperCAmelCase__ : int , ): '''simple docstring''' lowercase : Optional[Any] =src_lang lowercase : Tuple =tgt_lang return super().prepare_seqaseq_batch(_UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase__ : str ): '''simple docstring''' lowercase : Tuple =self.lang_code_to_id[src_lang] lowercase : str =[self.cur_lang_code_id] lowercase : Optional[Any] =[self.eos_token_id] def lowerCamelCase_ ( self : List[str] , UpperCAmelCase__ : str ): '''simple docstring''' lowercase : Any =self.lang_code_to_id[tgt_lang] lowercase : Any =[self.cur_lang_code_id] lowercase : Tuple =[self.eos_token_id]
92
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCAmelCase_ = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 13_10_72, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return torch.atana(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / math.pi * 2 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.sin(t * math.pi / 2 ) ** 2 snake_case_ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class snake_case_ ( __A ): '''simple docstring''' pass class snake_case_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : int ) ->Optional[int]: super().__init__() snake_case_ = DiffusionAttnUnetaD(_UpperCamelCase , n_attn_layers=4 ) snake_case_ = deepcopy(self.diffusion ) snake_case_ = torch.quasirandom.SobolEngine(1 , scramble=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = MODELS_MAP[model_name]['''url'''] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCAmelCase_ = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCAmelCase_ = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCAmelCase_ = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCAmelCase_ = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif name.startswith(SCREAMING_SNAKE_CASE__ ): return [name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 ): snake_case_ = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) snake_case_ = 0 if string.startswith('''net.3.''' ): depth += 1 snake_case_ = string[6:] elif string.startswith('''net.''' ): snake_case_ = string[4:] while string.startswith('''main.7.''' ): depth += 1 snake_case_ = string[7:] if string.startswith('''main.''' ): snake_case_ = string[5:] # mid block if string[:2].isdigit(): snake_case_ = string[:2] snake_case_ = string[2:] else: snake_case_ = string[0] snake_case_ = string[1:] if depth == max_depth: snake_case_ = MID_NUM_TO_LAYER[layer_num] snake_case_ = '''mid_block''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) < 7: snake_case_ = DOWN_NUM_TO_LAYER[layer_num] snake_case_ = F'''down_blocks.{depth}''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) > 7: snake_case_ = UP_NUM_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: snake_case_ = DEPTH_0_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - 1}''' if int(SCREAMING_SNAKE_CASE__ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) snake_case_ = string_left[1:] if "resnets" in new_layer: snake_case_ = convert_resconv_naming(SCREAMING_SNAKE_CASE__ ) elif "attentions" in new_layer: snake_case_ = convert_attn_naming(SCREAMING_SNAKE_CASE__ ) snake_case_ = new_string_left if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = prefix + '''.''' + new_layer + '''.''' + string_left else: snake_case_ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue snake_case_ = rename(SCREAMING_SNAKE_CASE__ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = transform_conv_attns(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ = v return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) == 1: if len(v.shape ) == 3: # weight snake_case_ = v[:, :, 0] else: # bias snake_case_ = v else: # qkv matrices snake_case_ = v.shape[0] snake_case_ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: snake_case_ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: snake_case_ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) snake_case_ = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' snake_case_ = download(SCREAMING_SNAKE_CASE__ ) snake_case_ = MODELS_MAP[model_name]['''sample_rate'''] snake_case_ = MODELS_MAP[model_name]['''sample_size'''] snake_case_ = Object() snake_case_ = sample_size snake_case_ = sample_rate snake_case_ = 0 snake_case_ = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE__ , sample_rate=SCREAMING_SNAKE_CASE__ ) snake_case_ = diffusers_model.state_dict() snake_case_ = DiffusionUncond(SCREAMING_SNAKE_CASE__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE__ )['''state_dict'''] ) snake_case_ = orig_model.diffusion_ema.eval() snake_case_ = orig_model.state_dict() snake_case_ = rename_orig_weights(SCREAMING_SNAKE_CASE__ ) snake_case_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) snake_case_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE__ ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith('''kernel''' ) for k in list(SCREAMING_SNAKE_CASE__ ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": snake_case_ = value.squeeze() snake_case_ = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = 100 snake_case_ = 33 snake_case_ = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE__ )[:-1] snake_case_ = get_crash_schedule(SCREAMING_SNAKE_CASE__ ) snake_case_ = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(33 ) snake_case_ = pipe(num_inference_steps=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).audios snake_case_ = sampling.iplms_sample(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {} ) snake_case_ = generated.clamp(-1 , 1 ) snake_case_ = (generated - audio).abs().sum() snake_case_ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , SCREAMING_SNAKE_CASE__ ) print('''Diff max''' , SCREAMING_SNAKE_CASE__ ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCAmelCase_ = parser.parse_args() main(args)
39
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class _A ( __A ): def __init__( self : int ) -> Optional[Any]: """simple docstring""" self.test() def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : Optional[Any] = 0 __snake_case : List[str] = False while not completed: if counter == 1: self.reset() __snake_case : Any = self.advance() if not self.does_advance(_UpperCamelCase ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) __snake_case , __snake_case , __snake_case : Any = self.update(_UpperCamelCase ) counter += 1 if counter > 1_00_00: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def lowercase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowercase__ ( self : int , __magic_name__ : int ) -> List[str]: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowercase__ ( self : Union[str, Any] , __magic_name__ : int ) -> int: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowercase__ ( self : int ) -> str: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowercase__ ( self : int ) -> str: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowercase__ ( self : List[str] , __magic_name__ : List[Any]=False ) -> List[Any]: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _A ( __A ): def __init__( self : Optional[Any] , __magic_name__ : List[int] ) -> Dict: """simple docstring""" super(_UpperCamelCase , self ).__init__() if not isinstance(_UpperCamelCase , _UpperCamelCase ) or len(_UpperCamelCase ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(_UpperCamelCase , _UpperCamelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) __snake_case : List[str] = token_ids __snake_case : Any = len(self.token_ids ) __snake_case : List[Any] = -1 # the index of the currently fulfilled step __snake_case : Optional[int] = False def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowercase__ ( self : Union[str, Any] , __magic_name__ : int ) -> Optional[Any]: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCamelCase )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowercase__ ( self : Union[str, Any] , __magic_name__ : int ) -> int: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCamelCase )}''' ) __snake_case : List[str] = False __snake_case : Union[str, Any] = False __snake_case : List[str] = False if self.does_advance(_UpperCamelCase ): self.fulfilled_idx += 1 __snake_case : List[str] = True if self.fulfilled_idx == (self.seqlen - 1): __snake_case : List[str] = True __snake_case : Any = completed else: # failed to make progress. __snake_case : int = True self.reset() return stepped, completed, reset def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : List[str] = False __snake_case : List[Any] = 0 def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def lowercase__ ( self : str , __magic_name__ : Union[str, Any]=False ) -> int: """simple docstring""" __snake_case : Union[str, Any] = PhrasalConstraint(self.token_ids ) if stateful: __snake_case : Any = self.seqlen __snake_case : int = self.fulfilled_idx __snake_case : str = self.completed return new_constraint class _A : def __init__( self : List[str] , __magic_name__ : List[List[int]] , __magic_name__ : List[Any]=True ) -> str: """simple docstring""" __snake_case : Optional[Any] = max([len(_UpperCamelCase ) for one in nested_token_ids] ) __snake_case : Optional[Any] = {} for token_ids in nested_token_ids: __snake_case : Union[str, Any] = root for tidx, token_id in enumerate(_UpperCamelCase ): if token_id not in level: __snake_case : int = {} __snake_case : List[str] = level[token_id] if no_subsets and self.has_subsets(_UpperCamelCase , _UpperCamelCase ): raise ValueError( """Each list in `nested_token_ids` can\'t be a complete subset of another list, but is""" f''' {nested_token_ids}.''' ) __snake_case : int = root def lowercase__ ( self : Any , __magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : List[str] = self.trie for current_token in current_seq: __snake_case : Any = start[current_token] __snake_case : Dict = list(start.keys() ) return next_tokens def lowercase__ ( self : Optional[int] , __magic_name__ : int ) -> Optional[int]: """simple docstring""" __snake_case : str = self.next_tokens(_UpperCamelCase ) return len(_UpperCamelCase ) == 0 def lowercase__ ( self : List[Any] , __magic_name__ : List[Any] ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = list(root.values() ) if len(_UpperCamelCase ) == 0: return 1 else: return sum([self.count_leaves(_UpperCamelCase ) for nn in next_nodes] ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] ) -> int: """simple docstring""" __snake_case : Any = self.count_leaves(_UpperCamelCase ) return len(_UpperCamelCase ) != leaf_count class _A ( __A ): def __init__( self : Optional[int] , __magic_name__ : List[List[int]] ) -> Any: """simple docstring""" super(_UpperCamelCase , self ).__init__() if not isinstance(_UpperCamelCase , _UpperCamelCase ) or len(_UpperCamelCase ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(_UpperCamelCase , _UpperCamelCase ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(_UpperCamelCase , _UpperCamelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) __snake_case : Optional[Any] = DisjunctiveTrie(_UpperCamelCase ) __snake_case : Tuple = nested_token_ids __snake_case : List[str] = self.trie.max_height __snake_case : str = [] __snake_case : List[str] = False def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = self.trie.next_tokens(self.current_seq ) if len(_UpperCamelCase ) == 0: return None else: return token_list def lowercase__ ( self : Dict , __magic_name__ : int ) -> Dict: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCamelCase )}''' ) __snake_case : Union[str, Any] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowercase__ ( self : Tuple , __magic_name__ : int ) -> Optional[Any]: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCamelCase )}''' ) __snake_case : Union[str, Any] = False __snake_case : Tuple = False __snake_case : Any = False if self.does_advance(_UpperCamelCase ): self.current_seq.append(_UpperCamelCase ) __snake_case : List[str] = True else: __snake_case : Union[str, Any] = True self.reset() __snake_case : List[str] = self.trie.reached_leaf(self.current_seq ) __snake_case : Dict = completed return stepped, completed, reset def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" __snake_case : Optional[int] = False __snake_case : Dict = [] def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : List[Any]=False ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = DisjunctiveConstraint(self.token_ids ) if stateful: __snake_case : Tuple = self.seqlen __snake_case : List[str] = self.current_seq __snake_case : int = self.completed return new_constraint class _A : def __init__( self : Tuple , __magic_name__ : List[Constraint] ) -> str: """simple docstring""" __snake_case : int = constraints # max # of steps required to fulfill a given constraint __snake_case : Union[str, Any] = max([c.seqlen for c in constraints] ) __snake_case : Dict = len(_UpperCamelCase ) __snake_case : Union[str, Any] = False self.init_state() def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" __snake_case : List[str] = [] __snake_case : Optional[Any] = None __snake_case : Dict = [constraint.copy(stateful=_UpperCamelCase ) for constraint in self.constraints] def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Optional[Any] = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : List[str] = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" __snake_case : Optional[int] = constraint.advance() if isinstance(_UpperCamelCase , _UpperCamelCase ): token_list.append(_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): token_list.extend(_UpperCamelCase ) else: __snake_case : Any = self.inprogress_constraint.advance() if isinstance(_UpperCamelCase , _UpperCamelCase ): token_list.append(_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): token_list.extend(_UpperCamelCase ) if len(_UpperCamelCase ) == 0: return None else: return token_list def lowercase__ ( self : Dict , __magic_name__ : Optional[List[int]] ) -> List[Any]: """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint __snake_case , __snake_case : Tuple = self.add(_UpperCamelCase ) # the entire list of constraints are fulfilled if self.completed: break def lowercase__ ( self : Optional[int] , __magic_name__ : int ) -> List[Any]: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) __snake_case , __snake_case : Optional[int] = False, False if self.completed: __snake_case : List[str] = True __snake_case : Tuple = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state __snake_case , __snake_case , __snake_case : Dict = self.inprogress_constraint.update(_UpperCamelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_UpperCamelCase ) ) __snake_case : Any = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) __snake_case : Optional[Any] = None if len(self.pending_constraints ) == 0: # we're done! __snake_case : Optional[int] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_UpperCamelCase ): __snake_case , __snake_case , __snake_case : Optional[Any] = pending_constraint.update(_UpperCamelCase ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(_UpperCamelCase ) __snake_case : Any = None if not complete and stepped: __snake_case : Union[str, Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". __snake_case : int = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. __snake_case : str = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowercase__ ( self : int , __magic_name__ : List[str]=True ) -> Optional[Any]: """simple docstring""" __snake_case : str = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: __snake_case : Tuple = [ constraint.copy(stateful=_UpperCamelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: __snake_case : Union[str, Any] = self.inprogress_constraint.copy(stateful=_UpperCamelCase ) __snake_case : List[str] = [constraint.copy() for constraint in self.pending_constraints] return new_state
26
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
0
from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=__A ): '''simple docstring''' _lowercase = ["flax", "transformers"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCamelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCamelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(cls , ['flax', 'transformers'] ) class lowerCAmelCase_ ( metaclass=__A ): '''simple docstring''' _lowercase = ["flax", "transformers"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCamelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCamelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(cls , ['flax', 'transformers'] ) class lowerCAmelCase_ ( metaclass=__A ): '''simple docstring''' _lowercase = ["flax", "transformers"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCamelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCamelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(cls , ['flax', 'transformers'] ) class lowerCAmelCase_ ( metaclass=__A ): '''simple docstring''' _lowercase = ["flax", "transformers"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCamelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCamelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(cls , ['flax', 'transformers'] )
220
