code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'], model_result['ss'] ): UpperCamelCase : Tuple = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Optional[Any] = 'sshleifer/tiny-gpt2' UpperCamelCase : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID], training=SCREAMING_SNAKE_CASE_, inference=SCREAMING_SNAKE_CASE_, sequence_lengths=[8], batch_sizes=[1], multi_process=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : List[Any] = PyTorchBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Optional[int] = 'sgugger/tiny-distilbert-classification' UpperCamelCase : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID], training=SCREAMING_SNAKE_CASE_, inference=SCREAMING_SNAKE_CASE_, sequence_lengths=[8], batch_sizes=[1], multi_process=SCREAMING_SNAKE_CASE_, only_pretrain_model=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : int = PyTorchBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self ) -> Dict: UpperCamelCase : Union[str, Any] = 'sshleifer/tiny-gpt2' UpperCamelCase : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID], training=SCREAMING_SNAKE_CASE_, inference=SCREAMING_SNAKE_CASE_, torchscript=SCREAMING_SNAKE_CASE_, sequence_lengths=[8], batch_sizes=[1], multi_process=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Dict = PyTorchBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu', 'Cant do half precision' ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : Tuple = 'sshleifer/tiny-gpt2' UpperCamelCase : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID], training=SCREAMING_SNAKE_CASE_, inference=SCREAMING_SNAKE_CASE_, fpaa=SCREAMING_SNAKE_CASE_, sequence_lengths=[8], batch_sizes=[1], multi_process=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Any = PyTorchBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Dict = 'sshleifer/tiny-gpt2' UpperCamelCase : Optional[int] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) # set architectures equal to `None` UpperCamelCase : List[str] = None UpperCamelCase : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID], training=SCREAMING_SNAKE_CASE_, inference=SCREAMING_SNAKE_CASE_, sequence_lengths=[8], batch_sizes=[1], multi_process=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Any = PyTorchBenchmark(SCREAMING_SNAKE_CASE_, configs=[config] ) UpperCamelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : str = 'sshleifer/tiny-gpt2' UpperCamelCase : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID], training=SCREAMING_SNAKE_CASE_, inference=SCREAMING_SNAKE_CASE_, sequence_lengths=[8], batch_sizes=[1], multi_process=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Optional[int] = PyTorchBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu', 'Can\'t do half precision' ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : int = 'sshleifer/tiny-gpt2' UpperCamelCase : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID], training=SCREAMING_SNAKE_CASE_, inference=SCREAMING_SNAKE_CASE_, sequence_lengths=[8], batch_sizes=[1], fpaa=SCREAMING_SNAKE_CASE_, multi_process=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Any = PyTorchBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case_ ( self ) -> str: UpperCamelCase : Any = 'sshleifer/tiny-gpt2' UpperCamelCase : int = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID], training=SCREAMING_SNAKE_CASE_, inference=SCREAMING_SNAKE_CASE_, sequence_lengths=[8], batch_sizes=[1], multi_process=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : str = PyTorchBenchmark(SCREAMING_SNAKE_CASE_, configs=[config] ) UpperCamelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : Optional[Any] = 'sshleifer/tinier_bart' UpperCamelCase : Dict = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = PyTorchBenchmarkArguments( models=[MODEL_ID], training=SCREAMING_SNAKE_CASE_, inference=SCREAMING_SNAKE_CASE_, sequence_lengths=[8], batch_sizes=[1], multi_process=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Any = PyTorchBenchmark(SCREAMING_SNAKE_CASE_, configs=[config] ) UpperCamelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Optional[Any] = 'sshleifer/tiny-gpt2' UpperCamelCase : List[str] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = PyTorchBenchmarkArguments( models=[MODEL_ID], training=SCREAMING_SNAKE_CASE_, inference=SCREAMING_SNAKE_CASE_, sequence_lengths=[8], batch_sizes=[1], multi_process=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : str = PyTorchBenchmark(SCREAMING_SNAKE_CASE_, configs=[config] ) UpperCamelCase : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : Dict = 'sshleifer/tinier_bart' UpperCamelCase : List[str] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID], training=SCREAMING_SNAKE_CASE_, inference=SCREAMING_SNAKE_CASE_, sequence_lengths=[8], batch_sizes=[1], multi_process=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Optional[int] = PyTorchBenchmark(SCREAMING_SNAKE_CASE_, configs=[config] ) UpperCamelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case_ ( self ) -> Dict: UpperCamelCase : int = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID], training=SCREAMING_SNAKE_CASE_, inference=SCREAMING_SNAKE_CASE_, save_to_csv=SCREAMING_SNAKE_CASE_, sequence_lengths=[8], batch_sizes=[1], inference_time_csv_file=os.path.join(SCREAMING_SNAKE_CASE_, 'inf_time.csv' ), train_memory_csv_file=os.path.join(SCREAMING_SNAKE_CASE_, 'train_mem.csv' ), inference_memory_csv_file=os.path.join(SCREAMING_SNAKE_CASE_, 'inf_mem.csv' ), train_time_csv_file=os.path.join(SCREAMING_SNAKE_CASE_, 'train_time.csv' ), env_info_csv_file=os.path.join(SCREAMING_SNAKE_CASE_, 'env.csv' ), multi_process=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : int = PyTorchBenchmark(SCREAMING_SNAKE_CASE_ ) benchmark.run() self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE_, 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE_, 'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE_, 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE_, 'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE_, 'env.csv' ) ).exists() ) def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Optional[int] = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(SCREAMING_SNAKE_CASE_ ): self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'sequential' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'cumulative' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'current' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID], training=SCREAMING_SNAKE_CASE_, inference=SCREAMING_SNAKE_CASE_, sequence_lengths=[8], batch_sizes=[1], log_filename=os.path.join(SCREAMING_SNAKE_CASE_, 'log.txt' ), log_print=SCREAMING_SNAKE_CASE_, trace_memory_line_by_line=SCREAMING_SNAKE_CASE_, multi_process=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Union[str, Any] = PyTorchBenchmark(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(SCREAMING_SNAKE_CASE_, 'log.txt' ) ).exists() )
40
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __UpperCAmelCase = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __UpperCAmelCase = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __UpperCAmelCase = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __UpperCAmelCase = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __UpperCAmelCase = tf.keras.preprocessing.image.img_to_array(test_image) __UpperCAmelCase = np.expand_dims(test_image, axis=0) __UpperCAmelCase = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __UpperCAmelCase = '''Normal''' if result[0][0] == 1: __UpperCAmelCase = '''Abnormality detected'''
40
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __UpperCAmelCase = get_logger() __UpperCAmelCase = None class lowerCAmelCase_ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> List[Any]: super().__init__(features=SCREAMING_SNAKE_CASE_ ) import jax from jaxlib.xla_client import Device if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): raise ValueError( F"""Expected {device} to be a `str` not {type(SCREAMING_SNAKE_CASE_ )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) UpperCamelCase : Union[str, Any] = device if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase : int = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) UpperCamelCase : Dict = str(jax.devices()[0] ) UpperCamelCase : Dict = jnp_array_kwargs @staticmethod def snake_case_ ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(SCREAMING_SNAKE_CASE_ ): device for device in jax.devices()} def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: import jax import jax.numpy as jnp if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) and column: if all( isinstance(SCREAMING_SNAKE_CASE_, jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(SCREAMING_SNAKE_CASE_, axis=0 ) return column def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int: import jax import jax.numpy as jnp if isinstance(SCREAMING_SNAKE_CASE_, (str, bytes, type(SCREAMING_SNAKE_CASE_ )) ): return value elif isinstance(SCREAMING_SNAKE_CASE_, (np.character, np.ndarray) ) and np.issubdtype(value.dtype, np.character ): return value.tolist() UpperCamelCase : Optional[Any] = {} if isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCamelCase : List[Any] = {'dtype': jnp.intaa} else: UpperCamelCase : Optional[int] = {'dtype': jnp.intaa} elif isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.floating ): UpperCamelCase : Union[str, Any] = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(SCREAMING_SNAKE_CASE_, PIL.Image.Image ): UpperCamelCase : int = np.asarray(SCREAMING_SNAKE_CASE_ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(SCREAMING_SNAKE_CASE_, **{**default_dtype, **self.jnp_array_kwargs} ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(SCREAMING_SNAKE_CASE_, '__array__' ) and not isinstance(SCREAMING_SNAKE_CASE_, jax.Array ): UpperCamelCase : Any = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] ) elif isinstance(SCREAMING_SNAKE_CASE_, (list, tuple) ): return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] ) return self._tensorize(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Any: return map_nested(self._recursive_tensorize, SCREAMING_SNAKE_CASE_, map_list=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping: UpperCamelCase : List[Any] = self.numpy_arrow_extractor().extract_row(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = self.python_features_decoder.decode_row(SCREAMING_SNAKE_CASE_ ) return self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> "jax.Array": UpperCamelCase : str = self.numpy_arrow_extractor().extract_column(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.python_features_decoder.decode_column(SCREAMING_SNAKE_CASE_, pa_table.column_names[0] ) UpperCamelCase : Tuple = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self._consolidate(SCREAMING_SNAKE_CASE_ ) return column def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping: UpperCamelCase : List[Any] = self.numpy_arrow_extractor().extract_batch(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = self.python_features_decoder.decode_batch(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for column_name in batch: UpperCamelCase : List[Any] = self._consolidate(batch[column_name] ) return batch
40
import os import pytest from attr import dataclass __UpperCAmelCase = '''us-east-1''' # defaults region @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : str UpperCAmelCase__ : Tuple = "arn:aws:iam::558105141721:role/sagemaker_execution_role" UpperCAmelCase__ : Union[str, Any] = { "task_name": "mnli", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 500, "save_steps": 5500, } UpperCAmelCase__ : Dict = {**hyperparameters, "max_steps": 1000} @property def snake_case_ ( self ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def snake_case_ ( self ) -> str: return F"""{self.framework}-transfromers-test""" @property def snake_case_ ( self ) -> str: return F"""./tests/sagemaker/scripts/{self.framework}""" @property def snake_case_ ( self ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def UpperCamelCase ( snake_case__ : Any ) -> Union[str, Any]: UpperCamelCase : Optional[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
40
1
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Dict = 'laion/clap-htsat-unfused' UpperCamelCase : str = tempfile.mkdtemp() def snake_case_ ( self, **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, **SCREAMING_SNAKE_CASE_ ) -> Optional[int]: return ClapFeatureExtractor.from_pretrained(self.checkpoint, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Any: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[int] = self.get_tokenizer() UpperCamelCase : Dict = self.get_feature_extractor() UpperCamelCase : Dict = ClapProcessor(tokenizer=SCREAMING_SNAKE_CASE_, feature_extractor=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase : Optional[int] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer, SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> int: UpperCamelCase : str = ClapProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase : Optional[int] = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)' ) UpperCamelCase : Optional[int] = self.get_feature_extractor(do_normalize=SCREAMING_SNAKE_CASE_, padding_value=1.0 ) UpperCamelCase : Union[str, Any] = ClapProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=SCREAMING_SNAKE_CASE_, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: UpperCamelCase : Dict = self.get_feature_extractor() UpperCamelCase : str = self.get_tokenizer() UpperCamelCase : Dict = ClapProcessor(tokenizer=SCREAMING_SNAKE_CASE_, feature_extractor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = floats_list((3, 1000) ) UpperCamelCase : int = feature_extractor(SCREAMING_SNAKE_CASE_, return_tensors='np' ) UpperCamelCase : List[str] = processor(audios=SCREAMING_SNAKE_CASE_, return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def snake_case_ ( self ) -> Dict: UpperCamelCase : Union[str, Any] = self.get_feature_extractor() UpperCamelCase : Optional[Any] = self.get_tokenizer() UpperCamelCase : Tuple = ClapProcessor(tokenizer=SCREAMING_SNAKE_CASE_, feature_extractor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = 'This is a test string' UpperCamelCase : Optional[Any] = processor(text=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = self.get_feature_extractor() UpperCamelCase : Optional[Any] = self.get_tokenizer() UpperCamelCase : List[str] = ClapProcessor(tokenizer=SCREAMING_SNAKE_CASE_, feature_extractor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase : List[str] = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Optional[int] = self.get_feature_extractor() UpperCamelCase : Tuple = self.get_tokenizer() UpperCamelCase : List[Any] = ClapProcessor(tokenizer=SCREAMING_SNAKE_CASE_, feature_extractor=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( processor.model_input_names[2:], feature_extractor.model_input_names, msg='`processor` and `feature_extractor` model input names do not match', )
40
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __UpperCAmelCase = '''src/transformers''' __UpperCAmelCase = '''docs/source/en/tasks''' def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Any ) -> Optional[int]: with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase : Optional[Any] = f.readlines() # Find the start prompt. UpperCamelCase : List[Any] = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 UpperCamelCase : Optional[Any] = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) __UpperCAmelCase = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __UpperCAmelCase = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def UpperCamelCase ( snake_case__ : Optional[int] ) -> Optional[Any]: UpperCamelCase : Tuple = TASK_GUIDE_TO_MODELS[task_guide] UpperCamelCase : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() ) UpperCamelCase : Tuple = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def UpperCamelCase ( snake_case__ : str , snake_case__ : Optional[int]=False ) -> Tuple: UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = _find_text_in_file( filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) UpperCamelCase : Optional[Any] = get_model_list_for_task(snake_case__ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case__ , snake_case__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ' to fix this.' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __UpperCAmelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
40
1
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def UpperCamelCase ( snake_case__ : Dict ) -> Tuple: if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
40
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : int = IFPipeline UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case_ ( self ) -> str: return self._get_dummy_components() def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def snake_case_ ( self ) -> Optional[int]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda', reason='float16 requires CUDA' ) def snake_case_ ( self ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case_ ( self ) -> Dict: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case_ ( self ) -> Optional[int]: self._test_save_load_local() def snake_case_ ( self ) -> List[str]: self._test_inference_batch_single_identical( expected_max_diff=1e-2, ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def snake_case_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> List[Any]: # if UpperCamelCase : Union[str, Any] = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0', variant='fp16', torch_dtype=torch.floataa ) UpperCamelCase : str = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0', variant='fp16', torch_dtype=torch.floataa, text_encoder=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) UpperCamelCase , UpperCamelCase : List[str] = pipe_a.encode_prompt('anime turtle', device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCamelCase : int = None UpperCamelCase : Union[str, Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCamelCase : Optional[int] = IFImgaImgPipeline(**pipe_a.components ) UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCamelCase : Union[str, Any] = IFInpaintingPipeline(**pipe_a.components ) UpperCamelCase : Union[str, Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 UpperCamelCase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Tuple = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : int = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : Dict = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : List[Any] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = floats_tensor((1, 3, 256, 256), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
40
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __UpperCAmelCase = None __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCAmelCase = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } __UpperCAmelCase = { '''google/bigbird-roberta-base''': 4_096, '''google/bigbird-roberta-large''': 4_096, '''google/bigbird-base-trivia-itc''': 4_096, } __UpperCAmelCase = '''▁''' class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Tuple = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : str = BigBirdTokenizer UpperCAmelCase__ : Dict = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] def __init__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="[SEP]", SCREAMING_SNAKE_CASE_="[MASK]", SCREAMING_SNAKE_CASE_="[CLS]", **SCREAMING_SNAKE_CASE_, ) -> Optional[Any]: UpperCamelCase : Union[str, Any] = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else bos_token UpperCamelCase : Optional[Any] = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else eos_token UpperCamelCase : Tuple = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else unk_token UpperCamelCase : List[str] = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else pad_token UpperCamelCase : List[str] = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else cls_token UpperCamelCase : Optional[int] = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase : Dict = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : str = vocab_file UpperCamelCase : Union[str, Any] = False if not self.vocab_file else True def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : List[Any] = [self.sep_token_id] UpperCamelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : Optional[int] = [self.sep_token_id] UpperCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase : Dict = os.path.join( SCREAMING_SNAKE_CASE_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file, SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
40
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def UpperCamelCase ( snake_case__ : Tuple="" ) -> str: UpperCamelCase : Union[str, Any] = tempfile.mkdtemp() return os.path.join(snake_case__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> int: UpperCamelCase : Union[str, Any] = torch.rand(12, dtype=torch.floataa ) - 0.5 UpperCamelCase : Union[str, Any] = AgentAudio(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) # Ensure that the file contains the same value as the original tensor UpperCamelCase , UpperCamelCase : Any = sf.read(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, torch.tensor(SCREAMING_SNAKE_CASE_ ), atol=1e-4 ) ) def snake_case_ ( self ) -> Any: UpperCamelCase : Optional[int] = torch.rand(12, dtype=torch.floataa ) - 0.5 UpperCamelCase : Union[str, Any] = get_new_path(suffix='.wav' ) sf.write(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, 1_6000 ) UpperCamelCase : int = AgentAudio(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) ) self.assertEqual(agent_type.to_string(), SCREAMING_SNAKE_CASE_ ) @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Any: UpperCamelCase : Dict = torch.randint(0, 256, (64, 64, 3) ) UpperCamelCase : Union[str, Any] = AgentImage(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type._tensor, atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw(), Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' UpperCamelCase : Optional[int] = Image.open(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = AgentImage(SCREAMING_SNAKE_CASE_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ) -> int: UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' UpperCamelCase : Union[str, Any] = Image.open(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = AgentImage(SCREAMING_SNAKE_CASE_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = 'Hey!' UpperCamelCase : Dict = AgentText(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_string() ) self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_raw() ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
40
1
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __UpperCAmelCase = { '''169M''': 12, '''430M''': 24, '''1B5''': 24, '''3B''': 32, '''7B''': 32, '''14B''': 40, } __UpperCAmelCase = { '''169M''': 768, '''430M''': 1_024, '''1B5''': 2_048, '''3B''': 2_560, '''7B''': 4_096, '''14B''': 5_120, } def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> Tuple: UpperCamelCase : Union[str, Any] = list(state_dict.keys() ) for name in state_dict_keys: UpperCamelCase : Optional[Any] = state_dict.pop(snake_case__ ) # emb -> embedding if name.startswith('emb.' ): UpperCamelCase : Optional[Any] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): UpperCamelCase : Optional[Any] = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention UpperCamelCase : Optional[int] = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , snake_case__ ) # ffn -> feed_forward UpperCamelCase : Dict = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , snake_case__ ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): UpperCamelCase : Tuple = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): UpperCamelCase : int = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): UpperCamelCase : Any = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": UpperCamelCase : Tuple = 'rwkv.' + name UpperCamelCase : Dict = weight return state_dict def UpperCamelCase ( snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Dict , snake_case__ : Tuple=None , snake_case__ : Dict=None , snake_case__ : List[str]=False , snake_case__ : Union[str, Any]=None ) -> str: # 1. If possible, build the tokenizer. if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) UpperCamelCase : Tuple = 50277 UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: UpperCamelCase : List[Any] = PreTrainedTokenizerFast(tokenizer_file=snake_case__ ) UpperCamelCase : Tuple = len(snake_case__ ) tokenizer.save_pretrained(snake_case__ ) # 2. Build the config UpperCamelCase : Optional[Any] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: UpperCamelCase : Union[str, Any] = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) UpperCamelCase : Optional[int] = RwkvConfig( vocab_size=snake_case__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(snake_case__ ) # 3. Download model file then convert state_dict UpperCamelCase : Optional[int] = hf_hub_download(snake_case__ , snake_case__ ) UpperCamelCase : Optional[Any] = torch.load(snake_case__ , map_location='cpu' ) UpperCamelCase : List[str] = convert_state_dict(snake_case__ ) # 4. Split in shards and save UpperCamelCase , UpperCamelCase : Tuple = shard_checkpoint(snake_case__ ) for shard_file, shard in shards.items(): torch.save(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) if index is not None: UpperCamelCase : List[Any] = os.path.join(snake_case__ , snake_case__ ) # Save the index as well with open(snake_case__ , 'w' , encoding='utf-8' ) as f: UpperCamelCase : str = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + '\n' f.write(snake_case__ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) UpperCamelCase : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: UpperCamelCase : int = torch.load(os.path.join(snake_case__ , snake_case__ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(snake_case__ , snake_case__ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained(snake_case__ ) model.push_to_hub(snake_case__ , max_shard_size='2GB' ) tokenizer.push_to_hub(snake_case__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) __UpperCAmelCase = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
40
def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : Any ) -> Union[str, Any]: UpperCamelCase : int = [1] for i in range(2 , snake_case__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCamelCase : List[Any] = [] UpperCamelCase : List[Any] = list(range(snake_case__ ) ) # Find permutation while factorials: UpperCamelCase : int = factorials.pop() UpperCamelCase , UpperCamelCase : int = divmod(snake_case__ , snake_case__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
40
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCAmelCase = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__ : Tuple ) -> str: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__ ) def UpperCamelCase ( snake_case__ : Tuple ) -> Any: from transformers.testing_utils import pytest_terminal_summary_main UpperCamelCase : Optional[int] = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__ )
40
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase_ ( a__ ): def snake_case_ ( self ) -> Tuple: UpperCamelCase : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'width_multiplier' ) ) class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_="swish", SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=0.25, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, ) -> Any: UpperCamelCase : int = parent UpperCamelCase : int = batch_size UpperCamelCase : List[Any] = image_size UpperCamelCase : List[str] = patch_size UpperCamelCase : Optional[int] = num_channels UpperCamelCase : List[str] = make_divisible(512 * width_multiplier, divisor=8 ) UpperCamelCase : List[str] = hidden_act UpperCamelCase : Optional[int] = conv_kernel_size UpperCamelCase : List[str] = output_stride UpperCamelCase : Union[str, Any] = classifier_dropout_prob UpperCamelCase : List[Any] = use_labels UpperCamelCase : Any = is_training UpperCamelCase : int = num_labels UpperCamelCase : List[Any] = initializer_range UpperCamelCase : Tuple = scope UpperCamelCase : List[str] = width_multiplier UpperCamelCase : Any = ffn_dropout UpperCamelCase : List[Any] = attn_dropout def snake_case_ ( self ) -> int: UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : List[str] = None UpperCamelCase : int = None if self.use_labels: UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels ) UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCamelCase : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case_ ( self ) -> int: return MobileViTVaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : Any = MobileViTVaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : Optional[int] = self.num_labels UpperCamelCase : Tuple = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : Any = self.num_labels UpperCamelCase : Optional[Any] = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = config_and_inputs UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Tuple = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase__ : Any = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Optional[Any] = False def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Dict = MobileViTVaModelTester(self ) UpperCamelCase : Optional[Any] = MobileViTVaConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def snake_case_ ( self ) -> int: pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def snake_case_ ( self ) -> str: pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case_ ( self ) -> Any: pass def snake_case_ ( self ) -> List[str]: UpperCamelCase , UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : str = [*signature.parameters.keys()] UpperCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Tuple: def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Tuple = outputs.hidden_states UpperCamelCase : Dict = 5 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCamelCase : Any = 2 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2 ) UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : Optional[int] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> str: UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) @slow def snake_case_ ( self ) -> Optional[Any]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : str = MobileViTVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> Tuple: UpperCamelCase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> str: return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.default_image_processor UpperCamelCase : Any = prepare_img() UpperCamelCase : Tuple = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : List[str] = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Union[str, Any] = prepare_img() UpperCamelCase : Any = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = outputs.logits # verify the logits UpperCamelCase : Dict = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.tensor( [ [[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]], [[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]], [[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]], ], device=SCREAMING_SNAKE_CASE_, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : str = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Optional[int] = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Tuple = prepare_img() UpperCamelCase : int = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : str = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = outputs.logits.detach().cpu() UpperCamelCase : int = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_, target_sizes=[(50, 60)] ) UpperCamelCase : Optional[int] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ )
40
1
def UpperCamelCase ( snake_case__ : Tuple ) -> int: # noqa: E741 UpperCamelCase : str = len(snake_case__ ) UpperCamelCase : List[str] = 0 UpperCamelCase : List[Any] = [0] * n UpperCamelCase : str = [False] * n UpperCamelCase : List[Any] = [False] * n def dfs(snake_case__ : Any , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : int ): if parent == root: out_edge_count += 1 UpperCamelCase : Dict = True UpperCamelCase : str = at for to in l[at]: if to == parent: pass elif not visited[to]: UpperCamelCase : Dict = dfs(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) UpperCamelCase : Optional[Any] = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: UpperCamelCase : Tuple = True # AP found via cycle if at == low[to]: UpperCamelCase : Tuple = True else: UpperCamelCase : Optional[Any] = min(low[at] , snake_case__ ) return out_edge_count for i in range(snake_case__ ): if not visited[i]: UpperCamelCase : Any = 0 UpperCamelCase : List[Any] = dfs(snake_case__ , snake_case__ , -1 , snake_case__ ) UpperCamelCase : Optional[int] = out_edge_count > 1 for x in range(len(snake_case__ ) ): if is_art[x] is True: print(snake_case__ ) # Adjacency list of graph __UpperCAmelCase = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
40
def UpperCamelCase ( snake_case__ : Optional[int] ) -> str: UpperCamelCase : List[str] = [0] * len(snake_case__ ) UpperCamelCase : int = [] UpperCamelCase : Optional[int] = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: UpperCamelCase : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: UpperCamelCase : Tuple = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph __UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
40
1
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> List[str]: UpperCamelCase : str = tempfile.mkdtemp() # fmt: off UpperCamelCase : List[Any] = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest'] # fmt: on UpperCamelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) UpperCamelCase : Tuple = { 'do_resize': True, 'size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.5, 0.5, 0.5], 'image_std': [0.5, 0.5, 0.5], } UpperCamelCase : str = os.path.join(self.tmpdirname, SCREAMING_SNAKE_CASE_ ) with open(self.image_processor_file, 'w', encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, **SCREAMING_SNAKE_CASE_ ) -> List[str]: return BertTokenizer.from_pretrained(self.tmpdirname, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, **SCREAMING_SNAKE_CASE_ ) -> Any: return ViTImageProcessor.from_pretrained(self.tmpdirname, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : List[str] = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] UpperCamelCase : Dict = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_, 0, -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : List[Any] = self.get_image_processor() UpperCamelCase : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase : List[Any] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer, (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> int: UpperCamelCase : Dict = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase : Dict = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)' ) UpperCamelCase : str = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_, padding_value=1.0 ) UpperCamelCase : Any = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=SCREAMING_SNAKE_CASE_, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> str: UpperCamelCase : Dict = self.get_image_processor() UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : List[Any] = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.prepare_image_inputs() UpperCamelCase : Any = image_processor(SCREAMING_SNAKE_CASE_, return_tensors='np' ) UpperCamelCase : str = processor(images=SCREAMING_SNAKE_CASE_, return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[Any] = self.get_image_processor() UpperCamelCase : str = self.get_tokenizer() UpperCamelCase : List[Any] = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = 'lower newer' UpperCamelCase : Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def snake_case_ ( self ) -> str: UpperCamelCase : Dict = self.get_image_processor() UpperCamelCase : Union[str, Any] = self.get_tokenizer() UpperCamelCase : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = 'lower newer' UpperCamelCase : Tuple = self.prepare_image_inputs() UpperCamelCase : List[str] = processor(text=SCREAMING_SNAKE_CASE_, images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ), ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with self.assertRaises(SCREAMING_SNAKE_CASE_ ): processor() def snake_case_ ( self ) -> int: UpperCamelCase : str = self.get_image_processor() UpperCamelCase : Optional[int] = self.get_tokenizer() UpperCamelCase : Dict = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase : List[Any] = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: UpperCamelCase : Tuple = self.get_image_processor() UpperCamelCase : Optional[Any] = self.get_tokenizer() UpperCamelCase : List[str] = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = 'lower newer' UpperCamelCase : str = self.prepare_image_inputs() UpperCamelCase : List[str] = processor(text=SCREAMING_SNAKE_CASE_, images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
40
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
40
1
__UpperCAmelCase = { '''Pillow''': '''Pillow<10.0.0''', '''accelerate''': '''accelerate>=0.20.3''', '''av''': '''av==9.2.0''', '''beautifulsoup4''': '''beautifulsoup4''', '''black''': '''black~=23.1''', '''codecarbon''': '''codecarbon==1.2.0''', '''cookiecutter''': '''cookiecutter==1.7.3''', '''dataclasses''': '''dataclasses''', '''datasets''': '''datasets!=2.5.0''', '''decord''': '''decord==0.6.0''', '''deepspeed''': '''deepspeed>=0.9.3''', '''diffusers''': '''diffusers''', '''dill''': '''dill<0.3.5''', '''evaluate''': '''evaluate>=0.2.0''', '''fairscale''': '''fairscale>0.3''', '''faiss-cpu''': '''faiss-cpu''', '''fastapi''': '''fastapi''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1,<=0.7.0''', '''ftfy''': '''ftfy''', '''fugashi''': '''fugashi>=1.0''', '''GitPython''': '''GitPython<3.1.19''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.14.1,<1.0''', '''importlib_metadata''': '''importlib_metadata''', '''ipadic''': '''ipadic>=1.0.0,<2.0''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2,<=0.4.13''', '''jaxlib''': '''jaxlib>=0.1.65,<=0.4.13''', '''jieba''': '''jieba''', '''kenlm''': '''kenlm''', '''keras-nlp''': '''keras-nlp>=0.3.1''', '''librosa''': '''librosa''', '''nltk''': '''nltk''', '''natten''': '''natten>=0.14.6''', '''numpy''': '''numpy>=1.17''', '''onnxconverter-common''': '''onnxconverter-common''', '''onnxruntime-tools''': '''onnxruntime-tools>=1.4.2''', '''onnxruntime''': '''onnxruntime>=1.4.0''', '''opencv-python''': '''opencv-python''', '''optuna''': '''optuna''', '''optax''': '''optax>=0.0.8,<=0.1.4''', '''packaging''': '''packaging>=20.0''', '''parameterized''': '''parameterized''', '''phonemizer''': '''phonemizer''', '''protobuf''': '''protobuf''', '''psutil''': '''psutil''', '''pyyaml''': '''pyyaml>=5.1''', '''pydantic''': '''pydantic<2''', '''pytest''': '''pytest>=7.2.0''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''python''': '''python>=3.8.0''', '''ray[tune]''': '''ray[tune]''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''rhoknp''': '''rhoknp>=1.1.0,<1.3.1''', '''rjieba''': '''rjieba''', '''rouge-score''': '''rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1''', '''ruff''': '''ruff>=0.0.241,<=0.0.259''', '''sacrebleu''': '''sacrebleu>=1.4.12,<2.0.0''', '''sacremoses''': '''sacremoses''', '''safetensors''': '''safetensors>=0.3.1''', '''sagemaker''': '''sagemaker>=2.31.0''', '''scikit-learn''': '''scikit-learn''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''sigopt''': '''sigopt''', '''starlette''': '''starlette''', '''sudachipy''': '''sudachipy>=0.6.6''', '''sudachidict_core''': '''sudachidict_core>=20220729''', '''tensorflow-cpu''': '''tensorflow-cpu>=2.6,<2.14''', '''tensorflow''': '''tensorflow>=2.6,<2.14''', '''tensorflow-text''': '''tensorflow-text<2.14''', '''tf2onnx''': '''tf2onnx''', '''timeout-decorator''': '''timeout-decorator''', '''timm''': '''timm''', '''tokenizers''': '''tokenizers>=0.11.1,!=0.11.3,<0.14''', '''torch''': '''torch>=1.9,!=1.12.0''', '''torchaudio''': '''torchaudio''', '''torchvision''': '''torchvision''', '''pyctcdecode''': '''pyctcdecode>=0.4.0''', '''tqdm''': '''tqdm>=4.27''', '''unidic''': '''unidic>=1.0.2''', '''unidic_lite''': '''unidic_lite>=1.0.7''', '''urllib3''': '''urllib3<2.0.0''', '''uvicorn''': '''uvicorn''', }
40
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
1
from __future__ import annotations def UpperCamelCase ( snake_case__ : str ) -> list[int]: return [ord(snake_case__ ) - 96 for elem in plain] def UpperCamelCase ( snake_case__ : list[int] ) -> str: return "".join(chr(elem + 96 ) for elem in encoded ) def UpperCamelCase ( ) -> None: UpperCamelCase : Optional[Any] = encode(input('-> ' ).strip().lower() ) print('Encoded: ' , snake_case__ ) print('Decoded:' , decode(snake_case__ ) ) if __name__ == "__main__": main()
40
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
1
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def UpperCamelCase ( snake_case__ : Dict ) -> Optional[int]: return EnvironmentCommand() class lowerCAmelCase_ ( a__ ): @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : List[Any] = parser.add_parser('env' ) download_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = huggingface_hub.__version__ UpperCamelCase : int = 'not installed' UpperCamelCase : Union[str, Any] = 'NA' if is_torch_available(): import torch UpperCamelCase : Any = torch.__version__ UpperCamelCase : str = torch.cuda.is_available() UpperCamelCase : Dict = 'not installed' if is_transformers_available(): import transformers UpperCamelCase : str = transformers.__version__ UpperCamelCase : Optional[Any] = 'not installed' if is_accelerate_available(): import accelerate UpperCamelCase : Dict = accelerate.__version__ UpperCamelCase : List[str] = 'not installed' if is_xformers_available(): import xformers UpperCamelCase : List[str] = xformers.__version__ UpperCamelCase : Dict = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(SCREAMING_SNAKE_CASE_ ) ) return info @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
40
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''ViTFeatureExtractor'''] __UpperCAmelCase = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
1
__UpperCAmelCase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def UpperCamelCase ( snake_case__ : float ) -> str: assert type(snake_case__ ) in (int, float) and decimal == int(snake_case__ ) UpperCamelCase : Any = int(snake_case__ ) UpperCamelCase : Any = '' UpperCamelCase : List[str] = False if decimal < 0: UpperCamelCase : Optional[Any] = True decimal *= -1 while decimal > 0: UpperCamelCase , UpperCamelCase : Union[str, Any] = divmod(snake_case__ , 16 ) UpperCamelCase : int = values[remainder] + hexadecimal UpperCamelCase : int = '0x' + hexadecimal if negative: UpperCamelCase : str = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
40
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __UpperCAmelCase = random.Random() def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : str=1.0 , snake_case__ : int=None , snake_case__ : Union[str, Any]=None ) -> Any: if rng is None: UpperCamelCase : int = global_rng UpperCamelCase : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=2000, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1_6000, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, ) -> List[str]: UpperCamelCase : Dict = parent UpperCamelCase : Dict = batch_size UpperCamelCase : Any = min_seq_length UpperCamelCase : Optional[int] = max_seq_length UpperCamelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase : Tuple = feature_size UpperCamelCase : Any = padding_value UpperCamelCase : Tuple = sampling_rate UpperCamelCase : Optional[Any] = return_attention_mask UpperCamelCase : Optional[Any] = do_normalize def snake_case_ ( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case_ ( self, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False ) -> Union[str, Any]: def _flatten(SCREAMING_SNAKE_CASE_ ): return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) ) if equal_length: UpperCamelCase : List[str] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCamelCase : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase : str = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] return speech_inputs class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Any = WavaVecaFeatureExtractor def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Tuple = WavaVecaFeatureExtractionTester(self ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_, axis=0 ) - 1 ) < 1e-3 ) ) def snake_case_ ( self ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase : Any = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Dict = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase : List[Any] = feat_extract(speech_inputs[0], return_tensors='np' ).input_values UpperCamelCase : Union[str, Any] = feat_extract(np_speech_inputs[0], return_tensors='np' ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # Test batched UpperCamelCase : List[Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values UpperCamelCase : int = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase : Optional[int] = np.asarray(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values UpperCamelCase : Dict = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) def snake_case_ ( self ) -> int: UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Dict = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : str = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase : Any = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = feat_extract(SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, return_tensors='np' ) UpperCamelCase : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Tuple = range(800, 1400, 200 ) UpperCamelCase : str = [floats_list((1, x) )[0] for x in lengths] UpperCamelCase : int = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase : List[str] = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = feat_extract(SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : int = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='max_length', return_tensors='np' ) UpperCamelCase : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Any = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='longest', return_tensors='np' ) UpperCamelCase : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) UpperCamelCase : str = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Any = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=2000, padding='longest', return_tensors='np' ) UpperCamelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def snake_case_ ( self ) -> str: import torch UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Dict = np.random.rand(100 ).astype(np.floataa ) UpperCamelCase : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase : Union[str, Any] = feature_extractor.pad([{'input_values': inputs}], return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCamelCase : Any = feature_extractor.pad([{'input_values': inputs}], return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def snake_case_ ( self ) -> Tuple: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: UpperCamelCase : int = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask, config.feat_extract_norm == 'layer' )
40
1
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __UpperCAmelCase = '''<<<<<<< This should probably be modified because it mentions: ''' __UpperCAmelCase = '''======= >>>>>>> ''' __UpperCAmelCase = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] __UpperCAmelCase = [ # (pattern, replacement) # Order is important here for some replacements (r'''tfds\.core''', r'''datasets'''), (r'''tf\.io\.gfile\.GFile''', r'''open'''), (r'''tf\.([\w\d]+)''', r'''datasets.Value(\'\1\')'''), (r'''tfds\.features\.Text\(\)''', r'''datasets.Value(\'string\')'''), (r'''tfds\.features\.Text\(''', r'''datasets.Value(\'string\'),'''), (r'''features\s*=\s*tfds.features.FeaturesDict\(''', r'''features=datasets.Features('''), (r'''tfds\.features\.FeaturesDict\(''', r'''dict('''), (r'''The TensorFlow Datasets Authors''', r'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (r'''tfds\.''', r'''datasets.'''), (r'''dl_manager\.manual_dir''', r'''self.config.data_dir'''), (r'''self\.builder_config''', r'''self.config'''), ] def UpperCamelCase ( snake_case__ : Namespace ) -> List[Any]: return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowerCAmelCase_ ( a__ ): @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Any: UpperCamelCase : int = parser.add_parser( 'convert', help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.', ) train_parser.add_argument( '--tfds_path', type=SCREAMING_SNAKE_CASE_, required=SCREAMING_SNAKE_CASE_, help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.', ) train_parser.add_argument( '--datasets_directory', type=SCREAMING_SNAKE_CASE_, required=SCREAMING_SNAKE_CASE_, help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, *SCREAMING_SNAKE_CASE_ ) -> Any: UpperCamelCase : Dict = get_logger('datasets-cli/converting' ) UpperCamelCase : Optional[Any] = tfds_path UpperCamelCase : Union[str, Any] = datasets_directory def snake_case_ ( self ) -> int: if os.path.isdir(self._tfds_path ): UpperCamelCase : List[str] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): UpperCamelCase : Optional[int] = os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) UpperCamelCase : Optional[Any] = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) UpperCamelCase : str = [] UpperCamelCase : Any = [] UpperCamelCase : int = {} if os.path.isdir(self._tfds_path ): UpperCamelCase : str = os.listdir(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : Any = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) UpperCamelCase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = os.path.join(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if not os.path.isfile(SCREAMING_SNAKE_CASE_ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(SCREAMING_SNAKE_CASE_, encoding='utf-8' ) as f: UpperCamelCase : Any = f.readlines() UpperCamelCase : Tuple = [] UpperCamelCase : Dict = False UpperCamelCase : Tuple = False UpperCamelCase : Any = [] for line in lines: UpperCamelCase : str = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: UpperCamelCase : Tuple = 'import datasets\n' elif "import tensorflow" in out_line: # order is important here UpperCamelCase : str = '' continue elif "from absl import logging" in out_line: UpperCamelCase : Dict = 'from datasets import logging\n' elif "getLogger" in out_line: UpperCamelCase : List[str] = out_line.replace('getLogger', 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): UpperCamelCase : str = True UpperCamelCase : List[str] = list(filter(lambda SCREAMING_SNAKE_CASE_ : e in out_line, SCREAMING_SNAKE_CASE_ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(SCREAMING_SNAKE_CASE_ ) + '\n' ) out_lines.append(SCREAMING_SNAKE_CASE_ ) out_lines.append(SCREAMING_SNAKE_CASE_ ) continue else: for pattern, replacement in TO_CONVERT: UpperCamelCase : List[Any] = re.sub(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: UpperCamelCase : int = re.match(R'from\stensorflow_datasets.*import\s([^\.\r\n]+)', SCREAMING_SNAKE_CASE_ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) UpperCamelCase : Tuple = 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: UpperCamelCase : Tuple = True out_lines.append(SCREAMING_SNAKE_CASE_ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset UpperCamelCase : Optional[Any] = f_name.replace('.py', '' ) UpperCamelCase : int = os.path.join(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = os.path.join(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) os.makedirs(SCREAMING_SNAKE_CASE_, exist_ok=SCREAMING_SNAKE_CASE_ ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(SCREAMING_SNAKE_CASE_ ) if needs_manual_update: with_manual_update.append(SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_, 'w', encoding='utf-8' ) as f: f.writelines(SCREAMING_SNAKE_CASE_ ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: UpperCamelCase : Union[str, Any] = os.path.basename(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = imports_to_builder_map[f_name.replace('.py', '' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
40
def UpperCamelCase ( snake_case__ : int ) -> str: if isinstance(snake_case__ , snake_case__ ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(snake_case__ , snake_case__ ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" UpperCamelCase : int = False if num < 0: UpperCamelCase : Optional[Any] = True UpperCamelCase : Tuple = -num UpperCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(snake_case__ ) for e in binary ) return "0b" + "".join(str(snake_case__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
40
1
from __future__ import annotations __UpperCAmelCase = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: UpperCamelCase : Dict = graph # mapping node to its parent in resulting breadth first tree UpperCamelCase : dict[str, str | None] = {} UpperCamelCase : Union[str, Any] = source_vertex def snake_case_ ( self ) -> None: UpperCamelCase : int = {self.source_vertex} UpperCamelCase : str = None UpperCamelCase : Union[str, Any] = [self.source_vertex] # first in first out queue while queue: UpperCamelCase : Optional[int] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = vertex queue.append(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: if target_vertex == self.source_vertex: return self.source_vertex UpperCamelCase : str = self.parent.get(SCREAMING_SNAKE_CASE_ ) if target_vertex_parent is None: UpperCamelCase : List[Any] = ( F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) return self.shortest_path(SCREAMING_SNAKE_CASE_ ) + F"""->{target_vertex}""" if __name__ == "__main__": __UpperCAmelCase = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
40
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __UpperCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : List[str]=None , snake_case__ : Union[str, Any]=None ) -> Optional[Any]: # Recurse if needed if "." in tensor_name: UpperCamelCase : List[Any] = tensor_name.split('.' ) for split in splits[:-1]: UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) UpperCamelCase : Dict = new_module UpperCamelCase : int = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) UpperCamelCase : Union[str, Any] = tensor_name in module._buffers UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) UpperCamelCase : Optional[Any] = False UpperCamelCase : str = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase : List[str] = False UpperCamelCase : Tuple = False else: UpperCamelCase : Union[str, Any] = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) UpperCamelCase : Optional[int] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase : List[Any] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase : Dict = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): UpperCamelCase : List[Any] = value.to('cpu' ) if value.dtype == torch.inta: UpperCamelCase : Tuple = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: UpperCamelCase : Union[str, Any] = torch.tensor(snake_case__ , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , snake_case__ ) and fpaa_statistics is None: UpperCamelCase : Union[str, Any] = new_value.T UpperCamelCase : Union[str, Any] = old_value.__dict__ if is_abit: UpperCamelCase : Optional[Any] = bnb.nn.IntaParams(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) elif is_abit: UpperCamelCase : Optional[Any] = bnb.nn.Paramsabit(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) UpperCamelCase : Dict = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(snake_case__ ) ) else: if value is None: UpperCamelCase : Union[str, Any] = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): UpperCamelCase : List[str] = value.to(snake_case__ ) else: UpperCamelCase : Tuple = torch.tensor(snake_case__ , device=snake_case__ ) if is_buffer: UpperCamelCase : Optional[int] = new_value else: UpperCamelCase : Tuple = nn.Parameter(snake_case__ , requires_grad=old_value.requires_grad ) UpperCamelCase : List[str] = new_value def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Any=None , snake_case__ : Optional[int]=None , snake_case__ : Union[str, Any]=None , snake_case__ : List[str]=False ) -> int: for name, module in model.named_children(): if current_key_name is None: UpperCamelCase : str = [] current_key_name.append(snake_case__ ) if (isinstance(snake_case__ , nn.Linear ) or isinstance(snake_case__ , snake_case__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(snake_case__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(snake_case__ , snake_case__ ): UpperCamelCase , UpperCamelCase : Tuple = module.weight.shape else: UpperCamelCase : Any = module.in_features UpperCamelCase : List[str] = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase : Any = bnb.nn.LinearabitLt( snake_case__ , snake_case__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) UpperCamelCase : Optional[int] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase : str = bnb.nn.Linearabit( snake_case__ , snake_case__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) UpperCamelCase : int = True # Store the module class in case we need to transpose the weight later UpperCamelCase : Any = type(snake_case__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(snake_case__ ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase : Optional[int] = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_been_replaced=snake_case__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]=None , snake_case__ : Dict=None ) -> Optional[Any]: UpperCamelCase : Union[str, Any] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase : List[str] = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCamelCase ( *snake_case__ : Tuple , **snake_case__ : List[str] ) -> List[str]: warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , snake_case__ , ) return replace_with_bnb_linear(*snake_case__ , **snake_case__ ) def UpperCamelCase ( *snake_case__ : Dict , **snake_case__ : str ) -> Tuple: warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , snake_case__ , ) return set_module_quantized_tensor_to_device(*snake_case__ , **snake_case__ ) def UpperCamelCase ( snake_case__ : Tuple ) -> List[Any]: UpperCamelCase : int = deepcopy(snake_case__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase : List[str] = find_tied_parameters(snake_case__ ) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__ ): UpperCamelCase : Tuple = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCamelCase : Union[str, Any] = sum(snake_case__ , [] ) UpperCamelCase : Optional[int] = len(snake_case__ ) > 0 # Check if it is a base model UpperCamelCase : str = not hasattr(snake_case__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase : List[Any] = list(model.named_children() ) UpperCamelCase : Optional[Any] = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase : Union[str, Any] = set(snake_case__ ) - set(snake_case__ ) UpperCamelCase : Optional[int] = list(set(snake_case__ ) ) + list(snake_case__ ) # remove ".weight" from the keys UpperCamelCase : Tuple = ['.weight', '.bias'] UpperCamelCase : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase : Optional[int] = name.replace(snake_case__ , '' ) filtered_module_names.append(snake_case__ ) return filtered_module_names
40
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=99, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=0, ) -> Optional[Any]: UpperCamelCase : Union[str, Any] = parent UpperCamelCase : List[str] = batch_size UpperCamelCase : Union[str, Any] = seq_length UpperCamelCase : Union[str, Any] = is_training UpperCamelCase : Union[str, Any] = use_input_mask UpperCamelCase : Dict = use_token_type_ids UpperCamelCase : List[str] = use_labels UpperCamelCase : Optional[int] = vocab_size UpperCamelCase : int = hidden_size UpperCamelCase : Any = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : List[str] = intermediate_size UpperCamelCase : str = hidden_act UpperCamelCase : Union[str, Any] = hidden_dropout_prob UpperCamelCase : List[Any] = attention_probs_dropout_prob UpperCamelCase : List[str] = max_position_embeddings UpperCamelCase : Optional[Any] = type_vocab_size UpperCamelCase : List[Any] = type_sequence_label_size UpperCamelCase : List[str] = initializer_range UpperCamelCase : str = num_labels UpperCamelCase : List[str] = num_choices UpperCamelCase : Tuple = scope UpperCamelCase : Any = projection_dim def snake_case_ ( self ) -> List[str]: UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase : str = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py UpperCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Union[str, Any] = None if self.use_token_type_ids: UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCamelCase : str = None UpperCamelCase : Any = None UpperCamelCase : int = None if self.use_labels: UpperCamelCase : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCamelCase : List[str] = ids_tensor([self.batch_size], self.num_choices ) UpperCamelCase : List[Any] = BertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=SCREAMING_SNAKE_CASE_, initializer_range=self.initializer_range, ) UpperCamelCase : str = DPRConfig(projection_dim=self.projection_dim, **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: UpperCamelCase : Optional[Any] = TFDPRContextEncoder(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase : Dict = TFDPRQuestionEncoder(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: UpperCamelCase : Tuple = TFDPRReader(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape, (self.batch_size,) ) def snake_case_ ( self ) -> Any: UpperCamelCase : Any = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Tuple = config_and_inputs UpperCamelCase : Optional[Any] = {'input_ids': input_ids} return config, inputs_dict @require_tf class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : List[Any] = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) UpperCAmelCase__ : List[Any] = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} UpperCAmelCase__ : int = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Any = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Any = False def snake_case_ ( self ) -> str: UpperCamelCase : Tuple = TFDPRModelTester(self ) UpperCamelCase : Tuple = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def snake_case_ ( self ) -> Any: self.config_tester.run_common_tests() def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Any: UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*SCREAMING_SNAKE_CASE_ ) @slow def snake_case_ ( self ) -> List[str]: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Any = TFDPRContextEncoder.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : List[Any] = TFDPRContextEncoder.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : List[Any] = TFDPRQuestionEncoder.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Optional[int] = TFDPRReader.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> Any: UpperCamelCase : Union[str, Any] = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) UpperCamelCase : Dict = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 1_0140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. UpperCamelCase : List[Any] = tf.constant( [ [ 0.03_23_62_53, 0.12_75_33_35, 0.16_81_85_09, 0.00_27_97_86, 0.3_89_69_33, 0.24_26_49_45, 0.2_17_89_71, -0.02_33_52_27, -0.08_48_19_59, -0.14_32_41_17, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy(), expected_slice.numpy(), atol=1e-4 ) )
40
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( snake_case__ : int ) -> Dict: UpperCamelCase : Optional[Any] = tmp_path / 'file.csv' UpperCamelCase : Optional[Any] = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : List[str] ) -> List[str]: UpperCamelCase : Optional[Any] = tmp_path / 'malformed_file.csv' UpperCamelCase : Any = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20,\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : List[Any] ) -> str: UpperCamelCase : Any = tmp_path / 'csv_with_image.csv' UpperCamelCase : Dict = textwrap.dedent( F"""\ image {image_file} """ ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : List[str] ) -> Tuple: UpperCamelCase : List[str] = tmp_path / 'csv_with_label.csv' UpperCamelCase : Dict = textwrap.dedent( '\\n label\n good\n bad\n good\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : Dict ) -> List[str]: UpperCamelCase : List[str] = tmp_path / 'csv_with_int_list.csv' UpperCamelCase : Union[str, Any] = textwrap.dedent( '\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : Optional[Any] ) -> List[Any]: UpperCamelCase : str = Csv() UpperCamelCase : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(snake_case__ , match='Error tokenizing data' ): for _ in generator: pass assert any( record.levelname == 'ERROR' and 'Failed to read file' in record.message and os.path.basename(snake_case__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> Optional[int]: with open(snake_case__ , encoding='utf-8' ) as f: UpperCamelCase : List[str] = f.read().splitlines()[1] UpperCamelCase : int = Csv(encoding='utf-8' , features=Features({'image': Image()} ) ) UpperCamelCase : Any = csv._generate_tables([[csv_file_with_image]] ) UpperCamelCase : Any = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('image' ).type == Image()() UpperCamelCase : str = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( snake_case__ : Any ) -> str: with open(snake_case__ , encoding='utf-8' ) as f: UpperCamelCase : Any = f.read().splitlines()[1:] UpperCamelCase : Union[str, Any] = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) ) UpperCamelCase : int = csv._generate_tables([[csv_file_with_label]] ) UpperCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )() UpperCamelCase : List[str] = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(snake_case__ ) for label in labels] def UpperCamelCase ( snake_case__ : str ) -> List[Any]: UpperCamelCase : str = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda snake_case__ : [int(snake_case__ ) for i in x.split()]} ) UpperCamelCase : List[str] = csv._generate_tables([[csv_file_with_int_list]] ) UpperCamelCase : Union[str, Any] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('int_list' ).type ) UpperCamelCase : str = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
40
1
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=99, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=4, ) -> Optional[int]: UpperCamelCase : Optional[Any] = parent UpperCamelCase : List[Any] = batch_size UpperCamelCase : int = seq_length UpperCamelCase : Union[str, Any] = is_training UpperCamelCase : Tuple = use_attention_mask UpperCamelCase : Dict = use_token_type_ids UpperCamelCase : Tuple = use_labels UpperCamelCase : Union[str, Any] = vocab_size UpperCamelCase : str = hidden_size UpperCamelCase : Optional[Any] = num_hidden_layers UpperCamelCase : List[Any] = num_attention_heads UpperCamelCase : Any = intermediate_size UpperCamelCase : Union[str, Any] = hidden_act UpperCamelCase : List[Any] = hidden_dropout_prob UpperCamelCase : List[Any] = attention_probs_dropout_prob UpperCamelCase : str = max_position_embeddings UpperCamelCase : str = type_vocab_size UpperCamelCase : List[str] = type_sequence_label_size UpperCamelCase : Dict = initializer_range UpperCamelCase : str = num_choices def snake_case_ ( self ) -> List[str]: UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase : Dict = None if self.use_attention_mask: UpperCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Dict = None if self.use_token_type_ids: UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCamelCase : Optional[Any] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=SCREAMING_SNAKE_CASE_, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def snake_case_ ( self ) -> List[str]: UpperCamelCase : Any = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = config_and_inputs UpperCamelCase : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def snake_case_ ( self ) -> int: UpperCamelCase : List[str] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = config_and_inputs UpperCamelCase : Any = True UpperCamelCase : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : Union[str, Any] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : List[Any] = FlaxRobertaPreLayerNormModelTester(self ) @slow def snake_case_ ( self ) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase : Tuple = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40', from_pt=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[int] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40', from_pt=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]], dtype=jnp.intaa ) UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase : Optional[Any] = [1, 11, 5_0265] self.assertEqual(list(output.shape ), SCREAMING_SNAKE_CASE_ ) # compare the actual values for a slice. UpperCamelCase : int = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : int = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40', from_pt=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]], dtype=jnp.intaa ) UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ )[0] # compare the actual values for a slice. UpperCamelCase : List[str] = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
40
import math import random def UpperCamelCase ( snake_case__ : float , snake_case__ : bool = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def UpperCamelCase ( snake_case__ : int , snake_case__ : int ) -> float: UpperCamelCase : Optional[Any] = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(snake_case__ ): # Forward propagation UpperCamelCase : str = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? UpperCamelCase : int = (expected / 100) - layer_a # Error delta UpperCamelCase : List[str] = layer_1_error * sigmoid_function(snake_case__ , snake_case__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input('''Expected value: ''')) __UpperCAmelCase = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
40
1
from math import factorial class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : Tuple = real if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : int = [1] * rank else: UpperCamelCase : List[Any] = rank def __repr__( self ) -> Any: return ( F"""{self.real}+""" F"""{"+".join(str(SCREAMING_SNAKE_CASE_ )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def snake_case_ ( self ) -> str: UpperCamelCase : Optional[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real, SCREAMING_SNAKE_CASE_ ) def __add__( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: if not isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): return Dual(self.real + other, self.duals ) UpperCamelCase : List[str] = self.duals.copy() UpperCamelCase : Optional[int] = other.duals.copy() if len(SCREAMING_SNAKE_CASE_ ) > len(SCREAMING_SNAKE_CASE_ ): o_dual.extend([1] * (len(SCREAMING_SNAKE_CASE_ ) - len(SCREAMING_SNAKE_CASE_ )) ) elif len(SCREAMING_SNAKE_CASE_ ) < len(SCREAMING_SNAKE_CASE_ ): s_dual.extend([1] * (len(SCREAMING_SNAKE_CASE_ ) - len(SCREAMING_SNAKE_CASE_ )) ) UpperCamelCase : Optional[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ : List[Any] = __add__ def __sub__( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: return self + other * -1 def __mul__( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: if not isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[str] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ : int = __mul__ def __truediv__( self, SCREAMING_SNAKE_CASE_ ) -> Tuple: if not isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Dict = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other, SCREAMING_SNAKE_CASE_ ) raise ValueError def __floordiv__( self, SCREAMING_SNAKE_CASE_ ) -> int: if not isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Any = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other, SCREAMING_SNAKE_CASE_ ) raise ValueError def __pow__( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: if n < 0 or isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): raise ValueError('power must be a positive integer' ) if n == 0: return 1 if n == 1: return self UpperCamelCase : Union[str, Any] = self for _ in range(n - 1 ): x *= self return x def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Dict ) -> Optional[int]: if not callable(snake_case__ ): raise ValueError('differentiate() requires a function as input for func' ) if not isinstance(snake_case__ , (float, int) ): raise ValueError('differentiate() requires a float as input for position' ) if not isinstance(snake_case__ , snake_case__ ): raise ValueError('differentiate() requires an int as input for order' ) UpperCamelCase : Optional[int] = Dual(snake_case__ , 1 ) UpperCamelCase : Dict = func(snake_case__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod() def UpperCamelCase ( snake_case__ : str ) -> Optional[Any]: return y**2 * y**4 print(differentiate(f, 9, 2))
40
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def UpperCamelCase ( snake_case__ : Dict ) -> Optional[int]: return EnvironmentCommand() class lowerCAmelCase_ ( a__ ): @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : List[Any] = parser.add_parser('env' ) download_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = huggingface_hub.__version__ UpperCamelCase : int = 'not installed' UpperCamelCase : Union[str, Any] = 'NA' if is_torch_available(): import torch UpperCamelCase : Any = torch.__version__ UpperCamelCase : str = torch.cuda.is_available() UpperCamelCase : Dict = 'not installed' if is_transformers_available(): import transformers UpperCamelCase : str = transformers.__version__ UpperCamelCase : Optional[Any] = 'not installed' if is_accelerate_available(): import accelerate UpperCamelCase : Dict = accelerate.__version__ UpperCamelCase : List[str] = 'not installed' if is_xformers_available(): import xformers UpperCamelCase : List[str] = xformers.__version__ UpperCamelCase : Dict = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(SCREAMING_SNAKE_CASE_ ) ) return info @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
40
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = "data2vec-vision" def __init__( self, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=3072, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-12, SCREAMING_SNAKE_CASE_=224, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=[3, 5, 7, 11], SCREAMING_SNAKE_CASE_=[1, 2, 3, 6], SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=0.4, SCREAMING_SNAKE_CASE_=256, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=255, **SCREAMING_SNAKE_CASE_, ) -> Dict: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = hidden_size UpperCamelCase : Dict = num_hidden_layers UpperCamelCase : List[Any] = num_attention_heads UpperCamelCase : Optional[Any] = intermediate_size UpperCamelCase : Union[str, Any] = hidden_act UpperCamelCase : int = hidden_dropout_prob UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase : List[Any] = initializer_range UpperCamelCase : Any = layer_norm_eps UpperCamelCase : List[Any] = image_size UpperCamelCase : int = patch_size UpperCamelCase : Tuple = num_channels UpperCamelCase : str = use_mask_token UpperCamelCase : Union[str, Any] = use_absolute_position_embeddings UpperCamelCase : int = use_relative_position_bias UpperCamelCase : Optional[int] = use_shared_relative_position_bias UpperCamelCase : int = layer_scale_init_value UpperCamelCase : List[Any] = drop_path_rate UpperCamelCase : str = use_mean_pooling # decode head attributes (semantic segmentation) UpperCamelCase : List[str] = out_indices UpperCamelCase : Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) UpperCamelCase : List[str] = use_auxiliary_head UpperCamelCase : Any = auxiliary_loss_weight UpperCamelCase : Any = auxiliary_channels UpperCamelCase : Tuple = auxiliary_num_convs UpperCamelCase : str = auxiliary_concat_input UpperCamelCase : Optional[int] = semantic_loss_ignore_index class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Any = version.parse("1.11" ) @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case_ ( self ) -> float: return 1e-4
40
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '''▁''' __UpperCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} __UpperCAmelCase = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } __UpperCAmelCase = { '''facebook/xglm-564M''': 2_048, } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> None: UpperCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCamelCase : Any = 7 UpperCamelCase : Optional[int] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] UpperCamelCase : Dict = kwargs.get('additional_special_tokens', [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, sp_model_kwargs=self.sp_model_kwargs, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase : Dict = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} UpperCamelCase : Optional[int] = len(self.sp_model ) UpperCamelCase : Any = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: UpperCamelCase : int = self.__dict__.copy() UpperCamelCase : Union[str, Any] = None UpperCamelCase : int = self.sp_model.serialized_model_proto() return state def __setstate__( self, SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase : Any = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): UpperCamelCase : Any = {} UpperCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCamelCase : Optional[int] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_, token_ids_a=SCREAMING_SNAKE_CASE_, already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : str = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def snake_case_ ( self ) -> int: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def snake_case_ ( self ) -> int: UpperCamelCase : List[str] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_, out_type=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase : Union[str, Any] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : Dict = ''.join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_, ' ' ).strip() return out_string def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_, 'wb' ) as fi: UpperCamelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
40
1
import json import sys def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : Dict ) -> Dict: with open(snake_case__ , encoding='utf-8' ) as f: UpperCamelCase : Optional[Any] = json.load(snake_case__ ) UpperCamelCase : int = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(snake_case__ ): UpperCamelCase : List[str] = results[benchmark_name] UpperCamelCase : Tuple = benchmark_name.split('/' )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) UpperCamelCase : Optional[Any] = '| metric |' UpperCamelCase : List[Any] = '|--------|' UpperCamelCase : str = '| new / old (diff) |' for metric_name in sorted(snake_case__ ): UpperCamelCase : Dict = benchmark_res[metric_name] UpperCamelCase : str = metric_vals['new'] UpperCamelCase : Optional[int] = metric_vals.get('old' , snake_case__ ) UpperCamelCase : Optional[Any] = metric_vals.get('diff' , snake_case__ ) UpperCamelCase : Union[str, Any] = F""" {new_val:f}""" if isinstance(snake_case__ , (int, float) ) else 'None' if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(snake_case__ , (int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(snake_case__ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(snake_case__ ) ) if __name__ == "__main__": __UpperCAmelCase = sys.argv[1] __UpperCAmelCase = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
40
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCAmelCase = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } __UpperCAmelCase = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = VOCAB_FILES_NAMES UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : str = ["input_ids", "attention_mask"] UpperCAmelCase__ : Dict = RobertaTokenizer def __init__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="replace", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="<mask>", SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, errors=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_, trim_offsets=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase : Dict = getattr(SCREAMING_SNAKE_CASE_, pre_tok_state.pop('type' ) ) UpperCamelCase : List[str] = add_prefix_space UpperCamelCase : Dict = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = add_prefix_space UpperCamelCase : Optional[Any] = 'post_processor' UpperCamelCase : Dict = getattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if tokenizer_component_instance: UpperCamelCase : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase : Optional[Any] = tuple(state['sep'] ) if "cls" in state: UpperCamelCase : Optional[int] = tuple(state['cls'] ) UpperCamelCase : Any = False if state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase : Optional[int] = add_prefix_space UpperCamelCase : List[Any] = True if state.get('trim_offsets', SCREAMING_SNAKE_CASE_ ) != trim_offsets: UpperCamelCase : Dict = trim_offsets UpperCamelCase : Union[str, Any] = True if changes_to_apply: UpperCamelCase : Tuple = getattr(SCREAMING_SNAKE_CASE_, state.pop('type' ) ) UpperCamelCase : Union[str, Any] = component_class(**SCREAMING_SNAKE_CASE_ ) setattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) @property def snake_case_ ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else value UpperCamelCase : List[Any] = value def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCamelCase : Optional[int] = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCamelCase : Dict = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: UpperCamelCase : Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Tuple: UpperCamelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : Dict = [self.sep_token_id] UpperCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
40
1
def UpperCamelCase ( snake_case__ : list[int] , snake_case__ : list[int] ) -> None: UpperCamelCase : int = len(snake_case__ ) print('The following activities are selected:' ) # The first activity is always selected UpperCamelCase : List[Any] = 0 print(snake_case__ , end=',' ) # Consider rest of the activities for j in range(snake_case__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case__ , end=',' ) UpperCamelCase : Tuple = j if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = [1, 3, 0, 5, 8, 5] __UpperCAmelCase = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
40
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowerCAmelCase_ ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> Tuple: super().__init__(features=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = torch_tensor_kwargs import torch # noqa import torch at initialization def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict: import torch if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) and column: if all( isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(SCREAMING_SNAKE_CASE_ ) return column def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Any: import torch if isinstance(SCREAMING_SNAKE_CASE_, (str, bytes, type(SCREAMING_SNAKE_CASE_ )) ): return value elif isinstance(SCREAMING_SNAKE_CASE_, (np.character, np.ndarray) ) and np.issubdtype(value.dtype, np.character ): return value.tolist() UpperCamelCase : str = {} if isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.integer ): UpperCamelCase : List[str] = {'dtype': torch.intaa} elif isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.floating ): UpperCamelCase : int = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(SCREAMING_SNAKE_CASE_, PIL.Image.Image ): UpperCamelCase : str = np.asarray(SCREAMING_SNAKE_CASE_ ) return torch.tensor(SCREAMING_SNAKE_CASE_, **{**default_dtype, **self.torch_tensor_kwargs} ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: import torch # support for torch, tf, jax etc. if hasattr(SCREAMING_SNAKE_CASE_, '__array__' ) and not isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ): UpperCamelCase : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] ) elif isinstance(SCREAMING_SNAKE_CASE_, (list, tuple) ): return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] ) return self._tensorize(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int: return map_nested(self._recursive_tensorize, SCREAMING_SNAKE_CASE_, map_list=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping: UpperCamelCase : Dict = self.numpy_arrow_extractor().extract_row(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.python_features_decoder.decode_row(SCREAMING_SNAKE_CASE_ ) return self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> "torch.Tensor": UpperCamelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.python_features_decoder.decode_column(SCREAMING_SNAKE_CASE_, pa_table.column_names[0] ) UpperCamelCase : Any = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = self._consolidate(SCREAMING_SNAKE_CASE_ ) return column def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping: UpperCamelCase : List[Any] = self.numpy_arrow_extractor().extract_batch(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = self.python_features_decoder.decode_batch(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for column_name in batch: UpperCamelCase : str = self._consolidate(batch[column_name] ) return batch
40
1
from __future__ import annotations from typing import Any class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 0 ) -> None: UpperCamelCase , UpperCamelCase : List[Any] = row, column UpperCamelCase : Optional[int] = [[default_value for c in range(SCREAMING_SNAKE_CASE_ )] for r in range(SCREAMING_SNAKE_CASE_ )] def __str__( self ) -> str: UpperCamelCase : int = F"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier UpperCamelCase : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: UpperCamelCase : Dict = max(SCREAMING_SNAKE_CASE_, len(str(SCREAMING_SNAKE_CASE_ ) ) ) UpperCamelCase : Dict = F"""%{max_element_length}s""" # Make string and return def single_line(SCREAMING_SNAKE_CASE_ ) -> str: nonlocal string_format_identifier UpperCamelCase : str = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(SCREAMING_SNAKE_CASE_ ) for row_vector in self.array ) return s def __repr__( self ) -> str: return str(self ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> bool: if not (isinstance(SCREAMING_SNAKE_CASE_, (list, tuple) ) and len(SCREAMING_SNAKE_CASE_ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, SCREAMING_SNAKE_CASE_ ) -> Any: assert self.validate_indicies(SCREAMING_SNAKE_CASE_ ) return self.array[loc[0]][loc[1]] def __setitem__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: assert self.validate_indicies(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = value def __add__( self, SCREAMING_SNAKE_CASE_ ) -> Matrix: assert isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) assert self.row == another.row and self.column == another.column # Add UpperCamelCase : Union[str, Any] = Matrix(self.row, self.column ) for r in range(self.row ): for c in range(self.column ): UpperCamelCase : List[Any] = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: UpperCamelCase : Optional[int] = Matrix(self.row, self.column ) for r in range(self.row ): for c in range(self.column ): UpperCamelCase : int = -self[r, c] return result def __sub__( self, SCREAMING_SNAKE_CASE_ ) -> Matrix: return self + (-another) def __mul__( self, SCREAMING_SNAKE_CASE_ ) -> Matrix: if isinstance(SCREAMING_SNAKE_CASE_, (int, float) ): # Scalar multiplication UpperCamelCase : Tuple = Matrix(self.row, self.column ) for r in range(self.row ): for c in range(self.column ): UpperCamelCase : int = self[r, c] * another return result elif isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): # Matrix multiplication assert self.column == another.row UpperCamelCase : str = Matrix(self.row, another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: UpperCamelCase : Optional[int] = F"""Unsupported type given for another ({type(SCREAMING_SNAKE_CASE_ )})""" raise TypeError(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Matrix: UpperCamelCase : List[Any] = Matrix(self.column, self.row ) for r in range(self.row ): for c in range(self.column ): UpperCamelCase : Optional[Any] = self[r, c] return result def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) and isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate UpperCamelCase : Optional[int] = v.transpose() UpperCamelCase : List[Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def UpperCamelCase ( ) -> None: # a^(-1) UpperCamelCase : int = Matrix(3 , 3 , 0 ) for i in range(3 ): UpperCamelCase : Tuple = 1 print(F"""a^(-1) is {ainv}""" ) # u, v UpperCamelCase : Union[str, Any] = Matrix(3 , 1 , 0 ) UpperCamelCase , UpperCamelCase , UpperCamelCase : str = 1, 2, -3 UpperCamelCase : List[Any] = Matrix(3 , 1 , 0 ) UpperCamelCase , UpperCamelCase , UpperCamelCase : int = 4, -2, 5 print(F"""u is {u}""" ) print(F"""v is {v}""" ) print(F"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(F"""(a + uv^T)^(-1) is {ainv.sherman_morrison(snake_case__ , snake_case__ )}""" ) def UpperCamelCase ( ) -> None: import doctest doctest.testmod() testa()
40
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case__ , snake_case__ ) ) ) def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> list[list[list[float] | float]]: if dataset.ndim != value_array.ndim: UpperCamelCase : int = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(snake_case__ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCamelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(snake_case__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCamelCase : Dict = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(snake_case__ ) UpperCamelCase : List[Any] = [] for value in value_array: UpperCamelCase : Optional[Any] = euclidean(snake_case__ , dataset[0] ) UpperCamelCase : Dict = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCamelCase : Union[str, Any] = euclidean(snake_case__ , snake_case__ ) if dist > temp_dist: UpperCamelCase : str = temp_dist UpperCamelCase : List[str] = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float: return np.dot(snake_case__ , snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ )) if __name__ == "__main__": import doctest doctest.testmod()
40
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowerCAmelCase_ ( a__ , a__ ): UpperCAmelCase__ : List[str] = "dinat" UpperCAmelCase__ : List[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=[3, 4, 6, 5], SCREAMING_SNAKE_CASE_=[2, 4, 8, 16], SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]], SCREAMING_SNAKE_CASE_=3.0, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-5, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> int: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = patch_size UpperCamelCase : Optional[Any] = num_channels UpperCamelCase : List[str] = embed_dim UpperCamelCase : List[Any] = depths UpperCamelCase : int = len(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = num_heads UpperCamelCase : str = kernel_size UpperCamelCase : str = dilations UpperCamelCase : Union[str, Any] = mlp_ratio UpperCamelCase : Any = qkv_bias UpperCamelCase : List[Any] = hidden_dropout_prob UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase : List[str] = drop_path_rate UpperCamelCase : int = hidden_act UpperCamelCase : str = layer_norm_eps UpperCamelCase : List[str] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase : Optional[Any] = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE_ ) - 1) ) UpperCamelCase : Optional[int] = layer_scale_init_value UpperCamelCase : List[Any] = ['stem'] + [F"""stage{idx}""" for idx in range(1, len(SCREAMING_SNAKE_CASE_ ) + 1 )] UpperCamelCase , UpperCamelCase : Optional[Any] = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE_, out_indices=SCREAMING_SNAKE_CASE_, stage_names=self.stage_names )
40
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __UpperCAmelCase = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __UpperCAmelCase = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __UpperCAmelCase = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __UpperCAmelCase = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __UpperCAmelCase = tf.keras.preprocessing.image.img_to_array(test_image) __UpperCAmelCase = np.expand_dims(test_image, axis=0) __UpperCAmelCase = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __UpperCAmelCase = '''Normal''' if result[0][0] == 1: __UpperCAmelCase = '''Abnormality detected'''
40
1
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __UpperCAmelCase = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_ = 14 ) -> None: if group not in primes: raise ValueError('Unsupported Group' ) UpperCamelCase : Tuple = primes[group]['prime'] UpperCamelCase : Optional[int] = primes[group]['generator'] UpperCamelCase : List[str] = int(hexlify(urandom(32 ) ), base=16 ) def snake_case_ ( self ) -> str: return hex(self.__private_key )[2:] def snake_case_ ( self ) -> str: UpperCamelCase : Optional[Any] = pow(self.generator, self.__private_key, self.prime ) return hex(SCREAMING_SNAKE_CASE_ )[2:] def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(SCREAMING_SNAKE_CASE_, (self.prime - 1) // 2, self.prime ) == 1 ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase : List[str] = int(SCREAMING_SNAKE_CASE_, base=16 ) if not self.is_valid_public_key(SCREAMING_SNAKE_CASE_ ): raise ValueError('Invalid public key' ) UpperCamelCase : Optional[Any] = pow(SCREAMING_SNAKE_CASE_, self.__private_key, self.prime ) return shaaaa(str(SCREAMING_SNAKE_CASE_ ).encode() ).hexdigest() @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(SCREAMING_SNAKE_CASE_, (prime - 1) // 2, SCREAMING_SNAKE_CASE_ ) == 1 ) @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 14 ) -> str: UpperCamelCase : Union[str, Any] = int(SCREAMING_SNAKE_CASE_, base=16 ) UpperCamelCase : Union[str, Any] = int(SCREAMING_SNAKE_CASE_, base=16 ) UpperCamelCase : int = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): raise ValueError('Invalid public key' ) UpperCamelCase : List[Any] = pow(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) return shaaaa(str(SCREAMING_SNAKE_CASE_ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
40
import os import pytest from attr import dataclass __UpperCAmelCase = '''us-east-1''' # defaults region @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : str UpperCAmelCase__ : Tuple = "arn:aws:iam::558105141721:role/sagemaker_execution_role" UpperCAmelCase__ : Union[str, Any] = { "task_name": "mnli", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 500, "save_steps": 5500, } UpperCAmelCase__ : Dict = {**hyperparameters, "max_steps": 1000} @property def snake_case_ ( self ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def snake_case_ ( self ) -> str: return F"""{self.framework}-transfromers-test""" @property def snake_case_ ( self ) -> str: return F"""./tests/sagemaker/scripts/{self.framework}""" @property def snake_case_ ( self ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def UpperCamelCase ( snake_case__ : Any ) -> Union[str, Any]: UpperCamelCase : Optional[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