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->Any: snake_case_ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case_ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case_ = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case_ = output[output != -float('''inf''' )] snake_case_ = tf.cast( tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-12 ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @require_tf class snake_case_ ( unittest.TestCase , __A ): '''simple docstring''' if is_tf_available(): SCREAMING_SNAKE_CASE : Optional[int] = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def snake_case__( self : List[Any] ) ->Optional[int]: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 2 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->List[Any]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) ->List[Any]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2, 0], [1_0_2, 1_0_3]] snake_case_ = [[1, 0], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for batch_size in range(1 , len(_UpperCamelCase ) + 1 ): snake_case_ = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow def snake_case__( self : List[str] ) ->int: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 1 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : Any ) ->List[str]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) ->Optional[int]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2], [1_0_2, 1_0_3]] snake_case_ = [[1], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for input_row in range(len(_UpperCamelCase ) ): snake_case_ = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow @require_tensorflow_text def snake_case__( self : Optional[Any] ) ->List[Any]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_UpperCamelCase ) class snake_case_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ) ->List[Any]: super().__init__() snake_case_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , '''spiece.model''' ) , '''rb''' ).read() ) snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->List[Any]: snake_case_ = self.tokenizer.tokenize(_UpperCamelCase ) snake_case_, snake_case_ = text.pad_model_inputs( _UpperCamelCase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) snake_case_ = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) return self.tokenizer.detokenize(_UpperCamelCase ) snake_case_ = CompleteSentenceTransformer() snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) snake_case_ = complete_model(_UpperCamelCase ) snake_case_ = tf.keras.Model(_UpperCamelCase , _UpperCamelCase ) keras_model.save(_UpperCamelCase ) def snake_case__( self : Any ) ->List[Any]: # Has PT equivalent: this test relies on random sampling snake_case_ = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 1_0, '''temperature''': 0.7, } snake_case_ = 1_4 snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = '''Hello, my dog is cute and''' snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''tf''' ) snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case_ = [6_3_8, 1_9_8] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def snake_case__( self : str ) ->Dict: # Has PT equivalent: ample use of framework-specific code snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = '''Hugging Face is a technology company based in New York and Paris.''' snake_case_ = bart_tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids snake_case_ = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Optional[int] ) ->List[str]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) ) class snake_case_ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , **_UpperCamelCase : Tuple ) ->Optional[Any]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() with self.assertRaises(_UpperCamelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_UpperCamelCase , foo='''bar''' )
39
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig a_ = logging.get_logger(__name__) a_ = { """Intel/dpt-large""": """https://huggingface.co/Intel/dpt-large/resolve/main/config.json""", # See all DPT models at https://huggingface.co/models?filter=dpt } class A_(__A ): """simple docstring""" a_ : Union[str, Any] = "dpt" def __init__( self , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.0 , A=0.0 , A=0.0_2 , A=1E-12 , A=384 , A=16 , A=3 , A=False , A=True , A=[2, 5, 8, 11] , A="project" , A=[4, 2, 1, 0.5] , A=[96, 192, 384, 768] , A=256 , A=-1 , A=False , A=True , A=0.4 , A=255 , A=0.1 , A=[1, 1024, 24, 24] , A=[0, 1] , A=None , **A , ): super().__init__(**_UpperCamelCase ) _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : int = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) _lowerCamelCase : int = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } _lowerCamelCase : List[str] = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): logger.info('Initializing the config with a `BiT` backbone.' ) _lowerCamelCase : Any = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): _lowerCamelCase : List[str] = backbone_config else: raise ValueError( F"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}." ) _lowerCamelCase : Tuple = backbone_featmap_shape _lowerCamelCase : int = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: _lowerCamelCase : Dict = None _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Dict = [] _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : int = hidden_act _lowerCamelCase : int = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : List[Any] = image_size _lowerCamelCase : List[Any] = patch_size _lowerCamelCase : List[Any] = num_channels _lowerCamelCase : List[str] = qkv_bias _lowerCamelCase : Optional[int] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) _lowerCamelCase : Optional[Any] = readout_type _lowerCamelCase : Union[str, Any] = reassemble_factors _lowerCamelCase : Tuple = neck_hidden_sizes _lowerCamelCase : Optional[Any] = fusion_hidden_size _lowerCamelCase : Union[str, Any] = head_in_index _lowerCamelCase : Any = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _lowerCamelCase : Dict = use_auxiliary_head _lowerCamelCase : Tuple = auxiliary_loss_weight _lowerCamelCase : str = semantic_loss_ignore_index _lowerCamelCase : Dict = semantic_classifier_dropout def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _lowerCamelCase : Optional[Any] = self.backbone_config.to_dict() _lowerCamelCase : Optional[int] = self.__class__.model_type return output
437
import unittest from transformers import DonutProcessor lowerCAmelCase_ = '''naver-clova-ix/donut-base''' class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = DonutProcessor.from_pretrained(_UpperCamelCase ) def snake_case__( self : Dict ) ->str: snake_case_ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } snake_case_ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) snake_case_ = self.processor.tokenajson(_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , _UpperCamelCase )
39
0
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
624
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not nums: raise ValueError('''List is empty''' ) return sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
39
0
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int]=13 , UpperCamelCase__ : str=7 , UpperCamelCase__ : int=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : int=False , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Optional[int]=99 , UpperCamelCase__ : str=32 , UpperCamelCase__ : str=5 , UpperCamelCase__ : str=4 , UpperCamelCase__ : int=37 , UpperCamelCase__ : int="gelu" , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : str=512 , UpperCamelCase__ : Optional[int]=16 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Any=0.02 , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : List[str]=4 , UpperCamelCase__ : str=None , ) -> Dict: _UpperCamelCase =parent _UpperCamelCase =batch_size _UpperCamelCase =seq_length _UpperCamelCase =is_training _UpperCamelCase =use_input_mask _UpperCamelCase =use_token_type_ids _UpperCamelCase =use_labels _UpperCamelCase =vocab_size _UpperCamelCase =hidden_size _UpperCamelCase =num_hidden_layers _UpperCamelCase =num_attention_heads _UpperCamelCase =intermediate_size _UpperCamelCase =hidden_act _UpperCamelCase =hidden_dropout_prob _UpperCamelCase =attention_probs_dropout_prob _UpperCamelCase =max_position_embeddings _UpperCamelCase =type_vocab_size _UpperCamelCase =type_sequence_label_size _UpperCamelCase =initializer_range _UpperCamelCase =num_labels _UpperCamelCase =num_choices _UpperCamelCase =scope def UpperCamelCase__ ( self : str ) -> List[Any]: _UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase =None if self.use_input_mask: _UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase =None if self.use_token_type_ids: _UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase =None _UpperCamelCase =None _UpperCamelCase =None if self.use_labels: _UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self : List[str] ) -> Tuple: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self : int , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] ) -> Dict: _UpperCamelCase =BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCamelCase =model(_UpperCamelCase , attention_mask=_UpperCamelCase ) _UpperCamelCase =model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , ) -> Optional[int]: _UpperCamelCase =BioGptForCausalLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCamelCase =model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , *UpperCamelCase__ : List[Any] ) -> Union[str, Any]: _UpperCamelCase =BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # create attention mask _UpperCamelCase =torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) _UpperCamelCase =self.seq_length // 2 _UpperCamelCase =0 # first forward pass _UpperCamelCase , _UpperCamelCase =model(_UpperCamelCase , attention_mask=_UpperCamelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase =ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids _UpperCamelCase =ids_tensor((1,) , _UpperCamelCase ).item() + 1 _UpperCamelCase =ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) _UpperCamelCase =random_other_next_tokens # append to next input_ids and attn_mask _UpperCamelCase =torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCamelCase =torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCamelCase )] , dim=1 , ) # get two different outputs _UpperCamelCase =model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] _UpperCamelCase =model(_UpperCamelCase , past_key_values=_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] # select random slice _UpperCamelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCamelCase =output_from_no_past[:, -1, random_slice_idx].detach() _UpperCamelCase =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ) ) def UpperCamelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , *UpperCamelCase__ : List[Any] ) -> int: _UpperCamelCase =BioGptModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval() _UpperCamelCase =torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) # first forward pass _UpperCamelCase =model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase ) _UpperCamelCase , _UpperCamelCase =outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _UpperCamelCase =ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCamelCase =ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _UpperCamelCase =torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCamelCase =torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _UpperCamelCase =model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] _UpperCamelCase =model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[ '''last_hidden_state''' ] # select random slice _UpperCamelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCamelCase =output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCamelCase =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ) ) def UpperCamelCase__ ( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , *UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str]=False ) -> Dict: _UpperCamelCase =BioGptForCausalLM(_UpperCamelCase ) model.to(_UpperCamelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() _UpperCamelCase =model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def UpperCamelCase__ ( self : List[Any] , UpperCamelCase__ : Optional[int] , *UpperCamelCase__ : Dict ) -> Dict: _UpperCamelCase =BioGptModel(_UpperCamelCase ) _UpperCamelCase =model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def UpperCamelCase__ ( self : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int , *UpperCamelCase__ : List[str] ) -> int: _UpperCamelCase =self.num_labels _UpperCamelCase =BioGptForTokenClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCamelCase =model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self : Optional[Any] ) -> int: _UpperCamelCase =self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) =config_and_inputs _UpperCamelCase ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( __A , __A , __A , unittest.TestCase): """simple docstring""" lowerCAmelCase_ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) lowerCAmelCase_ = (BioGptForCausalLM,) if is_torch_available() else () lowerCAmelCase_ = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = False def UpperCamelCase__ ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase =BioGptModelTester(self ) _UpperCamelCase =ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase__ ( self : str ) -> int: self.config_tester.run_common_tests() def UpperCamelCase__ ( self : str ) -> Tuple: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase__ ( self : Tuple ) -> List[Any]: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCamelCase =type self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase__ ( self : Tuple ) -> str: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCamelCase ) def UpperCamelCase__ ( self : Union[str, Any] ) -> Dict: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_UpperCamelCase , gradient_checkpointing=_UpperCamelCase ) def UpperCamelCase__ ( self : Optional[int] ) -> List[Any]: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCamelCase ) def UpperCamelCase__ ( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCamelCase ) def UpperCamelCase__ ( self : Optional[int] ) -> Optional[int]: _UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCamelCase ) @slow def UpperCamelCase__ ( self : int ) -> Optional[Any]: _UpperCamelCase =BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) _UpperCamelCase =BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) _UpperCamelCase ='''left''' # Define PAD Token = EOS Token = 50256 _UpperCamelCase =tokenizer.eos_token _UpperCamelCase =model.config.eos_token_id # use different length sentences to test batching _UpperCamelCase =[ '''Hello, my dog is a little''', '''Today, I''', ] _UpperCamelCase =tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase ) _UpperCamelCase =inputs['''input_ids'''].to(_UpperCamelCase ) _UpperCamelCase =model.generate( input_ids=_UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(_UpperCamelCase ) , ) _UpperCamelCase =tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) _UpperCamelCase =model.generate(input_ids=_UpperCamelCase ) _UpperCamelCase =inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() _UpperCamelCase =tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) _UpperCamelCase =model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings ) _UpperCamelCase =tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) _UpperCamelCase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase ) _UpperCamelCase =tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase ) _UpperCamelCase =[ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] ) @slow def UpperCamelCase__ ( self : Optional[int] ) -> List[str]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase =BioGptModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def UpperCamelCase__ ( self : Optional[int] ) -> str: _UpperCamelCase , _UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase =3 _UpperCamelCase =input_dict['''input_ids'''] _UpperCamelCase =input_ids.ne(1 ).to(_UpperCamelCase ) _UpperCamelCase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCamelCase =BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCamelCase =model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self : str ) -> str: _UpperCamelCase , _UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase =3 _UpperCamelCase ='''multi_label_classification''' _UpperCamelCase =input_dict['''input_ids'''] _UpperCamelCase =input_ids.ne(1 ).to(_UpperCamelCase ) _UpperCamelCase =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _UpperCamelCase =BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCamelCase =model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class UpperCAmelCase ( unittest.TestCase): """simple docstring""" @slow def UpperCamelCase__ ( self : int ) -> Any: _UpperCamelCase =BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) _UpperCamelCase =torch.tensor([[2, 4805, 9, 656, 21]] ) _UpperCamelCase =model(_UpperCamelCase )[0] _UpperCamelCase =4_2384 _UpperCamelCase =torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) _UpperCamelCase =torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1E-4 ) ) @slow def UpperCamelCase__ ( self : List[str] ) -> Optional[int]: _UpperCamelCase =BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) _UpperCamelCase =BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) torch.manual_seed(0 ) _UpperCamelCase =tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_UpperCamelCase ) _UpperCamelCase =model.generate( **_UpperCamelCase , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=_UpperCamelCase , ) _UpperCamelCase =tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCamelCase ) _UpperCamelCase =( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(_UpperCamelCase , _UpperCamelCase )
404
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : List[str] ) ->str: snake_case_ = inspect.getfile(accelerate.test_utils ) snake_case_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 snake_case_ = test_metrics @require_cpu def snake_case__( self : str ) ->int: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case__( self : Union[str, Any] ) ->Any: debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case__( self : List[Any] ) ->Tuple: self.test_metrics.main() @require_multi_gpu def snake_case__( self : Any ) ->Union[str, Any]: print(f'''Found {torch.cuda.device_count()} devices.''' ) snake_case_ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
39
0