40
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __UpperCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = "upernet" def __init__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=[1, 2, 3, 6], SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=0.4, SCREAMING_SNAKE_CASE_=384, SCREAMING_SNAKE_CASE_=256, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=255, **SCREAMING_SNAKE_CASE_, ) -> int: super().__init__(**SCREAMING_SNAKE_CASE_ ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) UpperCamelCase : Optional[Any] = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Dict = backbone_config.get('model_type' ) UpperCamelCase : Any = CONFIG_MAPPING[backbone_model_type] UpperCamelCase : Dict = config_class.from_dict(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = backbone_config UpperCamelCase : Optional[int] = hidden_size UpperCamelCase : str = initializer_range UpperCamelCase : Union[str, Any] = pool_scales UpperCamelCase : Dict = use_auxiliary_head UpperCamelCase : Any = auxiliary_loss_weight UpperCamelCase : Dict = auxiliary_in_channels UpperCamelCase : Tuple = auxiliary_channels UpperCamelCase : int = auxiliary_num_convs UpperCamelCase : Union[str, Any] = auxiliary_concat_input UpperCamelCase : Dict = loss_ignore_index def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Tuple = copy.deepcopy(self.__dict__ ) UpperCamelCase : Optional[Any] = self.backbone_config.to_dict() UpperCamelCase : Dict = self.__class__.model_type return output
40
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __UpperCAmelCase = '''src/transformers''' __UpperCAmelCase = '''docs/source/en/tasks''' def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Any ) -> Optional[int]: with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase : Optional[Any] = f.readlines() # Find the start prompt. UpperCamelCase : List[Any] = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 UpperCamelCase : Optional[Any] = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) __UpperCAmelCase = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __UpperCAmelCase = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def UpperCamelCase ( snake_case__ : Optional[int] ) -> Optional[Any]: UpperCamelCase : Tuple = TASK_GUIDE_TO_MODELS[task_guide] UpperCamelCase : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() ) UpperCamelCase : Tuple = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def UpperCamelCase ( snake_case__ : str , snake_case__ : Optional[int]=False ) -> Tuple: UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = _find_text_in_file( filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) UpperCamelCase : Optional[Any] = get_model_list_for_task(snake_case__ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case__ , snake_case__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ' to fix this.' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __UpperCAmelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
40
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def UpperCamelCase ( snake_case__ : Optional[Any] ) -> Dict: UpperCamelCase : List[str] = SwinvaConfig() UpperCamelCase : Any = swinva_name.split('_' ) UpperCamelCase : int = name_split[1] if "to" in name_split[3]: UpperCamelCase : Optional[int] = int(name_split[3][-3:] ) else: UpperCamelCase : Dict = int(name_split[3] ) if "to" in name_split[2]: UpperCamelCase : str = int(name_split[2][-2:] ) else: UpperCamelCase : Optional[int] = int(name_split[2][6:] ) if model_size == "tiny": UpperCamelCase : List[Any] = 96 UpperCamelCase : Tuple = (2, 2, 6, 2) UpperCamelCase : Optional[int] = (3, 6, 12, 24) elif model_size == "small": UpperCamelCase : List[Any] = 96 UpperCamelCase : List[str] = (2, 2, 18, 2) UpperCamelCase : List[str] = (3, 6, 12, 24) elif model_size == "base": UpperCamelCase : Optional[int] = 128 UpperCamelCase : Any = (2, 2, 18, 2) UpperCamelCase : Any = (4, 8, 16, 32) else: UpperCamelCase : Any = 192 UpperCamelCase : Optional[int] = (2, 2, 18, 2) UpperCamelCase : Union[str, Any] = (6, 12, 24, 48) if "to" in swinva_name: UpperCamelCase : Optional[Any] = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): UpperCamelCase : List[str] = 21841 UpperCamelCase : List[str] = 'huggingface/label-files' UpperCamelCase : Union[str, Any] = 'imagenet-22k-id2label.json' UpperCamelCase : Tuple = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) UpperCamelCase : Optional[int] = {int(snake_case__ ): v for k, v in idalabel.items()} UpperCamelCase : Any = idalabel UpperCamelCase : Any = {v: k for k, v in idalabel.items()} else: UpperCamelCase : Optional[Any] = 1000 UpperCamelCase : Optional[Any] = 'huggingface/label-files' UpperCamelCase : List[str] = 'imagenet-1k-id2label.json' UpperCamelCase : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) UpperCamelCase : Union[str, Any] = {int(snake_case__ ): v for k, v in idalabel.items()} UpperCamelCase : Union[str, Any] = idalabel UpperCamelCase : int = {v: k for k, v in idalabel.items()} UpperCamelCase : int = img_size UpperCamelCase : Any = num_classes UpperCamelCase : int = embed_dim UpperCamelCase : Dict = depths UpperCamelCase : Dict = num_heads UpperCamelCase : Any = window_size return config def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> int: if "patch_embed.proj" in name: UpperCamelCase : Tuple = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCamelCase : List[Any] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: UpperCamelCase : List[str] = 'encoder.' + name if "attn.proj" in name: UpperCamelCase : Optional[int] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase : Tuple = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase : int = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase : Optional[Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase : str = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase : List[str] = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: UpperCamelCase : Any = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: UpperCamelCase : Union[str, Any] = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: UpperCamelCase : List[str] = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: UpperCamelCase : List[str] = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if name == "norm.weight": UpperCamelCase : str = 'layernorm.weight' if name == "norm.bias": UpperCamelCase : List[str] = 'layernorm.bias' if "head" in name: UpperCamelCase : List[str] = name.replace('head' , 'classifier' ) else: UpperCamelCase : Tuple = 'swinv2.' + name return name def UpperCamelCase ( snake_case__ : Union[str, Any] , snake_case__ : List[Any] ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): UpperCamelCase : List[Any] = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: UpperCamelCase : List[str] = key.split('.' ) UpperCamelCase : Optional[int] = int(key_split[1] ) UpperCamelCase : int = int(key_split[3] ) UpperCamelCase : List[str] = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase : Optional[int] = val[:dim, :] UpperCamelCase : Optional[int] = val[dim : dim * 2, :] UpperCamelCase : Any = val[-dim:, :] else: UpperCamelCase : Optional[int] = val[:dim] UpperCamelCase : Optional[int] = val[ dim : dim * 2 ] UpperCamelCase : str = val[-dim:] else: UpperCamelCase : List[str] = val return orig_state_dict def UpperCamelCase ( snake_case__ : int , snake_case__ : Dict ) -> str: UpperCamelCase : Dict = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() UpperCamelCase : int = get_swinva_config(snake_case__ ) UpperCamelCase : Union[str, Any] = SwinvaForImageClassification(snake_case__ ) model.eval() UpperCamelCase : Any = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) UpperCamelCase : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase : int = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) ) UpperCamelCase : Any = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) UpperCamelCase : Optional[Any] = image_processor(images=snake_case__ , return_tensors='pt' ) UpperCamelCase : Union[str, Any] = timm_model(inputs['pixel_values'] ) UpperCamelCase : Optional[Any] = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case__ ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='nandwalritik' , commit_message='Add model' , ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __UpperCAmelCase = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
40
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : int = IFPipeline UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case_ ( self ) -> str: return self._get_dummy_components() def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def snake_case_ ( self ) -> Optional[int]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda', reason='float16 requires CUDA' ) def snake_case_ ( self ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case_ ( self ) -> Dict: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case_ ( self ) -> Optional[int]: self._test_save_load_local() def snake_case_ ( self ) -> List[str]: self._test_inference_batch_single_identical( expected_max_diff=1e-2, ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def snake_case_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> List[Any]: # if UpperCamelCase : Union[str, Any] = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0', variant='fp16', torch_dtype=torch.floataa ) UpperCamelCase : str = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0', variant='fp16', torch_dtype=torch.floataa, text_encoder=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) UpperCamelCase , UpperCamelCase : List[str] = pipe_a.encode_prompt('anime turtle', device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCamelCase : int = None UpperCamelCase : Union[str, Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCamelCase : Optional[int] = IFImgaImgPipeline(**pipe_a.components ) UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCamelCase : Union[str, Any] = IFInpaintingPipeline(**pipe_a.components ) UpperCamelCase : Union[str, Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 UpperCamelCase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Tuple = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : int = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : Dict = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : List[Any] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = floats_tensor((1, 3, 256, 256), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
40
1
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __UpperCAmelCase = logging.get_logger(__name__) enable_full_determinism() class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : int = UNetaDModel UpperCAmelCase__ : List[Any] = "sample" @property def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : List[Any] = 4 UpperCamelCase : Any = 3 UpperCamelCase : List[Any] = (32, 32) UpperCamelCase : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = torch.tensor([10] ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": noise, "timestep": time_step} @property def snake_case_ ( self ) -> List[str]: return (3, 32, 32) @property def snake_case_ ( self ) -> str: return (3, 32, 32) def snake_case_ ( self ) -> Any: UpperCamelCase : Dict = { 'block_out_channels': (32, 64), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 32, } UpperCamelCase : Tuple = self.dummy_input return init_dict, inputs_dict class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Optional[int] = UNetaDModel UpperCAmelCase__ : Optional[int] = "sample" @property def snake_case_ ( self ) -> Any: UpperCamelCase : List[str] = 4 UpperCamelCase : Tuple = 4 UpperCamelCase : Tuple = (32, 32) UpperCamelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = torch.tensor([10] ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": noise, "timestep": time_step} @property def snake_case_ ( self ) -> Optional[int]: return (4, 32, 32) @property def snake_case_ ( self ) -> Union[str, Any]: return (4, 32, 32) def snake_case_ ( self ) -> str: UpperCamelCase : Union[str, Any] = { 'sample_size': 32, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (32, 64), 'attention_head_dim': 32, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } UpperCamelCase : Optional[Any] = self.dummy_input return init_dict, inputs_dict def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase , UpperCamelCase : Any = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update', output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ), 0 ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda', 'This test is supposed to run on GPU' ) def snake_case_ ( self ) -> Any: UpperCamelCase , UpperCamelCase : int = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update', output_loading_info=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda', 'This test is supposed to run on GPU' ) def snake_case_ ( self ) -> str: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` UpperCamelCase , UpperCamelCase : Optional[int] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update', output_loading_info=SCREAMING_SNAKE_CASE_ ) model_accelerate.to(SCREAMING_SNAKE_CASE_ ) model_accelerate.eval() UpperCamelCase : str = torch.randn( 1, model_accelerate.config.in_channels, model_accelerate.config.sample_size, model_accelerate.config.sample_size, generator=torch.manual_seed(0 ), ) UpperCamelCase : Union[str, Any] = noise.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = torch.tensor([10] * noise.shape[0] ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = model_accelerate(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCamelCase , UpperCamelCase : Optional[Any] = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update', output_loading_info=SCREAMING_SNAKE_CASE_, low_cpu_mem_usage=SCREAMING_SNAKE_CASE_ ) model_normal_load.to(SCREAMING_SNAKE_CASE_ ) model_normal_load.eval() UpperCamelCase : Tuple = model_normal_load(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )['sample'] assert torch_all_close(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, rtol=1e-3 ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : Union[str, Any] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = torch.randn( 1, model.config.in_channels, model.config.sample_size, model.config.sample_size, generator=torch.manual_seed(0 ), ) UpperCamelCase : Optional[Any] = noise.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = torch.tensor([10] * noise.shape[0] ).to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase : int = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCamelCase : Tuple = torch.tensor([-13.32_58, -20.11_00, -15.98_73, -17.66_17, -23.05_96, -17.94_19, -13.36_75, -16.18_89, -12.38_00] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, rtol=1e-3 ) ) class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : str = UNetaDModel UpperCAmelCase__ : Optional[Any] = "sample" @property def snake_case_ ( self, SCREAMING_SNAKE_CASE_=(32, 32) ) -> Any: UpperCamelCase : List[Any] = 4 UpperCamelCase : str = 3 UpperCamelCase : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa, device=SCREAMING_SNAKE_CASE_ ) return {"sample": noise, "timestep": time_step} @property def snake_case_ ( self ) -> str: return (3, 32, 32) @property def snake_case_ ( self ) -> Optional[Any]: return (3, 32, 32) def snake_case_ ( self ) -> Tuple: UpperCamelCase : List[str] = { 'block_out_channels': [32, 64, 64, 64], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1e-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } UpperCamelCase : Union[str, Any] = self.dummy_input return init_dict, inputs_dict @slow def snake_case_ ( self ) -> Any: UpperCamelCase , UpperCamelCase : Tuple = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256', output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ), 0 ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = self.dummy_input UpperCamelCase : Optional[Any] = floats_tensor((4, 3) + (256, 256) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = noise UpperCamelCase : Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ) assert image is not None, "Make sure output is not None" @slow def snake_case_ ( self ) -> List[str]: UpperCamelCase : List[Any] = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = 4 UpperCamelCase : Any = 3 UpperCamelCase : Union[str, Any] = (256, 256) UpperCamelCase : Optional[int] = torch.ones((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = torch.tensor(batch_size * [1e-4] ).to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase : str = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCamelCase : Tuple = torch.tensor([-48_42.86_91, -64_99.66_31, -38_00.19_53, -79_78.26_86, -1_09_80.71_29, -2_00_28.85_35, 81_48.28_22, 23_42.29_05, 5_67.76_08] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, rtol=1e-2 ) ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Tuple = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = 4 UpperCamelCase : Dict = 3 UpperCamelCase : str = (32, 32) UpperCamelCase : int = torch.ones((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = torch.tensor(batch_size * [1e-4] ).to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase : Union[str, Any] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCamelCase : Tuple = torch.tensor([-0.03_25, -0.09_00, -0.08_69, -0.03_32, -0.07_25, -0.02_70, -0.01_01, 0.02_27, 0.02_56] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, rtol=1e-2 ) ) def snake_case_ ( self ) -> Optional[int]: # not required for this model pass
40
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def UpperCamelCase ( snake_case__ : Tuple="" ) -> str: UpperCamelCase : Union[str, Any] = tempfile.mkdtemp() return os.path.join(snake_case__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> int: UpperCamelCase : Union[str, Any] = torch.rand(12, dtype=torch.floataa ) - 0.5 UpperCamelCase : Union[str, Any] = AgentAudio(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) # Ensure that the file contains the same value as the original tensor UpperCamelCase , UpperCamelCase : Any = sf.read(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, torch.tensor(SCREAMING_SNAKE_CASE_ ), atol=1e-4 ) ) def snake_case_ ( self ) -> Any: UpperCamelCase : Optional[int] = torch.rand(12, dtype=torch.floataa ) - 0.5 UpperCamelCase : Union[str, Any] = get_new_path(suffix='.wav' ) sf.write(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, 1_6000 ) UpperCamelCase : int = AgentAudio(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) ) self.assertEqual(agent_type.to_string(), SCREAMING_SNAKE_CASE_ ) @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Any: UpperCamelCase : Dict = torch.randint(0, 256, (64, 64, 3) ) UpperCamelCase : Union[str, Any] = AgentImage(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type._tensor, atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw(), Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' UpperCamelCase : Optional[int] = Image.open(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = AgentImage(SCREAMING_SNAKE_CASE_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ) -> int: UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' UpperCamelCase : Union[str, Any] = Image.open(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = AgentImage(SCREAMING_SNAKE_CASE_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = 'Hey!' UpperCamelCase : Dict = AgentText(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_string() ) self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_raw() ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
40
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = ["input_features", "is_longer"] def __init__( self, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=4_8000, SCREAMING_SNAKE_CASE_=480, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=1024, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_ = 0, SCREAMING_SNAKE_CASE_ = 1_4000, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = "fusion", SCREAMING_SNAKE_CASE_ = "repeatpad", **SCREAMING_SNAKE_CASE_, ) -> Optional[Any]: super().__init__( feature_size=SCREAMING_SNAKE_CASE_, sampling_rate=SCREAMING_SNAKE_CASE_, padding_value=SCREAMING_SNAKE_CASE_, return_attention_mask=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Any = top_db UpperCamelCase : Optional[int] = truncation UpperCamelCase : Any = padding UpperCamelCase : Any = fft_window_size UpperCamelCase : Tuple = (fft_window_size >> 1) + 1 UpperCamelCase : List[str] = hop_length UpperCamelCase : Dict = max_length_s UpperCamelCase : List[str] = max_length_s * sampling_rate UpperCamelCase : int = sampling_rate UpperCamelCase : Any = frequency_min UpperCamelCase : Optional[Any] = frequency_max UpperCamelCase : Dict = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=SCREAMING_SNAKE_CASE_, min_frequency=SCREAMING_SNAKE_CASE_, max_frequency=SCREAMING_SNAKE_CASE_, sampling_rate=SCREAMING_SNAKE_CASE_, norm=SCREAMING_SNAKE_CASE_, mel_scale='htk', ) UpperCamelCase : Dict = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=SCREAMING_SNAKE_CASE_, min_frequency=SCREAMING_SNAKE_CASE_, max_frequency=SCREAMING_SNAKE_CASE_, sampling_rate=SCREAMING_SNAKE_CASE_, norm='slaney', mel_scale='slaney', ) def snake_case_ ( self ) -> Dict[str, Any]: UpperCamelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCamelCase : Any = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> np.ndarray: UpperCamelCase : Dict = spectrogram( SCREAMING_SNAKE_CASE_, window_function(self.fft_window_size, 'hann' ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=SCREAMING_SNAKE_CASE_, log_mel='dB', ) return log_mel_spectrogram.T def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase : Optional[int] = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase : Union[str, Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase : Dict = [0] # randomly choose index for each part UpperCamelCase : int = np.random.choice(ranges[0] ) UpperCamelCase : List[Any] = np.random.choice(ranges[1] ) UpperCamelCase : Any = np.random.choice(ranges[2] ) UpperCamelCase : Union[str, Any] = mel[idx_front : idx_front + chunk_frames, :] UpperCamelCase : Union[str, Any] = mel[idx_middle : idx_middle + chunk_frames, :] UpperCamelCase : Optional[int] = mel[idx_back : idx_back + chunk_frames, :] UpperCamelCase : List[Any] = torch.tensor(mel[None, None, :] ) UpperCamelCase : List[Any] = torch.nn.functional.interpolate( SCREAMING_SNAKE_CASE_, size=[chunk_frames, 64], mode='bilinear', align_corners=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = mel_shrink[0][0].numpy() UpperCamelCase : Dict = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": UpperCamelCase : Dict = True # random crop to max_length (for compatibility) -> this should be handled by self.pad UpperCamelCase : str = len(SCREAMING_SNAKE_CASE_ ) - max_length UpperCamelCase : Optional[Any] = np.random.randint(0, overflow + 1 ) UpperCamelCase : int = waveform[idx : idx + max_length] UpperCamelCase : Tuple = self._np_extract_fbank_features(SCREAMING_SNAKE_CASE_, self.mel_filters_slaney )[None, :] elif truncation == "fusion": UpperCamelCase : Tuple = self._np_extract_fbank_features(SCREAMING_SNAKE_CASE_, self.mel_filters ) UpperCamelCase : Any = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed UpperCamelCase : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. UpperCamelCase : Optional[Any] = np.stack([mel, mel, mel, mel], axis=0 ) UpperCamelCase : Optional[int] = False else: UpperCamelCase : Optional[int] = self._random_mel_fusion(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: UpperCamelCase : Any = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": UpperCamelCase : Any = int(max_length / len(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Tuple = np.stack(np.tile(SCREAMING_SNAKE_CASE_, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": UpperCamelCase : str = int(max_length / len(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : str = np.stack(np.tile(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : List[str] = np.pad(SCREAMING_SNAKE_CASE_, (0, max_length - waveform.shape[0]), mode='constant', constant_values=0 ) if truncation == "fusion": UpperCamelCase : Tuple = self._np_extract_fbank_features(SCREAMING_SNAKE_CASE_, self.mel_filters ) UpperCamelCase : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: UpperCamelCase : Optional[int] = self._np_extract_fbank_features(SCREAMING_SNAKE_CASE_, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> BatchFeature: UpperCamelCase : Optional[int] = truncation if truncation is not None else self.truncation UpperCamelCase : List[str] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) UpperCamelCase : List[Any] = isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : List[str] = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE_, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : Tuple = [np.asarray(SCREAMING_SNAKE_CASE_, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ): UpperCamelCase : Tuple = np.asarray(SCREAMING_SNAKE_CASE_, dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : Any = [np.asarray(SCREAMING_SNAKE_CASE_ )] # convert to mel spectrogram, truncate and pad if needed. UpperCamelCase : Dict = [ self._get_input_mel(SCREAMING_SNAKE_CASE_, max_length if max_length else self.nb_max_samples, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for waveform in raw_speech ] UpperCamelCase : str = [] UpperCamelCase : str = [] for mel, longer in padded_inputs: input_mel.append(SCREAMING_SNAKE_CASE_ ) is_longer.append(SCREAMING_SNAKE_CASE_ ) if truncation == "fusion" and sum(SCREAMING_SNAKE_CASE_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer UpperCamelCase : Optional[Any] = np.random.randint(0, len(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : List[Any] = True if isinstance(input_mel[0], SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Dict = [np.asarray(SCREAMING_SNAKE_CASE_, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool UpperCamelCase : int = [[longer] for longer in is_longer] UpperCamelCase : Any = {'input_features': input_mel, 'is_longer': is_longer} UpperCamelCase : Tuple = BatchFeature(SCREAMING_SNAKE_CASE_ ) if return_tensors is not None: UpperCamelCase : List[str] = input_features.convert_to_tensors(SCREAMING_SNAKE_CASE_ ) return input_features
40
def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : Any ) -> Union[str, Any]: UpperCamelCase : int = [1] for i in range(2 , snake_case__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCamelCase : List[Any] = [] UpperCamelCase : List[Any] = list(range(snake_case__ ) ) # Find permutation while factorials: UpperCamelCase : int = factorials.pop() UpperCamelCase , UpperCamelCase : int = divmod(snake_case__ , snake_case__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
40
1
def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : Any ) -> Union[str, Any]: UpperCamelCase : int = [1] for i in range(2 , snake_case__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCamelCase : List[Any] = [] UpperCamelCase : List[Any] = list(range(snake_case__ ) ) # Find permutation while factorials: UpperCamelCase : int = factorials.pop() UpperCamelCase , UpperCamelCase : int = divmod(snake_case__ , snake_case__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
40
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase_ ( a__ ): def snake_case_ ( self ) -> Tuple: UpperCamelCase : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'width_multiplier' ) ) class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_="swish", SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=0.25, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, ) -> Any: UpperCamelCase : int = parent UpperCamelCase : int = batch_size UpperCamelCase : List[Any] = image_size UpperCamelCase : List[str] = patch_size UpperCamelCase : Optional[int] = num_channels UpperCamelCase : List[str] = make_divisible(512 * width_multiplier, divisor=8 ) UpperCamelCase : List[str] = hidden_act UpperCamelCase : Optional[int] = conv_kernel_size UpperCamelCase : List[str] = output_stride UpperCamelCase : Union[str, Any] = classifier_dropout_prob UpperCamelCase : List[Any] = use_labels UpperCamelCase : Any = is_training UpperCamelCase : int = num_labels UpperCamelCase : List[Any] = initializer_range UpperCamelCase : Tuple = scope UpperCamelCase : List[str] = width_multiplier UpperCamelCase : Any = ffn_dropout UpperCamelCase : List[Any] = attn_dropout def snake_case_ ( self ) -> int: UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : List[str] = None UpperCamelCase : int = None if self.use_labels: UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels ) UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCamelCase : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case_ ( self ) -> int: return MobileViTVaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : Any = MobileViTVaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : Optional[int] = self.num_labels UpperCamelCase : Tuple = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : Any = self.num_labels UpperCamelCase : Optional[Any] = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = config_and_inputs UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Tuple = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase__ : Any = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Optional[Any] = False def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Dict = MobileViTVaModelTester(self ) UpperCamelCase : Optional[Any] = MobileViTVaConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def snake_case_ ( self ) -> int: pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def snake_case_ ( self ) -> str: pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case_ ( self ) -> Any: pass def snake_case_ ( self ) -> List[str]: UpperCamelCase , UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : str = [*signature.parameters.keys()] UpperCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Tuple: def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Tuple = outputs.hidden_states UpperCamelCase : Dict = 5 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCamelCase : Any = 2 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2 ) UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : Optional[int] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> str: UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) @slow def snake_case_ ( self ) -> Optional[Any]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : str = MobileViTVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> Tuple: UpperCamelCase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> str: return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.default_image_processor UpperCamelCase : Any = prepare_img() UpperCamelCase : Tuple = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : List[str] = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Union[str, Any] = prepare_img() UpperCamelCase : Any = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = outputs.logits # verify the logits UpperCamelCase : Dict = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.tensor( [ [[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]], [[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]], [[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]], ], device=SCREAMING_SNAKE_CASE_, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : str = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Optional[int] = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Tuple = prepare_img() UpperCamelCase : int = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : str = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = outputs.logits.detach().cpu() UpperCamelCase : int = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_, target_sizes=[(50, 60)] ) UpperCamelCase : Optional[int] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ )
40
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '''▁''' __UpperCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} __UpperCAmelCase = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } __UpperCAmelCase = { '''facebook/xglm-564M''': 2_048, } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> None: UpperCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCamelCase : Any = 7 UpperCamelCase : Optional[int] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] UpperCamelCase : Dict = kwargs.get('additional_special_tokens', [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, sp_model_kwargs=self.sp_model_kwargs, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase : Dict = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} UpperCamelCase : Optional[int] = len(self.sp_model ) UpperCamelCase : Any = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: UpperCamelCase : int = self.__dict__.copy() UpperCamelCase : Union[str, Any] = None UpperCamelCase : int = self.sp_model.serialized_model_proto() return state def __setstate__( self, SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase : Any = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): UpperCamelCase : Any = {} UpperCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCamelCase : Optional[int] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_, token_ids_a=SCREAMING_SNAKE_CASE_, already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : str = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def snake_case_ ( self ) -> int: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def snake_case_ ( self ) -> int: UpperCamelCase : List[str] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_, out_type=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase : Union[str, Any] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : Dict = ''.join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_, ' ' ).strip() return out_string def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_, 'wb' ) as fi: UpperCamelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
40
def UpperCamelCase ( snake_case__ : Optional[int] ) -> str: UpperCamelCase : List[str] = [0] * len(snake_case__ ) UpperCamelCase : int = [] UpperCamelCase : Optional[int] = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: UpperCamelCase : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: UpperCamelCase : Tuple = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph __UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
40
1
from __future__ import annotations __UpperCAmelCase = 10 def UpperCamelCase ( snake_case__ : list[int] ) -> list[int]: UpperCamelCase : Tuple = 1 UpperCamelCase : int = max(snake_case__ ) while placement <= max_digit: # declare and initialize empty buckets UpperCamelCase : list[list] = [[] for _ in range(snake_case__ )] # split list_of_ints between the buckets for i in list_of_ints: UpperCamelCase : int = int((i / placement) % RADIX ) buckets[tmp].append(snake_case__ ) # put each buckets' contents into list_of_ints UpperCamelCase : List[str] = 0 for b in range(snake_case__ ): for i in buckets[b]: UpperCamelCase : Dict = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
40
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
40
1
from __future__ import annotations def UpperCamelCase ( snake_case__ : int ) -> bool: UpperCamelCase : Optional[int] = str(snake_case__ ) return len(snake_case__ ) == 9 and set(snake_case__ ) == set('123456789' ) def UpperCamelCase ( ) -> int | None: for base_num in range(9999 , 4999 , -1 ): UpperCamelCase : Dict = 100002 * base_num if is_9_pandigital(snake_case__ ): return candidate for base_num in range(333 , 99 , -1 ): UpperCamelCase : Optional[Any] = 1002003 * base_num if is_9_pandigital(snake_case__ ): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
40
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { '''configuration_deberta''': ['''DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DebertaConfig''', '''DebertaOnnxConfig'''], '''tokenization_deberta''': ['''DebertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''DebertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DebertaForMaskedLM''', '''DebertaForQuestionAnswering''', '''DebertaForSequenceClassification''', '''DebertaForTokenClassification''', '''DebertaModel''', '''DebertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDebertaForMaskedLM''', '''TFDebertaForQuestionAnswering''', '''TFDebertaForSequenceClassification''', '''TFDebertaForTokenClassification''', '''TFDebertaModel''', '''TFDebertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
1
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np __UpperCAmelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 __UpperCAmelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def UpperCamelCase ( snake_case__ : Vector , snake_case__ : Vector ) -> VectorOut: return np.sqrt(np.sum((np.asarray(snake_case__ ) - np.asarray(snake_case__ )) ** 2 ) ) def UpperCamelCase ( snake_case__ : Vector , snake_case__ : Vector ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(snake_case__ , snake_case__ ) ) ** (1 / 2) if __name__ == "__main__": def UpperCamelCase ( ) -> None: from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) benchmark()
40
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''ViTFeatureExtractor'''] __UpperCAmelCase = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
1
def UpperCamelCase ( snake_case__ : list ) -> list: UpperCamelCase : str = len(snake_case__ ) for _ in range(snake_case__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: UpperCamelCase , UpperCamelCase : Optional[Any] = arr[i + 1], arr[i] return arr if __name__ == "__main__": __UpperCAmelCase = list(range(10, 0, -1)) print(F"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
40
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __UpperCAmelCase = random.Random() def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : str=1.0 , snake_case__ : int=None , snake_case__ : Union[str, Any]=None ) -> Any: if rng is None: UpperCamelCase : int = global_rng UpperCamelCase : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=2000, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1_6000, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, ) -> List[str]: UpperCamelCase : Dict = parent UpperCamelCase : Dict = batch_size UpperCamelCase : Any = min_seq_length UpperCamelCase : Optional[int] = max_seq_length UpperCamelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase : Tuple = feature_size UpperCamelCase : Any = padding_value UpperCamelCase : Tuple = sampling_rate UpperCamelCase : Optional[Any] = return_attention_mask UpperCamelCase : Optional[Any] = do_normalize def snake_case_ ( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case_ ( self, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False ) -> Union[str, Any]: def _flatten(SCREAMING_SNAKE_CASE_ ): return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) ) if equal_length: UpperCamelCase : List[str] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCamelCase : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase : str = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] return speech_inputs class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Any = WavaVecaFeatureExtractor def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Tuple = WavaVecaFeatureExtractionTester(self ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_, axis=0 ) - 1 ) < 1e-3 ) ) def snake_case_ ( self ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase : Any = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Dict = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase : List[Any] = feat_extract(speech_inputs[0], return_tensors='np' ).input_values UpperCamelCase : Union[str, Any] = feat_extract(np_speech_inputs[0], return_tensors='np' ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # Test batched UpperCamelCase : List[Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values UpperCamelCase : int = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase : Optional[int] = np.asarray(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values UpperCamelCase : Dict = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) def snake_case_ ( self ) -> int: UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Dict = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : str = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase : Any = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = feat_extract(SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, return_tensors='np' ) UpperCamelCase : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Tuple = range(800, 1400, 200 ) UpperCamelCase : str = [floats_list((1, x) )[0] for x in lengths] UpperCamelCase : int = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase : List[str] = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = feat_extract(SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : int = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='max_length', return_tensors='np' ) UpperCamelCase : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Any = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='longest', return_tensors='np' ) UpperCamelCase : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) UpperCamelCase : str = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Any = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=2000, padding='longest', return_tensors='np' ) UpperCamelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def snake_case_ ( self ) -> str: import torch UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Dict = np.random.rand(100 ).astype(np.floataa ) UpperCamelCase : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase : Union[str, Any] = feature_extractor.pad([{'input_values': inputs}], return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCamelCase : Any = feature_extractor.pad([{'input_values': inputs}], return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def snake_case_ ( self ) -> Tuple: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: UpperCamelCase : int = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask, config.feat_extract_norm == 'layer' )
40
1
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCAmelCase = logging.get_logger(__name__) @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) UpperCAmelCase__ : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) UpperCAmelCase__ : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase__ : bool = field( default=a__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : int = self.task_name.lower() class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Any = "train" UpperCAmelCase__ : List[Any] = "dev" UpperCAmelCase__ : Any = "test" class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : GlueDataTrainingArguments UpperCAmelCase__ : str UpperCAmelCase__ : List[InputFeatures] def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = Split.train, SCREAMING_SNAKE_CASE_ = None, ) -> List[Any]: warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py', SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Dict = args UpperCamelCase : Any = glue_processors[args.task_name]() UpperCamelCase : str = glue_output_modes[args.task_name] if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): try: UpperCamelCase : Optional[int] = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file UpperCamelCase : Dict = os.path.join( cache_dir if cache_dir is not None else args.data_dir, F"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""", ) UpperCamelCase : int = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase , UpperCamelCase : Optional[int] = label_list[2], label_list[1] UpperCamelCase : Optional[Any] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase : Optional[int] = cached_features_file + '.lock' with FileLock(SCREAMING_SNAKE_CASE_ ): if os.path.exists(SCREAMING_SNAKE_CASE_ ) and not args.overwrite_cache: UpperCamelCase : Tuple = time.time() UpperCamelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info( F"""Loading features from cached file {cached_features_file} [took %.3f s]""", time.time() - start ) else: logger.info(F"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: UpperCamelCase : Dict = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: UpperCamelCase : List[str] = self.processor.get_test_examples(args.data_dir ) else: UpperCamelCase : Optional[Any] = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: UpperCamelCase : Optional[int] = examples[:limit_length] UpperCamelCase : Optional[int] = glue_convert_examples_to_features( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, max_length=args.max_seq_length, label_list=SCREAMING_SNAKE_CASE_, output_mode=self.output_mode, ) UpperCamelCase : List[Any] = time.time() torch.save(self.features, SCREAMING_SNAKE_CASE_ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ) -> Dict: return len(self.features ) def __getitem__( self, SCREAMING_SNAKE_CASE_ ) -> InputFeatures: return self.features[i] def snake_case_ ( self ) -> Optional[int]: return self.label_list
40
def UpperCamelCase ( snake_case__ : int ) -> str: if isinstance(snake_case__ , snake_case__ ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(snake_case__ , snake_case__ ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" UpperCamelCase : int = False if num < 0: UpperCamelCase : Optional[Any] = True UpperCamelCase : Tuple = -num UpperCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(snake_case__ ) for e in binary ) return "0b" + "".join(str(snake_case__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
40
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __UpperCAmelCase = Lock() def UpperCamelCase ( snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : List[Any] ) -> Optional[int]: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCamelCase : str = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCamelCase : Any = min(snake_case__ , snake_case__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCamelCase : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCamelCase : int = max(snake_case__ , snake_case__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__ ) def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> List[str]: UpperCamelCase : Any = [] UpperCamelCase : Union[str, Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCamelCase : Union[str, Any] = Pipe() UpperCamelCase : Tuple = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCamelCase : int = temp_rs UpperCamelCase : Optional[int] = temp_rr for i in range(1 , len(snake_case__ ) - 1 ): UpperCamelCase : str = Pipe() UpperCamelCase : str = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCamelCase : Optional[int] = temp_rs UpperCamelCase : List[Any] = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__ ) - 1, arr[len(snake_case__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__ ) ): UpperCamelCase : Any = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase ( ) -> Optional[Any]: UpperCamelCase : int = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*snake_case__ ) UpperCamelCase : Optional[Any] = odd_even_transposition(snake_case__ ) print('Sorted List\n' ) print(*snake_case__ ) if __name__ == "__main__": main()
40
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __UpperCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : List[str]=None , snake_case__ : Union[str, Any]=None ) -> Optional[Any]: # Recurse if needed if "." in tensor_name: UpperCamelCase : List[Any] = tensor_name.split('.' ) for split in splits[:-1]: UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) UpperCamelCase : Dict = new_module UpperCamelCase : int = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) UpperCamelCase : Union[str, Any] = tensor_name in module._buffers UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) UpperCamelCase : Optional[Any] = False UpperCamelCase : str = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase : List[str] = False UpperCamelCase : Tuple = False else: UpperCamelCase : Union[str, Any] = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) UpperCamelCase : Optional[int] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase : List[Any] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase : Dict = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): UpperCamelCase : List[Any] = value.to('cpu' ) if value.dtype == torch.inta: UpperCamelCase : Tuple = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: UpperCamelCase : Union[str, Any] = torch.tensor(snake_case__ , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , snake_case__ ) and fpaa_statistics is None: UpperCamelCase : Union[str, Any] = new_value.T UpperCamelCase : Union[str, Any] = old_value.__dict__ if is_abit: UpperCamelCase : Optional[Any] = bnb.nn.IntaParams(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) elif is_abit: UpperCamelCase : Optional[Any] = bnb.nn.Paramsabit(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) UpperCamelCase : Dict = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(snake_case__ ) ) else: if value is None: UpperCamelCase : Union[str, Any] = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): UpperCamelCase : List[str] = value.to(snake_case__ ) else: UpperCamelCase : Tuple = torch.tensor(snake_case__ , device=snake_case__ ) if is_buffer: UpperCamelCase : Optional[int] = new_value else: UpperCamelCase : Tuple = nn.Parameter(snake_case__ , requires_grad=old_value.requires_grad ) UpperCamelCase : List[str] = new_value def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Any=None , snake_case__ : Optional[int]=None , snake_case__ : Union[str, Any]=None , snake_case__ : List[str]=False ) -> int: for name, module in model.named_children(): if current_key_name is None: UpperCamelCase : str = [] current_key_name.append(snake_case__ ) if (isinstance(snake_case__ , nn.Linear ) or isinstance(snake_case__ , snake_case__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(snake_case__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(snake_case__ , snake_case__ ): UpperCamelCase , UpperCamelCase : Tuple = module.weight.shape else: UpperCamelCase : Any = module.in_features UpperCamelCase : List[str] = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase : Any = bnb.nn.LinearabitLt( snake_case__ , snake_case__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) UpperCamelCase : Optional[int] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase : str = bnb.nn.Linearabit( snake_case__ , snake_case__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) UpperCamelCase : int = True # Store the module class in case we need to transpose the weight later UpperCamelCase : Any = type(snake_case__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(snake_case__ ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase : Optional[int] = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_been_replaced=snake_case__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]=None , snake_case__ : Dict=None ) -> Optional[Any]: UpperCamelCase : Union[str, Any] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase : List[str] = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCamelCase ( *snake_case__ : Tuple , **snake_case__ : List[str] ) -> List[str]: warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , snake_case__ , ) return replace_with_bnb_linear(*snake_case__ , **snake_case__ ) def UpperCamelCase ( *snake_case__ : Dict , **snake_case__ : str ) -> Tuple: warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , snake_case__ , ) return set_module_quantized_tensor_to_device(*snake_case__ , **snake_case__ ) def UpperCamelCase ( snake_case__ : Tuple ) -> List[Any]: UpperCamelCase : int = deepcopy(snake_case__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase : List[str] = find_tied_parameters(snake_case__ ) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__ ): UpperCamelCase : Tuple = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCamelCase : Union[str, Any] = sum(snake_case__ , [] ) UpperCamelCase : Optional[int] = len(snake_case__ ) > 0 # Check if it is a base model UpperCamelCase : str = not hasattr(snake_case__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase : List[Any] = list(model.named_children() ) UpperCamelCase : Optional[Any] = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase : Union[str, Any] = set(snake_case__ ) - set(snake_case__ ) UpperCamelCase : Optional[int] = list(set(snake_case__ ) ) + list(snake_case__ ) # remove ".weight" from the keys UpperCamelCase : Tuple = ['.weight', '.bias'] UpperCamelCase : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase : Optional[int] = name.replace(snake_case__ , '' ) filtered_module_names.append(snake_case__ ) return filtered_module_names
40
1
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder __UpperCAmelCase = datasets.utils.logging.get_logger(__name__) class lowerCAmelCase_ ( folder_based_builder.FolderBasedBuilderConfig ): UpperCAmelCase__ : bool = None UpperCAmelCase__ : bool = None class lowerCAmelCase_ ( folder_based_builder.FolderBasedBuilder ): UpperCAmelCase__ : Dict = datasets.Audio() UpperCAmelCase__ : List[Any] = "audio" UpperCAmelCase__ : List[str] = AudioFolderConfig UpperCAmelCase__ : List[str] # definition at the bottom of the script UpperCAmelCase__ : Any = AudioClassification(audio_column="audio" , label_column="label" ) __UpperCAmelCase = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] __UpperCAmelCase = AUDIO_EXTENSIONS
40
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( snake_case__ : int ) -> Dict: UpperCamelCase : Optional[Any] = tmp_path / 'file.csv' UpperCamelCase : Optional[Any] = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : List[str] ) -> List[str]: UpperCamelCase : Optional[Any] = tmp_path / 'malformed_file.csv' UpperCamelCase : Any = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20,\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : List[Any] ) -> str: UpperCamelCase : Any = tmp_path / 'csv_with_image.csv' UpperCamelCase : Dict = textwrap.dedent( F"""\ image {image_file} """ ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : List[str] ) -> Tuple: UpperCamelCase : List[str] = tmp_path / 'csv_with_label.csv' UpperCamelCase : Dict = textwrap.dedent( '\\n label\n good\n bad\n good\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : Dict ) -> List[str]: UpperCamelCase : List[str] = tmp_path / 'csv_with_int_list.csv' UpperCamelCase : Union[str, Any] = textwrap.dedent( '\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : Optional[Any] ) -> List[Any]: UpperCamelCase : str = Csv() UpperCamelCase : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(snake_case__ , match='Error tokenizing data' ): for _ in generator: pass assert any( record.levelname == 'ERROR' and 'Failed to read file' in record.message and os.path.basename(snake_case__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> Optional[int]: with open(snake_case__ , encoding='utf-8' ) as f: UpperCamelCase : List[str] = f.read().splitlines()[1] UpperCamelCase : int = Csv(encoding='utf-8' , features=Features({'image': Image()} ) ) UpperCamelCase : Any = csv._generate_tables([[csv_file_with_image]] ) UpperCamelCase : Any = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('image' ).type == Image()() UpperCamelCase : str = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( snake_case__ : Any ) -> str: with open(snake_case__ , encoding='utf-8' ) as f: UpperCamelCase : Any = f.read().splitlines()[1:] UpperCamelCase : Union[str, Any] = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) ) UpperCamelCase : int = csv._generate_tables([[csv_file_with_label]] ) UpperCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )() UpperCamelCase : List[str] = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(snake_case__ ) for label in labels] def UpperCamelCase ( snake_case__ : str ) -> List[Any]: UpperCamelCase : str = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda snake_case__ : [int(snake_case__ ) for i in x.split()]} ) UpperCamelCase : List[str] = csv._generate_tables([[csv_file_with_int_list]] ) UpperCamelCase : Union[str, Any] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('int_list' ).type ) UpperCamelCase : str = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
40
1
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=30, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=2, ) -> Any: UpperCamelCase : Dict = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : Tuple = image_size UpperCamelCase : List[Any] = patch_size UpperCamelCase : Union[str, Any] = num_channels UpperCamelCase : Union[str, Any] = is_training UpperCamelCase : Any = use_labels UpperCamelCase : Union[str, Any] = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : Union[str, Any] = num_attention_heads UpperCamelCase : Optional[Any] = intermediate_size UpperCamelCase : str = hidden_act UpperCamelCase : Tuple = hidden_dropout_prob UpperCamelCase : int = attention_probs_dropout_prob UpperCamelCase : Optional[Any] = type_sequence_label_size UpperCamelCase : Optional[int] = initializer_range UpperCamelCase : Optional[Any] = scope UpperCamelCase : List[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCamelCase : Union[str, Any] = (image_size // patch_size) ** 2 UpperCamelCase : str = num_patches + 2 def snake_case_ ( self ) -> Tuple: UpperCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : str = None if self.use_labels: UpperCamelCase : Optional[int] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def snake_case_ ( self ) -> Optional[int]: return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=SCREAMING_SNAKE_CASE_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : int = DeiTModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : Optional[int] = DeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase : Union[str, Any] = 1 UpperCamelCase : Tuple = DeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : int = self.type_sequence_label_size UpperCamelCase : Dict = DeiTForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase : str = 1 UpperCamelCase : List[Any] = DeiTForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def snake_case_ ( self ) -> Dict: UpperCamelCase : str = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Dict = config_and_inputs UpperCamelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCAmelCase__ : Optional[int] = ( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Optional[int] = False def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : str = DeiTModelTester(self ) UpperCamelCase : str = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def snake_case_ ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def snake_case_ ( self ) -> str: pass def snake_case_ ( self ) -> List[Any]: UpperCamelCase , UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_, nn.Linear ) ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase , UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : List[str] = [*signature.parameters.keys()] UpperCamelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> str: UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=False ) -> Optional[Any]: UpperCamelCase : str = super()._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def snake_case_ ( self ) -> str: if not self.model_tester.is_training: return UpperCamelCase , UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : int = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(SCREAMING_SNAKE_CASE_ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase : Dict = self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def snake_case_ ( self ) -> Dict: UpperCamelCase , UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase : Tuple = False UpperCamelCase : int = True for model_class in self.all_model_classes: if model_class in get_values(SCREAMING_SNAKE_CASE_ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue UpperCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ ) model.gradient_checkpointing_enable() model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def snake_case_ ( self ) -> Optional[int]: UpperCamelCase , UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : List[Any] = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(SCREAMING_SNAKE_CASE_ ), *get_values(SCREAMING_SNAKE_CASE_ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type["title"]}""" ): UpperCamelCase : Dict = problem_type['title'] UpperCamelCase : Optional[int] = problem_type['num_labels'] UpperCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, return_labels=SCREAMING_SNAKE_CASE_ ) if problem_type["num_labels"] > 1: UpperCamelCase : int = inputs['labels'].unsqueeze(1 ).repeat(1, problem_type['num_labels'] ) UpperCamelCase : Tuple = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=SCREAMING_SNAKE_CASE_ ) as warning_list: UpperCamelCase : List[Any] = model(**SCREAMING_SNAKE_CASE_ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def snake_case_ ( self ) -> Union[str, Any]: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Tuple = DeiTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> List[str]: UpperCamelCase : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> List[str]: return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Tuple = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ).to( SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.default_image_processor UpperCamelCase : List[Any] = prepare_img() UpperCamelCase : Tuple = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : int = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.tensor([-1.02_66, 0.19_12, -1.28_61] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def snake_case_ ( self ) -> str: UpperCamelCase : str = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224', torch_dtype=torch.floataa, device_map='auto' ) UpperCamelCase : List[Any] = self.default_image_processor UpperCamelCase : Optional[int] = prepare_img() UpperCamelCase : Any = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ) UpperCamelCase : Optional[int] = inputs.pixel_values.to(SCREAMING_SNAKE_CASE_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )
40
import math import random def UpperCamelCase ( snake_case__ : float , snake_case__ : bool = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def UpperCamelCase ( snake_case__ : int , snake_case__ : int ) -> float: UpperCamelCase : Optional[Any] = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(snake_case__ ): # Forward propagation UpperCamelCase : str = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? UpperCamelCase : int = (expected / 100) - layer_a # Error delta UpperCamelCase : List[str] = layer_1_error * sigmoid_function(snake_case__ , snake_case__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input('''Expected value: ''')) __UpperCAmelCase = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
40
1
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __UpperCAmelCase = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' __UpperCAmelCase = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' __UpperCAmelCase = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def snake_case_ ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), id='references' ), } ), codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'], reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ], ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=False ) -> str: UpperCamelCase : int = compute_bleu( reference_corpus=SCREAMING_SNAKE_CASE_, translation_corpus=SCREAMING_SNAKE_CASE_, max_order=SCREAMING_SNAKE_CASE_, smooth=SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
40
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def UpperCamelCase ( snake_case__ : Dict ) -> Optional[int]: return EnvironmentCommand() class lowerCAmelCase_ ( a__ ): @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : List[Any] = parser.add_parser('env' ) download_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = huggingface_hub.__version__ UpperCamelCase : int = 'not installed' UpperCamelCase : Union[str, Any] = 'NA' if is_torch_available(): import torch UpperCamelCase : Any = torch.__version__ UpperCamelCase : str = torch.cuda.is_available() UpperCamelCase : Dict = 'not installed' if is_transformers_available(): import transformers UpperCamelCase : str = transformers.__version__ UpperCamelCase : Optional[Any] = 'not installed' if is_accelerate_available(): import accelerate UpperCamelCase : Dict = accelerate.__version__ UpperCamelCase : List[str] = 'not installed' if is_xformers_available(): import xformers UpperCamelCase : List[str] = xformers.__version__ UpperCamelCase : Dict = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(SCREAMING_SNAKE_CASE_ ) ) return info @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
40
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : List[Any] = "biogpt" def __init__( self, SCREAMING_SNAKE_CASE_=4_2384, SCREAMING_SNAKE_CASE_=1024, SCREAMING_SNAKE_CASE_=24, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=4096, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=1024, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-12, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=2, **SCREAMING_SNAKE_CASE_, ) -> List[Any]: UpperCamelCase : Union[str, Any] = vocab_size UpperCamelCase : Any = max_position_embeddings UpperCamelCase : Optional[int] = hidden_size UpperCamelCase : str = num_hidden_layers UpperCamelCase : Optional[int] = num_attention_heads UpperCamelCase : int = intermediate_size UpperCamelCase : Optional[int] = hidden_act UpperCamelCase : Tuple = hidden_dropout_prob UpperCamelCase : List[str] = attention_probs_dropout_prob UpperCamelCase : Dict = initializer_range UpperCamelCase : int = layer_norm_eps UpperCamelCase : List[Any] = scale_embedding UpperCamelCase : int = use_cache UpperCamelCase : int = layerdrop UpperCamelCase : int = activation_dropout super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_, bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
40
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '''▁''' __UpperCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} __UpperCAmelCase = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } __UpperCAmelCase = { '''facebook/xglm-564M''': 2_048, } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> None: UpperCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCamelCase : Any = 7 UpperCamelCase : Optional[int] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] UpperCamelCase : Dict = kwargs.get('additional_special_tokens', [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, sp_model_kwargs=self.sp_model_kwargs, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase : Dict = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} UpperCamelCase : Optional[int] = len(self.sp_model ) UpperCamelCase : Any = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: UpperCamelCase : int = self.__dict__.copy() UpperCamelCase : Union[str, Any] = None UpperCamelCase : int = self.sp_model.serialized_model_proto() return state def __setstate__( self, SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase : Any = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): UpperCamelCase : Any = {} UpperCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCamelCase : Optional[int] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_, token_ids_a=SCREAMING_SNAKE_CASE_, already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : str = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def snake_case_ ( self ) -> int: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def snake_case_ ( self ) -> int: UpperCamelCase : List[str] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_, out_type=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase : Union[str, Any] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : Dict = ''.join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_, ' ' ).strip() return out_string def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_, 'wb' ) as fi: UpperCamelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
40
1
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case__ , snake_case__ ) ) ) def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> list[list[list[float] | float]]: if dataset.ndim != value_array.ndim: UpperCamelCase : int = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(snake_case__ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCamelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(snake_case__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCamelCase : Dict = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(snake_case__ ) UpperCamelCase : List[Any] = [] for value in value_array: UpperCamelCase : Optional[Any] = euclidean(snake_case__ , dataset[0] ) UpperCamelCase : Dict = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCamelCase : Union[str, Any] = euclidean(snake_case__ , snake_case__ ) if dist > temp_dist: UpperCamelCase : str = temp_dist UpperCamelCase : List[str] = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float: return np.dot(snake_case__ , snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ )) if __name__ == "__main__": import doctest doctest.testmod()
40
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCAmelCase = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } __UpperCAmelCase = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = VOCAB_FILES_NAMES UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : str = ["input_ids", "attention_mask"] UpperCAmelCase__ : Dict = RobertaTokenizer def __init__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="replace", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="<mask>", SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, errors=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_, trim_offsets=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase : Dict = getattr(SCREAMING_SNAKE_CASE_, pre_tok_state.pop('type' ) ) UpperCamelCase : List[str] = add_prefix_space UpperCamelCase : Dict = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = add_prefix_space UpperCamelCase : Optional[Any] = 'post_processor' UpperCamelCase : Dict = getattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if tokenizer_component_instance: UpperCamelCase : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase : Optional[Any] = tuple(state['sep'] ) if "cls" in state: UpperCamelCase : Optional[int] = tuple(state['cls'] ) UpperCamelCase : Any = False if state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase : Optional[int] = add_prefix_space UpperCamelCase : List[Any] = True if state.get('trim_offsets', SCREAMING_SNAKE_CASE_ ) != trim_offsets: UpperCamelCase : Dict = trim_offsets UpperCamelCase : Union[str, Any] = True if changes_to_apply: UpperCamelCase : Tuple = getattr(SCREAMING_SNAKE_CASE_, state.pop('type' ) ) UpperCamelCase : Union[str, Any] = component_class(**SCREAMING_SNAKE_CASE_ ) setattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) @property def snake_case_ ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else value UpperCamelCase : List[Any] = value def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCamelCase : Optional[int] = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCamelCase : Dict = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: UpperCamelCase : Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Tuple: UpperCamelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : Dict = [self.sep_token_id] UpperCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
40
1
import math def UpperCamelCase ( snake_case__ : float , snake_case__ : float ) -> float: if ( not isinstance(snake_case__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * power_factor def UpperCamelCase ( snake_case__ : float , snake_case__ : float ) -> float: if ( not isinstance(snake_case__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
40
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowerCAmelCase_ ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> Tuple: super().__init__(features=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = torch_tensor_kwargs import torch # noqa import torch at initialization def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict: import torch if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) and column: if all( isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(SCREAMING_SNAKE_CASE_ ) return column def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Any: import torch if isinstance(SCREAMING_SNAKE_CASE_, (str, bytes, type(SCREAMING_SNAKE_CASE_ )) ): return value elif isinstance(SCREAMING_SNAKE_CASE_, (np.character, np.ndarray) ) and np.issubdtype(value.dtype, np.character ): return value.tolist() UpperCamelCase : str = {} if isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.integer ): UpperCamelCase : List[str] = {'dtype': torch.intaa} elif isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.floating ): UpperCamelCase : int = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(SCREAMING_SNAKE_CASE_, PIL.Image.Image ): UpperCamelCase : str = np.asarray(SCREAMING_SNAKE_CASE_ ) return torch.tensor(SCREAMING_SNAKE_CASE_, **{**default_dtype, **self.torch_tensor_kwargs} ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: import torch # support for torch, tf, jax etc. if hasattr(SCREAMING_SNAKE_CASE_, '__array__' ) and not isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ): UpperCamelCase : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] ) elif isinstance(SCREAMING_SNAKE_CASE_, (list, tuple) ): return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] ) return self._tensorize(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int: return map_nested(self._recursive_tensorize, SCREAMING_SNAKE_CASE_, map_list=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping: UpperCamelCase : Dict = self.numpy_arrow_extractor().extract_row(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.python_features_decoder.decode_row(SCREAMING_SNAKE_CASE_ ) return self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> "torch.Tensor": UpperCamelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.python_features_decoder.decode_column(SCREAMING_SNAKE_CASE_, pa_table.column_names[0] ) UpperCamelCase : Any = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = self._consolidate(SCREAMING_SNAKE_CASE_ ) return column def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping: UpperCamelCase : List[Any] = self.numpy_arrow_extractor().extract_batch(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = self.python_features_decoder.decode_batch(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for column_name in batch: UpperCamelCase : str = self._consolidate(batch[column_name] ) return batch
40
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
40
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case__ , snake_case__ ) ) ) def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> list[list[list[float] | float]]: if dataset.ndim != value_array.ndim: UpperCamelCase : int = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(snake_case__ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCamelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(snake_case__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCamelCase : Dict = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(snake_case__ ) UpperCamelCase : List[Any] = [] for value in value_array: UpperCamelCase : Optional[Any] = euclidean(snake_case__ , dataset[0] ) UpperCamelCase : Dict = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCamelCase : Union[str, Any] = euclidean(snake_case__ , snake_case__ ) if dist > temp_dist: UpperCamelCase : str = temp_dist UpperCamelCase : List[str] = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float: return np.dot(snake_case__ , snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ )) if __name__ == "__main__": import doctest doctest.testmod()
40
1
from __future__ import annotations def UpperCamelCase ( snake_case__ : list[int] ) -> list[int]: # This function is recursive UpperCamelCase : List[Any] = len(snake_case__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else UpperCamelCase : Tuple = array[0] UpperCamelCase : str = False UpperCamelCase : Tuple = 1 UpperCamelCase : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: UpperCamelCase : Optional[int] = True UpperCamelCase : Tuple = [element for element in array[i:] if element >= array[i]] UpperCamelCase : str = longest_subsequence(snake_case__ ) if len(snake_case__ ) > len(snake_case__ ): UpperCamelCase : Union[str, Any] = temp_array else: i += 1 UpperCamelCase : Any = [element for element in array[1:] if element >= pivot] UpperCamelCase : Dict = [pivot, *longest_subsequence(snake_case__ )] if len(snake_case__ ) > len(snake_case__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
40
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __UpperCAmelCase = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __UpperCAmelCase = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __UpperCAmelCase = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __UpperCAmelCase = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __UpperCAmelCase = tf.keras.preprocessing.image.img_to_array(test_image) __UpperCAmelCase = np.expand_dims(test_image, axis=0) __UpperCAmelCase = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __UpperCAmelCase = '''Normal''' if result[0][0] == 1: __UpperCAmelCase = '''Abnormality detected'''
40
1
__UpperCAmelCase = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __UpperCAmelCase = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __UpperCAmelCase = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def UpperCamelCase ( snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> str: assert len(str(snake_case__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: UpperCamelCase : Dict = year // 100 UpperCamelCase : Optional[Any] = (5 * (century % 4) + 2) % 7 UpperCamelCase : Union[str, Any] = year % 100 UpperCamelCase : Dict = centurian % 12 UpperCamelCase : Optional[int] = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 UpperCamelCase : Tuple = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) UpperCamelCase : Tuple = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
40
import os import pytest from attr import dataclass __UpperCAmelCase = '''us-east-1''' # defaults region @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : str UpperCAmelCase__ : Tuple = "arn:aws:iam::558105141721:role/sagemaker_execution_role" UpperCAmelCase__ : Union[str, Any] = { "task_name": "mnli", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 500, "save_steps": 5500, } UpperCAmelCase__ : Dict = {**hyperparameters, "max_steps": 1000} @property def snake_case_ ( self ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def snake_case_ ( self ) -> str: return F"""{self.framework}-transfromers-test""" @property def snake_case_ ( self ) -> str: return F"""./tests/sagemaker/scripts/{self.framework}""" @property def snake_case_ ( self ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def UpperCamelCase ( snake_case__ : Any ) -> Union[str, Any]: UpperCamelCase : Optional[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
40
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : List[str] = "unispeech" def __init__( self, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=3072, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-5, SCREAMING_SNAKE_CASE_="group", SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=(512, 512, 512, 512, 512, 512, 512), SCREAMING_SNAKE_CASE_=(5, 2, 2, 2, 2, 2, 2), SCREAMING_SNAKE_CASE_=(10, 3, 3, 3, 3, 2, 2), SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=128, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=0.05, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=320, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=100, SCREAMING_SNAKE_CASE_=256, SCREAMING_SNAKE_CASE_=256, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_="mean", SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=256, SCREAMING_SNAKE_CASE_=80, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.5, **SCREAMING_SNAKE_CASE_, ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_, pad_token_id=SCREAMING_SNAKE_CASE_, bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = hidden_size UpperCamelCase : Dict = feat_extract_norm UpperCamelCase : Any = feat_extract_activation UpperCamelCase : str = list(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = list(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = list(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = conv_bias UpperCamelCase : Union[str, Any] = num_conv_pos_embeddings UpperCamelCase : Union[str, Any] = num_conv_pos_embedding_groups UpperCamelCase : int = len(self.conv_dim ) UpperCamelCase : str = num_hidden_layers UpperCamelCase : List[Any] = intermediate_size UpperCamelCase : List[str] = hidden_act UpperCamelCase : str = num_attention_heads UpperCamelCase : Dict = hidden_dropout UpperCamelCase : Any = attention_dropout UpperCamelCase : List[Any] = activation_dropout UpperCamelCase : Any = feat_proj_dropout UpperCamelCase : Tuple = final_dropout UpperCamelCase : Optional[Any] = layerdrop UpperCamelCase : Tuple = layer_norm_eps UpperCamelCase : Tuple = initializer_range UpperCamelCase : Optional[Any] = num_ctc_classes UpperCamelCase : Any = vocab_size UpperCamelCase : int = do_stable_layer_norm UpperCamelCase : int = use_weighted_layer_sum UpperCamelCase : Tuple = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase : str = apply_spec_augment UpperCamelCase : Optional[int] = mask_time_prob UpperCamelCase : Any = mask_time_length UpperCamelCase : Optional[Any] = mask_time_min_masks UpperCamelCase : int = mask_feature_prob UpperCamelCase : Union[str, Any] = mask_feature_length UpperCamelCase : Optional[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCamelCase : int = num_codevectors_per_group UpperCamelCase : str = num_codevector_groups UpperCamelCase : Optional[Any] = contrastive_logits_temperature UpperCamelCase : Optional[Any] = feat_quantizer_dropout UpperCamelCase : Union[str, Any] = num_negatives UpperCamelCase : Dict = codevector_dim UpperCamelCase : Tuple = proj_codevector_dim UpperCamelCase : int = diversity_loss_weight # ctc loss UpperCamelCase : int = ctc_loss_reduction UpperCamelCase : str = ctc_zero_infinity # pretraining loss UpperCamelCase : Dict = replace_prob @property def snake_case_ ( self ) -> List[str]: return functools.reduce(operator.mul, self.conv_stride, 1 )
40
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __UpperCAmelCase = '''src/transformers''' __UpperCAmelCase = '''docs/source/en/tasks''' def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Any ) -> Optional[int]: with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase : Optional[Any] = f.readlines() # Find the start prompt. UpperCamelCase : List[Any] = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 UpperCamelCase : Optional[Any] = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) __UpperCAmelCase = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __UpperCAmelCase = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def UpperCamelCase ( snake_case__ : Optional[int] ) -> Optional[Any]: UpperCamelCase : Tuple = TASK_GUIDE_TO_MODELS[task_guide] UpperCamelCase : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() ) UpperCamelCase : Tuple = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def UpperCamelCase ( snake_case__ : str , snake_case__ : Optional[int]=False ) -> Tuple: UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = _find_text_in_file( filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) UpperCamelCase : Optional[Any] = get_model_list_for_task(snake_case__ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case__ , snake_case__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ' to fix this.' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __UpperCAmelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
40
1
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger __UpperCAmelCase = get_logger(__name__) class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_ = None ) -> Dict: UpperCamelCase : List[str] = ( os.path.join(SCREAMING_SNAKE_CASE_, config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) UpperCamelCase : Any = Extractor def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" UpperCamelCase : int = os.path.abspath(SCREAMING_SNAKE_CASE_ ) return os.path.join(self.extract_dir, hash_url_to_filename(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> bool: return force_extract or ( not os.path.isfile(SCREAMING_SNAKE_CASE_ ) and not (os.path.isdir(SCREAMING_SNAKE_CASE_ ) and os.listdir(SCREAMING_SNAKE_CASE_ )) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = False ) -> str: UpperCamelCase : Tuple = self.extractor.infer_extractor_format(SCREAMING_SNAKE_CASE_ ) if not extractor_format: return input_path UpperCamelCase : List[Any] = self._get_output_path(SCREAMING_SNAKE_CASE_ ) if self._do_extract(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.extractor.extract(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) return output_path class lowerCAmelCase_ ( a__ ): @classmethod @abstractmethod def snake_case_ ( cls, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> bool: ... @staticmethod @abstractmethod def snake_case_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: ... class lowerCAmelCase_ ( a__ , a__ ): UpperCAmelCase__ : List[bytes] = [] @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: with open(SCREAMING_SNAKE_CASE_, 'rb' ) as f: return f.read(SCREAMING_SNAKE_CASE_ ) @classmethod def snake_case_ ( cls, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = b"" ) -> bool: if not magic_number: UpperCamelCase : str = max(len(SCREAMING_SNAKE_CASE_ ) for cls_magic_number in cls.magic_numbers ) try: UpperCamelCase : List[str] = cls.read_magic_number(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) except OSError: return False return any(magic_number.startswith(SCREAMING_SNAKE_CASE_ ) for cls_magic_number in cls.magic_numbers ) class lowerCAmelCase_ ( a__ ): @classmethod def snake_case_ ( cls, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> bool: return tarfile.is_tarfile(SCREAMING_SNAKE_CASE_ ) @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: def resolved(SCREAMING_SNAKE_CASE_ ) -> str: return os.path.realpath(os.path.abspath(SCREAMING_SNAKE_CASE_ ) ) def badpath(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ).startswith(SCREAMING_SNAKE_CASE_ ) def badlink(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> bool: # Links are interpreted relative to the directory containing the link UpperCamelCase : Any = resolved(os.path.join(SCREAMING_SNAKE_CASE_, os.path.dirname(info.name ) ) ) return badpath(info.linkname, base=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = resolved(SCREAMING_SNAKE_CASE_ ) for finfo in members: if badpath(finfo.name, SCREAMING_SNAKE_CASE_ ): logger.error(F"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): logger.error(F"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): logger.error(F"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: os.makedirs(SCREAMING_SNAKE_CASE_, exist_ok=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = tarfile.open(SCREAMING_SNAKE_CASE_ ) tar_file.extractall(SCREAMING_SNAKE_CASE_, members=TarExtractor.safemembers(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) tar_file.close() class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Dict = [b"\x1F\x8B"] @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: with gzip.open(SCREAMING_SNAKE_CASE_, 'rb' ) as gzip_file: with open(SCREAMING_SNAKE_CASE_, 'wb' ) as extracted_file: shutil.copyfileobj(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Optional[Any] = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def snake_case_ ( cls, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = b"" ) -> bool: if super().is_extractable(SCREAMING_SNAKE_CASE_, magic_number=SCREAMING_SNAKE_CASE_ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(SCREAMING_SNAKE_CASE_, 'rb' ) as fp: UpperCamelCase : Dict = _EndRecData(SCREAMING_SNAKE_CASE_ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: UpperCamelCase : str = fp.read(SCREAMING_SNAKE_CASE_ ) # CD is where we expect it to be if len(SCREAMING_SNAKE_CASE_ ) == sizeCentralDir: UpperCamelCase : int = struct.unpack(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: os.makedirs(SCREAMING_SNAKE_CASE_, exist_ok=SCREAMING_SNAKE_CASE_ ) with zipfile.ZipFile(SCREAMING_SNAKE_CASE_, 'r' ) as zip_file: zip_file.extractall(SCREAMING_SNAKE_CASE_ ) zip_file.close() class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : List[str] = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: with lzma.open(SCREAMING_SNAKE_CASE_ ) as compressed_file: with open(SCREAMING_SNAKE_CASE_, 'wb' ) as extracted_file: shutil.copyfileobj(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Optional[Any] = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: if not config.RARFILE_AVAILABLE: raise ImportError('Please pip install rarfile' ) import rarfile os.makedirs(SCREAMING_SNAKE_CASE_, exist_ok=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = rarfile.RarFile(SCREAMING_SNAKE_CASE_ ) rf.extractall(SCREAMING_SNAKE_CASE_ ) rf.close() class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Any = [b"\x28\xb5\x2F\xFD"] @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('Please pip install zstandard' ) import zstandard as zstd UpperCamelCase : Any = zstd.ZstdDecompressor() with open(SCREAMING_SNAKE_CASE_, 'rb' ) as ifh, open(SCREAMING_SNAKE_CASE_, 'wb' ) as ofh: dctx.copy_stream(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = [b"\x42\x5A\x68"] @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: with bza.open(SCREAMING_SNAKE_CASE_, 'rb' ) as compressed_file: with open(SCREAMING_SNAKE_CASE_, 'wb' ) as extracted_file: shutil.copyfileobj(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : List[str] = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: if not config.PY7ZR_AVAILABLE: raise ImportError('Please pip install py7zr' ) import pyazr os.makedirs(SCREAMING_SNAKE_CASE_, exist_ok=SCREAMING_SNAKE_CASE_ ) with pyazr.SevenZipFile(SCREAMING_SNAKE_CASE_, 'r' ) as archive: archive.extractall(SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Optional[Any] = [b"\x04\x22\x4D\x18"] @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: if not config.LZ4_AVAILABLE: raise ImportError('Please pip install lz4' ) import lza.frame with lza.frame.open(SCREAMING_SNAKE_CASE_, 'rb' ) as compressed_file: with open(SCREAMING_SNAKE_CASE_, 'wb' ) as extracted_file: shutil.copyfileobj(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) UpperCAmelCase__ : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def snake_case_ ( cls ) -> Dict: return max( len(SCREAMING_SNAKE_CASE_ ) for extractor in cls.extractors.values() if issubclass(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: try: return MagicNumberBaseExtractor.read_magic_number(SCREAMING_SNAKE_CASE_, magic_number_length=SCREAMING_SNAKE_CASE_ ) except OSError: return b"" @classmethod def snake_case_ ( cls, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = False ) -> bool: warnings.warn( 'Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'infer_extractor_format\' instead.', category=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : List[Any] = cls.infer_extractor_format(SCREAMING_SNAKE_CASE_ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def snake_case_ ( cls, SCREAMING_SNAKE_CASE_ ) -> str: # <Added version="2.4.0"/> UpperCamelCase : Union[str, Any] = cls._get_magic_number_max_length() UpperCamelCase : List[Any] = cls._read_magic_number(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(SCREAMING_SNAKE_CASE_, magic_number=SCREAMING_SNAKE_CASE_ ): return extractor_format @classmethod def snake_case_ ( cls, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = "deprecated", ) -> None: os.makedirs(os.path.dirname(SCREAMING_SNAKE_CASE_ ), exist_ok=SCREAMING_SNAKE_CASE_ ) # Prevent parallel extractions UpperCamelCase : List[Any] = str(Path(SCREAMING_SNAKE_CASE_ ).with_suffix('.lock' ) ) with FileLock(SCREAMING_SNAKE_CASE_ ): shutil.rmtree(SCREAMING_SNAKE_CASE_, ignore_errors=SCREAMING_SNAKE_CASE_ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): # passed as positional arg warnings.warn( 'Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'extractor_format\' instead.', category=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Union[str, Any] = extractor if extractor != 'deprecated' else extractor_format else: UpperCamelCase : List[Any] = cls.extractors[extractor_format] return extractor.extract(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else: warnings.warn( 'Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ' 'exception in 3.0.0.', category=SCREAMING_SNAKE_CASE_, ) for extractor in cls.extractors.values(): if extractor.is_extractable(SCREAMING_SNAKE_CASE_ ): return extractor.extract(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
40
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : int = IFPipeline UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case_ ( self ) -> str: return self._get_dummy_components() def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def snake_case_ ( self ) -> Optional[int]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda', reason='float16 requires CUDA' ) def snake_case_ ( self ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case_ ( self ) -> Dict: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case_ ( self ) -> Optional[int]: self._test_save_load_local() def snake_case_ ( self ) -> List[str]: self._test_inference_batch_single_identical( expected_max_diff=1e-2, ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def snake_case_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> List[Any]: # if UpperCamelCase : Union[str, Any] = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0', variant='fp16', torch_dtype=torch.floataa ) UpperCamelCase : str = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0', variant='fp16', torch_dtype=torch.floataa, text_encoder=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) UpperCamelCase , UpperCamelCase : List[str] = pipe_a.encode_prompt('anime turtle', device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCamelCase : int = None UpperCamelCase : Union[str, Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCamelCase : Optional[int] = IFImgaImgPipeline(**pipe_a.components ) UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCamelCase : Union[str, Any] = IFInpaintingPipeline(**pipe_a.components ) UpperCamelCase : Union[str, Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 UpperCamelCase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Tuple = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : int = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : Dict = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : List[Any] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = floats_tensor((1, 3, 256, 256), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