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _A = sys.version_info >= (3, 10) def __UpperCamelCase ( _A=None , _A=None ): return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class A : __snake_case = 42 __snake_case = 42 __snake_case = 42 __snake_case = 42 @dataclass class A : __snake_case = 42 __snake_case = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class A : __snake_case = False __snake_case = True __snake_case = None class A ( __A ): __snake_case = "titi" __snake_case = "toto" class A ( __A ): __snake_case = "titi" __snake_case = "toto" __snake_case = 42 @dataclass class A : __snake_case = "toto" def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = BasicEnum(self.foo ) @dataclass class A : __snake_case = "toto" def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = MixedTypeEnum(self.foo ) @dataclass class A : __snake_case = None __snake_case = field(default=__A , metadata={'help': 'help message'} ) __snake_case = None __snake_case = list_field(default=[] ) __snake_case = list_field(default=[] ) @dataclass class A : __snake_case = list_field(default=[] ) __snake_case = list_field(default=[1, 2, 3] ) __snake_case = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) __snake_case = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A : __snake_case = field() __snake_case = field() __snake_case = field() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = BasicEnum(self.required_enum ) @dataclass class A : __snake_case = 42 __snake_case = field() __snake_case = None __snake_case = field(default='toto' , metadata={'help': 'help message'} ) __snake_case = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class A : __snake_case = False __snake_case = True __snake_case = None @dataclass class A : __snake_case = None __snake_case = field(default=__A , metadata={'help': 'help message'} ) __snake_case = None __snake_case = list_field(default=[] ) __snake_case = list_field(default=[] ) class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" self.assertEqual(len(a._actions ), len(b._actions ) ) for x, y in zip(a._actions, b._actions ): lowerCAmelCase_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} lowerCAmelCase_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''', _UpperCamelCase ) and yy.get('''choices''', _UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_UpperCamelCase ), yy['''type'''](_UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCamelCase, _UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = HfArgumentParser(_UpperCamelCase ) lowerCAmelCase_ = argparse.ArgumentParser() expected.add_argument('''--foo''', type=_UpperCamelCase, required=_UpperCamelCase ) expected.add_argument('''--bar''', type=_UpperCamelCase, required=_UpperCamelCase ) expected.add_argument('''--baz''', type=_UpperCamelCase, required=_UpperCamelCase ) expected.add_argument('''--flag''', type=_UpperCamelCase, default=_UpperCamelCase, const=_UpperCamelCase, nargs='''?''' ) self.argparsersEqual(_UpperCamelCase, _UpperCamelCase ) lowerCAmelCase_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((lowerCAmelCase_ ) , ) = parser.parse_args_into_dataclasses(_UpperCamelCase, look_for_args_file=_UpperCamelCase ) self.assertFalse(example.flag ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = HfArgumentParser(_UpperCamelCase ) lowerCAmelCase_ = argparse.ArgumentParser() expected.add_argument('''--foo''', default=42, type=_UpperCamelCase ) expected.add_argument('''--baz''', default='''toto''', type=_UpperCamelCase, help='''help message''' ) self.argparsersEqual(_UpperCamelCase, _UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = argparse.ArgumentParser() expected.add_argument('''--foo''', type=_UpperCamelCase, default=_UpperCamelCase, const=_UpperCamelCase, nargs='''?''' ) expected.add_argument('''--baz''', type=_UpperCamelCase, default=_UpperCamelCase, const=_UpperCamelCase, nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''', action='''store_false''', default=_UpperCamelCase, dest='''baz''' ) expected.add_argument('''--opt''', type=_UpperCamelCase, default=_UpperCamelCase ) lowerCAmelCase_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: lowerCAmelCase_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase, _UpperCamelCase ) lowerCAmelCase_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase, Namespace(foo=_UpperCamelCase, baz=_UpperCamelCase, opt=_UpperCamelCase ) ) lowerCAmelCase_ = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_UpperCamelCase, Namespace(foo=_UpperCamelCase, baz=_UpperCamelCase, opt=_UpperCamelCase ) ) lowerCAmelCase_ = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_UpperCamelCase, Namespace(foo=_UpperCamelCase, baz=_UpperCamelCase, opt=_UpperCamelCase ) ) lowerCAmelCase_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_UpperCamelCase, Namespace(foo=_UpperCamelCase, baz=_UpperCamelCase, opt=_UpperCamelCase ) ) lowerCAmelCase_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_UpperCamelCase, Namespace(foo=_UpperCamelCase, baz=_UpperCamelCase, opt=_UpperCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = HfArgumentParser(_UpperCamelCase ) lowerCAmelCase_ = argparse.ArgumentParser() expected.add_argument( '''--foo''', default='''toto''', choices=['''titi''', '''toto''', 42], type=make_choice_type_function(['''titi''', '''toto''', 42] ), ) self.argparsersEqual(_UpperCamelCase, _UpperCamelCase ) lowerCAmelCase_ = parser.parse_args([] ) self.assertEqual(args.foo, '''toto''' ) lowerCAmelCase_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo, MixedTypeEnum.toto ) lowerCAmelCase_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo, '''titi''' ) lowerCAmelCase_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo, MixedTypeEnum.titi ) lowerCAmelCase_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo, 42 ) lowerCAmelCase_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo, MixedTypeEnum.fourtytwo ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" @dataclass class A : __snake_case = "toto" lowerCAmelCase_ = HfArgumentParser(_UpperCamelCase ) lowerCAmelCase_ = argparse.ArgumentParser() expected.add_argument( '''--foo''', default='''toto''', choices=('''titi''', '''toto''', 42), type=make_choice_type_function(['''titi''', '''toto''', 42] ), ) self.argparsersEqual(_UpperCamelCase, _UpperCamelCase ) lowerCAmelCase_ = parser.parse_args([] ) self.assertEqual(args.foo, '''toto''' ) lowerCAmelCase_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo, '''titi''' ) lowerCAmelCase_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo, 42 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = HfArgumentParser(_UpperCamelCase ) lowerCAmelCase_ = argparse.ArgumentParser() expected.add_argument('''--foo_int''', nargs='''+''', default=[], type=_UpperCamelCase ) expected.add_argument('''--bar_int''', nargs='''+''', default=[1, 2, 3], type=_UpperCamelCase ) expected.add_argument('''--foo_str''', nargs='''+''', default=['''Hallo''', '''Bonjour''', '''Hello'''], type=_UpperCamelCase ) expected.add_argument('''--foo_float''', nargs='''+''', default=[0.1, 0.2, 0.3], type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase, _UpperCamelCase ) lowerCAmelCase_ = parser.parse_args([] ) self.assertEqual( _UpperCamelCase, Namespace(foo_int=[], bar_int=[1, 2, 3], foo_str=['''Hallo''', '''Bonjour''', '''Hello'''], foo_float=[0.1, 0.2, 0.3] ), ) lowerCAmelCase_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_UpperCamelCase, Namespace(foo_int=[1], bar_int=[2, 3], foo_str=['''a''', '''b''', '''c'''], foo_float=[0.1, 0.7] ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = argparse.ArgumentParser() expected.add_argument('''--foo''', default=_UpperCamelCase, type=_UpperCamelCase ) expected.add_argument('''--bar''', default=_UpperCamelCase, type=_UpperCamelCase, help='''help message''' ) expected.add_argument('''--baz''', default=_UpperCamelCase, type=_UpperCamelCase ) expected.add_argument('''--ces''', nargs='''+''', default=[], type=_UpperCamelCase ) expected.add_argument('''--des''', nargs='''+''', default=[], type=_UpperCamelCase ) lowerCAmelCase_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: lowerCAmelCase_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase, _UpperCamelCase ) lowerCAmelCase_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase, Namespace(foo=_UpperCamelCase, bar=_UpperCamelCase, baz=_UpperCamelCase, ces=[], des=[] ) ) lowerCAmelCase_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_UpperCamelCase, Namespace(foo=12, bar=3.14, baz='''42''', ces=['''a''', '''b''', '''c'''], des=[1, 2, 3] ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = HfArgumentParser(_UpperCamelCase ) lowerCAmelCase_ = argparse.ArgumentParser() expected.add_argument('''--required_list''', nargs='''+''', type=_UpperCamelCase, required=_UpperCamelCase ) expected.add_argument('''--required_str''', type=_UpperCamelCase, required=_UpperCamelCase ) expected.add_argument( '''--required_enum''', type=make_choice_type_function(['''titi''', '''toto'''] ), choices=['''titi''', '''toto'''], required=_UpperCamelCase, ) self.argparsersEqual(_UpperCamelCase, _UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = HfArgumentParser(_UpperCamelCase ) lowerCAmelCase_ = argparse.ArgumentParser() expected.add_argument('''--foo''', type=_UpperCamelCase, required=_UpperCamelCase ) expected.add_argument( '''--required_enum''', type=make_choice_type_function(['''titi''', '''toto'''] ), choices=['''titi''', '''toto'''], required=_UpperCamelCase, ) expected.add_argument('''--opt''', type=_UpperCamelCase, default=_UpperCamelCase ) expected.add_argument('''--baz''', default='''toto''', type=_UpperCamelCase, help='''help message''' ) expected.add_argument('''--foo_str''', nargs='''+''', default=['''Hallo''', '''Bonjour''', '''Hello'''], type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase, _UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = HfArgumentParser(_UpperCamelCase ) lowerCAmelCase_ = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } lowerCAmelCase_ = parser.parse_dict(_UpperCamelCase )[0] lowerCAmelCase_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase, _UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = HfArgumentParser(_UpperCamelCase ) lowerCAmelCase_ = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_UpperCamelCase, parser.parse_dict, _UpperCamelCase, allow_extra_keys=_UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = HfArgumentParser(_UpperCamelCase ) lowerCAmelCase_ = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = os.path.join(_UpperCamelCase, '''temp_json''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.json''', '''w+''' ) as f: json.dump(_UpperCamelCase, _UpperCamelCase ) lowerCAmelCase_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] lowerCAmelCase_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase, _UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = HfArgumentParser(_UpperCamelCase ) lowerCAmelCase_ = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = os.path.join(_UpperCamelCase, '''temp_yaml''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.yaml''', '''w+''' ) as f: yaml.dump(_UpperCamelCase, _UpperCamelCase ) lowerCAmelCase_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] lowerCAmelCase_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase, _UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = HfArgumentParser(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase )
431
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = "informer" SCREAMING_SNAKE_CASE : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Dict , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "student_t" , _UpperCamelCase : str = "nll" , _UpperCamelCase : int = 1 , _UpperCamelCase : List[int] = None , _UpperCamelCase : Optional[Union[str, bool]] = "mean" , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : int = 6_4 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.05 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : Dict=True , _UpperCamelCase : str = "prob" , _UpperCamelCase : int = 5 , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Optional[int]: # time series specific configuration snake_case_ = prediction_length snake_case_ = context_length or prediction_length snake_case_ = distribution_output snake_case_ = loss snake_case_ = input_size snake_case_ = num_time_features snake_case_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case_ = scaling snake_case_ = num_dynamic_real_features snake_case_ = num_static_real_features snake_case_ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = cardinality else: snake_case_ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = embedding_dimension else: snake_case_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ = num_parallel_samples # Transformer architecture configuration snake_case_ = input_size * len(self.lags_sequence ) + self._number_of_features snake_case_ = d_model snake_case_ = encoder_attention_heads snake_case_ = decoder_attention_heads snake_case_ = encoder_ffn_dim snake_case_ = decoder_ffn_dim snake_case_ = encoder_layers snake_case_ = decoder_layers snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = activation_function snake_case_ = init_std snake_case_ = use_cache # Informer snake_case_ = attention_type snake_case_ = sampling_factor snake_case_ = distil super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def snake_case__( self : Optional[Any] ) ->int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
39
0
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name a__ : Tuple = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=8 ) -> Tuple: """simple docstring""" UpperCAmelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase__ ( __A ): '''simple docstring''' def __init__( self : Optional[Any] , a__ : UNetaDConditionModel , a__ : DDPMScheduler , a__ : VQModel , ): super().__init__() self.register_modules( unet=_UpperCamelCase , scheduler=_UpperCamelCase , movq=_UpperCamelCase , ) UpperCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __snake_case ( self : Optional[int] , a__ : str , a__ : List[Any] , a__ : int , a__ : Union[str, Any] , a__ : str , a__ : Tuple ): if latents is None: UpperCAmelCase = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCAmelCase = latents.to(_UpperCamelCase ) UpperCAmelCase = latents * scheduler.init_noise_sigma return latents def __snake_case ( self : List[Any] , a__ : Union[str, Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) UpperCAmelCase = torch.device(f"cuda:{gpu_id}" ) UpperCAmelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCamelCase , _UpperCamelCase ) def __snake_case ( self : str , a__ : List[str]=0 ): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) UpperCAmelCase = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_UpperCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase, UpperCAmelCase = cpu_offload_with_hook(_UpperCamelCase , _UpperCamelCase , prev_module_hook=_UpperCamelCase ) # We'll offload the last model manually. UpperCAmelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __snake_case ( self : List[str] ): if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_UpperCamelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_UpperCamelCase ) def __call__( self : Any , a__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , a__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , a__ : int = 512 , a__ : int = 512 , a__ : int = 100 , a__ : float = 4.0 , a__ : int = 1 , a__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a__ : Optional[torch.FloatTensor] = None , a__ : Optional[str] = "pil" , a__ : bool = True , ): UpperCAmelCase = self._execution_device UpperCAmelCase = guidance_scale > 1.0 if isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase = torch.cat(_UpperCamelCase , dim=0 ) UpperCAmelCase = image_embeds.shape[0] * num_images_per_prompt if isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase = torch.cat(_UpperCamelCase , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase = image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) UpperCAmelCase = negative_image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) UpperCAmelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_UpperCamelCase ) self.scheduler.set_timesteps(_UpperCamelCase , device=_UpperCamelCase ) UpperCAmelCase = self.scheduler.timesteps UpperCAmelCase = self.unet.config.in_channels UpperCAmelCase, UpperCAmelCase = downscale_height_and_width(_UpperCamelCase , _UpperCamelCase , self.movq_scale_factor ) # create initial latent UpperCAmelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase = {'''image_embeds''': image_embeds} UpperCAmelCase = self.unet( sample=_UpperCamelCase , timestep=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , added_cond_kwargs=_UpperCamelCase , return_dict=_UpperCamelCase , )[0] if do_classifier_free_guidance: UpperCAmelCase, UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase, UpperCAmelCase = noise_pred.chunk(2 ) UpperCAmelCase, UpperCAmelCase = variance_pred.chunk(2 ) UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase, UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase , )[0] # post-processing UpperCAmelCase = self.movq.decode(_UpperCamelCase , force_not_quantize=_UpperCamelCase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCAmelCase = image * 0.5 + 0.5 UpperCAmelCase = image.clamp(0 , 1 ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCamelCase )
51
import cmath import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) # Convert voltage and current to rectangular form snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
39
0
import numpy as np def a__ ( snake_case__ : int ): return 1 / (1 + np.exp(-vector )) def a__ ( snake_case__ : Any ): return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
643
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=1_3 , _UpperCamelCase : str=7 , _UpperCamelCase : int=True , _UpperCamelCase : Dict=True , _UpperCamelCase : int=False , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : str=3_2 , _UpperCamelCase : str=5 , _UpperCamelCase : str=4 , _UpperCamelCase : int=3_7 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : str=5_1_2 , _UpperCamelCase : Optional[int]=1_6 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Any=0.02 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : str=None , ) ->Dict: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def snake_case__( self : str ) ->List[Any]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self : List[str] ) ->Tuple: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] ) ->Dict: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , ) ->Optional[int]: snake_case_ = BioGptForCausalLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , *_UpperCamelCase : List[Any] ) ->Union[str, Any]: snake_case_ = BioGptModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # create attention mask snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) snake_case_ = self.seq_length // 2 snake_case_ = 0 # first forward pass snake_case_, snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids snake_case_ = ids_tensor((1,) , _UpperCamelCase ).item() + 1 snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) snake_case_ = random_other_next_tokens # append to next input_ids and attn_mask snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCamelCase )] , dim=1 , ) # get two different outputs snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , past_key_values=_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , *_UpperCamelCase : List[Any] ) ->int: snake_case_ = BioGptModel(config=_UpperCamelCase ).to(_UpperCamelCase ).eval() snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCamelCase ) # first forward pass snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase ) snake_case_, snake_case_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[ '''last_hidden_state''' ] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , *_UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=False ) ->Dict: snake_case_ = BioGptForCausalLM(_UpperCamelCase ) model.to(_UpperCamelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def snake_case__( self : List[Any] , _UpperCamelCase : Optional[int] , *_UpperCamelCase : Dict ) ->Dict: snake_case_ = BioGptModel(_UpperCamelCase ) snake_case_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def snake_case__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , *_UpperCamelCase : List[str] ) ->int: snake_case_ = self.num_labels snake_case_ = BioGptForTokenClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = (BioGptForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Optional[Any] = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Tuple = False def snake_case__( self : List[str] ) ->Union[str, Any]: snake_case_ = BioGptModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : str ) ->int: self.config_tester.run_common_tests() def snake_case__( self : str ) ->Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_UpperCamelCase , gradient_checkpointing=_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCamelCase ) def snake_case__( self : List[Any] ) ->Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCamelCase ) @slow def snake_case__( self : int ) ->Optional[Any]: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = '''left''' # Define PAD Token = EOS Token = 50256 snake_case_ = tokenizer.eos_token snake_case_ = model.config.eos_token_id # use different length sentences to test batching snake_case_ = [ '''Hello, my dog is a little''', '''Today, I''', ] snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase ) snake_case_ = inputs['''input_ids'''].to(_UpperCamelCase ) snake_case_ = model.generate( input_ids=_UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(_UpperCamelCase ) , ) snake_case_ = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase ) snake_case_ = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() snake_case_ = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(_UpperCamelCase ) snake_case_ = model.generate(input_ids=_UpperCamelCase , max_length=model.config.max_length - num_paddings ) snake_case_ = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [non_padded_sentence, padded_sentence] ) @slow def snake_case__( self : Optional[int] ) ->List[str]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = BioGptModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__( self : str ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = '''multi_label_classification''' snake_case_ = input_dict['''input_ids'''] snake_case_ = input_ids.ne(1 ).to(_UpperCamelCase ) snake_case_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ = BioGptForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__( self : int ) ->Any: snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) snake_case_ = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) snake_case_ = model(_UpperCamelCase )[0] snake_case_ = 4_2_3_8_4 snake_case_ = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def snake_case__( self : List[str] ) ->Optional[int]: snake_case_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(_UpperCamelCase ) snake_case_ = model.generate( **_UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=_UpperCamelCase , ) snake_case_ = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCamelCase ) snake_case_ = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(_UpperCamelCase , _UpperCamelCase )