40
1
__UpperCAmelCase = [ '''Audio''', '''Array2D''', '''Array3D''', '''Array4D''', '''Array5D''', '''ClassLabel''', '''Features''', '''Sequence''', '''Value''', '''Image''', '''Translation''', '''TranslationVariableLanguages''', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
40
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def UpperCamelCase ( snake_case__ : Tuple="" ) -> str: UpperCamelCase : Union[str, Any] = tempfile.mkdtemp() return os.path.join(snake_case__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> int: UpperCamelCase : Union[str, Any] = torch.rand(12, dtype=torch.floataa ) - 0.5 UpperCamelCase : Union[str, Any] = AgentAudio(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) # Ensure that the file contains the same value as the original tensor UpperCamelCase , UpperCamelCase : Any = sf.read(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, torch.tensor(SCREAMING_SNAKE_CASE_ ), atol=1e-4 ) ) def snake_case_ ( self ) -> Any: UpperCamelCase : Optional[int] = torch.rand(12, dtype=torch.floataa ) - 0.5 UpperCamelCase : Union[str, Any] = get_new_path(suffix='.wav' ) sf.write(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, 1_6000 ) UpperCamelCase : int = AgentAudio(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) ) self.assertEqual(agent_type.to_string(), SCREAMING_SNAKE_CASE_ ) @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Any: UpperCamelCase : Dict = torch.randint(0, 256, (64, 64, 3) ) UpperCamelCase : Union[str, Any] = AgentImage(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type._tensor, atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw(), Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' UpperCamelCase : Optional[int] = Image.open(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = AgentImage(SCREAMING_SNAKE_CASE_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ) -> int: UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' UpperCamelCase : Union[str, Any] = Image.open(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = AgentImage(SCREAMING_SNAKE_CASE_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = 'Hey!' UpperCamelCase : Dict = AgentText(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_string() ) self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_raw() ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
40
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Dict: UpperCamelCase : List[str] = tempfile.mkdtemp() UpperCamelCase : str = BlipImageProcessor() UpperCamelCase : str = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel' ) UpperCamelCase : Dict = BlipProcessor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) def snake_case_ ( self, **SCREAMING_SNAKE_CASE_ ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname, **SCREAMING_SNAKE_CASE_ ).tokenizer def snake_case_ ( self, **SCREAMING_SNAKE_CASE_ ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname, **SCREAMING_SNAKE_CASE_ ).image_processor def snake_case_ ( self ) -> Any: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self ) -> Dict: UpperCamelCase : Union[str, Any] = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] UpperCamelCase : Union[str, Any] = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_, 0, -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Optional[Any] = BlipProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase : Dict = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)' ) UpperCamelCase : Any = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_, padding_value=1.0 ) UpperCamelCase : Optional[int] = BlipProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=SCREAMING_SNAKE_CASE_, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: UpperCamelCase : List[Any] = self.get_image_processor() UpperCamelCase : List[str] = self.get_tokenizer() UpperCamelCase : Tuple = BlipProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = self.prepare_image_inputs() UpperCamelCase : List[str] = image_processor(SCREAMING_SNAKE_CASE_, return_tensors='np' ) UpperCamelCase : int = processor(images=SCREAMING_SNAKE_CASE_, return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[Any] = self.get_image_processor() UpperCamelCase : List[str] = self.get_tokenizer() UpperCamelCase : List[str] = BlipProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = 'lower newer' UpperCamelCase : Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = tokenizer(SCREAMING_SNAKE_CASE_, return_token_type_ids=SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = self.get_image_processor() UpperCamelCase : str = self.get_tokenizer() UpperCamelCase : Dict = BlipProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = 'lower newer' UpperCamelCase : List[Any] = self.prepare_image_inputs() UpperCamelCase : List[Any] = processor(text=SCREAMING_SNAKE_CASE_, images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ), ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def snake_case_ ( self ) -> int: UpperCamelCase : Union[str, Any] = self.get_image_processor() UpperCamelCase : str = self.get_tokenizer() UpperCamelCase : List[Any] = BlipProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase : List[str] = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : List[str] = self.get_image_processor() UpperCamelCase : List[Any] = self.get_tokenizer() UpperCamelCase : List[str] = BlipProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = 'lower newer' UpperCamelCase : str = self.prepare_image_inputs() UpperCamelCase : List[Any] = processor(text=SCREAMING_SNAKE_CASE_, images=SCREAMING_SNAKE_CASE_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ), ['pixel_values', 'input_ids', 'attention_mask'] )
40
def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : Any ) -> Union[str, Any]: UpperCamelCase : int = [1] for i in range(2 , snake_case__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCamelCase : List[Any] = [] UpperCamelCase : List[Any] = list(range(snake_case__ ) ) # Find permutation while factorials: UpperCamelCase : int = factorials.pop() UpperCamelCase , UpperCamelCase : int = divmod(snake_case__ , snake_case__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
40
1
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __UpperCAmelCase = 256_047 __UpperCAmelCase = 256_145 @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : List[str] = NllbTokenizer UpperCAmelCase__ : List[str] = NllbTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : Optional[Any] = True UpperCAmelCase__ : Union[str, Any] = {} def snake_case_ ( self ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase : str = NllbTokenizer(SCREAMING_SNAKE_CASE_, keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self ) -> int: UpperCamelCase : int = NllbTokenizer(SCREAMING_SNAKE_CASE_, keep_accents=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_, ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) UpperCamelCase : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_, [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ], ) UpperCamelCase : Optional[int] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ], ) UpperCamelCase : int = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_, [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ], ) def snake_case_ ( self ) -> Dict: UpperCamelCase : Tuple = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase : Any = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = tempfile.mkdtemp() UpperCamelCase : Optional[int] = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) UpperCamelCase : Optional[Any] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way UpperCamelCase : List[str] = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True UpperCamelCase : Tuple = tempfile.mkdtemp() UpperCamelCase : int = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_, legacy_format=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way UpperCamelCase : str = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False UpperCamelCase : Optional[Any] = tempfile.mkdtemp() UpperCamelCase : Optional[Any] = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_, legacy_format=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCamelCase : Union[str, Any] = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @require_torch def snake_case_ ( self ) -> Optional[Any]: if not self.test_seqaseq: return UpperCamelCase : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Longer text that will definitely require truncation. UpperCamelCase : List[str] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] UpperCamelCase : Optional[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: UpperCamelCase : List[str] = tokenizer.prepare_seqaseq_batch( src_texts=SCREAMING_SNAKE_CASE_, tgt_texts=SCREAMING_SNAKE_CASE_, max_length=3, max_target_length=10, return_tensors='pt', src_lang='eng_Latn', tgt_lang='ron_Latn', ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.labels.shape[1], 10 ) # max_target_length will default to max_length if not specified UpperCamelCase : Any = tokenizer.prepare_seqaseq_batch( SCREAMING_SNAKE_CASE_, tgt_texts=SCREAMING_SNAKE_CASE_, max_length=3, return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.labels.shape[1], 3 ) UpperCamelCase : Optional[int] = tokenizer.prepare_seqaseq_batch( src_texts=SCREAMING_SNAKE_CASE_, max_length=3, max_target_length=10, return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1], 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3 ) self.assertNotIn('decoder_input_ids', SCREAMING_SNAKE_CASE_ ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def snake_case_ ( self ) -> Tuple: pass def snake_case_ ( self ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase : int = [AddedToken('<special>', lstrip=SCREAMING_SNAKE_CASE_ )] UpperCamelCase : List[str] = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_, additional_special_tokens=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = tokenizer_r.encode('Hey this is a <special> token' ) UpperCamelCase : Optional[int] = tokenizer_r.encode('<special>', add_special_tokens=SCREAMING_SNAKE_CASE_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_, additional_special_tokens=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Optional[int] = self.tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_, additional_special_tokens=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = tokenizer_p.encode('Hey this is a <special> token' ) UpperCamelCase : Any = tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase__ : Any = "facebook/nllb-200-distilled-600M" UpperCAmelCase__ : Any = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] UpperCAmelCase__ : int = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] UpperCAmelCase__ : List[str] = [ 25_6047, 1_6297, 13_4408, 8165, 24_8066, 1_4734, 950, 1135, 10_5721, 3573, 83, 2_7352, 108, 4_9486, 2, ] @classmethod def snake_case_ ( cls ) -> str: UpperCamelCase : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name, src_lang='eng_Latn', tgt_lang='ron_Latn' ) UpperCamelCase : List[Any] = 1 return cls def snake_case_ ( self ) -> Optional[int]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'], 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'], 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'], 25_6057 ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Any = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> List[Any]: self.assertIn(SCREAMING_SNAKE_CASE_, self.tokenizer.all_special_ids ) # fmt: off UpperCamelCase : Optional[Any] = [RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on UpperCamelCase : Optional[Any] = self.tokenizer.decode(SCREAMING_SNAKE_CASE_, skip_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertNotIn(self.tokenizer.eos_token, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : Union[str, Any] = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0], SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = 10 UpperCamelCase : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertEqual(ids[-1], 2 ) self.assertEqual(ids[0], SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ), [25_6203, 3] ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Any = tempfile.mkdtemp() UpperCamelCase : Optional[int] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = NllbTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, SCREAMING_SNAKE_CASE_ ) @require_torch def snake_case_ ( self ) -> List[str]: UpperCamelCase : Optional[Any] = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=len(self.expected_src_tokens ), return_tensors='pt', ) UpperCamelCase : List[str] = shift_tokens_right( batch['labels'], self.tokenizer.pad_token_id, self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 15), batch.input_ids.shape ) self.assertEqual((2, 15), batch.attention_mask.shape ) UpperCamelCase : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Tuple = self.tokenizer(self.src_text, padding=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=3, return_tensors='pt' ) UpperCamelCase : Tuple = self.tokenizer( text_target=self.tgt_text, padding=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=10, return_tensors='pt' ) UpperCamelCase : Dict = targets['input_ids'] UpperCamelCase : List[str] = shift_tokens_right( SCREAMING_SNAKE_CASE_, self.tokenizer.pad_token_id, decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang], ) self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.decoder_input_ids.shape[1], 10 ) @require_torch def snake_case_ ( self ) -> Tuple: UpperCamelCase : List[Any] = self.tokenizer._build_translation_inputs( 'A test', return_tensors='pt', src_lang='eng_Latn', tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, }, ) @require_torch def snake_case_ ( self ) -> str: UpperCamelCase : Any = True UpperCamelCase : int = self.tokenizer( 'UN Chief says there is no military solution in Syria', src_lang='eng_Latn', tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids, [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) UpperCamelCase : int = False UpperCamelCase : Dict = self.tokenizer( 'UN Chief says there is no military solution in Syria', src_lang='eng_Latn', tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids, [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
40
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase_ ( a__ ): def snake_case_ ( self ) -> Tuple: UpperCamelCase : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'width_multiplier' ) ) class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_="swish", SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=0.25, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, ) -> Any: UpperCamelCase : int = parent UpperCamelCase : int = batch_size UpperCamelCase : List[Any] = image_size UpperCamelCase : List[str] = patch_size UpperCamelCase : Optional[int] = num_channels UpperCamelCase : List[str] = make_divisible(512 * width_multiplier, divisor=8 ) UpperCamelCase : List[str] = hidden_act UpperCamelCase : Optional[int] = conv_kernel_size UpperCamelCase : List[str] = output_stride UpperCamelCase : Union[str, Any] = classifier_dropout_prob UpperCamelCase : List[Any] = use_labels UpperCamelCase : Any = is_training UpperCamelCase : int = num_labels UpperCamelCase : List[Any] = initializer_range UpperCamelCase : Tuple = scope UpperCamelCase : List[str] = width_multiplier UpperCamelCase : Any = ffn_dropout UpperCamelCase : List[Any] = attn_dropout def snake_case_ ( self ) -> int: UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : List[str] = None UpperCamelCase : int = None if self.use_labels: UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels ) UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCamelCase : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case_ ( self ) -> int: return MobileViTVaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : Any = MobileViTVaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : Optional[int] = self.num_labels UpperCamelCase : Tuple = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : Any = self.num_labels UpperCamelCase : Optional[Any] = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = config_and_inputs UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Tuple = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase__ : Any = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Optional[Any] = False def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Dict = MobileViTVaModelTester(self ) UpperCamelCase : Optional[Any] = MobileViTVaConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def snake_case_ ( self ) -> int: pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def snake_case_ ( self ) -> str: pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case_ ( self ) -> Any: pass def snake_case_ ( self ) -> List[str]: UpperCamelCase , UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : str = [*signature.parameters.keys()] UpperCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Tuple: def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Tuple = outputs.hidden_states UpperCamelCase : Dict = 5 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCamelCase : Any = 2 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2 ) UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : Optional[int] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> str: UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) @slow def snake_case_ ( self ) -> Optional[Any]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : str = MobileViTVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> Tuple: UpperCamelCase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> str: return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.default_image_processor UpperCamelCase : Any = prepare_img() UpperCamelCase : Tuple = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : List[str] = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Union[str, Any] = prepare_img() UpperCamelCase : Any = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = outputs.logits # verify the logits UpperCamelCase : Dict = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.tensor( [ [[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]], [[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]], [[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]], ], device=SCREAMING_SNAKE_CASE_, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : str = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Optional[int] = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Tuple = prepare_img() UpperCamelCase : int = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : str = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = outputs.logits.detach().cpu() UpperCamelCase : int = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_, target_sizes=[(50, 60)] ) UpperCamelCase : Optional[int] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ )
40
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
40
def UpperCamelCase ( snake_case__ : Optional[int] ) -> str: UpperCamelCase : List[str] = [0] * len(snake_case__ ) UpperCamelCase : int = [] UpperCamelCase : Optional[int] = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: UpperCamelCase : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: UpperCamelCase : Tuple = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph __UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
40
1
from __future__ import annotations def UpperCamelCase ( snake_case__ : list[int] ) -> int: if not nums: return 0 UpperCamelCase : Any = nums[0] UpperCamelCase : List[Any] = 0 for num in nums[1:]: UpperCamelCase , UpperCamelCase : Any = ( max_excluding + num, max(snake_case__ , snake_case__ ), ) return max(snake_case__ , snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
40
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
40
1
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def UpperCamelCase ( snake_case__ : Tuple ) -> Dict: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def UpperCamelCase ( ) -> Dict: with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" UpperCamelCase : Tuple = [1, 2, 3] with pytest.raises(snake_case__ ): with parallel_backend('unsupported backend' ): map_nested(snake_case__ , snake_case__ , num_proc=2 ) with pytest.raises(snake_case__ ): with parallel_backend('unsupported backend' ): map_nested(snake_case__ , snake_case__ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc' , [2, -1] ) def UpperCamelCase ( snake_case__ : int ) -> Any: UpperCamelCase : Dict = [1, 2] UpperCamelCase : List[str] = {'a': 1, 'b': 2} UpperCamelCase : List[str] = {'a': [1, 2], 'b': [3, 4]} UpperCamelCase : Optional[Any] = {'a': {'1': 1}, 'b': 2} UpperCamelCase : Union[str, Any] = {'a': 1, 'b': 2, 'c': 3, 'd': 4} UpperCamelCase : Any = [2, 3] UpperCamelCase : Optional[Any] = {'a': 2, 'b': 3} UpperCamelCase : Any = {'a': [2, 3], 'b': [4, 5]} UpperCamelCase : List[Any] = {'a': {'1': 2}, 'b': 3} UpperCamelCase : str = {'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(snake_case__ , snake_case__ , num_proc=snake_case__ ) == expected_map_nested_sa assert map_nested(snake_case__ , snake_case__ , num_proc=snake_case__ ) == expected_map_nested_sa assert map_nested(snake_case__ , snake_case__ , num_proc=snake_case__ ) == expected_map_nested_sa assert map_nested(snake_case__ , snake_case__ , num_proc=snake_case__ ) == expected_map_nested_sa assert map_nested(snake_case__ , snake_case__ , num_proc=snake_case__ ) == expected_map_nested_sa
40
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
1
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=[32, 64, 128], SCREAMING_SNAKE_CASE_=[1, 2, 1], SCREAMING_SNAKE_CASE_=[2, 2, 4], SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=2.0, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-5, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=8, SCREAMING_SNAKE_CASE_=["stage1", "stage2"], SCREAMING_SNAKE_CASE_=[1, 2], ) -> int: UpperCamelCase : Optional[int] = parent UpperCamelCase : str = batch_size UpperCamelCase : Optional[Any] = image_size UpperCamelCase : Any = patch_size UpperCamelCase : Optional[Any] = num_channels UpperCamelCase : Optional[int] = embed_dim UpperCamelCase : Any = hidden_sizes UpperCamelCase : Union[str, Any] = depths UpperCamelCase : Dict = num_heads UpperCamelCase : Optional[int] = window_size UpperCamelCase : Optional[Any] = mlp_ratio UpperCamelCase : Any = qkv_bias UpperCamelCase : int = hidden_dropout_prob UpperCamelCase : Dict = attention_probs_dropout_prob UpperCamelCase : List[Any] = drop_path_rate UpperCamelCase : Dict = hidden_act UpperCamelCase : Optional[int] = use_absolute_embeddings UpperCamelCase : List[Any] = patch_norm UpperCamelCase : List[str] = layer_norm_eps UpperCamelCase : Dict = initializer_range UpperCamelCase : int = is_training UpperCamelCase : Any = scope UpperCamelCase : Any = use_labels UpperCamelCase : Dict = type_sequence_label_size UpperCamelCase : int = encoder_stride UpperCamelCase : Union[str, Any] = out_features UpperCamelCase : Dict = out_indices def snake_case_ ( self ) -> int: UpperCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : Any = None if self.use_labels: UpperCamelCase : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase : Optional[int] = self.get_config() return config, pixel_values, labels def snake_case_ ( self ) -> Tuple: return FocalNetConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, hidden_sizes=self.hidden_sizes, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, out_features=self.out_features, out_indices=self.out_indices, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: UpperCamelCase : int = FocalNetModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : str = FocalNetBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCamelCase : Dict = None UpperCamelCase : Tuple = FocalNetBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCamelCase : Any = FocalNetForMaskedImageModeling(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase : str = 1 UpperCamelCase : List[Any] = FocalNetForMaskedImageModeling(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase : List[str] = self.type_sequence_label_size UpperCamelCase : Union[str, Any] = FocalNetForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase : Any = 1 UpperCamelCase : Optional[Any] = FocalNetForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase : int = config_and_inputs UpperCamelCase : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Any = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCAmelCase__ : Optional[int] = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : str = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Optional[int] = False def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Union[str, Any] = FocalNetModelTester(self ) UpperCamelCase : Optional[int] = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, embed_dim=37, has_text_modality=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case_ ( self ) -> Optional[Any]: return def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def snake_case_ ( self ) -> Optional[Any]: pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def snake_case_ ( self ) -> Tuple: pass def snake_case_ ( self ) -> Dict: UpperCamelCase , UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCamelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_, nn.Linear ) ) def snake_case_ ( self ) -> str: UpperCamelCase , UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : Tuple = [*signature.parameters.keys()] UpperCamelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int: UpperCamelCase : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase : Union[str, Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Tuple = outputs.hidden_states UpperCamelCase : Optional[int] = getattr( self.model_tester, 'expected_num_hidden_layers', len(self.model_tester.depths ) + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) # FocalNet has a different seq_length UpperCamelCase : List[Any] = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [num_patches, self.model_tester.embed_dim], ) UpperCamelCase : str = outputs.reshaped_hidden_states self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : int = reshaped_hidden_states[0].shape UpperCamelCase : Dict = ( reshaped_hidden_states[0].view(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, height * width ).permute(0, 2, 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ), [num_patches, self.model_tester.embed_dim], ) def snake_case_ ( self ) -> int: UpperCamelCase , UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCamelCase : Optional[Any] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : Optional[int] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase , UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : Any = 3 UpperCamelCase : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase : Dict = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCamelCase : List[str] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : int = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, (padded_height, padded_width) ) @slow def snake_case_ ( self ) -> List[Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Tuple = FocalNetModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : List[str] = _config_zero_init(SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: UpperCamelCase : Any = model_class(config=SCREAMING_SNAKE_CASE_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=F"""Parameter {name} of model {model_class} seems not properly initialized""", ) @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> Dict: # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def snake_case_ ( self ) -> Dict: UpperCamelCase : str = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = self.default_image_processor UpperCamelCase : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCamelCase : Optional[int] = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Dict = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase : int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item(), 281 ) @require_torch class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : List[Any] = (FocalNetBackbone,) if is_torch_available() else () UpperCAmelCase__ : str = FocalNetConfig UpperCAmelCase__ : Any = False def snake_case_ ( self ) -> Any: UpperCamelCase : Any = FocalNetModelTester(self )
40
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
1
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets __UpperCAmelCase = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' __UpperCAmelCase = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' __UpperCAmelCase = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def UpperCamelCase ( snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ) -> Optional[int]: return float((preds == labels).mean() ) def UpperCamelCase ( snake_case__ : str , snake_case__ : int ) -> str: UpperCamelCase : str = simple_accuracy(snake_case__ , snake_case__ ) UpperCamelCase : List[Any] = float(fa_score(y_true=snake_case__ , y_pred=snake_case__ ) ) return { "accuracy": acc, "f1": fa, } def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Union[str, Any] ) -> Union[str, Any]: UpperCamelCase : List[Any] = float(pearsonr(snake_case__ , snake_case__ )[0] ) UpperCamelCase : Optional[Any] = float(spearmanr(snake_case__ , snake_case__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def snake_case_ ( self ) -> int: if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ), codebase_urls=[], reference_urls=[], format='numpy', ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> str: if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )} elif self.config_name == "stsb": return pearson_and_spearman(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
40
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''ViTFeatureExtractor'''] __UpperCAmelCase = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
1
from __future__ import annotations __UpperCAmelCase = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] __UpperCAmelCase = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def UpperCamelCase ( snake_case__ : list[float] ) -> list[float]: UpperCamelCase : Optional[int] = [] UpperCamelCase : Union[str, Any] = len(snake_case__ ) for i in range(snake_case__ ): UpperCamelCase : float = -1 for j in range(i + 1 , snake_case__ ): if arr[i] < arr[j]: UpperCamelCase : Optional[Any] = arr[j] break result.append(snake_case__ ) return result def UpperCamelCase ( snake_case__ : list[float] ) -> list[float]: UpperCamelCase : List[Any] = [] for i, outer in enumerate(snake_case__ ): UpperCamelCase : float = -1 for inner in arr[i + 1 :]: if outer < inner: UpperCamelCase : Optional[Any] = inner break result.append(snake_case__ ) return result def UpperCamelCase ( snake_case__ : list[float] ) -> list[float]: UpperCamelCase : Union[str, Any] = len(snake_case__ ) UpperCamelCase : list[float] = [] UpperCamelCase : list[float] = [-1] * arr_size for index in reversed(range(snake_case__ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: UpperCamelCase : Tuple = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __UpperCAmelCase = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
40
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __UpperCAmelCase = random.Random() def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : str=1.0 , snake_case__ : int=None , snake_case__ : Union[str, Any]=None ) -> Any: if rng is None: UpperCamelCase : int = global_rng UpperCamelCase : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=2000, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1_6000, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, ) -> List[str]: UpperCamelCase : Dict = parent UpperCamelCase : Dict = batch_size UpperCamelCase : Any = min_seq_length UpperCamelCase : Optional[int] = max_seq_length UpperCamelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase : Tuple = feature_size UpperCamelCase : Any = padding_value UpperCamelCase : Tuple = sampling_rate UpperCamelCase : Optional[Any] = return_attention_mask UpperCamelCase : Optional[Any] = do_normalize def snake_case_ ( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case_ ( self, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False ) -> Union[str, Any]: def _flatten(SCREAMING_SNAKE_CASE_ ): return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) ) if equal_length: UpperCamelCase : List[str] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCamelCase : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase : str = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] return speech_inputs class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Any = WavaVecaFeatureExtractor def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Tuple = WavaVecaFeatureExtractionTester(self ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_, axis=0 ) - 1 ) < 1e-3 ) ) def snake_case_ ( self ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase : Any = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Dict = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase : List[Any] = feat_extract(speech_inputs[0], return_tensors='np' ).input_values UpperCamelCase : Union[str, Any] = feat_extract(np_speech_inputs[0], return_tensors='np' ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # Test batched UpperCamelCase : List[Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values UpperCamelCase : int = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase : Optional[int] = np.asarray(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values UpperCamelCase : Dict = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) def snake_case_ ( self ) -> int: UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Dict = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : str = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase : Any = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = feat_extract(SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, return_tensors='np' ) UpperCamelCase : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Tuple = range(800, 1400, 200 ) UpperCamelCase : str = [floats_list((1, x) )[0] for x in lengths] UpperCamelCase : int = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase : List[str] = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = feat_extract(SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : int = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='max_length', return_tensors='np' ) UpperCamelCase : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Any = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='longest', return_tensors='np' ) UpperCamelCase : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) UpperCamelCase : str = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Any = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=2000, padding='longest', return_tensors='np' ) UpperCamelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def snake_case_ ( self ) -> str: import torch UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Dict = np.random.rand(100 ).astype(np.floataa ) UpperCamelCase : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase : Union[str, Any] = feature_extractor.pad([{'input_values': inputs}], return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCamelCase : Any = feature_extractor.pad([{'input_values': inputs}], return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def snake_case_ ( self ) -> Tuple: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: UpperCamelCase : int = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask, config.feat_extract_norm == 'layer' )
40
1
def UpperCamelCase ( snake_case__ : str ) -> str: if not all(char in '01' for char in bin_string ): raise ValueError('Non-binary value was passed to the function' ) if not bin_string: raise ValueError('Empty string was passed to the function' ) UpperCamelCase : str = '' while len(snake_case__ ) % 3 != 0: UpperCamelCase : Any = '0' + bin_string UpperCamelCase : List[Any] = [ bin_string[index : index + 3] for index in range(len(snake_case__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: UpperCamelCase : int = 0 for index, val in enumerate(snake_case__ ): oct_val += int(2 ** (2 - index) * int(snake_case__ ) ) oct_string += str(snake_case__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
40
def UpperCamelCase ( snake_case__ : int ) -> str: if isinstance(snake_case__ , snake_case__ ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(snake_case__ , snake_case__ ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" UpperCamelCase : int = False if num < 0: UpperCamelCase : Optional[Any] = True UpperCamelCase : Tuple = -num UpperCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(snake_case__ ) for e in binary ) return "0b" + "".join(str(snake_case__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
40
1
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def UpperCamelCase ( ) -> Optional[Any]: UpperCamelCase : Union[str, Any] = torch.nn.Linear(2 , 4 ) UpperCamelCase : Optional[int] = torch.optim.AdamW(model.parameters() , lr=1.0 ) UpperCamelCase : str = torch.optim.lr_scheduler.OneCycleLR(snake_case__ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) UpperCamelCase : Dict = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) UpperCamelCase : Optional[Any] = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def UpperCamelCase ( snake_case__ : List[str] ) -> Any: return (model.weight.abs().sum() + model.bias.abs().sum()).item() def UpperCamelCase ( snake_case__ : List[str] ) -> Union[str, Any]: UpperCamelCase : Tuple = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(snake_case__ ) class lowerCAmelCase_ ( a__ ): @require_cuda def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[Any] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = Accelerator(cpu=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Any: UpperCamelCase : Optional[int] = Accelerator() UpperCamelCase : Any = GradientState() assert state.num_steps == 1 UpperCamelCase : Union[str, Any] = 4 assert state.num_steps == 4 assert state.sync_gradients is True UpperCamelCase : Dict = False assert state.sync_gradients is False GradientState._reset_state() def snake_case_ ( self ) -> Dict: UpperCamelCase : Optional[Any] = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[int] = create_components() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : int = accelerator.prepare(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def snake_case_ ( self ) -> str: UpperCamelCase : Any = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[int] = create_components() accelerator.prepare(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def snake_case_ ( self ) -> List[str]: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ): pass with patch('torch.cuda.set_device', SCREAMING_SNAKE_CASE_ ), patch_environment(ACCELERATE_TORCH_DEVICE='cuda:64' ): UpperCamelCase : int = Accelerator() self.assertEqual(str(accelerator.state.device ), 'cuda:64' ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : int = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = create_components() accelerator.prepare(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = get_signature(SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # make sure random weights don't match load_random_weights(SCREAMING_SNAKE_CASE_ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE_ ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(SCREAMING_SNAKE_CASE_ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE_ ) ) < 1e-3 ) def snake_case_ ( self ) -> Any: UpperCamelCase : int = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = create_components() accelerator.prepare(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = get_signature(SCREAMING_SNAKE_CASE_ ) # saving hook def save_config(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = {'class_name': models[0].__class__.__name__} with open(os.path.join(SCREAMING_SNAKE_CASE_, 'data.json' ), 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # loading hook def load_config(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): with open(os.path.join(SCREAMING_SNAKE_CASE_, 'data.json' ), 'r' ) as f: UpperCamelCase : str = json.load(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = config['class_name'] UpperCamelCase : Union[str, Any] = accelerator.register_save_state_pre_hook(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = accelerator.register_load_state_pre_hook(SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # make sure random weights don't match with hooks load_random_weights(SCREAMING_SNAKE_CASE_ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE_ ) ) > 1e-3 ) # random class name to verify correct one is loaded UpperCamelCase : List[Any] = 'random' # make sure loaded weights match with hooks accelerator.load_state(SCREAMING_SNAKE_CASE_ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE_ ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # make sure random weights don't match with hooks removed load_random_weights(SCREAMING_SNAKE_CASE_ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE_ ) ) > 1e-3 ) # random class name to verify correct one is loaded UpperCamelCase : List[str] = 'random' # make sure loaded weights match with hooks removed accelerator.load_state(SCREAMING_SNAKE_CASE_ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE_ ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : str = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = create_components() UpperCamelCase : Optional[int] = None # This should work UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = accelerator.prepare( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertTrue(dummy_obj is None ) def snake_case_ ( self ) -> str: UpperCamelCase : Optional[int] = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Dict = create_components() UpperCamelCase : Union[str, Any] = [1, 2, 3] # This should work UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = accelerator.prepare( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE_, '_is_accelerate_prepared', SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, 'Dummy object should have `_is_accelerate_prepared` set to `True`', ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE_, '_is_accelerate_prepared', SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, 'Model is missing `_is_accelerator_prepared` or is set to `False`', ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE_, '_is_accelerate_prepared', SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, 'Optimizer is missing `_is_accelerator_prepared` or is set to `False`', ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE_, '_is_accelerate_prepared', SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, 'Scheduler is missing `_is_accelerator_prepared` or is set to `False`', ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE_, '_is_accelerate_prepared', SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, 'Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`', ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE_, '_is_accelerate_prepared', SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, 'Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`', ) @slow @require_bnb def snake_case_ ( self ) -> List[Any]: from transformers import AutoModelForCausalLM UpperCamelCase : str = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m', load_in_abit=SCREAMING_SNAKE_CASE_, device_map={'': 0}, ) UpperCamelCase : Optional[int] = Accelerator() # This should work UpperCamelCase : Tuple = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) @slow @require_bnb def snake_case_ ( self ) -> Any: from transformers import AutoModelForCausalLM UpperCamelCase : Dict = Accelerator() with init_empty_weights(): UpperCamelCase : int = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m', ) model.tie_weights() UpperCamelCase : List[str] = infer_auto_device_map(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = 'cpu' UpperCamelCase : str = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m', device_map=SCREAMING_SNAKE_CASE_, load_in_abit=SCREAMING_SNAKE_CASE_, llm_inta_enable_fpaa_cpu_offload=SCREAMING_SNAKE_CASE_ ) # This should not work and get value error with self.assertRaises(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) @slow @require_bnb @require_multi_gpu def snake_case_ ( self ) -> Union[str, Any]: from transformers import AutoModelForCausalLM UpperCamelCase : Tuple = {'distributed_type': DistributedType.MULTI_GPU} with init_empty_weights(): UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m', ) model.tie_weights() UpperCamelCase : Dict = infer_auto_device_map(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = 1 UpperCamelCase : str = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m', load_in_abit=SCREAMING_SNAKE_CASE_, device_map=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Optional[int] = Accelerator() # This should not work and get value error with self.assertRaises(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def snake_case_ ( self ) -> int: from transformers import AutoModelForCausalLM with init_empty_weights(): UpperCamelCase : Tuple = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m', ) UpperCamelCase : str = infer_auto_device_map(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = 1 UpperCamelCase : Tuple = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m', load_in_abit=SCREAMING_SNAKE_CASE_, device_map=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Optional[Any] = Accelerator() # This should work UpperCamelCase : List[Any] = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) @require_cuda def snake_case_ ( self ) -> int: UpperCamelCase : Tuple = torch.nn.Linear(10, 10 ) UpperCamelCase : Any = torch.optim.SGD(model.parameters(), lr=0.01 ) UpperCamelCase : Union[str, Any] = Accelerator(cpu=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = accelerator.prepare(SCREAMING_SNAKE_CASE_ )
40