39
0
def __UpperCamelCase (lowerCAmelCase : int ) -> int: if any(not isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__, sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
699
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) snake_case_ = (boundary[1] - boundary[0]) / steps snake_case_ = boundary[0] snake_case_ = boundary[1] snake_case_ = make_points(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = 0.0 y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) for i in x_i: # print(i) y += h * f(SCREAMING_SNAKE_CASE__ ) y += (h / 2.0) * f(SCREAMING_SNAKE_CASE__ ) return y def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = a + h while x < (b - h): yield x snake_case_ = x + h def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): # enter your function here snake_case_ = (x - 0) * (x - 0) return y def __SCREAMING_SNAKE_CASE (): snake_case_ = 0.0 # Lower bound of integration snake_case_ = 1.0 # Upper bound of integration snake_case_ = 10.0 # define number of steps or resolution snake_case_ = [a, b] # define boundary of integration snake_case_ = method_a(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
39
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowercase : List[Any] = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __lowercase : List[str] = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowercase : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING __lowercase : Optional[int] = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def lowercase ( __A : Optional[int] , __A : Any , __A : Dict , __A : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : List[Any] = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"""config.{attribute}""" in modeling_source or f"""getattr(config, \"{attribute}\"""" in modeling_source or f"""getattr(self.config, \"{attribute}\"""" in modeling_source ): snake_case : Any = True # Deal with multi-line cases elif ( re.search( rf"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , SCREAMING_SNAKE_CASE__ , ) is not None ): snake_case : int = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: snake_case : str = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files snake_case : Tuple = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] snake_case : Optional[Any] = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed snake_case : Any = True if not attribute_used: snake_case : Tuple = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: snake_case : Any = True elif attribute in ["tie_word_embeddings"] and default_value is False: snake_case : Optional[Any] = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: snake_case : Union[str, Any] = True elif attribute.endswith("""_token_id""" ): snake_case : Dict = True # configuration class specific cases if not case_allowed: snake_case : Optional[int] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) snake_case : str = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowercase ( __A : Optional[int] ) -> List[str]: '''simple docstring''' snake_case : Any = dict(inspect.signature(config_class.__init__ ).parameters ) snake_case : List[str] = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] snake_case : Dict = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass snake_case : Optional[Any] = {} if len(config_class.attribute_map ) > 0: snake_case : str = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files snake_case : Optional[int] = inspect.getsourcefile(SCREAMING_SNAKE_CASE__ ) snake_case : Optional[Any] = os.path.dirname(SCREAMING_SNAKE_CASE__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. snake_case : Dict = [os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for fn in os.listdir(SCREAMING_SNAKE_CASE__ ) if fn.startswith("""modeling_""" )] # Get the source code strings snake_case : int = [] for path in modeling_paths: if os.path.isfile(SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ ) as fp: modeling_sources.append(fp.read() ) snake_case : Union[str, Any] = [] for config_param, default_value in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # `attributes` here is all the variant names for `config_param` snake_case : str = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): unused_attributes.append(attributes[0] ) return sorted(SCREAMING_SNAKE_CASE__ ) def lowercase ( ) -> List[str]: '''simple docstring''' snake_case : Any = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) snake_case : Optional[int] = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(SCREAMING_SNAKE_CASE__ ) and issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and inspect.getmodule(SCREAMING_SNAKE_CASE__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: snake_case : Tuple = check_config_attributes_being_used(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: snake_case : Any = unused_attributes if len(SCREAMING_SNAKE_CASE__ ) > 0: snake_case : int = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += f"""{name}: {attributes}\n""" raise ValueError(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": check_config_attributes()
36
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / '''model_card_template.md''' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None ): snake_case_ = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ua += "; " + user_agent return ua def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if token is None: snake_case_ = HfFolder.get_token() if organization is None: snake_case_ = whoami(SCREAMING_SNAKE_CASE__ )['''name'''] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(SCREAMING_SNAKE_CASE__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE__ , '''hub_token''' ) else None snake_case_ = get_full_repo_name(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ ) snake_case_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE__ , model_name=SCREAMING_SNAKE_CASE__ , repo_name=SCREAMING_SNAKE_CASE__ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ = os.path.join(args.output_dir , '''README.md''' ) model_card.save(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ = str(Path(SCREAMING_SNAKE_CASE__ ).as_posix() ) snake_case_ = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE__ ) if search is None: return None snake_case_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, '''diffusers''') def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ): if new_cache_dir is None: snake_case_ = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ = old_diffusers_cache snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() snake_case_ = Path(SCREAMING_SNAKE_CASE__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE__ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) try: os.symlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ '''the directory exists and can be written to.''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if variant is not None: snake_case_ = weights_name.split('''.''' ) snake_case_ = splits[:-1] + [variant] + splits[-1:] snake_case_ = '''.'''.join(SCREAMING_SNAKE_CASE__ ) return weights_name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , ): snake_case_ = str(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE__ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): # Load from a PyTorch checkpoint snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , SCREAMING_SNAKE_CASE__ , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}\' so that the correct variant file can be added.''' , SCREAMING_SNAKE_CASE__ , ) try: # 2. Load model file as usual snake_case_ = hf_hub_download( SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , user_agent=SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' '''this model name. Check the model page at ''' F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
39
0
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) UpperCamelCase_ = logging.getLogger() def _lowerCAmelCase ( ) -> Optional[int]: lowercase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument('''-f''' ) lowercase : Dict =parser.parse_args() return args.f def _lowerCAmelCase ( __magic_name__ : Dict ) -> int: lowercase : int ={} lowercase : List[Any] =os.path.join(SCREAMING_SNAKE_CASE__ , '''all_results.json''' ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: lowercase : Tuple =json.load(SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f'''can\'t find {path}''' ) return results def _lowerCAmelCase ( ) -> Union[str, Any]: lowercase : Optional[int] =torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() UpperCamelCase_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __SCREAMING_SNAKE_CASE ( __A ): @classmethod def lowerCamelCase_ ( cls : Tuple ): '''simple docstring''' # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU lowercase : List[Any] =tempfile.mkdtemp() lowercase : List[Any] =os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowercase : int =['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def lowerCamelCase_ ( cls : List[Any] ): '''simple docstring''' shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : Union[str, Any] =self.get_auto_remove_tmp_dir() lowercase : List[Any] =F''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase : Optional[Any] =get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : Dict =self.get_auto_remove_tmp_dir() lowercase : Any =F''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) lowercase : str =get_results(_UpperCamelCase ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : Any =self.get_auto_remove_tmp_dir() lowercase : List[Any] =F''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) lowercase : List[str] =get_results(_UpperCamelCase ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu lowercase : Tuple =7 if get_gpu_count() > 1 else 2 lowercase : int =self.get_auto_remove_tmp_dir() lowercase : List[Any] =F''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) lowercase : int =get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : List[str] =self.get_auto_remove_tmp_dir() lowercase : Any =F''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) lowercase : Any =get_results(_UpperCamelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : Tuple =self.get_auto_remove_tmp_dir() lowercase : int =F''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) lowercase : str =get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : Any =self.get_auto_remove_tmp_dir() lowercase : Optional[int] =F''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) lowercase : Dict =get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : Any =self.get_auto_remove_tmp_dir() lowercase : Optional[int] =F''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) lowercase : str =get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''translation_no_trainer''' ) ) ) @slow def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : List[str] =logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCamelCase ) lowercase : List[Any] =self.get_auto_remove_tmp_dir() lowercase : List[Any] =F''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) lowercase : Optional[Any] =get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : Optional[Any] =self.get_auto_remove_tmp_dir() lowercase : Optional[int] =F''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowercase : Dict =get_results(_UpperCamelCase ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''image_classification_no_trainer''' ) ) )
92
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt" def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) snake_case_ = backbone_featmap_shape snake_case_ = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: snake_case_ = None snake_case_ = None snake_case_ = [] snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) snake_case_ = readout_type snake_case_ = reassemble_factors snake_case_ = neck_hidden_sizes snake_case_ = fusion_hidden_size snake_case_ = head_in_index snake_case_ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = semantic_loss_ignore_index snake_case_ = semantic_classifier_dropout def snake_case__( self : List[str] ) ->List[Any]: snake_case_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
39
0
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : str=2 , __magic_name__ : Dict=8 , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : Any=True , __magic_name__ : Dict=True , __magic_name__ : Optional[int]=99 , __magic_name__ : Any=16 , __magic_name__ : List[str]=5 , __magic_name__ : Optional[Any]=2 , __magic_name__ : str=36 , __magic_name__ : Dict="gelu" , __magic_name__ : Optional[int]=0.0 , __magic_name__ : str=0.0 , __magic_name__ : Any=5_12 , __magic_name__ : int=16 , __magic_name__ : List[Any]=2 , __magic_name__ : Tuple=0.02 , __magic_name__ : Any=3 , __magic_name__ : Dict=4 , __magic_name__ : Dict=None , ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = parent __snake_case : Optional[int] = batch_size __snake_case : Optional[Any] = seq_length __snake_case : Optional[Any] = is_training __snake_case : Union[str, Any] = use_input_mask __snake_case : Optional[int] = use_token_type_ids __snake_case : List[str] = use_labels __snake_case : Optional[Any] = vocab_size __snake_case : str = hidden_size __snake_case : List[Any] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : str = intermediate_size __snake_case : List[Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : str = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Optional[int] = num_labels __snake_case : Tuple = num_choices __snake_case : Any = scope def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Tuple = None if self.use_input_mask: __snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : int = None __snake_case : Optional[Any] = None __snake_case : Optional[int] = None if self.use_labels: __snake_case : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" __snake_case : Optional[int] = self.get_config() __snake_case : int = 3_00 return config def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = self.prepare_config_and_inputs() __snake_case : Tuple = True __snake_case : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase__ ( self : Tuple , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Dict ) -> Dict: """simple docstring""" __snake_case : Any = MraModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() __snake_case : str = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) __snake_case : Union[str, Any] = model(_UpperCamelCase , token_type_ids=_UpperCamelCase ) __snake_case : Union[str, Any] = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : List[str] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : Any , ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = True __snake_case : List[Any] = MraModel(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() __snake_case : str = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , ) __snake_case : Optional[int] = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , ) __snake_case : Optional[Any] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : List[Any] ) -> str: """simple docstring""" __snake_case : List[str] = MraForMaskedLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() __snake_case : Union[str, Any] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[int] , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Any , __magic_name__ : Optional[Any] ) -> Any: """simple docstring""" __snake_case : List[str] = MraForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() __snake_case : Any = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" __snake_case : str = self.num_labels __snake_case : int = MraForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() __snake_case : Union[str, Any] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Optional[int] ) -> int: """simple docstring""" __snake_case : Optional[Any] = self.num_labels __snake_case : List[Any] = MraForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() __snake_case : List[Any] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : List[Any] , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Any ) -> Any: """simple docstring""" __snake_case : Any = self.num_choices __snake_case : List[str] = MraForMultipleChoice(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() __snake_case : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : str = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case : str = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Tuple = config_and_inputs __snake_case : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __A , unittest.TestCase ): lowercase__: str = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowercase__: Optional[int] = False lowercase__: str = False lowercase__: Optional[int] = False lowercase__: Optional[int] = False lowercase__: List[str] = () def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = MraModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def lowercase__ ( self : int ) -> Optional[int]: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Optional[int] = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCamelCase ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCamelCase ) def lowercase__ ( self : Any ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) def lowercase__ ( self : str ) -> List[str]: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCamelCase ) def lowercase__ ( self : int ) -> Any: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) @slow def lowercase__ ( self : int ) -> str: """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[Any] = MraModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @unittest.skip(reason="""MRA does not output attentions""" ) def lowercase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return @require_torch class _A ( unittest.TestCase ): @slow def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : List[Any] = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) __snake_case : Tuple = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): __snake_case : int = model(_UpperCamelCase )[0] __snake_case : int = torch.Size((1, 2_56, 7_68) ) self.assertEqual(output.shape , _UpperCamelCase ) __snake_case : List[str] = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1E-4 ) ) @slow def lowercase__ ( self : List[str] ) -> int: """simple docstring""" __snake_case : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) __snake_case : List[str] = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): __snake_case : Any = model(_UpperCamelCase )[0] __snake_case : Dict = 5_02_65 __snake_case : Union[str, Any] = torch.Size((1, 2_56, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) __snake_case : Any = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1E-4 ) ) @slow def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Tuple = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) __snake_case : Optional[int] = torch.arange(40_96 ).unsqueeze(0 ) with torch.no_grad(): __snake_case : List[Any] = model(_UpperCamelCase )[0] __snake_case : Optional[Any] = 5_02_65 __snake_case : Tuple = torch.Size((1, 40_96, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) __snake_case : Any = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1E-4 ) )
26
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = '''pytorch_model.bin''' @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "A csv or a json file containing the validation data."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "The name of the task to train on."} , ) SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field( default=__A , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=__A , metadata={"help": "Random seed for initialization."} , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case_ = dataset.filter(lambda SCREAMING_SNAKE_CASE__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case_ = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) ) print(SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = dataset.remove_columns(['''label''', '''probability'''] ) snake_case_ = dataset.rename_column('''prediction''' , '''label''' ) snake_case_ = dataset.map(lambda SCREAMING_SNAKE_CASE__ : {"label": idalabel[example["label"]]} ) snake_case_ = dataset.shuffle(seed=args.seed ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) else: dataset.to_json(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): snake_case_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case_ = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ ) snake_case_ = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ , infer_file=SCREAMING_SNAKE_CASE__ ) snake_case_ = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ ) snake_case_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(SCREAMING_SNAKE_CASE__ ).items(): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Sanity checks snake_case_ = {} snake_case_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case_ = args.train_file snake_case_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case_ = args.eval_file for key in data_files: snake_case_ = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: snake_case_ = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) snake_case_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format snake_case_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = None snake_case_ = None snake_case_ = 0 snake_case_ = False # Show the progress bar snake_case_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case_ = data_dir_format(SCREAMING_SNAKE_CASE__ ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-1''' ) snake_case_ = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): arguments_dict.update({key: value} ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-2''' ) # Update arguments_dict snake_case_ = model_path snake_case_ = data_files['''train'''] snake_case_ = current_output_dir snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = iteration snake_case_ = data_dir_format(iteration + 1 ) snake_case_ = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) ) snake_case_ = config.idalabel snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-checkpoint.json''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: snake_case_ = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Loading the dataset from local csv or json files. snake_case_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] snake_case_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case_ = eval_result if best_iteration is None: snake_case_ = new_iteration snake_case_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case_ = new_iteration snake_case_ = new_eval_result snake_case_ = 0 else: if new_eval_result == best_eval_result: snake_case_ = new_iteration snake_case_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE__ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , )
39
0
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowerCAmelCase_ ( __A , __A , unittest.TestCase ): '''simple docstring''' _lowercase = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _lowercase = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _lowercase = False _lowercase = False def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ : Any =super()._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) if return_labels: if model_class in get_values(_UpperCamelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowerCAmelCase_ ( __A ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): SCREAMING_SNAKE_CASE_ : List[Any] =parent SCREAMING_SNAKE_CASE_ : List[str] =batch_size SCREAMING_SNAKE_CASE_ : int =seq_length SCREAMING_SNAKE_CASE_ : Union[str, Any] =is_training SCREAMING_SNAKE_CASE_ : Dict =use_input_mask SCREAMING_SNAKE_CASE_ : Dict =use_token_type_ids SCREAMING_SNAKE_CASE_ : List[Any] =use_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] =vocab_size SCREAMING_SNAKE_CASE_ : int =hidden_size SCREAMING_SNAKE_CASE_ : int =num_hidden_layers SCREAMING_SNAKE_CASE_ : List[Any] =num_attention_heads SCREAMING_SNAKE_CASE_ : Dict =intermediate_size SCREAMING_SNAKE_CASE_ : str =hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] =hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] =max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] =type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] =type_sequence_label_size SCREAMING_SNAKE_CASE_ : Any =initializer_range SCREAMING_SNAKE_CASE_ : int =num_labels SCREAMING_SNAKE_CASE_ : List[Any] =num_choices SCREAMING_SNAKE_CASE_ : int =scope SCREAMING_SNAKE_CASE_ : str =embedding_size def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : List[str] =None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : str =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : int =None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Any =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Optional[int] =None SCREAMING_SNAKE_CASE_ : List[Any] =None SCREAMING_SNAKE_CASE_ : Tuple =None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ : Optional[int] =ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ : int =MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Dict =TFMobileBertModel(config=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Dict ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE_ : str =model(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : List[str] =[input_ids, input_mask] SCREAMING_SNAKE_CASE_ : Optional[Any] =model(_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : List[str] =model(_UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : List[str] =TFMobileBertForMaskedLM(config=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Tuple ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE_ : Dict =model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : str =TFMobileBertForNextSentencePrediction(config=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Tuple ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE_ : List[Any] =model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Any =TFMobileBertForPreTraining(config=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : List[str] ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE_ : Dict =model(_UpperCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : int =self.num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] =TFMobileBertForSequenceClassification(config=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : List[str] ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE_ : List[Any] =model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : str =self.num_choices SCREAMING_SNAKE_CASE_ : Optional[int] =TFMobileBertForMultipleChoice(config=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : int =tf.tile(tf.expand_dims(_UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : str =tf.tile(tf.expand_dims(_UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : List[str] =tf.tile(tf.expand_dims(_UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : List[str] ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE_ : Any =model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : List[str] =self.num_labels SCREAMING_SNAKE_CASE_ : Any =TFMobileBertForTokenClassification(config=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : List[str] ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE_ : Optional[Any] =model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : List[str] =TFMobileBertForQuestionAnswering(config=_UpperCamelCase ) SCREAMING_SNAKE_CASE_ : str ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE_ : int =model(_UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Tuple =self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : int =config_and_inputs SCREAMING_SNAKE_CASE_ : List[str] ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : List[str] =TFMobileBertModelTest.TFMobileBertModelTester(self ) SCREAMING_SNAKE_CASE_ : Dict =ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def __lowerCamelCase ( self ): self.config_tester.run_common_tests() def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_UpperCamelCase ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCamelCase ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCamelCase ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCamelCase ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCamelCase ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCamelCase ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCamelCase ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCamelCase ) @slow def __lowerCamelCase ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: SCREAMING_SNAKE_CASE_ : Optional[Any] =TFMobileBertModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Dict =TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) SCREAMING_SNAKE_CASE_ : Dict =tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ : Optional[int] =model(_UpperCamelCase )[0] SCREAMING_SNAKE_CASE_ : List[str] =[1, 6, 30_522] self.assertEqual(output.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Dict =tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCamelCase , atol=1E-4 )
220
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AltDiffusionPipeline SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__( self : Dict ) ->int: torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) snake_case_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , ) torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) snake_case_ = CLIPTextModel(_UpperCamelCase ) snake_case_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) snake_case_ = 7_7 snake_case_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__( self : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0 ) ->Any: if str(_UpperCamelCase ).startswith('''mps''' ): snake_case_ = torch.manual_seed(_UpperCamelCase ) else: snake_case_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case__( self : Dict ) ->List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def snake_case__( self : List[str] ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case__( self : Dict ) ->Any: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = '''A photo of an astronaut''' snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : Tuple ) ->Union[str, Any]: snake_case_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = PNDMScheduler(skip_prk_steps=_UpperCamelCase ) torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder snake_case_ = RobertaSeriesModelWithTransformation(_UpperCamelCase ) snake_case_ = text_encoder snake_case_ = AltDiffusionPipeline(**_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = self.get_dummy_inputs(_UpperCamelCase ) snake_case_ = alt_pipe(**_UpperCamelCase ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : int ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__( self : List[str] ) ->Tuple: # make sure here that pndm scheduler skips prk snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='''np''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__( self : List[str] ) ->Optional[Any]: snake_case_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) snake_case_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_UpperCamelCase , safety_checker=_UpperCamelCase ) snake_case_ = alt_pipe.to(_UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ = '''A painting of a squirrel eating a burger''' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe([prompt] , generator=_UpperCamelCase , num_inference_steps=2 , output_type='''numpy''' ) snake_case_ = output.images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class A_(unittest.TestCase ): """simple docstring""" def __init__( self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=None , A=True , ): _lowerCamelCase : str = size if size is not None else {'shortest_edge': 20} _lowerCamelCase : Dict = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCamelCase : List[Any] = parent _lowerCamelCase : str = batch_size _lowerCamelCase : Optional[int] = num_channels _lowerCamelCase : Optional[Any] = image_size _lowerCamelCase : int = min_resolution _lowerCamelCase : int = max_resolution _lowerCamelCase : int = do_resize _lowerCamelCase : List[Any] = size _lowerCamelCase : int = do_center_crop _lowerCamelCase : Optional[int] = crop_size _lowerCamelCase : Optional[Any] = do_flip_channel_order def _lowerCAmelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class A_(__A , unittest.TestCase ): """simple docstring""" a_ : Optional[int] = MobileViTImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = MobileViTImageProcessingTester(self ) @property def _lowerCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self ): _lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'center_crop' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_flip_channel_order' ) ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCamelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def _lowerCAmelCase ( self ): pass def _lowerCAmelCase ( self ): # Initialize image_processing _lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input _lowerCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCamelCase : Union[str, Any] = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _lowerCAmelCase ( self ): # Initialize image_processing _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) # Test not batched input _lowerCamelCase : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCamelCase : Tuple = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _lowerCAmelCase ( self ): # Initialize image_processing _lowerCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input _lowerCamelCase : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCamelCase : Tuple = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
437
from math import factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( '''If a class of 40 students must be arranged into groups of''', f"""4 for group projects, there are {combinations(40, 4)} ways""", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f"""are {combinations(10, 3)} ways that first, second and""", '''third place can be awarded.''', )
39