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __UpperCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : List[str]=None , snake_case__ : Union[str, Any]=None ) -> Optional[Any]: # Recurse if needed if "." in tensor_name: UpperCamelCase : List[Any] = tensor_name.split('.' ) for split in splits[:-1]: UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) UpperCamelCase : Dict = new_module UpperCamelCase : int = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) UpperCamelCase : Union[str, Any] = tensor_name in module._buffers UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) UpperCamelCase : Optional[Any] = False UpperCamelCase : str = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase : List[str] = False UpperCamelCase : Tuple = False else: UpperCamelCase : Union[str, Any] = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) UpperCamelCase : Optional[int] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase : List[Any] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase : Dict = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): UpperCamelCase : List[Any] = value.to('cpu' ) if value.dtype == torch.inta: UpperCamelCase : Tuple = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: UpperCamelCase : Union[str, Any] = torch.tensor(snake_case__ , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , snake_case__ ) and fpaa_statistics is None: UpperCamelCase : Union[str, Any] = new_value.T UpperCamelCase : Union[str, Any] = old_value.__dict__ if is_abit: UpperCamelCase : Optional[Any] = bnb.nn.IntaParams(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) elif is_abit: UpperCamelCase : Optional[Any] = bnb.nn.Paramsabit(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) UpperCamelCase : Dict = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(snake_case__ ) ) else: if value is None: UpperCamelCase : Union[str, Any] = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): UpperCamelCase : List[str] = value.to(snake_case__ ) else: UpperCamelCase : Tuple = torch.tensor(snake_case__ , device=snake_case__ ) if is_buffer: UpperCamelCase : Optional[int] = new_value else: UpperCamelCase : Tuple = nn.Parameter(snake_case__ , requires_grad=old_value.requires_grad ) UpperCamelCase : List[str] = new_value def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Any=None , snake_case__ : Optional[int]=None , snake_case__ : Union[str, Any]=None , snake_case__ : List[str]=False ) -> int: for name, module in model.named_children(): if current_key_name is None: UpperCamelCase : str = [] current_key_name.append(snake_case__ ) if (isinstance(snake_case__ , nn.Linear ) or isinstance(snake_case__ , snake_case__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(snake_case__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(snake_case__ , snake_case__ ): UpperCamelCase , UpperCamelCase : Tuple = module.weight.shape else: UpperCamelCase : Any = module.in_features UpperCamelCase : List[str] = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase : Any = bnb.nn.LinearabitLt( snake_case__ , snake_case__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) UpperCamelCase : Optional[int] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase : str = bnb.nn.Linearabit( snake_case__ , snake_case__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) UpperCamelCase : int = True # Store the module class in case we need to transpose the weight later UpperCamelCase : Any = type(snake_case__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(snake_case__ ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase : Optional[int] = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_been_replaced=snake_case__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]=None , snake_case__ : Dict=None ) -> Optional[Any]: UpperCamelCase : Union[str, Any] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase : List[str] = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCamelCase ( *snake_case__ : Tuple , **snake_case__ : List[str] ) -> List[str]: warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , snake_case__ , ) return replace_with_bnb_linear(*snake_case__ , **snake_case__ ) def UpperCamelCase ( *snake_case__ : Dict , **snake_case__ : str ) -> Tuple: warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , snake_case__ , ) return set_module_quantized_tensor_to_device(*snake_case__ , **snake_case__ ) def UpperCamelCase ( snake_case__ : Tuple ) -> List[Any]: UpperCamelCase : int = deepcopy(snake_case__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase : List[str] = find_tied_parameters(snake_case__ ) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__ ): UpperCamelCase : Tuple = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCamelCase : Union[str, Any] = sum(snake_case__ , [] ) UpperCamelCase : Optional[int] = len(snake_case__ ) > 0 # Check if it is a base model UpperCamelCase : str = not hasattr(snake_case__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase : List[Any] = list(model.named_children() ) UpperCamelCase : Optional[Any] = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase : Union[str, Any] = set(snake_case__ ) - set(snake_case__ ) UpperCamelCase : Optional[int] = list(set(snake_case__ ) ) + list(snake_case__ ) # remove ".weight" from the keys UpperCamelCase : Tuple = ['.weight', '.bias'] UpperCamelCase : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase : Optional[int] = name.replace(snake_case__ , '' ) filtered_module_names.append(snake_case__ ) return filtered_module_names
40
1
from __future__ import annotations import math class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_ ) -> None: UpperCamelCase : str = size # approximate the overall size of segment tree with given value UpperCamelCase : Dict = [0 for i in range(0, 4 * size )] # create array to store lazy update UpperCamelCase : Dict = [0 for i in range(0, 4 * size )] UpperCamelCase : List[str] = [0 for i in range(0, 4 * size )] # flag for lazy update def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int: return idx * 2 def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int: return idx * 2 + 1 def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: if left_element == right_element: UpperCamelCase : Dict = a[left_element - 1] else: UpperCamelCase : str = (left_element + right_element) // 2 self.build(self.left(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.build(self.right(SCREAMING_SNAKE_CASE_ ), mid + 1, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = max( self.segment_tree[self.left(SCREAMING_SNAKE_CASE_ )], self.segment_tree[self.right(SCREAMING_SNAKE_CASE_ )] ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> bool: if self.flag[idx] is True: UpperCamelCase : Union[str, Any] = self.lazy[idx] UpperCamelCase : str = False if left_element != right_element: UpperCamelCase : int = self.lazy[idx] UpperCamelCase : Tuple = self.lazy[idx] UpperCamelCase : Optional[Any] = True UpperCamelCase : Tuple = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCamelCase : List[str] = val if left_element != right_element: UpperCamelCase : Optional[int] = val UpperCamelCase : Union[str, Any] = val UpperCamelCase : Optional[int] = True UpperCamelCase : List[Any] = True return True UpperCamelCase : Union[str, Any] = (left_element + right_element) // 2 self.update(self.left(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.update(self.right(SCREAMING_SNAKE_CASE_ ), mid + 1, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = max( self.segment_tree[self.left(SCREAMING_SNAKE_CASE_ )], self.segment_tree[self.right(SCREAMING_SNAKE_CASE_ )] ) return True def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int | float: if self.flag[idx] is True: UpperCamelCase : str = self.lazy[idx] UpperCamelCase : Union[str, Any] = False if left_element != right_element: UpperCamelCase : Optional[Any] = self.lazy[idx] UpperCamelCase : Optional[int] = self.lazy[idx] UpperCamelCase : Union[str, Any] = True UpperCamelCase : int = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCamelCase : Any = (left_element + right_element) // 2 UpperCamelCase : int = self.query(self.left(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = self.query(self.right(SCREAMING_SNAKE_CASE_ ), mid + 1, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) return max(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __str__( self ) -> str: return str([self.query(1, 1, self.size, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for i in range(1, self.size + 1 )] ) if __name__ == "__main__": __UpperCAmelCase = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] __UpperCAmelCase = 15 __UpperCAmelCase = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
40
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( snake_case__ : int ) -> Dict: UpperCamelCase : Optional[Any] = tmp_path / 'file.csv' UpperCamelCase : Optional[Any] = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : List[str] ) -> List[str]: UpperCamelCase : Optional[Any] = tmp_path / 'malformed_file.csv' UpperCamelCase : Any = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20,\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : List[Any] ) -> str: UpperCamelCase : Any = tmp_path / 'csv_with_image.csv' UpperCamelCase : Dict = textwrap.dedent( F"""\ image {image_file} """ ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : List[str] ) -> Tuple: UpperCamelCase : List[str] = tmp_path / 'csv_with_label.csv' UpperCamelCase : Dict = textwrap.dedent( '\\n label\n good\n bad\n good\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : Dict ) -> List[str]: UpperCamelCase : List[str] = tmp_path / 'csv_with_int_list.csv' UpperCamelCase : Union[str, Any] = textwrap.dedent( '\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : Optional[Any] ) -> List[Any]: UpperCamelCase : str = Csv() UpperCamelCase : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(snake_case__ , match='Error tokenizing data' ): for _ in generator: pass assert any( record.levelname == 'ERROR' and 'Failed to read file' in record.message and os.path.basename(snake_case__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> Optional[int]: with open(snake_case__ , encoding='utf-8' ) as f: UpperCamelCase : List[str] = f.read().splitlines()[1] UpperCamelCase : int = Csv(encoding='utf-8' , features=Features({'image': Image()} ) ) UpperCamelCase : Any = csv._generate_tables([[csv_file_with_image]] ) UpperCamelCase : Any = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('image' ).type == Image()() UpperCamelCase : str = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( snake_case__ : Any ) -> str: with open(snake_case__ , encoding='utf-8' ) as f: UpperCamelCase : Any = f.read().splitlines()[1:] UpperCamelCase : Union[str, Any] = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) ) UpperCamelCase : int = csv._generate_tables([[csv_file_with_label]] ) UpperCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )() UpperCamelCase : List[str] = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(snake_case__ ) for label in labels] def UpperCamelCase ( snake_case__ : str ) -> List[Any]: UpperCamelCase : str = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda snake_case__ : [int(snake_case__ ) for i in x.split()]} ) UpperCamelCase : List[str] = csv._generate_tables([[csv_file_with_int_list]] ) UpperCamelCase : Union[str, Any] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('int_list' ).type ) UpperCamelCase : str = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
40
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Dict = "bert" def __init__( self, SCREAMING_SNAKE_CASE_=3_0522, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=3072, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-12, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_="absolute", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> Optional[Any]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = vocab_size UpperCamelCase : Tuple = hidden_size UpperCamelCase : Tuple = num_hidden_layers UpperCamelCase : str = num_attention_heads UpperCamelCase : str = hidden_act UpperCamelCase : Union[str, Any] = intermediate_size UpperCamelCase : List[str] = hidden_dropout_prob UpperCamelCase : Optional[Any] = attention_probs_dropout_prob UpperCamelCase : Optional[Any] = max_position_embeddings UpperCamelCase : List[str] = type_vocab_size UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : int = layer_norm_eps UpperCamelCase : str = position_embedding_type UpperCamelCase : List[str] = use_cache UpperCamelCase : Union[str, Any] = classifier_dropout class lowerCAmelCase_ ( a__ ): @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCamelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
40
import math import random def UpperCamelCase ( snake_case__ : float , snake_case__ : bool = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def UpperCamelCase ( snake_case__ : int , snake_case__ : int ) -> float: UpperCamelCase : Optional[Any] = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(snake_case__ ): # Forward propagation UpperCamelCase : str = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? UpperCamelCase : int = (expected / 100) - layer_a # Error delta UpperCamelCase : List[str] = layer_1_error * sigmoid_function(snake_case__ , snake_case__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input('''Expected value: ''')) __UpperCAmelCase = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
40
1
import warnings from .generation import TFGenerationMixin class lowerCAmelCase_ ( a__ ): # warning at import time warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead." , a__ , )
40
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def UpperCamelCase ( snake_case__ : Dict ) -> Optional[int]: return EnvironmentCommand() class lowerCAmelCase_ ( a__ ): @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : List[Any] = parser.add_parser('env' ) download_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = huggingface_hub.__version__ UpperCamelCase : int = 'not installed' UpperCamelCase : Union[str, Any] = 'NA' if is_torch_available(): import torch UpperCamelCase : Any = torch.__version__ UpperCamelCase : str = torch.cuda.is_available() UpperCamelCase : Dict = 'not installed' if is_transformers_available(): import transformers UpperCamelCase : str = transformers.__version__ UpperCamelCase : Optional[Any] = 'not installed' if is_accelerate_available(): import accelerate UpperCamelCase : Dict = accelerate.__version__ UpperCamelCase : List[str] = 'not installed' if is_xformers_available(): import xformers UpperCamelCase : List[str] = xformers.__version__ UpperCamelCase : Dict = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(SCREAMING_SNAKE_CASE_ ) ) return info @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
40
1
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Dict = LEDTokenizer UpperCAmelCase__ : Union[str, Any] = LEDTokenizerFast UpperCAmelCase__ : int = True def snake_case_ ( self ) -> Tuple: super().setUp() UpperCamelCase : str = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] UpperCamelCase : str = dict(zip(SCREAMING_SNAKE_CASE_, range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) UpperCamelCase : int = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCamelCase : List[str] = {'unk_token': '<unk>'} UpperCamelCase : Tuple = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self, **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, **SCREAMING_SNAKE_CASE_ ) -> Dict: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Tuple: return "lower newer", "lower newer" @cached_property def snake_case_ ( self ) -> Any: return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def snake_case_ ( self ) -> Dict: return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def snake_case_ ( self ) -> List[Any]: UpperCamelCase : str = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] UpperCamelCase : Dict = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase : Dict = tokenizer(SCREAMING_SNAKE_CASE_, max_length=len(SCREAMING_SNAKE_CASE_ ), padding=SCREAMING_SNAKE_CASE_, return_tensors='pt' ) self.assertIsInstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 9), batch.input_ids.shape ) self.assertEqual((2, 9), batch.attention_mask.shape ) UpperCamelCase : Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) @require_torch def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase : Dict = tokenizer(SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, return_tensors='pt' ) self.assertIn('input_ids', SCREAMING_SNAKE_CASE_ ) self.assertIn('attention_mask', SCREAMING_SNAKE_CASE_ ) self.assertNotIn('labels', SCREAMING_SNAKE_CASE_ ) self.assertNotIn('decoder_attention_mask', SCREAMING_SNAKE_CASE_ ) @require_torch def snake_case_ ( self ) -> int: UpperCamelCase : List[str] = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase : str = tokenizer(text_target=SCREAMING_SNAKE_CASE_, max_length=32, padding='max_length', return_tensors='pt' ) self.assertEqual(32, targets['input_ids'].shape[1] ) @require_torch def snake_case_ ( self ) -> Any: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase : int = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'], padding=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, return_tensors='pt' ) self.assertIsInstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch.input_ids.shape, (2, 5122) ) @require_torch def snake_case_ ( self ) -> Dict: UpperCamelCase : List[str] = ['A long paragraph for summarization.'] UpperCamelCase : Tuple = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase : Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE_, return_tensors='pt' ) UpperCamelCase : str = tokenizer(text_target=SCREAMING_SNAKE_CASE_, return_tensors='pt' ) UpperCamelCase : List[Any] = inputs['input_ids'] UpperCamelCase : str = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case_ ( self ) -> Union[str, Any]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase : Dict = ['Summary of the text.', 'Another summary.'] UpperCamelCase : int = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = [[0] * len(SCREAMING_SNAKE_CASE_ ) for x in encoded_output['input_ids']] UpperCamelCase : Dict = tokenizer.pad(SCREAMING_SNAKE_CASE_ ) self.assertSequenceEqual(outputs['global_attention_mask'], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: pass def snake_case_ ( self ) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = 'A, <mask> AllenNLP sentence.' UpperCamelCase : int = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_, return_token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE_, add_special_tokens=SCREAMING_SNAKE_CASE_, return_token_type_ids=SCREAMING_SNAKE_CASE_ ) self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), ) UpperCamelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) UpperCamelCase : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE_, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE_, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
40
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '''▁''' __UpperCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} __UpperCAmelCase = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } __UpperCAmelCase = { '''facebook/xglm-564M''': 2_048, } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> None: UpperCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCamelCase : Any = 7 UpperCamelCase : Optional[int] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] UpperCamelCase : Dict = kwargs.get('additional_special_tokens', [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, sp_model_kwargs=self.sp_model_kwargs, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase : Dict = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} UpperCamelCase : Optional[int] = len(self.sp_model ) UpperCamelCase : Any = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: UpperCamelCase : int = self.__dict__.copy() UpperCamelCase : Union[str, Any] = None UpperCamelCase : int = self.sp_model.serialized_model_proto() return state def __setstate__( self, SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase : Any = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): UpperCamelCase : Any = {} UpperCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCamelCase : Optional[int] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_, token_ids_a=SCREAMING_SNAKE_CASE_, already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : str = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def snake_case_ ( self ) -> int: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def snake_case_ ( self ) -> int: UpperCamelCase : List[str] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_, out_type=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase : Union[str, Any] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : Dict = ''.join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_, ' ' ).strip() return out_string def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_, 'wb' ) as fi: UpperCamelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
40
1
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class lowerCAmelCase_ ( a__ ): def __init__( self, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> int: UpperCamelCase : Optional[int] = path_or_paths UpperCamelCase : Optional[Any] = split if split or isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else 'train' UpperCamelCase : Any = features UpperCamelCase : int = cache_dir UpperCamelCase : Union[str, Any] = keep_in_memory UpperCamelCase : List[str] = streaming UpperCamelCase : Union[str, Any] = num_proc UpperCamelCase : Union[str, Any] = kwargs @abstractmethod def snake_case_ ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class lowerCAmelCase_ ( a__ ): def __init__( self, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> Any: UpperCamelCase : Tuple = features UpperCamelCase : Optional[int] = cache_dir UpperCamelCase : str = keep_in_memory UpperCamelCase : int = streaming UpperCamelCase : Any = num_proc UpperCamelCase : Union[str, Any] = kwargs @abstractmethod def snake_case_ ( self ) -> Union[Dataset, IterableDataset]: pass
40
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCAmelCase = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } __UpperCAmelCase = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = VOCAB_FILES_NAMES UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : str = ["input_ids", "attention_mask"] UpperCAmelCase__ : Dict = RobertaTokenizer def __init__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="replace", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="<mask>", SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, errors=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_, trim_offsets=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase : Dict = getattr(SCREAMING_SNAKE_CASE_, pre_tok_state.pop('type' ) ) UpperCamelCase : List[str] = add_prefix_space UpperCamelCase : Dict = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = add_prefix_space UpperCamelCase : Optional[Any] = 'post_processor' UpperCamelCase : Dict = getattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if tokenizer_component_instance: UpperCamelCase : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase : Optional[Any] = tuple(state['sep'] ) if "cls" in state: UpperCamelCase : Optional[int] = tuple(state['cls'] ) UpperCamelCase : Any = False if state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase : Optional[int] = add_prefix_space UpperCamelCase : List[Any] = True if state.get('trim_offsets', SCREAMING_SNAKE_CASE_ ) != trim_offsets: UpperCamelCase : Dict = trim_offsets UpperCamelCase : Union[str, Any] = True if changes_to_apply: UpperCamelCase : Tuple = getattr(SCREAMING_SNAKE_CASE_, state.pop('type' ) ) UpperCamelCase : Union[str, Any] = component_class(**SCREAMING_SNAKE_CASE_ ) setattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) @property def snake_case_ ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else value UpperCamelCase : List[Any] = value def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCamelCase : Optional[int] = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCamelCase : Dict = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: UpperCamelCase : Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Tuple: UpperCamelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : Dict = [self.sep_token_id] UpperCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
40
1
def UpperCamelCase ( snake_case__ : list[int] , snake_case__ : str ) -> list[int]: UpperCamelCase : int = int(snake_case__ ) # Initialize Result UpperCamelCase : List[Any] = [] # Traverse through all denomination for denomination in reversed(snake_case__ ): # Find denominations while int(snake_case__ ) >= int(snake_case__ ): total_value -= int(snake_case__ ) answer.append(snake_case__ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __UpperCAmelCase = [] __UpperCAmelCase = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): __UpperCAmelCase = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) __UpperCAmelCase = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter __UpperCAmelCase = [1, 2, 5, 10, 20, 50, 100, 500, 2_000] __UpperCAmelCase = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F"""Following is minimal change for {value}: """) __UpperCAmelCase = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
40
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowerCAmelCase_ ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> Tuple: super().__init__(features=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = torch_tensor_kwargs import torch # noqa import torch at initialization def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict: import torch if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) and column: if all( isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(SCREAMING_SNAKE_CASE_ ) return column def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Any: import torch if isinstance(SCREAMING_SNAKE_CASE_, (str, bytes, type(SCREAMING_SNAKE_CASE_ )) ): return value elif isinstance(SCREAMING_SNAKE_CASE_, (np.character, np.ndarray) ) and np.issubdtype(value.dtype, np.character ): return value.tolist() UpperCamelCase : str = {} if isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.integer ): UpperCamelCase : List[str] = {'dtype': torch.intaa} elif isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.floating ): UpperCamelCase : int = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(SCREAMING_SNAKE_CASE_, PIL.Image.Image ): UpperCamelCase : str = np.asarray(SCREAMING_SNAKE_CASE_ ) return torch.tensor(SCREAMING_SNAKE_CASE_, **{**default_dtype, **self.torch_tensor_kwargs} ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: import torch # support for torch, tf, jax etc. if hasattr(SCREAMING_SNAKE_CASE_, '__array__' ) and not isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ): UpperCamelCase : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] ) elif isinstance(SCREAMING_SNAKE_CASE_, (list, tuple) ): return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] ) return self._tensorize(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int: return map_nested(self._recursive_tensorize, SCREAMING_SNAKE_CASE_, map_list=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping: UpperCamelCase : Dict = self.numpy_arrow_extractor().extract_row(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.python_features_decoder.decode_row(SCREAMING_SNAKE_CASE_ ) return self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> "torch.Tensor": UpperCamelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.python_features_decoder.decode_column(SCREAMING_SNAKE_CASE_, pa_table.column_names[0] ) UpperCamelCase : Any = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = self._consolidate(SCREAMING_SNAKE_CASE_ ) return column def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping: UpperCamelCase : List[Any] = self.numpy_arrow_extractor().extract_batch(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = self.python_features_decoder.decode_batch(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for column_name in batch: UpperCamelCase : str = self._consolidate(batch[column_name] ) return batch
40
1
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = KandinskyVaaPipeline UpperCAmelCase__ : List[str] = [ "image_embeds", "negative_image_embeds", ] UpperCAmelCase__ : Any = ["image_embeds", "negative_image_embeds"] UpperCAmelCase__ : Optional[Any] = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase__ : Union[str, Any] = False @property def snake_case_ ( self ) -> Optional[Any]: return 32 @property def snake_case_ ( self ) -> int: return 32 @property def snake_case_ ( self ) -> str: return self.time_input_dim @property def snake_case_ ( self ) -> str: return self.time_input_dim * 4 @property def snake_case_ ( self ) -> Any: return 100 @property def snake_case_ ( self ) -> Dict: torch.manual_seed(0 ) UpperCamelCase : List[str] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } UpperCamelCase : List[str] = UNetaDConditionModel(**SCREAMING_SNAKE_CASE_ ) return model @property def snake_case_ ( self ) -> Any: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self ) -> List[Any]: torch.manual_seed(0 ) UpperCamelCase : str = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self ) -> Any: UpperCamelCase : int = self.dummy_unet UpperCamelCase : Union[str, Any] = self.dummy_movq UpperCamelCase : Tuple = DDIMScheduler( num_train_timesteps=1000, beta_schedule='linear', beta_start=0.0_00_85, beta_end=0.0_12, clip_sample=SCREAMING_SNAKE_CASE_, set_alpha_to_one=SCREAMING_SNAKE_CASE_, steps_offset=1, prediction_type='epsilon', thresholding=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Tuple = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> List[Any]: UpperCamelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( SCREAMING_SNAKE_CASE_ ) if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): UpperCamelCase : int = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : Dict = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def snake_case_ ( self ) -> Tuple: UpperCamelCase : str = 'cpu' UpperCamelCase : int = self.get_dummy_components() UpperCamelCase : Optional[int] = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Dict = output.images UpperCamelCase : Tuple = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ), return_dict=SCREAMING_SNAKE_CASE_, )[0] UpperCamelCase : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase : Dict = np.array( [0.6_23_79_76, 1.0, 0.36_44_13_32, 1.0, 0.70_63_96_34, 0.29_87_71_86, 0.85_65_21_25, 0.5_21_68_43, 0.54_45_40_46] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> Any: UpperCamelCase : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy' ) UpperCamelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa ) pipe_prior.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = KandinskyVaaPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder', torch_dtype=torch.floataa ) UpperCamelCase : int = pipeline.to(SCREAMING_SNAKE_CASE_ ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = 'red cat, 4k photo' UpperCamelCase : List[Any] = torch.Generator(device='cuda' ).manual_seed(0 ) UpperCamelCase , UpperCamelCase : str = pipe_prior( SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=5, negative_prompt='', ).to_tuple() UpperCamelCase : int = torch.Generator(device='cuda' ).manual_seed(0 ) UpperCamelCase : Any = pipeline( image_embeds=SCREAMING_SNAKE_CASE_, negative_image_embeds=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=100, output_type='np', ) UpperCamelCase : List[Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
40
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case__ , snake_case__ ) ) ) def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> list[list[list[float] | float]]: if dataset.ndim != value_array.ndim: UpperCamelCase : int = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(snake_case__ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCamelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(snake_case__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCamelCase : Dict = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(snake_case__ ) UpperCamelCase : List[Any] = [] for value in value_array: UpperCamelCase : Optional[Any] = euclidean(snake_case__ , dataset[0] ) UpperCamelCase : Dict = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCamelCase : Union[str, Any] = euclidean(snake_case__ , snake_case__ ) if dist > temp_dist: UpperCamelCase : str = temp_dist UpperCamelCase : List[str] = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float: return np.dot(snake_case__ , snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ )) if __name__ == "__main__": import doctest doctest.testmod()
40
1
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __UpperCAmelCase = random.Random() def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : str=1.0 , snake_case__ : int=None , snake_case__ : Union[str, Any]=None ) -> Any: if rng is None: UpperCamelCase : int = global_rng UpperCamelCase : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=2000, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1_6000, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, ) -> List[str]: UpperCamelCase : Dict = parent UpperCamelCase : Dict = batch_size UpperCamelCase : Any = min_seq_length UpperCamelCase : Optional[int] = max_seq_length UpperCamelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase : Tuple = feature_size UpperCamelCase : Any = padding_value UpperCamelCase : Tuple = sampling_rate UpperCamelCase : Optional[Any] = return_attention_mask UpperCamelCase : Optional[Any] = do_normalize def snake_case_ ( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case_ ( self, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False ) -> Union[str, Any]: def _flatten(SCREAMING_SNAKE_CASE_ ): return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) ) if equal_length: UpperCamelCase : List[str] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCamelCase : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase : str = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] return speech_inputs class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Any = WavaVecaFeatureExtractor def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Tuple = WavaVecaFeatureExtractionTester(self ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_, axis=0 ) - 1 ) < 1e-3 ) ) def snake_case_ ( self ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase : Any = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Dict = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase : List[Any] = feat_extract(speech_inputs[0], return_tensors='np' ).input_values UpperCamelCase : Union[str, Any] = feat_extract(np_speech_inputs[0], return_tensors='np' ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # Test batched UpperCamelCase : List[Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values UpperCamelCase : int = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase : Optional[int] = np.asarray(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values UpperCamelCase : Dict = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) def snake_case_ ( self ) -> int: UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Dict = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : str = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase : Any = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = feat_extract(SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, return_tensors='np' ) UpperCamelCase : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Tuple = range(800, 1400, 200 ) UpperCamelCase : str = [floats_list((1, x) )[0] for x in lengths] UpperCamelCase : int = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase : List[str] = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = feat_extract(SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : int = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='max_length', return_tensors='np' ) UpperCamelCase : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Any = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='longest', return_tensors='np' ) UpperCamelCase : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) UpperCamelCase : str = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Any = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=2000, padding='longest', return_tensors='np' ) UpperCamelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def snake_case_ ( self ) -> str: import torch UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Dict = np.random.rand(100 ).astype(np.floataa ) UpperCamelCase : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase : Union[str, Any] = feature_extractor.pad([{'input_values': inputs}], return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCamelCase : Any = feature_extractor.pad([{'input_values': inputs}], return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def snake_case_ ( self ) -> Tuple: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: UpperCamelCase : int = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask, config.feat_extract_norm == 'layer' )
40
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __UpperCAmelCase = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __UpperCAmelCase = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __UpperCAmelCase = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __UpperCAmelCase = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __UpperCAmelCase = tf.keras.preprocessing.image.img_to_array(test_image) __UpperCAmelCase = np.expand_dims(test_image, axis=0) __UpperCAmelCase = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __UpperCAmelCase = '''Normal''' if result[0][0] == 1: __UpperCAmelCase = '''Abnormality detected'''
40
1
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): __UpperCAmelCase = True from torch.cuda.amp import autocast __UpperCAmelCase = logging.getLogger(__name__) def UpperCamelCase ( snake_case__ : List[str]=None , snake_case__ : List[str]=None ) -> Union[str, Any]: return field(default_factory=lambda: default , metadata=snake_case__ ) @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase__ : Optional[str] = field( default=a__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) UpperCAmelCase__ : Optional[bool] = field( default=a__ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCAmelCase__ : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} ) UpperCAmelCase__ : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) UpperCAmelCase__ : Optional[float] = field( default=0.1 , metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." } , ) UpperCAmelCase__ : Optional[float] = field( default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , ) UpperCAmelCase__ : Optional[float] = field( default=0.05 , metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) } , ) UpperCAmelCase__ : Optional[float] = field(default=0.0 , metadata={"help": "The LayerDrop probability."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : Optional[str] = field( default=a__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase__ : Optional[str] = field( default="train+validation" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) UpperCAmelCase__ : bool = field( default=a__ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) UpperCAmelCase__ : Optional[int] = field( default=a__ , metadata={"help": "The number of processes to use for the preprocessing."} , ) UpperCAmelCase__ : Optional[int] = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) } , ) UpperCAmelCase__ : List[str] = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , ) @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : WavaVecaProcessor UpperCAmelCase__ : Union[bool, str] = True UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[int] = None def __call__( self, SCREAMING_SNAKE_CASE_ ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods UpperCamelCase : Any = [{'input_values': feature['input_values']} for feature in features] UpperCamelCase : int = [{'input_ids': feature['labels']} for feature in features] UpperCamelCase : Dict = self.processor.pad( SCREAMING_SNAKE_CASE_, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors='pt', ) UpperCamelCase : Optional[int] = self.processor.pad( labels=SCREAMING_SNAKE_CASE_, padding=self.padding, max_length=self.max_length_labels, pad_to_multiple_of=self.pad_to_multiple_of_labels, return_tensors='pt', ) # replace padding with -100 to ignore loss correctly UpperCamelCase : Optional[int] = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ), -100 ) UpperCamelCase : Dict = labels return batch class lowerCAmelCase_ ( a__ ): def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> torch.Tensor: model.train() UpperCamelCase : Optional[Any] = self._prepare_inputs(SCREAMING_SNAKE_CASE_ ) if self.use_amp: with autocast(): UpperCamelCase : str = self.compute_loss(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : Any = self.compute_loss(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": UpperCamelCase : Optional[Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": UpperCamelCase : Optional[int] = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: UpperCamelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(SCREAMING_SNAKE_CASE_ ).backward() elif self.use_apex: with amp.scale_loss(SCREAMING_SNAKE_CASE_, self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(SCREAMING_SNAKE_CASE_ ) else: loss.backward() return loss.detach() def UpperCamelCase ( ) -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase , UpperCamelCase , UpperCamelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase , UpperCamelCase , UpperCamelCase : List[str] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. UpperCamelCase : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , snake_case__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: UpperCamelCase : Optional[int] = datasets.load_dataset( 'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name ) UpperCamelCase : str = datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' ) # Create and save tokenizer UpperCamelCase : List[Any] = F"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(snake_case__ : Union[str, Any] ): UpperCamelCase : str = re.sub(snake_case__ , '' , batch['sentence'] ).lower() + ' ' return batch UpperCamelCase : List[Any] = train_dataset.map(snake_case__ , remove_columns=['sentence'] ) UpperCamelCase : Dict = eval_dataset.map(snake_case__ , remove_columns=['sentence'] ) def extract_all_chars(snake_case__ : Dict ): UpperCamelCase : Union[str, Any] = ' '.join(batch['text'] ) UpperCamelCase : List[str] = list(set(snake_case__ ) ) return {"vocab": [vocab], "all_text": [all_text]} UpperCamelCase : Any = train_dataset.map( snake_case__ , batched=snake_case__ , batch_size=-1 , keep_in_memory=snake_case__ , remove_columns=train_dataset.column_names , ) UpperCamelCase : List[Any] = train_dataset.map( snake_case__ , batched=snake_case__ , batch_size=-1 , keep_in_memory=snake_case__ , remove_columns=eval_dataset.column_names , ) UpperCamelCase : Tuple = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) UpperCamelCase : Optional[Any] = {v: k for k, v in enumerate(snake_case__ )} UpperCamelCase : Optional[int] = vocab_dict[' '] del vocab_dict[" "] UpperCamelCase : Any = len(snake_case__ ) UpperCamelCase : Dict = len(snake_case__ ) with open('vocab.json' , 'w' ) as vocab_file: json.dump(snake_case__ , snake_case__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase : List[Any] = WavaVecaCTCTokenizer( 'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , ) UpperCamelCase : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ ) UpperCamelCase : Union[str, Any] = WavaVecaProcessor(feature_extractor=snake_case__ , tokenizer=snake_case__ ) UpperCamelCase : str = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: UpperCamelCase : Optional[Any] = min(len(snake_case__ ) , data_args.max_train_samples ) UpperCamelCase : Tuple = train_dataset.select(range(snake_case__ ) ) if data_args.max_val_samples is not None: UpperCamelCase : Union[str, Any] = eval_dataset.select(range(data_args.max_val_samples ) ) UpperCamelCase : int = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(snake_case__ : int ): UpperCamelCase , UpperCamelCase : Tuple = torchaudio.load(batch['path'] ) UpperCamelCase : Optional[Any] = resampler(snake_case__ ).squeeze().numpy() UpperCamelCase : Dict = 16000 UpperCamelCase : Optional[int] = batch['text'] return batch UpperCamelCase : Optional[int] = train_dataset.map( snake_case__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) UpperCamelCase : str = eval_dataset.map( snake_case__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(snake_case__ : Tuple ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" UpperCamelCase : Dict = processor( audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] ) batch.update(snake_case__ ) return batch UpperCamelCase : int = train_dataset.map( snake_case__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=snake_case__ , num_proc=data_args.preprocessing_num_workers , ) UpperCamelCase : Dict = eval_dataset.map( snake_case__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=snake_case__ , num_proc=data_args.preprocessing_num_workers , ) # Metric UpperCamelCase : List[str] = datasets.load_metric('wer' ) def compute_metrics(snake_case__ : Union[str, Any] ): UpperCamelCase : str = pred.predictions UpperCamelCase : int = np.argmax(snake_case__ , axis=-1 ) UpperCamelCase : List[Any] = processor.tokenizer.pad_token_id UpperCamelCase : int = processor.batch_decode(snake_case__ ) # we do not want to group tokens when computing the metrics UpperCamelCase : Optional[int] = processor.batch_decode(pred.label_ids , group_tokens=snake_case__ ) UpperCamelCase : Dict = wer_metric.compute(predictions=snake_case__ , references=snake_case__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator UpperCamelCase : Optional[int] = DataCollatorCTCWithPadding(processor=snake_case__ , padding=snake_case__ ) # Initialize our Trainer UpperCamelCase : Tuple = CTCTrainer( model=snake_case__ , data_collator=snake_case__ , args=snake_case__ , compute_metrics=snake_case__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: UpperCamelCase : Dict = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): UpperCamelCase : List[str] = model_args.model_name_or_path else: UpperCamelCase : Union[str, Any] = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) UpperCamelCase : Tuple = trainer.train(resume_from_checkpoint=snake_case__ ) trainer.save_model() UpperCamelCase : Dict = train_result.metrics UpperCamelCase : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(snake_case__ ) ) UpperCamelCase : Union[str, Any] = min(snake_case__ , len(snake_case__ ) ) trainer.log_metrics('train' , snake_case__ ) trainer.save_metrics('train' , snake_case__ ) trainer.save_state() # Evaluation UpperCamelCase : List[Any] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) UpperCamelCase : int = trainer.evaluate() UpperCamelCase : Optional[Any] = data_args.max_val_samples if data_args.max_val_samples is not None else len(snake_case__ ) UpperCamelCase : Optional[Any] = min(snake_case__ , len(snake_case__ ) ) trainer.log_metrics('eval' , snake_case__ ) trainer.save_metrics('eval' , snake_case__ ) return results if __name__ == "__main__": main()
40
import os import pytest from attr import dataclass __UpperCAmelCase = '''us-east-1''' # defaults region @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : str UpperCAmelCase__ : Tuple = "arn:aws:iam::558105141721:role/sagemaker_execution_role" UpperCAmelCase__ : Union[str, Any] = { "task_name": "mnli", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 500, "save_steps": 5500, } UpperCAmelCase__ : Dict = {**hyperparameters, "max_steps": 1000} @property def snake_case_ ( self ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def snake_case_ ( self ) -> str: return F"""{self.framework}-transfromers-test""" @property def snake_case_ ( self ) -> str: return F"""./tests/sagemaker/scripts/{self.framework}""" @property def snake_case_ ( self ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def UpperCamelCase ( snake_case__ : Any ) -> Union[str, Any]: UpperCamelCase : Optional[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
40
1