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) lowerCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowercase__ ( lowercase_ ) -> Dict: """simple docstring""" for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _UpperCamelCase : Union[str, Any] = model_type_to_module_name(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase : Any = importlib.import_module(F'''.{module_name}''' ,"transformers.models" ) try: return getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(SCREAMING_SNAKE_CASE__ ,"__name__" ,SCREAMING_SNAKE_CASE__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _UpperCamelCase : Tuple = importlib.import_module("transformers" ) if hasattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): return getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) return None def lowercase__ ( lowercase_ ,lowercase_ = None ,lowercase_ = False ,lowercase_ = False ,lowercase_ = None ,lowercase_ = None ,lowercase_ = None ,lowercase_ = False ,**lowercase_ ,) -> Optional[Any]: """simple docstring""" _UpperCamelCase : int = get_file_from_repo( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,cache_dir=SCREAMING_SNAKE_CASE__ ,force_download=SCREAMING_SNAKE_CASE__ ,resume_download=SCREAMING_SNAKE_CASE__ ,proxies=SCREAMING_SNAKE_CASE__ ,use_auth_token=SCREAMING_SNAKE_CASE__ ,revision=SCREAMING_SNAKE_CASE__ ,local_files_only=SCREAMING_SNAKE_CASE__ ,) if resolved_config_file is None: logger.info( "Could not locate the feature extractor configuration file, will try to use the model config instead." ) return {} with open(SCREAMING_SNAKE_CASE__ ,encoding="utf-8" ) as reader: return json.load(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str ) -> Optional[int]: raise EnvironmentError( "AutoFeatureExtractor is designed to be instantiated " "using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( cls : str , __a : List[Any] , **__a : Optional[int] ) -> List[str]: _UpperCamelCase : List[Any] = kwargs.pop("config" , _UpperCamelCase ) _UpperCamelCase : List[str] = kwargs.pop("trust_remote_code" , _UpperCamelCase ) _UpperCamelCase : Tuple = True _UpperCamelCase, _UpperCamelCase : List[str] = FeatureExtractionMixin.get_feature_extractor_dict(_UpperCamelCase , **_UpperCamelCase ) _UpperCamelCase : Any = config_dict.get("feature_extractor_type" , _UpperCamelCase ) _UpperCamelCase : List[str] = None if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): _UpperCamelCase : List[str] = config_dict["auto_map"]["AutoFeatureExtractor"] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_UpperCamelCase , _UpperCamelCase ): _UpperCamelCase : Optional[Any] = AutoConfig.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) # It could be in `config.feature_extractor_type`` _UpperCamelCase : Tuple = getattr(_UpperCamelCase , "feature_extractor_type" , _UpperCamelCase ) if hasattr(_UpperCamelCase , "auto_map" ) and "AutoFeatureExtractor" in config.auto_map: _UpperCamelCase : List[Any] = config.auto_map["AutoFeatureExtractor"] if feature_extractor_class is not None: _UpperCamelCase : List[Any] = feature_extractor_class_from_name(_UpperCamelCase ) _UpperCamelCase : Any = feature_extractor_auto_map is not None _UpperCamelCase : str = feature_extractor_class is not None or type(_UpperCamelCase ) in FEATURE_EXTRACTOR_MAPPING _UpperCamelCase : Optional[int] = resolve_trust_remote_code( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if has_remote_code and trust_remote_code: _UpperCamelCase : Optional[int] = get_class_from_dynamic_module( _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) _UpperCamelCase : Optional[Any] = kwargs.pop("code_revision" , _UpperCamelCase ) if os.path.isdir(_UpperCamelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_UpperCamelCase , **_UpperCamelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_UpperCamelCase , **_UpperCamelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_UpperCamelCase ) in FEATURE_EXTRACTOR_MAPPING: _UpperCamelCase : List[str] = FEATURE_EXTRACTOR_MAPPING[type(_UpperCamelCase )] return feature_extractor_class.from_dict(_UpperCamelCase , **_UpperCamelCase ) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def __SCREAMING_SNAKE_CASE ( __a : Optional[int] , __a : Optional[int] ) -> Dict: FEATURE_EXTRACTOR_MAPPING.register(_UpperCamelCase , _UpperCamelCase )
624
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCAmelCase_ = sys.version_info >= (3, 10) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ): return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : bool @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int = 42 SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : Optional[bool] = None class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = "titi" SCREAMING_SNAKE_CASE : Any = "toto" class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = "titi" SCREAMING_SNAKE_CASE : Optional[Any] = "toto" SCREAMING_SNAKE_CASE : Any = 42 @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : BasicEnum = "toto" def snake_case__( self : Tuple ) ->List[str]: snake_case_ = BasicEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto" def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = MixedTypeEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[float] = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : Optional[str] = None SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] ) SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] ) SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] ) SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = field() SCREAMING_SNAKE_CASE : str = field() SCREAMING_SNAKE_CASE : BasicEnum = field() def snake_case__( self : Optional[Any] ) ->Tuple: snake_case_ = BasicEnum(self.required_enum ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : "BasicEnum" = field() SCREAMING_SNAKE_CASE : "Optional[bool]" = None SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : bool | None = None @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int | None = None SCREAMING_SNAKE_CASE : float | None = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : str | None = None SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] ) SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] ) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Dict , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser ) ->str: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _UpperCamelCase ) and yy.get('''choices''' , _UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_UpperCamelCase ) , yy['''type'''](_UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--bar''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--baz''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--flag''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((snake_case_), ) = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase ) self.assertFalse(example.flag ) def snake_case__( self : Tuple ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) snake_case_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case__( self : Tuple ) ->Union[str, Any]: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto" snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual( _UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def snake_case__( self : Optional[Any] ) ->List[Any]: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--bar''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) snake_case_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[] ) ) snake_case_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def snake_case__( self : Union[str, Any] ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--required_str''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Dict ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } snake_case_ = parser.parse_dict(_UpperCamelCase )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : int ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase ) def snake_case__( self : str ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_json''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_yaml''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Any ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase )
39
0
'''simple docstring''' import re def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =re.compile( r'''^(?:0|94|\+94|0{2}94)''' r'''7(0|1|2|4|5|6|7|8)''' r'''(-| |)''' r'''\d{7}$''' ) return bool(re.search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": __lowerCamelCase : Union[str, Any] = '0094702343221' print(is_sri_lankan_phone_number(phone))
404
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Dict , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
39
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _A = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] _A = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] _A = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) _A = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) _A = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def __UpperCamelCase ( _A , _A ): for tf_name, hf_name in patterns: lowerCAmelCase_ = k.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return k def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = BigBirdPegasusConfig(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = BigBirdPegasusForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = torch_model.state_dict() lowerCAmelCase_ = {} # separating decoder weights lowerCAmelCase_ = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} lowerCAmelCase_ = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): lowerCAmelCase_ = [k.endswith(SCREAMING_SNAKE_CASE__ ) for ending in KEYS_TO_IGNORE] if any(SCREAMING_SNAKE_CASE__ ): continue lowerCAmelCase_ = DECODER_PATTERNS lowerCAmelCase_ = rename_state_dict_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if new_k not in state_dict: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): lowerCAmelCase_ = v.T lowerCAmelCase_ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) assert v.shape == state_dict[new_k].shape, f"{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}" for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): lowerCAmelCase_ = [k.endswith(SCREAMING_SNAKE_CASE__ ) for ending in KEYS_TO_IGNORE] if any(SCREAMING_SNAKE_CASE__ ): continue lowerCAmelCase_ = REMAINING_PATTERNS lowerCAmelCase_ = rename_state_dict_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): lowerCAmelCase_ = v.T lowerCAmelCase_ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}" lowerCAmelCase_ = mapping['''model.embed_positions.weight'''] lowerCAmelCase_ = mapping.pop('''model.embed_positions.weight''' ) lowerCAmelCase_ , lowerCAmelCase_ = torch_model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def __UpperCamelCase ( _A ): lowerCAmelCase_ = tf.train.list_variables(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = {} lowerCAmelCase_ = ['''global_step'''] for name, shape in tqdm(SCREAMING_SNAKE_CASE__ , desc='''converting tf checkpoint to dict''' ): lowerCAmelCase_ = any(pat in name for pat in ignore_name ) if skip_key: continue lowerCAmelCase_ = tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = array return tf_weights def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = get_tf_weights_as_numpy(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = convert_bigbird_pegasus(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) torch_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _A = parser.parse_args() _A = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
431
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv" SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]: snake_case_ = vocab_size snake_case_ = context_length snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case_ = layer_norm_epsilon snake_case_ = rescale_every snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
39
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a__ : Dict = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) class snake_case_ : '''simple docstring''' def __init__( self : int , _UpperCamelCase : Optional[str] = None ) ->Tuple: snake_case_ = ( os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) snake_case_ = Extractor def snake_case__( self : Any , _UpperCamelCase : str ) ->str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" snake_case_ = os.path.abspath(_UpperCamelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) ) def snake_case__( self : int , _UpperCamelCase : str , _UpperCamelCase : bool ) ->bool: return force_extract or ( not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase )) ) def snake_case__( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : bool = False ) ->str: snake_case_ = self.extractor.infer_extractor_format(_UpperCamelCase ) if not extractor_format: return input_path snake_case_ = self._get_output_path(_UpperCamelCase ) if self._do_extract(_UpperCamelCase , _UpperCamelCase ): self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return output_path class snake_case_ ( __A ): '''simple docstring''' @classmethod @abstractmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : str ) ->bool: ... @staticmethod @abstractmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: ... class snake_case_ ( __A , __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[bytes] = [] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->List[Any]: with open(_UpperCamelCase , '''rb''' ) as f: return f.read(_UpperCamelCase ) @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if not magic_number: snake_case_ = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) try: snake_case_ = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase ) except OSError: return False return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) class snake_case_ ( __A ): '''simple docstring''' @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : Any ) ->bool: return tarfile.is_tarfile(_UpperCamelCase ) @staticmethod def snake_case__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) ->List[str]: def resolved(_UpperCamelCase : str ) -> str: return os.path.realpath(os.path.abspath(_UpperCamelCase ) ) def badpath(_UpperCamelCase : str , _UpperCamelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase ) def badlink(_UpperCamelCase : Tuple , _UpperCamelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link snake_case_ = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCamelCase ) snake_case_ = resolved(_UpperCamelCase ) for finfo in members: if badpath(finfo.name , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = tarfile.open(_UpperCamelCase ) tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) ) tar_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [b"\x1F\x8B"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with gzip.open(_UpperCamelCase , '''rb''' ) as gzip_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def snake_case__( cls : List[str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCamelCase , '''rb''' ) as fp: snake_case_ = _EndRecData(_UpperCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: snake_case_ = fp.read(_UpperCamelCase ) # CD is where we expect it to be if len(_UpperCamelCase ) == sizeCentralDir: snake_case_ = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with zipfile.ZipFile(_UpperCamelCase , '''r''' ) as zip_file: zip_file.extractall(_UpperCamelCase ) zip_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with lzma.open(_UpperCamelCase ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = rarfile.RarFile(_UpperCamelCase ) rf.extractall(_UpperCamelCase ) rf.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [b"\x28\xb5\x2F\xFD"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd snake_case_ = zstd.ZstdDecompressor() with open(_UpperCamelCase , '''rb''' ) as ifh, open(_UpperCamelCase , '''wb''' ) as ofh: dctx.copy_stream(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"\x42\x5A\x68"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with bza.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with pyazr.SevenZipFile(_UpperCamelCase , '''r''' ) as archive: archive.extractall(_UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x04\x22\x4D\x18"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def snake_case__( cls : List[Any] ) ->List[str]: return max( len(_UpperCamelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCamelCase , _UpperCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->Tuple: try: return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase ) except OSError: return b"" @classmethod def snake_case__( cls : Optional[Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bool = False ) ->bool: warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = cls.infer_extractor_format(_UpperCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def snake_case__( cls : int , _UpperCamelCase : Union[Path, str] ) ->str: # <Added version="2.4.0"/> snake_case_ = cls._get_magic_number_max_length() snake_case_ = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return extractor_format @classmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[BaseExtractor] = "deprecated" , ) ->None: os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase ) # Prevent parallel extractions snake_case_ = str(Path(_UpperCamelCase ).with_suffix('''.lock''' ) ) with FileLock(_UpperCamelCase ): shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = extractor if extractor != '''deprecated''' else extractor_format else: snake_case_ = cls.extractors[extractor_format] return extractor.extract(_UpperCamelCase , _UpperCamelCase ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=_UpperCamelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCamelCase ): return extractor.extract(_UpperCamelCase , _UpperCamelCase )
39
0
def a__ ( snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] ): _UpperCAmelCase : str = [0 for i in range(r + 1 )] # nc0 = 1 _UpperCAmelCase : Optional[int] = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _UpperCAmelCase : Optional[int] = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
643
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
39
0
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __UpperCamelCase (lowerCAmelCase : Any, lowerCAmelCase : int ) -> Union[str, Any]: A = f'''{sampling_rate}''' A = '1' A = 'f32le' A = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(SCREAMING_SNAKE_CASE__, stdin=subprocess.PIPE, stdout=subprocess.PIPE ) as ffmpeg_process: A = ffmpeg_process.communicate(SCREAMING_SNAKE_CASE__ ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error A = output_stream[0] A = np.frombuffer(SCREAMING_SNAKE_CASE__, np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def __UpperCamelCase (lowerCAmelCase : Optional[int], lowerCAmelCase : Any, lowerCAmelCase : Optional[Any] = "f32le", ) -> Any: A = f'''{sampling_rate}''' A = '1' if format_for_conversion == "s16le": A = 2 elif format_for_conversion == "f32le": A = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) A = platform.system() if system == "Linux": A = 'alsa' A = 'default' elif system == "Darwin": A = 'avfoundation' A = ':0' elif system == "Windows": A = 'dshow' A = 'default' A = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] A = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample A = _ffmpeg_stream(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) for item in iterator: yield item def __UpperCamelCase (lowerCAmelCase : Dict, lowerCAmelCase : List[Any], lowerCAmelCase : List[str] = None, lowerCAmelCase : Dict = None, lowerCAmelCase : Union[str, Any] = "f32le", ) -> Optional[int]: if stream_chunk_s is not None: A = stream_chunk_s else: A = chunk_length_s A = ffmpeg_microphone(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, format_for_conversion=SCREAMING_SNAKE_CASE__ ) if format_for_conversion == "s16le": A = np.intaa A = 2 elif format_for_conversion == "f32le": A = np.floataa A = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: A = chunk_length_s / 6 A = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(SCREAMING_SNAKE_CASE__, (int, float) ): A = [stride_length_s, stride_length_s] A = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample A = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample A = datetime.datetime.now() A = datetime.timedelta(seconds=SCREAMING_SNAKE_CASE__ ) for item in chunk_bytes_iter(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, stride=(stride_left, stride_right), stream=SCREAMING_SNAKE_CASE__ ): # Put everything back in numpy scale A = np.frombuffer(item['raw'], dtype=SCREAMING_SNAKE_CASE__ ) A = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) A = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : List[str], lowerCAmelCase : List[Any], lowerCAmelCase : Optional[int] = False ) -> Optional[int]: A = b'' A , A = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) A = 0 for raw in iterator: acc += raw if stream and len(SCREAMING_SNAKE_CASE__ ) < chunk_len: A = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(SCREAMING_SNAKE_CASE__ ) >= chunk_len: # We are flushing the accumulator A = (_stride_left, stride_right) A = {'raw': acc[:chunk_len], 'stride': stride} if stream: A = False yield item A = stride_left A = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(SCREAMING_SNAKE_CASE__ ) > stride_left: A = {'raw': acc, 'stride': (_stride_left, 0)} if stream: A = False yield item def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : Dict ) -> Optional[int]: A = 2**24 # 16Mo try: with subprocess.Popen(SCREAMING_SNAKE_CASE__, stdout=subprocess.PIPE, bufsize=SCREAMING_SNAKE_CASE__ ) as ffmpeg_process: while True: A = ffmpeg_process.stdout.read(SCREAMING_SNAKE_CASE__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
699
import re from filelock import FileLock try: import nltk lowerCAmelCase_ = True except (ImportError, ModuleNotFoundError): lowerCAmelCase_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): re.sub('''<n>''' , '''''' , SCREAMING_SNAKE_CASE__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE__ ) )
39
0
import os import re import shutil import sys import tempfile import unittest import black __lowercase : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __lowercase : Tuple = ''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class _A ( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ): '''simple docstring''' snake_case : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir ,"""models/bert/""" ) ) snake_case : Tuple = self.transformer_dir shutil.copy( os.path.join(_UpperCamelCase ,"""src/transformers/models/bert/modeling_bert.py""" ) ,os.path.join(self.transformer_dir ,"""models/bert/modeling_bert.py""" ) ,) def snake_case_ ( self ): '''simple docstring''' snake_case : Any = """src/transformers""" shutil.rmtree(self.transformer_dir ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=None ): '''simple docstring''' snake_case : Dict = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: snake_case : Optional[Any] = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result snake_case : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=119 ) snake_case : List[str] = black.format_str(_UpperCamelCase ,mode=_UpperCamelCase ) snake_case : int = os.path.join(self.transformer_dir ,"""new_code.py""" ) with open(_UpperCamelCase ,"""w""" ,newline="""\n""" ) as f: f.write(_UpperCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name ,overwrite=_UpperCamelCase ) with open(_UpperCamelCase ,"""r""" ) as f: self.assertTrue(f.read() ,_UpperCamelCase ) def snake_case_ ( self ): '''simple docstring''' snake_case : int = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(_UpperCamelCase ,_UpperCamelCase ) def snake_case_ ( self ): '''simple docstring''' # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" ,"""BertLMPredictionHead""" ,REFERENCE_CODE + """\n""" ,) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" ,"""BertLMPredictionHead""" ,_UpperCamelCase ,) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" ,"""TestModelLMPredictionHead""" ,re.sub("""Bert""" ,"""TestModel""" ,_UpperCamelCase ) ,) # Copy consistency with a really long name snake_case : Tuple = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" ,F"""{long_class_name}LMPredictionHead""" ,re.sub("""Bert""" ,_UpperCamelCase ,_UpperCamelCase ) ,) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" ,"""TestModelLMPredictionHead""" ,_UpperCamelCase ,overwrite_result=re.sub("""Bert""" ,"""TestModel""" ,_UpperCamelCase ) ,) def snake_case_ ( self ): '''simple docstring''' snake_case : Optional[int] = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] snake_case : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) snake_case : Optional[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) snake_case : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) snake_case , snake_case : Dict = check_copies.convert_to_localized_md( _UpperCamelCase ,_UpperCamelCase ,localized_readme["""format_model_list"""] ) self.assertFalse(_UpperCamelCase ) self.assertEqual(_UpperCamelCase ,_UpperCamelCase ) snake_case , snake_case : Tuple = check_copies.convert_to_localized_md( _UpperCamelCase ,_UpperCamelCase ,localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_UpperCamelCase ) snake_case : int = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) snake_case : List[str] = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) snake_case : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) snake_case , snake_case : Tuple = check_copies.convert_to_localized_md( _UpperCamelCase ,_UpperCamelCase ,localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(_UpperCamelCase ,_UpperCamelCase )
36
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [0 for i in range(r + 1 )] # nc0 = 1 snake_case_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case_ = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
39
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"""tokenizer_file""": """tokenizer.json"""} UpperCamelCase_ = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class __SCREAMING_SNAKE_CASE ( __A ): lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = ["input_ids", "attention_mask"] lowerCamelCase_ = None def __init__( self : Optional[Any] , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : List[str]="<unk>" , UpperCAmelCase__ : Optional[int]="<s>" , UpperCAmelCase__ : Dict="</s>" , UpperCAmelCase__ : Dict="<pad>" , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : Any=False , **UpperCAmelCase__ : Tuple , ): '''simple docstring''' super().__init__( _UpperCamelCase , _UpperCamelCase , tokenizer_file=_UpperCamelCase , unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , add_prefix_space=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase , **_UpperCamelCase , ) lowercase : str =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _UpperCamelCase ) != add_prefix_space: lowercase : Optional[Any] =getattr(_UpperCamelCase , pre_tok_state.pop('''type''' ) ) lowercase : Dict =add_prefix_space lowercase : List[str] =pre_tok_class(**_UpperCamelCase ) lowercase : List[str] =add_prefix_space def lowerCamelCase_ ( self : Union[str, Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Optional[Any] ): '''simple docstring''' lowercase : List[Any] =kwargs.get('''is_split_into_words''' , _UpperCamelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*_UpperCamelCase , **_UpperCamelCase ) def lowerCamelCase_ ( self : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any] ): '''simple docstring''' lowercase : List[Any] =kwargs.get('''is_split_into_words''' , _UpperCamelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._encode_plus(*_UpperCamelCase , **_UpperCamelCase ) def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ): '''simple docstring''' lowercase : List[Any] =self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase ) def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : "Conversation" ): '''simple docstring''' lowercase : str =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) + [self.eos_token_id] ) if len(_UpperCamelCase ) > self.model_max_length: lowercase : int =input_ids[-self.model_max_length :] return input_ids
92
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCAmelCase_ = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 13_10_72, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return torch.atana(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / math.pi * 2 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.sin(t * math.pi / 2 ) ** 2 snake_case_ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class snake_case_ ( __A ): '''simple docstring''' pass class snake_case_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : int ) ->Optional[int]: super().__init__() snake_case_ = DiffusionAttnUnetaD(_UpperCamelCase , n_attn_layers=4 ) snake_case_ = deepcopy(self.diffusion ) snake_case_ = torch.quasirandom.SobolEngine(1 , scramble=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = MODELS_MAP[model_name]['''url'''] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCAmelCase_ = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCAmelCase_ = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCAmelCase_ = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCAmelCase_ = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif name.startswith(SCREAMING_SNAKE_CASE__ ): return [name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 ): snake_case_ = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) snake_case_ = 0 if string.startswith('''net.3.''' ): depth += 1 snake_case_ = string[6:] elif string.startswith('''net.''' ): snake_case_ = string[4:] while string.startswith('''main.7.''' ): depth += 1 snake_case_ = string[7:] if string.startswith('''main.''' ): snake_case_ = string[5:] # mid block if string[:2].isdigit(): snake_case_ = string[:2] snake_case_ = string[2:] else: snake_case_ = string[0] snake_case_ = string[1:] if depth == max_depth: snake_case_ = MID_NUM_TO_LAYER[layer_num] snake_case_ = '''mid_block''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) < 7: snake_case_ = DOWN_NUM_TO_LAYER[layer_num] snake_case_ = F'''down_blocks.{depth}''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) > 7: snake_case_ = UP_NUM_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: snake_case_ = DEPTH_0_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - 1}''' if int(SCREAMING_SNAKE_CASE__ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) snake_case_ = string_left[1:] if "resnets" in new_layer: snake_case_ = convert_resconv_naming(SCREAMING_SNAKE_CASE__ ) elif "attentions" in new_layer: snake_case_ = convert_attn_naming(SCREAMING_SNAKE_CASE__ ) snake_case_ = new_string_left if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = prefix + '''.''' + new_layer + '''.''' + string_left else: snake_case_ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue snake_case_ = rename(SCREAMING_SNAKE_CASE__ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = transform_conv_attns(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ = v return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) == 1: if len(v.shape ) == 3: # weight snake_case_ = v[:, :, 0] else: # bias snake_case_ = v else: # qkv matrices snake_case_ = v.shape[0] snake_case_ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: snake_case_ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: snake_case_ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) snake_case_ = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' snake_case_ = download(SCREAMING_SNAKE_CASE__ ) snake_case_ = MODELS_MAP[model_name]['''sample_rate'''] snake_case_ = MODELS_MAP[model_name]['''sample_size'''] snake_case_ = Object() snake_case_ = sample_size snake_case_ = sample_rate snake_case_ = 0 snake_case_ = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE__ , sample_rate=SCREAMING_SNAKE_CASE__ ) snake_case_ = diffusers_model.state_dict() snake_case_ = DiffusionUncond(SCREAMING_SNAKE_CASE__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE__ )['''state_dict'''] ) snake_case_ = orig_model.diffusion_ema.eval() snake_case_ = orig_model.state_dict() snake_case_ = rename_orig_weights(SCREAMING_SNAKE_CASE__ ) snake_case_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) snake_case_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE__ ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith('''kernel''' ) for k in list(SCREAMING_SNAKE_CASE__ ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": snake_case_ = value.squeeze() snake_case_ = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = 100 snake_case_ = 33 snake_case_ = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE__ )[:-1] snake_case_ = get_crash_schedule(SCREAMING_SNAKE_CASE__ ) snake_case_ = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(33 ) snake_case_ = pipe(num_inference_steps=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).audios snake_case_ = sampling.iplms_sample(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {} ) snake_case_ = generated.clamp(-1 , 1 ) snake_case_ = (generated - audio).abs().sum() snake_case_ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , SCREAMING_SNAKE_CASE__ ) print('''Diff max''' , SCREAMING_SNAKE_CASE__ ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCAmelCase_ = parser.parse_args() main(args)
39
0
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def _a ( _lowerCamelCase = "laptop" ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = F'''https://www.amazon.in/laptop/s?k={product}''' __snake_case : List[Any] = { """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } __snake_case : Dict = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE__ , headers=SCREAMING_SNAKE_CASE__ ).text ) # Initialize a Pandas dataframe with the column titles __snake_case : Dict = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ): try: __snake_case : Any = item.ha.text __snake_case : Optional[int] = """https://www.amazon.in/""" + item.ha.a["""href"""] __snake_case : List[str] = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text try: __snake_case : List[Any] = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: __snake_case : Any = """Not available""" try: __snake_case : Optional[int] = ( """₹""" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: __snake_case : List[Any] = """""" try: __snake_case : List[Any] = float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""" , """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) ) * 100 ) except ValueError: __snake_case : int = float("""nan""" ) except AttributeError: pass __snake_case : str = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] __snake_case : List[Any] = """ """ __snake_case : Optional[Any] = """ """ data_frame.index += 1 return data_frame if __name__ == "__main__": __UpperCamelCase = "headphones" get_amazon_product_data(product).to_csv(f"""Amazon Product Data for {product}.csv""")
26
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = ["image_processor", "tokenizer"] _lowercase = "BridgeTowerImageProcessor" _lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : Any =self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel_values + pixel_mask SCREAMING_SNAKE_CASE_ : Any =self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def __lowerCamelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def __lowerCamelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : str =self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ : int =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
220
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->Any: snake_case_ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case_ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case_ = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case_ = output[output != -float('''inf''' )] snake_case_ = tf.cast( tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-12 ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @require_tf class snake_case_ ( unittest.TestCase , __A ): '''simple docstring''' if is_tf_available(): SCREAMING_SNAKE_CASE : Optional[int] = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def snake_case__( self : List[Any] ) ->Optional[int]: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 2 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->List[Any]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) ->List[Any]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2, 0], [1_0_2, 1_0_3]] snake_case_ = [[1, 0], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for batch_size in range(1 , len(_UpperCamelCase ) + 1 ): snake_case_ = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow def snake_case__( self : List[str] ) ->int: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 1 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : Any ) ->List[str]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) ->Optional[int]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2], [1_0_2, 1_0_3]] snake_case_ = [[1], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for input_row in range(len(_UpperCamelCase ) ): snake_case_ = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow @require_tensorflow_text def snake_case__( self : Optional[Any] ) ->List[Any]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_UpperCamelCase ) class snake_case_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ) ->List[Any]: super().__init__() snake_case_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , '''spiece.model''' ) , '''rb''' ).read() ) snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->List[Any]: snake_case_ = self.tokenizer.tokenize(_UpperCamelCase ) snake_case_, snake_case_ = text.pad_model_inputs( _UpperCamelCase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) snake_case_ = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) return self.tokenizer.detokenize(_UpperCamelCase ) snake_case_ = CompleteSentenceTransformer() snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) snake_case_ = complete_model(_UpperCamelCase ) snake_case_ = tf.keras.Model(_UpperCamelCase , _UpperCamelCase ) keras_model.save(_UpperCamelCase ) def snake_case__( self : Any ) ->List[Any]: # Has PT equivalent: this test relies on random sampling snake_case_ = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 1_0, '''temperature''': 0.7, } snake_case_ = 1_4 snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = '''Hello, my dog is cute and''' snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''tf''' ) snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case_ = [6_3_8, 1_9_8] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def snake_case__( self : str ) ->Dict: # Has PT equivalent: ample use of framework-specific code snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = '''Hugging Face is a technology company based in New York and Paris.''' snake_case_ = bart_tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids snake_case_ = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Optional[int] ) ->List[str]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) ) class snake_case_ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , **_UpperCamelCase : Tuple ) ->Optional[Any]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() with self.assertRaises(_UpperCamelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_UpperCamelCase , foo='''bar''' )