import math import os import sys def UpperCamelCase ( snake_case__ : str ) -> str: UpperCamelCase : Tuple = '' try: with open(snake_case__ , 'rb' ) as binary_file: UpperCamelCase : Dict = binary_file.read() for dat in data: UpperCamelCase : str = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCamelCase ( snake_case__ : dict[str, str] , snake_case__ : str , snake_case__ : int , snake_case__ : str ) -> None: lexicon.pop(snake_case__ ) UpperCamelCase : Tuple = last_match_id if math.loga(snake_case__ ).is_integer(): for curr_key in lexicon: UpperCamelCase : List[str] = '0' + lexicon[curr_key] UpperCamelCase : List[str] = bin(snake_case__ )[2:] def UpperCamelCase ( snake_case__ : str ) -> str: UpperCamelCase : int = {'0': '0', '1': '1'} UpperCamelCase , UpperCamelCase : Union[str, Any] = '', '' UpperCamelCase : str = len(snake_case__ ) for i in range(len(snake_case__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase : List[Any] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) index += 1 UpperCamelCase : Optional[int] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": UpperCamelCase : Tuple = lexicon[curr_string] result += last_match_id return result def UpperCamelCase ( snake_case__ : str , snake_case__ : str ) -> str: UpperCamelCase : Optional[Any] = os.path.getsize(snake_case__ ) UpperCamelCase : str = bin(snake_case__ )[2:] UpperCamelCase : int = len(snake_case__ ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCamelCase ( snake_case__ : str , snake_case__ : str ) -> None: UpperCamelCase : List[Any] = 8 try: with open(snake_case__ , 'wb' ) as opened_file: UpperCamelCase : Union[str, Any] = [ to_write[i : i + byte_length] for i in range(0 , len(snake_case__ ) , snake_case__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(snake_case__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCamelCase ( snake_case__ : str , snake_case__ : str ) -> None: UpperCamelCase : List[str] = read_file_binary(snake_case__ ) UpperCamelCase : Optional[int] = compress_data(snake_case__ ) UpperCamelCase : str = add_file_length(snake_case__ , snake_case__ ) write_file_binary(snake_case__ , snake_case__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
40
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __UpperCAmelCase = '''src/transformers''' __UpperCAmelCase = '''docs/source/en/tasks''' def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Any ) -> Optional[int]: with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase : Optional[Any] = f.readlines() # Find the start prompt. UpperCamelCase : List[Any] = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 UpperCamelCase : Optional[Any] = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) __UpperCAmelCase = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __UpperCAmelCase = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def UpperCamelCase ( snake_case__ : Optional[int] ) -> Optional[Any]: UpperCamelCase : Tuple = TASK_GUIDE_TO_MODELS[task_guide] UpperCamelCase : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() ) UpperCamelCase : Tuple = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def UpperCamelCase ( snake_case__ : str , snake_case__ : Optional[int]=False ) -> Tuple: UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = _find_text_in_file( filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) UpperCamelCase : Optional[Any] = get_model_list_for_task(snake_case__ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case__ , snake_case__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ' to fix this.' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __UpperCAmelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
40
1
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __UpperCAmelCase = { '''<''': operator.lt, '''<=''': operator.le, '''==''': operator.eq, '''!=''': operator.ne, '''>=''': operator.ge, '''>''': operator.gt, } def UpperCamelCase ( snake_case__ : str , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Tuple ) -> Optional[Any]: if got_ver is None or want_ver is None: raise ValueError( F"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" F""" reinstalling {pkg}.""" ) if not ops[op](version.parse(snake_case__ ) , version.parse(snake_case__ ) ): raise ImportError( F"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def UpperCamelCase ( snake_case__ : str , snake_case__ : Optional[str] = None ) -> None: UpperCamelCase : Union[str, Any] = F"""\n{hint}""" if hint is not None else '' # non-versioned check if re.match(R'^[\w_\-\d]+$' , snake_case__ ): UpperCamelCase , UpperCamelCase , UpperCamelCase : str = requirement, None, None else: UpperCamelCase : Union[str, Any] = re.findall(R'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , snake_case__ ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' F""" got {requirement}""" ) UpperCamelCase , UpperCamelCase : Dict = match[0] UpperCamelCase : Dict = want_full.split(',' ) # there could be multiple requirements UpperCamelCase : Any = {} for w in want_range: UpperCamelCase : Union[str, Any] = re.findall(R'^([\s!=<>]{1,2})(.+)' , snake_case__ ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' F""" but got {requirement}""" ) UpperCamelCase , UpperCamelCase : Any = match[0] UpperCamelCase : Any = want_ver if op not in ops: raise ValueError(F"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": UpperCamelCase : Optional[int] = '.'.join([str(snake_case__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return # check if any version is installed try: UpperCamelCase : Tuple = importlib.metadata.version(snake_case__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def UpperCamelCase ( snake_case__ : List[str] ) -> Optional[Any]: UpperCamelCase : Any = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(snake_case__ , snake_case__ )
40
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : int = IFPipeline UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case_ ( self ) -> str: return self._get_dummy_components() def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def snake_case_ ( self ) -> Optional[int]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda', reason='float16 requires CUDA' ) def snake_case_ ( self ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case_ ( self ) -> Dict: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case_ ( self ) -> Optional[int]: self._test_save_load_local() def snake_case_ ( self ) -> List[str]: self._test_inference_batch_single_identical( expected_max_diff=1e-2, ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def snake_case_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> List[Any]: # if UpperCamelCase : Union[str, Any] = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0', variant='fp16', torch_dtype=torch.floataa ) UpperCamelCase : str = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0', variant='fp16', torch_dtype=torch.floataa, text_encoder=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) UpperCamelCase , UpperCamelCase : List[str] = pipe_a.encode_prompt('anime turtle', device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCamelCase : int = None UpperCamelCase : Union[str, Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCamelCase : Optional[int] = IFImgaImgPipeline(**pipe_a.components ) UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCamelCase : Union[str, Any] = IFInpaintingPipeline(**pipe_a.components ) UpperCamelCase : Union[str, Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 UpperCamelCase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Tuple = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : int = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : Dict = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : List[Any] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = floats_tensor((1, 3, 256, 256), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
40
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''ViTFeatureExtractor'''] __UpperCAmelCase = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def UpperCamelCase ( snake_case__ : Tuple="" ) -> str: UpperCamelCase : Union[str, Any] = tempfile.mkdtemp() return os.path.join(snake_case__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> int: UpperCamelCase : Union[str, Any] = torch.rand(12, dtype=torch.floataa ) - 0.5 UpperCamelCase : Union[str, Any] = AgentAudio(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) # Ensure that the file contains the same value as the original tensor UpperCamelCase , UpperCamelCase : Any = sf.read(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, torch.tensor(SCREAMING_SNAKE_CASE_ ), atol=1e-4 ) ) def snake_case_ ( self ) -> Any: UpperCamelCase : Optional[int] = torch.rand(12, dtype=torch.floataa ) - 0.5 UpperCamelCase : Union[str, Any] = get_new_path(suffix='.wav' ) sf.write(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, 1_6000 ) UpperCamelCase : int = AgentAudio(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) ) self.assertEqual(agent_type.to_string(), SCREAMING_SNAKE_CASE_ ) @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Any: UpperCamelCase : Dict = torch.randint(0, 256, (64, 64, 3) ) UpperCamelCase : Union[str, Any] = AgentImage(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type._tensor, atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw(), Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' UpperCamelCase : Optional[int] = Image.open(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = AgentImage(SCREAMING_SNAKE_CASE_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ) -> int: UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' UpperCamelCase : Union[str, Any] = Image.open(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = AgentImage(SCREAMING_SNAKE_CASE_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = 'Hey!' UpperCamelCase : Dict = AgentText(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_string() ) self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_raw() ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
40
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Any = "nllb-moe" UpperCAmelCase__ : Tuple = ["past_key_values"] UpperCAmelCase__ : Any = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, SCREAMING_SNAKE_CASE_=12_8112, SCREAMING_SNAKE_CASE_=1024, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=4096, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=4096, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=0.05, SCREAMING_SNAKE_CASE_=0.05, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="relu", SCREAMING_SNAKE_CASE_=1024, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_="float32", SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=128, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=0.0_01, SCREAMING_SNAKE_CASE_=0.0_01, SCREAMING_SNAKE_CASE_="all", SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=1.0, SCREAMING_SNAKE_CASE_=0.2, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=False, **SCREAMING_SNAKE_CASE_, ) -> List[Any]: UpperCamelCase : List[Any] = vocab_size UpperCamelCase : Union[str, Any] = max_position_embeddings UpperCamelCase : Dict = d_model UpperCamelCase : List[str] = encoder_ffn_dim UpperCamelCase : Any = encoder_layers UpperCamelCase : List[Any] = encoder_attention_heads UpperCamelCase : Optional[int] = decoder_ffn_dim UpperCamelCase : Union[str, Any] = decoder_layers UpperCamelCase : Union[str, Any] = decoder_attention_heads UpperCamelCase : List[str] = dropout UpperCamelCase : Dict = attention_dropout UpperCamelCase : Optional[int] = activation_dropout UpperCamelCase : Optional[int] = activation_function UpperCamelCase : Any = init_std UpperCamelCase : Any = encoder_layerdrop UpperCamelCase : str = decoder_layerdrop UpperCamelCase : Optional[Any] = use_cache UpperCamelCase : List[str] = encoder_layers UpperCamelCase : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase : List[str] = router_z_loss_coef UpperCamelCase : Dict = router_aux_loss_coef UpperCamelCase : int = decoder_sparse_step UpperCamelCase : Dict = encoder_sparse_step UpperCamelCase : Optional[Any] = num_experts UpperCamelCase : List[str] = expert_capacity UpperCamelCase : str = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) UpperCamelCase : Optional[int] = router_dtype UpperCamelCase : Optional[Any] = router_ignore_padding_tokens UpperCamelCase : int = batch_prioritized_routing UpperCamelCase : Union[str, Any] = second_expert_policy UpperCamelCase : List[Any] = normalize_router_prob_before_dropping UpperCamelCase : List[str] = moe_eval_capacity_token_fraction UpperCamelCase : List[str] = moe_token_dropout UpperCamelCase : int = output_router_logits super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_, bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, is_encoder_decoder=SCREAMING_SNAKE_CASE_, decoder_start_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, )
40
def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : Any ) -> Union[str, Any]: UpperCamelCase : int = [1] for i in range(2 , snake_case__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCamelCase : List[Any] = [] UpperCamelCase : List[Any] = list(range(snake_case__ ) ) # Find permutation while factorials: UpperCamelCase : int = factorials.pop() UpperCamelCase , UpperCamelCase : int = divmod(snake_case__ , snake_case__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
40
1
import datasets __UpperCAmelCase = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' __UpperCAmelCase = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' __UpperCAmelCase = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def UpperCamelCase ( snake_case__ : str , snake_case__ : List[Any] ) -> Any: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def snake_case_ ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), } ), codebase_urls=[], reference_urls=[], format='numpy', ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )}
40
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase_ ( a__ ): def snake_case_ ( self ) -> Tuple: UpperCamelCase : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'width_multiplier' ) ) class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_="swish", SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=0.25, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, ) -> Any: UpperCamelCase : int = parent UpperCamelCase : int = batch_size UpperCamelCase : List[Any] = image_size UpperCamelCase : List[str] = patch_size UpperCamelCase : Optional[int] = num_channels UpperCamelCase : List[str] = make_divisible(512 * width_multiplier, divisor=8 ) UpperCamelCase : List[str] = hidden_act UpperCamelCase : Optional[int] = conv_kernel_size UpperCamelCase : List[str] = output_stride UpperCamelCase : Union[str, Any] = classifier_dropout_prob UpperCamelCase : List[Any] = use_labels UpperCamelCase : Any = is_training UpperCamelCase : int = num_labels UpperCamelCase : List[Any] = initializer_range UpperCamelCase : Tuple = scope UpperCamelCase : List[str] = width_multiplier UpperCamelCase : Any = ffn_dropout UpperCamelCase : List[Any] = attn_dropout def snake_case_ ( self ) -> int: UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : List[str] = None UpperCamelCase : int = None if self.use_labels: UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels ) UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCamelCase : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case_ ( self ) -> int: return MobileViTVaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : Any = MobileViTVaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : Optional[int] = self.num_labels UpperCamelCase : Tuple = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : Any = self.num_labels UpperCamelCase : Optional[Any] = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = config_and_inputs UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Tuple = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase__ : Any = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Optional[Any] = False def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Dict = MobileViTVaModelTester(self ) UpperCamelCase : Optional[Any] = MobileViTVaConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def snake_case_ ( self ) -> int: pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def snake_case_ ( self ) -> str: pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case_ ( self ) -> Any: pass def snake_case_ ( self ) -> List[str]: UpperCamelCase , UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : str = [*signature.parameters.keys()] UpperCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Tuple: def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Tuple = outputs.hidden_states UpperCamelCase : Dict = 5 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCamelCase : Any = 2 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2 ) UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : Optional[int] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> str: UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) @slow def snake_case_ ( self ) -> Optional[Any]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : str = MobileViTVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> Tuple: UpperCamelCase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> str: return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.default_image_processor UpperCamelCase : Any = prepare_img() UpperCamelCase : Tuple = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : List[str] = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Union[str, Any] = prepare_img() UpperCamelCase : Any = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = outputs.logits # verify the logits UpperCamelCase : Dict = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.tensor( [ [[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]], [[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]], [[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]], ], device=SCREAMING_SNAKE_CASE_, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : str = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Optional[int] = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Tuple = prepare_img() UpperCamelCase : int = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : str = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = outputs.logits.detach().cpu() UpperCamelCase : int = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_, target_sizes=[(50, 60)] ) UpperCamelCase : Optional[int] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ )
40
1
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def UpperCamelCase ( snake_case__ : Tuple="" ) -> str: UpperCamelCase : Union[str, Any] = tempfile.mkdtemp() return os.path.join(snake_case__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> int: UpperCamelCase : Union[str, Any] = torch.rand(12, dtype=torch.floataa ) - 0.5 UpperCamelCase : Union[str, Any] = AgentAudio(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) # Ensure that the file contains the same value as the original tensor UpperCamelCase , UpperCamelCase : Any = sf.read(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, torch.tensor(SCREAMING_SNAKE_CASE_ ), atol=1e-4 ) ) def snake_case_ ( self ) -> Any: UpperCamelCase : Optional[int] = torch.rand(12, dtype=torch.floataa ) - 0.5 UpperCamelCase : Union[str, Any] = get_new_path(suffix='.wav' ) sf.write(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, 1_6000 ) UpperCamelCase : int = AgentAudio(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) ) self.assertEqual(agent_type.to_string(), SCREAMING_SNAKE_CASE_ ) @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Any: UpperCamelCase : Dict = torch.randint(0, 256, (64, 64, 3) ) UpperCamelCase : Union[str, Any] = AgentImage(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type._tensor, atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw(), Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' UpperCamelCase : Optional[int] = Image.open(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = AgentImage(SCREAMING_SNAKE_CASE_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ) -> int: UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' UpperCamelCase : Union[str, Any] = Image.open(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = AgentImage(SCREAMING_SNAKE_CASE_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = 'Hey!' UpperCamelCase : Dict = AgentText(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_string() ) self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_raw() ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
40
def UpperCamelCase ( snake_case__ : Optional[int] ) -> str: UpperCamelCase : List[str] = [0] * len(snake_case__ ) UpperCamelCase : int = [] UpperCamelCase : Optional[int] = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: UpperCamelCase : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: UpperCamelCase : Tuple = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph __UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
40
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCAmelCase = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def UpperCamelCase ( snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : int=None , snake_case__ : Optional[int]=None , snake_case__ : Any=None , snake_case__ : Optional[int]=None , snake_case__ : Any=None , snake_case__ : Tuple=None , ) -> Optional[int]: if attention_mask is None: UpperCamelCase : Optional[Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: UpperCamelCase : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: UpperCamelCase : List[str] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=99, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=0.02, ) -> int: UpperCamelCase : Dict = parent UpperCamelCase : Dict = batch_size UpperCamelCase : Optional[int] = seq_length UpperCamelCase : Any = is_training UpperCamelCase : Optional[Any] = use_labels UpperCamelCase : str = vocab_size UpperCamelCase : Dict = hidden_size UpperCamelCase : Any = num_hidden_layers UpperCamelCase : Union[str, Any] = num_attention_heads UpperCamelCase : str = intermediate_size UpperCamelCase : List[str] = hidden_act UpperCamelCase : Optional[Any] = hidden_dropout_prob UpperCamelCase : List[str] = attention_probs_dropout_prob UpperCamelCase : Union[str, Any] = max_position_embeddings UpperCamelCase : Optional[Any] = eos_token_id UpperCamelCase : int = pad_token_id UpperCamelCase : Tuple = bos_token_id UpperCamelCase : List[str] = initializer_range def snake_case_ ( self ) -> str: UpperCamelCase : Tuple = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ), 3, self.vocab_size ) UpperCamelCase : Any = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.intaa )), -1 ) UpperCamelCase : Tuple = shift_tokens_right(SCREAMING_SNAKE_CASE_, 1, 2 ) UpperCamelCase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, initializer_range=self.initializer_range, use_cache=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Any = prepare_blenderbot_inputs_dict(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) return config, inputs_dict def snake_case_ ( self ) -> Any: UpperCamelCase , UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: UpperCamelCase : str = 20 UpperCamelCase : Union[str, Any] = model_class_name(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = model.encode(inputs_dict['input_ids'] ) UpperCamelCase , UpperCamelCase : Optional[int] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) UpperCamelCase : int = model.init_cache(decoder_input_ids.shape[0], SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype='i4' ) UpperCamelCase : Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) UpperCamelCase : str = model.decode( decoder_input_ids[:, :-1], SCREAMING_SNAKE_CASE_, decoder_attention_mask=SCREAMING_SNAKE_CASE_, past_key_values=SCREAMING_SNAKE_CASE_, decoder_position_ids=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='i4' ) UpperCamelCase : Tuple = model.decode( decoder_input_ids[:, -1:], SCREAMING_SNAKE_CASE_, decoder_attention_mask=SCREAMING_SNAKE_CASE_, past_key_values=outputs_cache.past_key_values, decoder_position_ids=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : List[Any] = model.decode(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3, msg=F"""Max diff is {diff}""" ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase : str = 20 UpperCamelCase : List[str] = model_class_name(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = model.encode(inputs_dict['input_ids'] ) UpperCamelCase , UpperCamelCase : Optional[Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) UpperCamelCase : Any = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ], axis=-1, ) UpperCamelCase : Dict = model.init_cache(decoder_input_ids.shape[0], SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) UpperCamelCase : Tuple = model.decode( decoder_input_ids[:, :-1], SCREAMING_SNAKE_CASE_, decoder_attention_mask=SCREAMING_SNAKE_CASE_, past_key_values=SCREAMING_SNAKE_CASE_, decoder_position_ids=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='i4' ) UpperCamelCase : int = model.decode( decoder_input_ids[:, -1:], SCREAMING_SNAKE_CASE_, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=SCREAMING_SNAKE_CASE_, decoder_position_ids=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : List[Any] = model.decode(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, decoder_attention_mask=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3, msg=F"""Max diff is {diff}""" ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase__ : List[str] = 99 def snake_case_ ( self ) -> Any: UpperCamelCase : List[str] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ], dtype=np.intaa, ) UpperCamelCase : int = input_ids.shape[0] UpperCamelCase : Optional[int] = BlenderbotConfig( vocab_size=self.vocab_size, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size def snake_case_ ( self ) -> Any: UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = self._get_config_and_data() UpperCamelCase : Union[str, Any] = FlaxBlenderbotForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = lm_model(input_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> int: UpperCamelCase : List[str] = BlenderbotConfig( vocab_size=self.vocab_size, d_model=14, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=8, decoder_ffn_dim=8, max_position_embeddings=48, ) UpperCamelCase : Dict = FlaxBlenderbotForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], dtype=np.intaa ) UpperCamelCase : Dict = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], dtype=np.intaa ) UpperCamelCase : Any = lm_model(input_ids=SCREAMING_SNAKE_CASE_, decoder_input_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Any: UpperCamelCase : int = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=np.intaa ) UpperCamelCase : int = shift_tokens_right(SCREAMING_SNAKE_CASE_, 1, 2 ) UpperCamelCase : Tuple = np.equal(SCREAMING_SNAKE_CASE_, 1 ).astype(np.floataa ).sum() UpperCamelCase : int = np.equal(SCREAMING_SNAKE_CASE_, 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape, input_ids.shape ) self.assertEqual(SCREAMING_SNAKE_CASE_, n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0], 2 ).all() ) @require_flax class lowerCAmelCase_ ( a__ , unittest.TestCase , a__ ): UpperCAmelCase__ : Any = True UpperCAmelCase__ : List[Any] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) UpperCAmelCase__ : Optional[Any] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def snake_case_ ( self ) -> Tuple: UpperCamelCase : Dict = FlaxBlenderbotModelTester(self ) def snake_case_ ( self ) -> Dict: UpperCamelCase , UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Any: UpperCamelCase , UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase , UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ ) @jax.jit def encode_jitted(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ): return model.encode(input_ids=SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ ) with self.subTest('JIT Enabled' ): UpperCamelCase : Optional[int] = encode_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase : int = encode_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape, output.shape ) def snake_case_ ( self ) -> Dict: UpperCamelCase , UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = model.encode(inputs_dict['input_ids'], inputs_dict['attention_mask'] ) UpperCamelCase : int = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): return model.decode( decoder_input_ids=SCREAMING_SNAKE_CASE_, decoder_attention_mask=SCREAMING_SNAKE_CASE_, encoder_outputs=SCREAMING_SNAKE_CASE_, ) with self.subTest('JIT Enabled' ): UpperCamelCase : Dict = decode_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase : Optional[Any] = decode_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape, output.shape ) @slow def snake_case_ ( self ) -> Dict: for model_class_name in self.all_model_classes: UpperCamelCase : Optional[Any] = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids UpperCamelCase : List[str] = np.ones((1, 1) ) * model.config.eos_token_id UpperCamelCase : str = model(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skipUnless(jax_device != 'cpu', '3B test too slow on CPU.' ) @slow def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Tuple = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} UpperCamelCase : Any = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} UpperCamelCase : str = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B', from_pt=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) UpperCamelCase : List[str] = ['Sam'] UpperCamelCase : str = tokenizer(SCREAMING_SNAKE_CASE_, return_tensors='jax' ) UpperCamelCase : int = model.generate(**SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = 'Sam is a great name. It means "sun" in Gaelic.' UpperCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) assert generated_txt[0].strip() == tgt_text
40
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
40
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Dict = ["pixel_values"] def __init__( self, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = 1 / 255, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = True, **SCREAMING_SNAKE_CASE_, ) -> None: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = size if size is not None else {'height': 384, 'width': 384} UpperCamelCase : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_, default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = do_resize UpperCamelCase : Tuple = size UpperCamelCase : Optional[int] = resample UpperCamelCase : Union[str, Any] = do_rescale UpperCamelCase : Union[str, Any] = rescale_factor UpperCamelCase : Optional[int] = do_normalize UpperCamelCase : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCamelCase : Any = image_std if image_std is not None else OPENAI_CLIP_STD UpperCamelCase : Dict = do_convert_rgb def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> np.ndarray: UpperCamelCase : str = get_size_dict(SCREAMING_SNAKE_CASE_, default_to_square=SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) UpperCamelCase : Optional[int] = (size['height'], size['width']) return resize(SCREAMING_SNAKE_CASE_, size=SCREAMING_SNAKE_CASE_, resample=SCREAMING_SNAKE_CASE_, data_format=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> Tuple: return rescale(SCREAMING_SNAKE_CASE_, scale=SCREAMING_SNAKE_CASE_, data_format=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE_, mean=SCREAMING_SNAKE_CASE_, std=SCREAMING_SNAKE_CASE_, data_format=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST, **SCREAMING_SNAKE_CASE_, ) -> PIL.Image.Image: UpperCamelCase : Tuple = do_resize if do_resize is not None else self.do_resize UpperCamelCase : Optional[Any] = resample if resample is not None else self.resample UpperCamelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean UpperCamelCase : str = image_std if image_std is not None else self.image_std UpperCamelCase : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase : Dict = size if size is not None else self.size UpperCamelCase : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE_, default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase : Any = [convert_to_rgb(SCREAMING_SNAKE_CASE_ ) for image in images] # All transformations expect numpy arrays. UpperCamelCase : Any = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: UpperCamelCase : Optional[int] = [self.resize(image=SCREAMING_SNAKE_CASE_, size=SCREAMING_SNAKE_CASE_, resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: UpperCamelCase : Optional[Any] = [self.rescale(image=SCREAMING_SNAKE_CASE_, scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: UpperCamelCase : List[Any] = [self.normalize(image=SCREAMING_SNAKE_CASE_, mean=SCREAMING_SNAKE_CASE_, std=SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase : Optional[int] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase : Tuple = BatchFeature(data={'pixel_values': images}, tensor_type=SCREAMING_SNAKE_CASE_ ) return encoded_outputs
40
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCAmelCase = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } __UpperCAmelCase = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = VOCAB_FILES_NAMES UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : str = ["input_ids", "attention_mask"] UpperCAmelCase__ : Dict = RobertaTokenizer def __init__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="replace", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="<mask>", SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, errors=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_, trim_offsets=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase : Dict = getattr(SCREAMING_SNAKE_CASE_, pre_tok_state.pop('type' ) ) UpperCamelCase : List[str] = add_prefix_space UpperCamelCase : Dict = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = add_prefix_space UpperCamelCase : Optional[Any] = 'post_processor' UpperCamelCase : Dict = getattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if tokenizer_component_instance: UpperCamelCase : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase : Optional[Any] = tuple(state['sep'] ) if "cls" in state: UpperCamelCase : Optional[int] = tuple(state['cls'] ) UpperCamelCase : Any = False if state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase : Optional[int] = add_prefix_space UpperCamelCase : List[Any] = True if state.get('trim_offsets', SCREAMING_SNAKE_CASE_ ) != trim_offsets: UpperCamelCase : Dict = trim_offsets UpperCamelCase : Union[str, Any] = True if changes_to_apply: UpperCamelCase : Tuple = getattr(SCREAMING_SNAKE_CASE_, state.pop('type' ) ) UpperCamelCase : Union[str, Any] = component_class(**SCREAMING_SNAKE_CASE_ ) setattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) @property def snake_case_ ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else value UpperCamelCase : List[Any] = value def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCamelCase : Optional[int] = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCamelCase : Dict = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: UpperCamelCase : Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Tuple: UpperCamelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : Dict = [self.sep_token_id] UpperCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
40
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
1
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, ) -> Dict: UpperCamelCase : List[Any] = parent UpperCamelCase : List[Any] = 13 UpperCamelCase : Tuple = 7 UpperCamelCase : int = 30 UpperCamelCase : Any = self.seq_length + self.mem_len UpperCamelCase : List[Any] = 15 UpperCamelCase : Any = True UpperCamelCase : Any = True UpperCamelCase : Optional[Any] = 99 UpperCamelCase : str = [10, 50, 80] UpperCamelCase : Tuple = 32 UpperCamelCase : Optional[int] = 32 UpperCamelCase : Dict = 4 UpperCamelCase : Any = 8 UpperCamelCase : str = 128 UpperCamelCase : Optional[Any] = 2 UpperCamelCase : Union[str, Any] = 2 UpperCamelCase : Dict = None UpperCamelCase : Optional[Any] = 1 UpperCamelCase : Dict = 0 UpperCamelCase : Any = 3 UpperCamelCase : int = self.vocab_size - 1 UpperCamelCase : List[str] = 0.01 def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase : Optional[Any] = None if self.use_labels: UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase : Any = TransfoXLConfig( vocab_size=self.vocab_size, mem_len=self.mem_len, clamp_len=self.clamp_len, cutoffs=self.cutoffs, d_model=self.hidden_size, d_embed=self.d_embed, n_head=self.num_attention_heads, d_head=self.d_head, d_inner=self.d_inner, div_val=self.div_val, n_layer=self.num_hidden_layers, eos_token_id=self.eos_token_id, pad_token_id=self.vocab_size - 1, init_range=self.init_range, num_labels=self.num_labels, ) return (config, input_ids_a, input_ids_a, lm_labels) def snake_case_ ( self ) -> List[Any]: random.seed(self.seed ) tf.random.set_seed(self.seed ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : str = TFTransfoXLModel(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ ).to_tuple() UpperCamelCase : str = {'input_ids': input_ids_a, 'mems': mems_a} UpperCamelCase , UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a], [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers, ) self.parent.assertListEqual( [mem.shape for mem in mems_a], [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : Optional[int] = TFTransfoXLLMHeadModel(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ).to_tuple() UpperCamelCase : List[str] = {'input_ids': input_ids_a, 'labels': lm_labels} UpperCamelCase , UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ).to_tuple() UpperCamelCase , UpperCamelCase : Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() UpperCamelCase : List[Any] = {'input_ids': input_ids_a, 'mems': mems_a, 'labels': lm_labels} UpperCamelCase , UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a], [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers, ) self.parent.assertEqual(lm_logits_a.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a], [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase : Union[str, Any] = TFTransfoXLForSequenceClassification(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : str = self.prepare_config_and_inputs() ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[int] = config_and_inputs UpperCamelCase : Dict = {'input_ids': input_ids_a} return config, inputs_dict @require_tf class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : int = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) UpperCAmelCase__ : Optional[Any] = () if is_tf_available() else () UpperCAmelCase__ : Union[str, Any] = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : int = False UpperCAmelCase__ : Any = False def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> str: if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Tuple = TFTransfoXLModelTester(self ) UpperCamelCase : int = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, d_embed=37 ) def snake_case_ ( self ) -> Dict: self.config_tester.run_common_tests() def snake_case_ ( self ) -> Union[str, Any]: self.model_tester.set_seed() UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> List[str]: self.model_tester.set_seed() UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> List[str]: UpperCamelCase , UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : str = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: UpperCamelCase : Any = model.get_output_embeddings() assert isinstance(SCREAMING_SNAKE_CASE_, tf.keras.layers.Layer ) UpperCamelCase : str = model.get_bias() assert name is None else: UpperCamelCase : Tuple = model.get_output_embeddings() assert x is None UpperCamelCase : Tuple = model.get_bias() assert name is None def snake_case_ ( self ) -> List[Any]: # TODO JP: Make TransfoXL XLA compliant pass @slow def snake_case_ ( self ) -> List[Any]: for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : List[str] = TFTransfoXLModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='This model doesn\'t play well with fit() due to not returning a single loss.' ) def snake_case_ ( self ) -> List[str]: pass @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @unittest.skip('Skip test until #12651 is resolved.' ) @slow def snake_case_ ( self ) -> int: UpperCamelCase : Any = TFTransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103' ) # fmt: off UpperCamelCase : Optional[int] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]], dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off UpperCamelCase : List[str] = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> UpperCamelCase : List[Any] = model.generate(SCREAMING_SNAKE_CASE_, max_length=200, do_sample=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(output_ids[0].numpy().tolist(), SCREAMING_SNAKE_CASE_ )
40
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''ViTFeatureExtractor'''] __UpperCAmelCase = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
1
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Tuple ) -> Optional[int]: # ===== initialization ===== UpperCamelCase : List[str] = Mock() UpperCamelCase : Any = conn, Mock() UpperCamelCase : Any = iter([1, None] ) UpperCamelCase : Optional[Any] = lambda snake_case__ : next(snake_case__ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=snake_case__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
40
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __UpperCAmelCase = random.Random() def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : str=1.0 , snake_case__ : int=None , snake_case__ : Union[str, Any]=None ) -> Any: if rng is None: UpperCamelCase : int = global_rng UpperCamelCase : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=2000, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1_6000, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, ) -> List[str]: UpperCamelCase : Dict = parent UpperCamelCase : Dict = batch_size UpperCamelCase : Any = min_seq_length UpperCamelCase : Optional[int] = max_seq_length UpperCamelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase : Tuple = feature_size UpperCamelCase : Any = padding_value UpperCamelCase : Tuple = sampling_rate UpperCamelCase : Optional[Any] = return_attention_mask UpperCamelCase : Optional[Any] = do_normalize def snake_case_ ( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case_ ( self, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False ) -> Union[str, Any]: def _flatten(SCREAMING_SNAKE_CASE_ ): return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) ) if equal_length: UpperCamelCase : List[str] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCamelCase : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase : str = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] return speech_inputs class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Any = WavaVecaFeatureExtractor def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Tuple = WavaVecaFeatureExtractionTester(self ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_, axis=0 ) - 1 ) < 1e-3 ) ) def snake_case_ ( self ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase : Any = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Dict = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase : List[Any] = feat_extract(speech_inputs[0], return_tensors='np' ).input_values UpperCamelCase : Union[str, Any] = feat_extract(np_speech_inputs[0], return_tensors='np' ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # Test batched UpperCamelCase : List[Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values UpperCamelCase : int = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase : Optional[int] = np.asarray(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values UpperCamelCase : Dict = feat_extract(SCREAMING_SNAKE_CASE_, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) def snake_case_ ( self ) -> int: UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Dict = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : str = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase : Any = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = feat_extract(SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, return_tensors='np' ) UpperCamelCase : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Tuple = range(800, 1400, 200 ) UpperCamelCase : str = [floats_list((1, x) )[0] for x in lengths] UpperCamelCase : int = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase : List[str] = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = feat_extract(SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : int = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='max_length', return_tensors='np' ) UpperCamelCase : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Any = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=1000, padding='longest', return_tensors='np' ) UpperCamelCase : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) UpperCamelCase : str = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase : Any = feat_extract( SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, max_length=2000, padding='longest', return_tensors='np' ) UpperCamelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def snake_case_ ( self ) -> str: import torch UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : Dict = np.random.rand(100 ).astype(np.floataa ) UpperCamelCase : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase : Union[str, Any] = feature_extractor.pad([{'input_values': inputs}], return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCamelCase : Any = feature_extractor.pad([{'input_values': inputs}], return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def snake_case_ ( self ) -> Tuple: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: UpperCamelCase : int = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask, config.feat_extract_norm == 'layer' )
40
1
from __future__ import annotations import math def UpperCamelCase ( snake_case__ : int , snake_case__ : int , snake_case__ : bool , snake_case__ : list[int] , snake_case__ : float ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(snake_case__ ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , snake_case__ , snake_case__ , snake_case__ ) , minimax(depth + 1 , node_index * 2 + 1 , snake_case__ , snake_case__ , snake_case__ ) , ) return min( minimax(depth + 1 , node_index * 2 , snake_case__ , snake_case__ , snake_case__ ) , minimax(depth + 1 , node_index * 2 + 1 , snake_case__ , snake_case__ , snake_case__ ) , ) def UpperCamelCase ( ) -> None: UpperCamelCase : Optional[int] = [90, 23, 6, 33, 21, 65, 123, 34423] UpperCamelCase : List[str] = math.log(len(snake_case__ ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , snake_case__ , snake_case__ , snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
40
def UpperCamelCase ( snake_case__ : int ) -> str: if isinstance(snake_case__ , snake_case__ ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(snake_case__ , snake_case__ ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" UpperCamelCase : int = False if num < 0: UpperCamelCase : Optional[Any] = True UpperCamelCase : Tuple = -num UpperCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(snake_case__ ) for e in binary ) return "0b" + "".join(str(snake_case__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
40
1
def UpperCamelCase ( snake_case__ : bytes ) -> str: return "".join([hex(snake_case__ )[2:].zfill(2 ).upper() for byte in list(snake_case__ )] ) def UpperCamelCase ( snake_case__ : str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(snake_case__ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(snake_case__ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(snake_case__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
40