39
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A_: """simple docstring""" def __init__( self , A , ): _lowerCamelCase : List[Any] = parent _lowerCamelCase : List[Any] = 13 _lowerCamelCase : Any = 7 _lowerCamelCase : Tuple = True _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : Dict = False _lowerCamelCase : int = True _lowerCamelCase : int = 99 _lowerCamelCase : Any = 32 _lowerCamelCase : Tuple = 2 _lowerCamelCase : Union[str, Any] = 4 _lowerCamelCase : List[str] = 37 _lowerCamelCase : Any = 'gelu' _lowerCamelCase : Optional[Any] = 0.1 _lowerCamelCase : Dict = 0.1 _lowerCamelCase : Optional[int] = 512 _lowerCamelCase : Optional[Any] = 16 _lowerCamelCase : Union[str, Any] = 2 _lowerCamelCase : Union[str, Any] = 0.0_2 _lowerCamelCase : Dict = 3 _lowerCamelCase : Optional[int] = 4 _lowerCamelCase : List[str] = None def _lowerCAmelCase ( self ): _lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : int = None if self.use_input_mask: _lowerCamelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[int] = None _lowerCamelCase : str = None _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase : Any = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self , A , A , A , A , A , A ): _lowerCamelCase : str = TFDistilBertModel(config=_UpperCamelCase ) _lowerCamelCase : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} _lowerCamelCase : Tuple = model(_UpperCamelCase ) _lowerCamelCase : Union[str, Any] = [input_ids, input_mask] _lowerCamelCase : Dict = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self , A , A , A , A , A , A ): _lowerCamelCase : int = TFDistilBertForMaskedLM(config=_UpperCamelCase ) _lowerCamelCase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} _lowerCamelCase : Tuple = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self , A , A , A , A , A , A ): _lowerCamelCase : Dict = TFDistilBertForQuestionAnswering(config=_UpperCamelCase ) _lowerCamelCase : List[str] = { 'input_ids': input_ids, 'attention_mask': input_mask, } _lowerCamelCase : List[Any] = model(_UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self , A , A , A , A , A , A ): _lowerCamelCase : Dict = self.num_labels _lowerCamelCase : str = TFDistilBertForSequenceClassification(_UpperCamelCase ) _lowerCamelCase : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} _lowerCamelCase : Optional[int] = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self , A , A , A , A , A , A ): _lowerCamelCase : Union[str, Any] = self.num_choices _lowerCamelCase : Optional[Any] = TFDistilBertForMultipleChoice(_UpperCamelCase ) _lowerCamelCase : Optional[int] = tf.tile(tf.expand_dims(_UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _lowerCamelCase : Dict = tf.tile(tf.expand_dims(_UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _lowerCamelCase : List[Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } _lowerCamelCase : Optional[Any] = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self , A , A , A , A , A , A ): _lowerCamelCase : int = self.num_labels _lowerCamelCase : Union[str, Any] = TFDistilBertForTokenClassification(_UpperCamelCase ) _lowerCamelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask} _lowerCamelCase : List[str] = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs() ((_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase)) : List[Any] = config_and_inputs _lowerCamelCase : int = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A_(__A , __A , unittest.TestCase ): """simple docstring""" a_ : int = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) a_ : List[Any] = ( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) a_ : Dict = False a_ : Optional[Any] = False def _lowerCAmelCase ( self ): _lowerCamelCase : Dict = TFDistilBertModelTester(self ) _lowerCamelCase : int = ConfigTester(self , config_class=_UpperCamelCase , dim=37 ) def _lowerCAmelCase ( self ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_UpperCamelCase ) def _lowerCAmelCase ( self ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_UpperCamelCase ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_UpperCamelCase ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_UpperCamelCase ) def _lowerCAmelCase ( self ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_UpperCamelCase ) def _lowerCAmelCase ( self ): _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_UpperCamelCase ) @slow def _lowerCAmelCase ( self ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): _lowerCamelCase : List[Any] = TFDistilBertModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_tf class A_(unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self ): _lowerCamelCase : Union[str, Any] = TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) _lowerCamelCase : Optional[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCamelCase : int = model(_UpperCamelCase )[0] _lowerCamelCase : Any = [1, 6, 768] self.assertEqual(output.shape , _UpperCamelCase ) _lowerCamelCase : List[Any] = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCamelCase , atol=1E-4 )
437
import unittest from transformers import DonutProcessor lowerCAmelCase_ = '''naver-clova-ix/donut-base''' class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = DonutProcessor.from_pretrained(_UpperCamelCase ) def snake_case__( self : Dict ) ->str: snake_case_ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } snake_case_ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) snake_case_ = self.processor.tokenajson(_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , _UpperCamelCase )
39
0
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCamelCase__ = datasets.logging.get_logger(__name__) lowerCamelCase__ = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" lowerCamelCase__ = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" lowerCamelCase__ = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n" def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=False ,lowercase_=False ,lowercase_=True ,lowercase_=False ,lowercase_="dummy_doc" ) -> str: """simple docstring""" _UpperCamelCase : int = {doc: key_lines} _UpperCamelCase : int = {doc: sys_lines} _UpperCamelCase : Optional[Any] = {} _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Dict = 0 _UpperCamelCase : Dict = 0 _UpperCamelCase : List[str] = 0 _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Tuple = 0 _UpperCamelCase, _UpperCamelCase : str = reader.get_doc_mentions(SCREAMING_SNAKE_CASE__ ,key_doc_lines[doc] ,SCREAMING_SNAKE_CASE__ ) key_singletons_num += singletons_num if NP_only or min_span: _UpperCamelCase : Union[str, Any] = reader.set_annotated_parse_trees(SCREAMING_SNAKE_CASE__ ,key_doc_lines[doc] ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) _UpperCamelCase, _UpperCamelCase : Dict = reader.get_doc_mentions(SCREAMING_SNAKE_CASE__ ,sys_doc_lines[doc] ,SCREAMING_SNAKE_CASE__ ) sys_singletons_num += singletons_num if NP_only or min_span: _UpperCamelCase : Any = reader.set_annotated_parse_trees(SCREAMING_SNAKE_CASE__ ,key_doc_lines[doc] ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if remove_nested: _UpperCamelCase, _UpperCamelCase : List[Any] = reader.remove_nested_coref_mentions(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _UpperCamelCase, _UpperCamelCase : Any = reader.remove_nested_coref_mentions(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _UpperCamelCase : Tuple = reader.get_mention_assignments(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) _UpperCamelCase : Union[str, Any] = reader.get_mention_assignments(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) _UpperCamelCase : str = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( "Number of resulting singleton clusters in the key " F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' "files, respectively" ) return doc_coref_infos def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Optional[int] = get_coref_infos(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) _UpperCamelCase : Tuple = {} _UpperCamelCase : Tuple = 0 _UpperCamelCase : List[str] = 0 for name, metric in metrics: _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Tuple = evaluator.evaluate_documents(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(10 ) ,F'''Recall: {recall * 100:.2f}''' ,F''' Precision: {precision * 100:.2f}''' ,F''' F1: {fa * 100:.2f}''' ,) if conll_subparts_num == 3: _UpperCamelCase : Union[str, Any] = (conll / 3) * 100 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({"conll_score": conll} ) return output_scores def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : List[str] = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: _UpperCamelCase : int = line.split()[5] if not parse_col == "-": _UpperCamelCase : Union[str, Any] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def __SCREAMING_SNAKE_CASE ( self : str , __a : int , __a : Union[str, Any] , __a : Optional[Any]=True , __a : int=False , __a : Optional[Any]=False , __a : int=False ) -> Tuple: _UpperCamelCase : List[str] = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: _UpperCamelCase : Any = util.check_gold_parse_annotation(_UpperCamelCase ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use \'min_span\'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _UpperCamelCase : Optional[int] = evaluate( key_lines=_UpperCamelCase , sys_lines=_UpperCamelCase , metrics=_UpperCamelCase , NP_only=_UpperCamelCase , remove_nested=_UpperCamelCase , keep_singletons=_UpperCamelCase , min_span=_UpperCamelCase , ) return score
624
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not nums: raise ValueError('''List is empty''' ) return sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
39
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Tuple = { 'configuration_longformer': [ 'LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongformerConfig', 'LongformerOnnxConfig', ], 'tokenization_longformer': ['LongformerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ['LongformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ 'LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongformerForMaskedLM', 'LongformerForMultipleChoice', 'LongformerForQuestionAnswering', 'LongformerForSequenceClassification', 'LongformerForTokenClassification', 'LongformerModel', 'LongformerPreTrainedModel', 'LongformerSelfAttention', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ 'TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLongformerForMaskedLM', 'TFLongformerForMultipleChoice', 'TFLongformerForQuestionAnswering', 'TFLongformerForSequenceClassification', 'TFLongformerForTokenClassification', 'TFLongformerModel', 'TFLongformerPreTrainedModel', 'TFLongformerSelfAttention', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys __lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
404
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : List[str] ) ->str: snake_case_ = inspect.getfile(accelerate.test_utils ) snake_case_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 snake_case_ = test_metrics @require_cpu def snake_case__( self : str ) ->int: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case__( self : Union[str, Any] ) ->Any: debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case__( self : List[Any] ) ->Tuple: self.test_metrics.main() @require_multi_gpu def snake_case__( self : Any ) ->Union[str, Any]: print(f'''Found {torch.cuda.device_count()} devices.''' ) snake_case_ = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() )
39
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['''MBartTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['''MBartTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MBartForCausalLM''', '''MBartForConditionalGeneration''', '''MBartForQuestionAnswering''', '''MBartForSequenceClassification''', '''MBartModel''', '''MBartPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''TFMBartForConditionalGeneration''', '''TFMBartModel''', '''TFMBartPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''FlaxMBartForConditionalGeneration''', '''FlaxMBartForQuestionAnswering''', '''FlaxMBartForSequenceClassification''', '''FlaxMBartModel''', '''FlaxMBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
431
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = "informer" SCREAMING_SNAKE_CASE : int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Dict , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : str = "student_t" , _UpperCamelCase : str = "nll" , _UpperCamelCase : int = 1 , _UpperCamelCase : List[int] = None , _UpperCamelCase : Optional[Union[str, bool]] = "mean" , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : int = 6_4 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 3_2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , _UpperCamelCase : bool = True , _UpperCamelCase : str = "gelu" , _UpperCamelCase : float = 0.05 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : float = 0.1 , _UpperCamelCase : int = 1_0_0 , _UpperCamelCase : float = 0.02 , _UpperCamelCase : Dict=True , _UpperCamelCase : str = "prob" , _UpperCamelCase : int = 5 , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Optional[int]: # time series specific configuration snake_case_ = prediction_length snake_case_ = context_length or prediction_length snake_case_ = distribution_output snake_case_ = loss snake_case_ = input_size snake_case_ = num_time_features snake_case_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] snake_case_ = scaling snake_case_ = num_dynamic_real_features snake_case_ = num_static_real_features snake_case_ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = cardinality else: snake_case_ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) snake_case_ = embedding_dimension else: snake_case_ = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ = num_parallel_samples # Transformer architecture configuration snake_case_ = input_size * len(self.lags_sequence ) + self._number_of_features snake_case_ = d_model snake_case_ = encoder_attention_heads snake_case_ = decoder_attention_heads snake_case_ = encoder_ffn_dim snake_case_ = decoder_ffn_dim snake_case_ = encoder_layers snake_case_ = decoder_layers snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = activation_function snake_case_ = init_std snake_case_ = use_cache # Informer snake_case_ = attention_type snake_case_ = sampling_factor snake_case_ = distil super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase ) @property def snake_case__( self : Optional[Any] ) ->int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
39
0
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]: """simple docstring""" UpperCAmelCase = filter(lambda SCREAMING_SNAKE_CASE_ : p.requires_grad , model.parameters() ) UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params a__ : Optional[int] = logging.getLogger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> Tuple: """simple docstring""" if metric == "rouge2": UpperCAmelCase = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": UpperCAmelCase = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": UpperCAmelCase = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ''' function.''' ) UpperCAmelCase = ModelCheckpoint( dirpath=SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , monitor=f"val_{metric}" , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int ) -> Any: """simple docstring""" return EarlyStopping( monitor=f"val_{metric}" , mode='''min''' if '''loss''' in metric else '''max''' , patience=SCREAMING_SNAKE_CASE__ , verbose=SCREAMING_SNAKE_CASE__ , ) class lowerCAmelCase__ ( pl.Callback ): '''simple docstring''' def __snake_case ( self : Dict , a__ : Union[str, Any] , a__ : List[str] ): UpperCAmelCase = {f"lr_group_{i}": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_UpperCamelCase ) @rank_zero_only def __snake_case ( self : Union[str, Any] , a__ : pl.Trainer , a__ : pl.LightningModule , a__ : str , a__ : List[str]=True ): logger.info(f"***** {type_path} results at step {trainer.global_step:05d} *****" ) UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results UpperCAmelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCAmelCase = od / '''test_results.txt''' UpperCAmelCase = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCAmelCase = od / f"{type_path}_results/{trainer.global_step:05d}.txt" UpperCAmelCase = od / f"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=_UpperCamelCase ) generations_file.parent.mkdir(exist_ok=_UpperCamelCase ) with open(_UpperCamelCase , '''a+''' ) as writer: for key in sorted(_UpperCamelCase ): if key in ["log", "progress_bar", "preds"]: continue UpperCAmelCase = metrics[key] if isinstance(_UpperCamelCase , torch.Tensor ): UpperCAmelCase = val.item() UpperCAmelCase = f"{key}: {val:.6f}\n" writer.write(_UpperCamelCase ) if not save_generations: return if "preds" in metrics: UpperCAmelCase = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(_UpperCamelCase ) @rank_zero_only def __snake_case ( self : List[str] , a__ : int , a__ : str ): try: UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: UpperCAmelCase = pl_module.model.num_parameters() UpperCAmelCase = count_trainable_parameters(_UpperCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def __snake_case ( self : Tuple , a__ : pl.Trainer , a__ : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_UpperCamelCase , _UpperCamelCase , '''test''' ) @rank_zero_only def __snake_case ( self : Tuple , a__ : pl.Trainer , a__ : Tuple ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
51
import cmath import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) # Convert voltage and current to rectangular form snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
39
0