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __UpperCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : List[str]=None , snake_case__ : Union[str, Any]=None ) -> Optional[Any]: # Recurse if needed if "." in tensor_name: UpperCamelCase : List[Any] = tensor_name.split('.' ) for split in splits[:-1]: UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) UpperCamelCase : Dict = new_module UpperCamelCase : int = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) UpperCamelCase : Union[str, Any] = tensor_name in module._buffers UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) UpperCamelCase : Optional[Any] = False UpperCamelCase : str = False if is_buffer or not is_bitsandbytes_available(): UpperCamelCase : List[str] = False UpperCamelCase : Tuple = False else: UpperCamelCase : Union[str, Any] = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) UpperCamelCase : Optional[int] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: UpperCamelCase : List[Any] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCamelCase : Dict = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): UpperCamelCase : List[Any] = value.to('cpu' ) if value.dtype == torch.inta: UpperCamelCase : Tuple = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: UpperCamelCase : Union[str, Any] = torch.tensor(snake_case__ , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , snake_case__ ) and fpaa_statistics is None: UpperCamelCase : Union[str, Any] = new_value.T UpperCamelCase : Union[str, Any] = old_value.__dict__ if is_abit: UpperCamelCase : Optional[Any] = bnb.nn.IntaParams(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) elif is_abit: UpperCamelCase : Optional[Any] = bnb.nn.Paramsabit(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ ) UpperCamelCase : Dict = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(snake_case__ ) ) else: if value is None: UpperCamelCase : Union[str, Any] = old_value.to(snake_case__ ) elif isinstance(snake_case__ , torch.Tensor ): UpperCamelCase : List[str] = value.to(snake_case__ ) else: UpperCamelCase : Tuple = torch.tensor(snake_case__ , device=snake_case__ ) if is_buffer: UpperCamelCase : Optional[int] = new_value else: UpperCamelCase : Tuple = nn.Parameter(snake_case__ , requires_grad=old_value.requires_grad ) UpperCamelCase : List[str] = new_value def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Any=None , snake_case__ : Optional[int]=None , snake_case__ : Union[str, Any]=None , snake_case__ : List[str]=False ) -> int: for name, module in model.named_children(): if current_key_name is None: UpperCamelCase : str = [] current_key_name.append(snake_case__ ) if (isinstance(snake_case__ , nn.Linear ) or isinstance(snake_case__ , snake_case__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(snake_case__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(snake_case__ , snake_case__ ): UpperCamelCase , UpperCamelCase : Tuple = module.weight.shape else: UpperCamelCase : Any = module.in_features UpperCamelCase : List[str] = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCamelCase : Any = bnb.nn.LinearabitLt( snake_case__ , snake_case__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) UpperCamelCase : Optional[int] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCamelCase : str = bnb.nn.Linearabit( snake_case__ , snake_case__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) UpperCamelCase : int = True # Store the module class in case we need to transpose the weight later UpperCamelCase : Any = type(snake_case__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(snake_case__ ) if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase : Optional[int] = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_been_replaced=snake_case__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]=None , snake_case__ : Dict=None ) -> Optional[Any]: UpperCamelCase : Union[str, Any] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert UpperCamelCase , UpperCamelCase : List[str] = _replace_with_bnb_linear( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCamelCase ( *snake_case__ : Tuple , **snake_case__ : List[str] ) -> List[str]: warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , snake_case__ , ) return replace_with_bnb_linear(*snake_case__ , **snake_case__ ) def UpperCamelCase ( *snake_case__ : Dict , **snake_case__ : str ) -> Tuple: warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , snake_case__ , ) return set_module_quantized_tensor_to_device(*snake_case__ , **snake_case__ ) def UpperCamelCase ( snake_case__ : Tuple ) -> List[Any]: UpperCamelCase : int = deepcopy(snake_case__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCamelCase : List[str] = find_tied_parameters(snake_case__ ) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__ ): UpperCamelCase : Tuple = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCamelCase : Union[str, Any] = sum(snake_case__ , [] ) UpperCamelCase : Optional[int] = len(snake_case__ ) > 0 # Check if it is a base model UpperCamelCase : str = not hasattr(snake_case__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase : List[Any] = list(model.named_children() ) UpperCamelCase : Optional[Any] = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase : Union[str, Any] = set(snake_case__ ) - set(snake_case__ ) UpperCamelCase : Optional[int] = list(set(snake_case__ ) ) + list(snake_case__ ) # remove ".weight" from the keys UpperCamelCase : Tuple = ['.weight', '.bias'] UpperCamelCase : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase : Optional[int] = name.replace(snake_case__ , '' ) filtered_module_names.append(snake_case__ ) return filtered_module_names
40
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=19, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=None, ) -> Tuple: UpperCamelCase : Dict = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : Optional[int] = seq_length UpperCamelCase : Union[str, Any] = is_training UpperCamelCase : List[Any] = use_input_mask UpperCamelCase : Optional[Any] = use_token_type_ids UpperCamelCase : Union[str, Any] = use_labels UpperCamelCase : Optional[Any] = vocab_size UpperCamelCase : str = hidden_size UpperCamelCase : Union[str, Any] = num_hidden_layers UpperCamelCase : str = num_attention_heads UpperCamelCase : int = intermediate_size UpperCamelCase : int = hidden_act UpperCamelCase : Union[str, Any] = hidden_dropout_prob UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase : Dict = max_position_embeddings UpperCamelCase : List[Any] = type_vocab_size UpperCamelCase : Any = type_sequence_label_size UpperCamelCase : Dict = initializer_range UpperCamelCase : List[Any] = num_labels UpperCamelCase : Dict = num_choices UpperCamelCase : Any = scope def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase : Optional[int] = None if self.use_input_mask: UpperCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Dict = None UpperCamelCase : int = None UpperCamelCase : List[str] = None if self.use_labels: UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCamelCase : int = ids_tensor([self.batch_size], self.num_choices ) UpperCamelCase : Any = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ) -> str: UpperCamelCase : str = EsmConfig( vocab_size=33, hidden_size=self.hidden_size, pad_token_id=1, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, is_folding_model=SCREAMING_SNAKE_CASE_, esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False}, ) return config def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase : List[str] = EsmForProteinFolding(config=SCREAMING_SNAKE_CASE_ ).float() model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.positions.shape, (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape, (8, self.batch_size, self.seq_length, 7, 2) ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Tuple = config_and_inputs UpperCamelCase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = (EsmForProteinFolding,) if is_torch_available() else () UpperCAmelCase__ : Tuple = () UpperCAmelCase__ : str = {} if is_torch_available() else {} UpperCAmelCase__ : Optional[int] = False def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Dict = EsmFoldModelTester(self ) UpperCamelCase : Any = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def snake_case_ ( self ) -> Any: self.config_tester.run_common_tests() def snake_case_ ( self ) -> int: UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @unittest.skip('Does not support attention outputs' ) def snake_case_ ( self ) -> str: pass @unittest.skip def snake_case_ ( self ) -> Optional[Any]: pass @unittest.skip('Esm does not support embedding resizing' ) def snake_case_ ( self ) -> List[str]: pass @unittest.skip('Esm does not support embedding resizing' ) def snake_case_ ( self ) -> int: pass @unittest.skip('ESMFold does not support passing input embeds!' ) def snake_case_ ( self ) -> Optional[int]: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> str: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> str: pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def snake_case_ ( self ) -> Tuple: pass @unittest.skip('ESMFold only has one output format.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def snake_case_ ( self ) -> List[str]: pass @unittest.skip('ESMFold does not support input chunking.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def snake_case_ ( self ) -> int: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def snake_case_ ( self ) -> List[str]: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def snake_case_ ( self ) -> List[Any]: pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def snake_case_ ( self ) -> List[Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case_ ( self ) -> Dict: pass @require_torch class lowerCAmelCase_ ( a__ ): @slow def snake_case_ ( self ) -> List[Any]: UpperCamelCase : str = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() UpperCamelCase : str = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )['positions'] UpperCamelCase : List[str] = torch.tensor([2.58_28, 0.79_93, -10.93_34], dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
40
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( snake_case__ : int ) -> Dict: UpperCamelCase : Optional[Any] = tmp_path / 'file.csv' UpperCamelCase : Optional[Any] = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : List[str] ) -> List[str]: UpperCamelCase : Optional[Any] = tmp_path / 'malformed_file.csv' UpperCamelCase : Any = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20,\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : List[Any] ) -> str: UpperCamelCase : Any = tmp_path / 'csv_with_image.csv' UpperCamelCase : Dict = textwrap.dedent( F"""\ image {image_file} """ ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : List[str] ) -> Tuple: UpperCamelCase : List[str] = tmp_path / 'csv_with_label.csv' UpperCamelCase : Dict = textwrap.dedent( '\\n label\n good\n bad\n good\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : Dict ) -> List[str]: UpperCamelCase : List[str] = tmp_path / 'csv_with_int_list.csv' UpperCamelCase : Union[str, Any] = textwrap.dedent( '\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : Optional[Any] ) -> List[Any]: UpperCamelCase : str = Csv() UpperCamelCase : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(snake_case__ , match='Error tokenizing data' ): for _ in generator: pass assert any( record.levelname == 'ERROR' and 'Failed to read file' in record.message and os.path.basename(snake_case__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> Optional[int]: with open(snake_case__ , encoding='utf-8' ) as f: UpperCamelCase : List[str] = f.read().splitlines()[1] UpperCamelCase : int = Csv(encoding='utf-8' , features=Features({'image': Image()} ) ) UpperCamelCase : Any = csv._generate_tables([[csv_file_with_image]] ) UpperCamelCase : Any = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('image' ).type == Image()() UpperCamelCase : str = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( snake_case__ : Any ) -> str: with open(snake_case__ , encoding='utf-8' ) as f: UpperCamelCase : Any = f.read().splitlines()[1:] UpperCamelCase : Union[str, Any] = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) ) UpperCamelCase : int = csv._generate_tables([[csv_file_with_label]] ) UpperCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )() UpperCamelCase : List[str] = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(snake_case__ ) for label in labels] def UpperCamelCase ( snake_case__ : str ) -> List[Any]: UpperCamelCase : str = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda snake_case__ : [int(snake_case__ ) for i in x.split()]} ) UpperCamelCase : List[str] = csv._generate_tables([[csv_file_with_int_list]] ) UpperCamelCase : Union[str, Any] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('int_list' ).type ) UpperCamelCase : str = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
40
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=18, SCREAMING_SNAKE_CASE_=30, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, ) -> Optional[int]: UpperCamelCase : Union[str, Any] = size if size is not None else {'height': 18, 'width': 18} UpperCamelCase : Dict = parent UpperCamelCase : Tuple = batch_size UpperCamelCase : str = num_channels UpperCamelCase : int = image_size UpperCamelCase : Tuple = min_resolution UpperCamelCase : Optional[Any] = max_resolution UpperCamelCase : Union[str, Any] = do_resize UpperCamelCase : Union[str, Any] = size UpperCamelCase : Union[str, Any] = apply_ocr def snake_case_ ( self ) -> Optional[int]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Tuple = LayoutLMvaImageProcessingTester(self ) @property def snake_case_ ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self ) -> Tuple: UpperCamelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'size' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'apply_ocr' ) ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'height': 18, 'width': 18} ) UpperCamelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {'height': 42, 'width': 42} ) def snake_case_ ( self ) -> int: pass def snake_case_ ( self ) -> int: # Initialize image_processing UpperCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase : Dict = prepare_image_inputs(self.image_processor_tester, equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_, Image.Image ) # Test not batched input UpperCamelCase : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) self.assertIsInstance(encoding.words, SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(encoding.boxes, SCREAMING_SNAKE_CASE_ ) # Test batched UpperCamelCase : List[str] = image_processing(SCREAMING_SNAKE_CASE_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) def snake_case_ ( self ) -> Union[str, Any]: # Initialize image_processing UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase : str = prepare_image_inputs(self.image_processor_tester, equal_resolution=SCREAMING_SNAKE_CASE_, numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_, np.ndarray ) # Test not batched input UpperCamelCase : str = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) # Test batched UpperCamelCase : Tuple = image_processing(SCREAMING_SNAKE_CASE_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) def snake_case_ ( self ) -> Tuple: # Initialize image_processing UpperCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester, equal_resolution=SCREAMING_SNAKE_CASE_, torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_, torch.Tensor ) # Test not batched input UpperCamelCase : Optional[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) # Test batched UpperCamelCase : List[str] = image_processing(SCREAMING_SNAKE_CASE_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ), ) def snake_case_ ( self ) -> Union[str, Any]: # with apply_OCR = True UpperCamelCase : Union[str, Any] = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCamelCase : Dict = load_dataset('hf-internal-testing/fixtures_docvqa', split='test' ) UpperCamelCase : Dict = Image.open(ds[0]['file'] ).convert('RGB' ) UpperCamelCase : Union[str, Any] = image_processing(SCREAMING_SNAKE_CASE_, return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape, (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ), len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCamelCase : str = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 UpperCamelCase : int = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words, SCREAMING_SNAKE_CASE_ ) self.assertListEqual(encoding.boxes, SCREAMING_SNAKE_CASE_ ) # with apply_OCR = False UpperCamelCase : Any = LayoutLMvaImageProcessor(apply_ocr=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = image_processing(SCREAMING_SNAKE_CASE_, return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape, (1, 3, 224, 224) )
40
import math import random def UpperCamelCase ( snake_case__ : float , snake_case__ : bool = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def UpperCamelCase ( snake_case__ : int , snake_case__ : int ) -> float: UpperCamelCase : Optional[Any] = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(snake_case__ ): # Forward propagation UpperCamelCase : str = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? UpperCamelCase : int = (expected / 100) - layer_a # Error delta UpperCamelCase : List[str] = layer_1_error * sigmoid_function(snake_case__ , snake_case__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input('''Expected value: ''')) __UpperCAmelCase = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
40
1
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def UpperCamelCase ( snake_case__ : int ) -> Optional[int]: random.seed(snake_case__ ) np.random.seed(snake_case__ ) torch.manual_seed(snake_case__ ) torch.cuda.manual_seed_all(snake_case__ ) # ^^ safe to call this function even if cuda is not available class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 0.99_99, SCREAMING_SNAKE_CASE_ = 0.0, SCREAMING_SNAKE_CASE_ = 0, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = 1.0, SCREAMING_SNAKE_CASE_ = 2 / 3, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> str: if isinstance(SCREAMING_SNAKE_CASE_, torch.nn.Module ): UpperCamelCase : int = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage`', '1.0.0', SCREAMING_SNAKE_CASE_, standard_warn=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Optional[Any] = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility UpperCamelCase : List[str] = True if kwargs.get('max_value', SCREAMING_SNAKE_CASE_ ) is not None: UpperCamelCase : str = 'The `max_value` argument is deprecated. Please use `decay` instead.' deprecate('max_value', '1.0.0', SCREAMING_SNAKE_CASE_, standard_warn=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = kwargs['max_value'] if kwargs.get('min_value', SCREAMING_SNAKE_CASE_ ) is not None: UpperCamelCase : int = 'The `min_value` argument is deprecated. Please use `min_decay` instead.' deprecate('min_value', '1.0.0', SCREAMING_SNAKE_CASE_, standard_warn=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = kwargs['min_value'] UpperCamelCase : Optional[int] = list(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = [p.clone().detach() for p in parameters] if kwargs.get('device', SCREAMING_SNAKE_CASE_ ) is not None: UpperCamelCase : Any = 'The `device` argument is deprecated. Please use `to` instead.' deprecate('device', '1.0.0', SCREAMING_SNAKE_CASE_, standard_warn=SCREAMING_SNAKE_CASE_ ) self.to(device=kwargs['device'] ) UpperCamelCase : Optional[int] = None UpperCamelCase : List[str] = decay UpperCamelCase : int = min_decay UpperCamelCase : int = update_after_step UpperCamelCase : str = use_ema_warmup UpperCamelCase : Optional[Any] = inv_gamma UpperCamelCase : Tuple = power UpperCamelCase : Union[str, Any] = 0 UpperCamelCase : Tuple = None # set in `step()` UpperCamelCase : Dict = model_cls UpperCamelCase : Union[str, Any] = model_config @classmethod def snake_case_ ( cls, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> "EMAModel": UpperCamelCase , UpperCamelCase : Union[str, Any] = model_cls.load_config(SCREAMING_SNAKE_CASE_, return_unused_kwargs=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = model_cls.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = cls(model.parameters(), model_cls=SCREAMING_SNAKE_CASE_, model_config=model.config ) ema_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) return ema_model def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: if self.model_cls is None: raise ValueError('`save_pretrained` can only be used if `model_cls` was defined at __init__.' ) if self.model_config is None: raise ValueError('`save_pretrained` can only be used if `model_config` was defined at __init__.' ) UpperCamelCase : Union[str, Any] = self.model_cls.from_config(self.model_config ) UpperCamelCase : Optional[int] = self.state_dict() state_dict.pop('shadow_params', SCREAMING_SNAKE_CASE_ ) model.register_to_config(**SCREAMING_SNAKE_CASE_ ) self.copy_to(model.parameters() ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> float: UpperCamelCase : Optional[Any] = max(0, optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: UpperCamelCase : List[Any] = 1 - (1 + step / self.inv_gamma) ** -self.power else: UpperCamelCase : List[str] = (1 + step) / (10 + step) UpperCamelCase : Tuple = min(SCREAMING_SNAKE_CASE_, self.decay ) # make sure decay is not smaller than min_decay UpperCamelCase : Tuple = max(SCREAMING_SNAKE_CASE_, self.min_decay ) return cur_decay_value @torch.no_grad() def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Tuple: if isinstance(SCREAMING_SNAKE_CASE_, torch.nn.Module ): UpperCamelCase : Optional[int] = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage.step`', '1.0.0', SCREAMING_SNAKE_CASE_, standard_warn=SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Optional[Any] = parameters.parameters() UpperCamelCase : Optional[Any] = list(SCREAMING_SNAKE_CASE_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. UpperCamelCase : Any = self.get_decay(self.optimization_step ) UpperCamelCase : Any = decay UpperCamelCase : str = 1 - decay UpperCamelCase : Union[str, Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params, SCREAMING_SNAKE_CASE_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): UpperCamelCase : Dict = deepspeed.zero.GatheredParameters(SCREAMING_SNAKE_CASE_, modifier_rank=SCREAMING_SNAKE_CASE_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None: UpperCamelCase : Union[str, Any] = list(SCREAMING_SNAKE_CASE_ ) for s_param, param in zip(self.shadow_params, SCREAMING_SNAKE_CASE_ ): param.data.copy_(s_param.to(param.device ).data ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None ) -> None: UpperCamelCase : str = [ p.to(device=SCREAMING_SNAKE_CASE_, dtype=SCREAMING_SNAKE_CASE_ ) if p.is_floating_point() else p.to(device=SCREAMING_SNAKE_CASE_ ) for p in self.shadow_params ] def snake_case_ ( self ) -> dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None: UpperCamelCase : List[Any] = [param.detach().cpu().clone() for param in parameters] def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None: if self.temp_stored_params is None: raise RuntimeError('This ExponentialMovingAverage has no `store()`ed weights ' 'to `restore()`' ) for c_param, param in zip(self.temp_stored_params, SCREAMING_SNAKE_CASE_ ): param.data.copy_(c_param.data ) # Better memory-wise. UpperCamelCase : Optional[int] = None def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None: UpperCamelCase : List[Any] = copy.deepcopy(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = state_dict.get('decay', self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('Decay must be between 0 and 1' ) UpperCamelCase : int = state_dict.get('min_decay', self.min_decay ) if not isinstance(self.min_decay, SCREAMING_SNAKE_CASE_ ): raise ValueError('Invalid min_decay' ) UpperCamelCase : Union[str, Any] = state_dict.get('optimization_step', self.optimization_step ) if not isinstance(self.optimization_step, SCREAMING_SNAKE_CASE_ ): raise ValueError('Invalid optimization_step' ) UpperCamelCase : Dict = state_dict.get('update_after_step', self.update_after_step ) if not isinstance(self.update_after_step, SCREAMING_SNAKE_CASE_ ): raise ValueError('Invalid update_after_step' ) UpperCamelCase : Any = state_dict.get('use_ema_warmup', self.use_ema_warmup ) if not isinstance(self.use_ema_warmup, SCREAMING_SNAKE_CASE_ ): raise ValueError('Invalid use_ema_warmup' ) UpperCamelCase : Optional[Any] = state_dict.get('inv_gamma', self.inv_gamma ) if not isinstance(self.inv_gamma, (float, int) ): raise ValueError('Invalid inv_gamma' ) UpperCamelCase : Tuple = state_dict.get('power', self.power ) if not isinstance(self.power, (float, int) ): raise ValueError('Invalid power' ) UpperCamelCase : Tuple = state_dict.get('shadow_params', SCREAMING_SNAKE_CASE_ ) if shadow_params is not None: UpperCamelCase : Optional[int] = shadow_params if not isinstance(self.shadow_params, SCREAMING_SNAKE_CASE_ ): raise ValueError('shadow_params must be a list' ) if not all(isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ) for p in self.shadow_params ): raise ValueError('shadow_params must all be Tensors' )
40
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def UpperCamelCase ( snake_case__ : Dict ) -> Optional[int]: return EnvironmentCommand() class lowerCAmelCase_ ( a__ ): @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : List[Any] = parser.add_parser('env' ) download_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = huggingface_hub.__version__ UpperCamelCase : int = 'not installed' UpperCamelCase : Union[str, Any] = 'NA' if is_torch_available(): import torch UpperCamelCase : Any = torch.__version__ UpperCamelCase : str = torch.cuda.is_available() UpperCamelCase : Dict = 'not installed' if is_transformers_available(): import transformers UpperCamelCase : str = transformers.__version__ UpperCamelCase : Optional[Any] = 'not installed' if is_accelerate_available(): import accelerate UpperCamelCase : Dict = accelerate.__version__ UpperCamelCase : List[str] = 'not installed' if is_xformers_available(): import xformers UpperCamelCase : List[str] = xformers.__version__ UpperCamelCase : Dict = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(SCREAMING_SNAKE_CASE_ ) ) return info @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
40
1
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class lowerCAmelCase_ ( a__ , a__ ): UpperCAmelCase__ : Tuple = "pixel_values" UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Any = TimmBackboneConfig def __init__( self, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[Any]: requires_backends(self, 'timm' ) super().__init__(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(F"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(SCREAMING_SNAKE_CASE_, 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) UpperCamelCase : List[str] = getattr(SCREAMING_SNAKE_CASE_, 'use_pretrained_backbone', SCREAMING_SNAKE_CASE_ ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. UpperCamelCase : List[Any] = config.out_indices if getattr(SCREAMING_SNAKE_CASE_, 'out_indices', SCREAMING_SNAKE_CASE_ ) is not None else (-1,) UpperCamelCase : Any = timm.create_model( config.backbone, pretrained=SCREAMING_SNAKE_CASE_, features_only=config.features_only, in_chans=config.num_channels, out_indices=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. UpperCamelCase : Dict = self._backbone.return_layers UpperCamelCase : List[str] = {layer['module']: str(SCREAMING_SNAKE_CASE_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(SCREAMING_SNAKE_CASE_ ) @classmethod def snake_case_ ( cls, SCREAMING_SNAKE_CASE_, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: requires_backends(cls, ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig UpperCamelCase : Optional[int] = kwargs.pop('config', TimmBackboneConfig() ) UpperCamelCase : Union[str, Any] = kwargs.pop('use_timm_backbone', SCREAMING_SNAKE_CASE_ ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) UpperCamelCase : str = kwargs.pop('num_channels', config.num_channels ) UpperCamelCase : Union[str, Any] = kwargs.pop('features_only', config.features_only ) UpperCamelCase : int = kwargs.pop('use_pretrained_backbone', config.use_pretrained_backbone ) UpperCamelCase : Dict = kwargs.pop('out_indices', config.out_indices ) UpperCamelCase : str = TimmBackboneConfig( backbone=SCREAMING_SNAKE_CASE_, num_channels=SCREAMING_SNAKE_CASE_, features_only=SCREAMING_SNAKE_CASE_, use_pretrained_backbone=SCREAMING_SNAKE_CASE_, out_indices=SCREAMING_SNAKE_CASE_, ) return super()._from_config(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Any: pass def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: UpperCamelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase : int = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone UpperCamelCase : Optional[Any] = self._all_layers UpperCamelCase : Dict = self._backbone(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = self._return_layers UpperCamelCase : Dict = tuple(hidden_states[i] for i in self.out_indices ) else: UpperCamelCase : Any = self._backbone(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = None UpperCamelCase : int = tuple(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = tuple(SCREAMING_SNAKE_CASE_ ) if hidden_states is not None else None if not return_dict: UpperCamelCase : int = (feature_maps,) if output_hidden_states: UpperCamelCase : Optional[Any] = output + (hidden_states,) return output return BackboneOutput(feature_maps=SCREAMING_SNAKE_CASE_, hidden_states=SCREAMING_SNAKE_CASE_, attentions=SCREAMING_SNAKE_CASE_ )
40
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '''▁''' __UpperCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} __UpperCAmelCase = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } __UpperCAmelCase = { '''facebook/xglm-564M''': 2_048, } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> None: UpperCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCamelCase : Any = 7 UpperCamelCase : Optional[int] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] UpperCamelCase : Dict = kwargs.get('additional_special_tokens', [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, sp_model_kwargs=self.sp_model_kwargs, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase : Dict = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} UpperCamelCase : Optional[int] = len(self.sp_model ) UpperCamelCase : Any = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: UpperCamelCase : int = self.__dict__.copy() UpperCamelCase : Union[str, Any] = None UpperCamelCase : int = self.sp_model.serialized_model_proto() return state def __setstate__( self, SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase : Any = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): UpperCamelCase : Any = {} UpperCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCamelCase : Optional[int] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_, token_ids_a=SCREAMING_SNAKE_CASE_, already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : str = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def snake_case_ ( self ) -> int: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def snake_case_ ( self ) -> int: UpperCamelCase : List[str] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_, out_type=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase : Union[str, Any] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : Dict = ''.join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_, ' ' ).strip() return out_string def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_, 'wb' ) as fi: UpperCamelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
40
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCAmelCase = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } __UpperCAmelCase = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = VOCAB_FILES_NAMES UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : str = ["input_ids", "attention_mask"] UpperCAmelCase__ : Dict = RobertaTokenizer def __init__( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="replace", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="<mask>", SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, errors=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_, trim_offsets=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase : Dict = getattr(SCREAMING_SNAKE_CASE_, pre_tok_state.pop('type' ) ) UpperCamelCase : List[str] = add_prefix_space UpperCamelCase : Dict = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = add_prefix_space UpperCamelCase : Optional[Any] = 'post_processor' UpperCamelCase : Dict = getattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if tokenizer_component_instance: UpperCamelCase : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase : Optional[Any] = tuple(state['sep'] ) if "cls" in state: UpperCamelCase : Optional[int] = tuple(state['cls'] ) UpperCamelCase : Any = False if state.get('add_prefix_space', SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase : Optional[int] = add_prefix_space UpperCamelCase : List[Any] = True if state.get('trim_offsets', SCREAMING_SNAKE_CASE_ ) != trim_offsets: UpperCamelCase : Dict = trim_offsets UpperCamelCase : Union[str, Any] = True if changes_to_apply: UpperCamelCase : Tuple = getattr(SCREAMING_SNAKE_CASE_, state.pop('type' ) ) UpperCamelCase : Union[str, Any] = component_class(**SCREAMING_SNAKE_CASE_ ) setattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) @property def snake_case_ ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else value UpperCamelCase : List[Any] = value def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCamelCase : Optional[int] = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCamelCase : Dict = kwargs.get('is_split_into_words', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: UpperCamelCase : Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> Tuple: UpperCamelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : Dict = [self.sep_token_id] UpperCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
40
1
class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : Tuple = n UpperCamelCase : List[Any] = [None] * self.n UpperCamelCase : str = 0 # index of the first element UpperCamelCase : Optional[int] = 0 UpperCamelCase : Dict = 0 def __len__( self ) -> int: return self.size def snake_case_ ( self ) -> bool: return self.size == 0 def snake_case_ ( self ) -> str: return False if self.is_empty() else self.array[self.front] def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) UpperCamelCase : Union[str, Any] = data UpperCamelCase : int = (self.rear + 1) % self.n self.size += 1 return self def snake_case_ ( self ) -> Dict: if self.size == 0: raise Exception('UNDERFLOW' ) UpperCamelCase : Tuple = self.array[self.front] UpperCamelCase : str = None UpperCamelCase : Tuple = (self.front + 1) % self.n self.size -= 1 return temp
40
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowerCAmelCase_ ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_ ) -> Tuple: super().__init__(features=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = torch_tensor_kwargs import torch # noqa import torch at initialization def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict: import torch if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) and column: if all( isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(SCREAMING_SNAKE_CASE_ ) return column def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Any: import torch if isinstance(SCREAMING_SNAKE_CASE_, (str, bytes, type(SCREAMING_SNAKE_CASE_ )) ): return value elif isinstance(SCREAMING_SNAKE_CASE_, (np.character, np.ndarray) ) and np.issubdtype(value.dtype, np.character ): return value.tolist() UpperCamelCase : str = {} if isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.integer ): UpperCamelCase : List[str] = {'dtype': torch.intaa} elif isinstance(SCREAMING_SNAKE_CASE_, (np.number, np.ndarray) ) and np.issubdtype(value.dtype, np.floating ): UpperCamelCase : int = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(SCREAMING_SNAKE_CASE_, PIL.Image.Image ): UpperCamelCase : str = np.asarray(SCREAMING_SNAKE_CASE_ ) return torch.tensor(SCREAMING_SNAKE_CASE_, **{**default_dtype, **self.torch_tensor_kwargs} ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: import torch # support for torch, tf, jax etc. if hasattr(SCREAMING_SNAKE_CASE_, '__array__' ) and not isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ): UpperCamelCase : Union[str, Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] ) elif isinstance(SCREAMING_SNAKE_CASE_, (list, tuple) ): return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for substruct in data_struct] ) return self._tensorize(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int: return map_nested(self._recursive_tensorize, SCREAMING_SNAKE_CASE_, map_list=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping: UpperCamelCase : Dict = self.numpy_arrow_extractor().extract_row(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.python_features_decoder.decode_row(SCREAMING_SNAKE_CASE_ ) return self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> "torch.Tensor": UpperCamelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.python_features_decoder.decode_column(SCREAMING_SNAKE_CASE_, pa_table.column_names[0] ) UpperCamelCase : Any = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = self._consolidate(SCREAMING_SNAKE_CASE_ ) return column def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Mapping: UpperCamelCase : List[Any] = self.numpy_arrow_extractor().extract_batch(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = self.python_features_decoder.decode_batch(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = self.recursive_tensorize(SCREAMING_SNAKE_CASE_ ) for column_name in batch: UpperCamelCase : str = self._consolidate(batch[column_name] ) return batch
40
1
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : int = IFPipeline UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case_ ( self ) -> str: return self._get_dummy_components() def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def snake_case_ ( self ) -> Optional[int]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda', reason='float16 requires CUDA' ) def snake_case_ ( self ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case_ ( self ) -> Dict: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case_ ( self ) -> Optional[int]: self._test_save_load_local() def snake_case_ ( self ) -> List[str]: self._test_inference_batch_single_identical( expected_max_diff=1e-2, ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def snake_case_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> List[Any]: # if UpperCamelCase : Union[str, Any] = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0', variant='fp16', torch_dtype=torch.floataa ) UpperCamelCase : str = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0', variant='fp16', torch_dtype=torch.floataa, text_encoder=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) UpperCamelCase , UpperCamelCase : List[str] = pipe_a.encode_prompt('anime turtle', device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCamelCase : int = None UpperCamelCase : Union[str, Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCamelCase : Optional[int] = IFImgaImgPipeline(**pipe_a.components ) UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCamelCase : Union[str, Any] = IFInpaintingPipeline(**pipe_a.components ) UpperCamelCase : Union[str, Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 UpperCamelCase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Tuple = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : int = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : Dict = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : List[Any] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = floats_tensor((1, 3, 256, 256), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
40
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case__ , snake_case__ ) ) ) def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> list[list[list[float] | float]]: if dataset.ndim != value_array.ndim: UpperCamelCase : int = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(snake_case__ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCamelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(snake_case__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCamelCase : Dict = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(snake_case__ ) UpperCamelCase : List[Any] = [] for value in value_array: UpperCamelCase : Optional[Any] = euclidean(snake_case__ , dataset[0] ) UpperCamelCase : Dict = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCamelCase : Union[str, Any] = euclidean(snake_case__ , snake_case__ ) if dist > temp_dist: UpperCamelCase : str = temp_dist UpperCamelCase : List[str] = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float: return np.dot(snake_case__ , snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ )) if __name__ == "__main__": import doctest doctest.testmod()
40
1
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def UpperCamelCase ( snake_case__ : List[Any] ) -> Optional[Any]: if is_torch_version('<' , '2.0.0' ) or not hasattr(snake_case__ , '_dynamo' ): return False return isinstance(snake_case__ , torch._dynamo.eval_frame.OptimizedModule ) def UpperCamelCase ( snake_case__ : str , snake_case__ : bool = True ) -> Tuple: UpperCamelCase : Tuple = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase : Optional[Any] = is_compiled_module(snake_case__ ) if is_compiled: UpperCamelCase : List[str] = model UpperCamelCase : Tuple = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(snake_case__ , snake_case__ ): UpperCamelCase : List[str] = model.module if not keep_fpaa_wrapper: UpperCamelCase : Optional[int] = getattr(snake_case__ , 'forward' ) UpperCamelCase : int = model.__dict__.pop('_original_forward' , snake_case__ ) if original_forward is not None: while hasattr(snake_case__ , '__wrapped__' ): UpperCamelCase : Any = forward.__wrapped__ if forward == original_forward: break UpperCamelCase : Any = forward if getattr(snake_case__ , '_converted_to_transformer_engine' , snake_case__ ): convert_model(snake_case__ , to_transformer_engine=snake_case__ ) if is_compiled: UpperCamelCase : Tuple = model UpperCamelCase : int = compiled_model return model def UpperCamelCase ( ) -> Any: PartialState().wait_for_everyone() def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : Dict ) -> int: if PartialState().distributed_type == DistributedType.TPU: xm.save(snake_case__ , snake_case__ ) elif PartialState().local_process_index == 0: torch.save(snake_case__ , snake_case__ ) @contextmanager def UpperCamelCase ( **snake_case__ : str ) -> str: for key, value in kwargs.items(): UpperCamelCase : int = str(snake_case__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def UpperCamelCase ( snake_case__ : str ) -> Any: if not hasattr(snake_case__ , '__qualname__' ) and not hasattr(snake_case__ , '__name__' ): UpperCamelCase : Tuple = getattr(snake_case__ , '__class__' , snake_case__ ) if hasattr(snake_case__ , '__qualname__' ): return obj.__qualname__ if hasattr(snake_case__ , '__name__' ): return obj.__name__ return str(snake_case__ ) def UpperCamelCase ( snake_case__ : Any , snake_case__ : Optional[Any] ) -> Tuple: for key, value in source.items(): if isinstance(snake_case__ , snake_case__ ): UpperCamelCase : Optional[Any] = destination.setdefault(snake_case__ , {} ) merge_dicts(snake_case__ , snake_case__ ) else: UpperCamelCase : List[Any] = value return destination def UpperCamelCase ( snake_case__ : int = None ) -> bool: if port is None: UpperCamelCase : Union[str, Any] = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
40
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __UpperCAmelCase = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __UpperCAmelCase = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __UpperCAmelCase = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __UpperCAmelCase = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __UpperCAmelCase = tf.keras.preprocessing.image.img_to_array(test_image) __UpperCAmelCase = np.expand_dims(test_image, axis=0) __UpperCAmelCase = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __UpperCAmelCase = '''Normal''' if result[0][0] == 1: __UpperCAmelCase = '''Abnormality detected'''
40
1
from __future__ import annotations import numpy as np def UpperCamelCase ( snake_case__ : list[float] ) -> List[Any]: return np.maximum(0 , snake_case__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
40
import os import pytest from attr import dataclass __UpperCAmelCase = '''us-east-1''' # defaults region @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : str UpperCAmelCase__ : Tuple = "arn:aws:iam::558105141721:role/sagemaker_execution_role" UpperCAmelCase__ : Union[str, Any] = { "task_name": "mnli", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 500, "save_steps": 5500, } UpperCAmelCase__ : Dict = {**hyperparameters, "max_steps": 1000} @property def snake_case_ ( self ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def snake_case_ ( self ) -> str: return F"""{self.framework}-transfromers-test""" @property def snake_case_ ( self ) -> str: return F"""./tests/sagemaker/scripts/{self.framework}""" @property def snake_case_ ( self ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def UpperCamelCase ( snake_case__ : Any ) -> Union[str, Any]: UpperCamelCase : Optional[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
40
1
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def UpperCamelCase ( snake_case__ : str , snake_case__ : str , snake_case__ : Optional[str] = None ) -> str: if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path UpperCamelCase : Optional[int] = quote(snake_case__ ) return hfh.hf_hub_url(snake_case__ , snake_case__ , repo_type='dataset' , revision=snake_case__ )
40
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __UpperCAmelCase = '''src/transformers''' __UpperCAmelCase = '''docs/source/en/tasks''' def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Any ) -> Optional[int]: with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase : Optional[Any] = f.readlines() # Find the start prompt. UpperCamelCase : List[Any] = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 UpperCamelCase : Optional[Any] = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) __UpperCAmelCase = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __UpperCAmelCase = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def UpperCamelCase ( snake_case__ : Optional[int] ) -> Optional[Any]: UpperCamelCase : Tuple = TASK_GUIDE_TO_MODELS[task_guide] UpperCamelCase : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() ) UpperCamelCase : Tuple = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def UpperCamelCase ( snake_case__ : str , snake_case__ : Optional[int]=False ) -> Tuple: UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = _find_text_in_file( filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) UpperCamelCase : Optional[Any] = get_model_list_for_task(snake_case__ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case__ , snake_case__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ' to fix this.' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __UpperCAmelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
40
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : List[str] = "decision_transformer" UpperCAmelCase__ : Union[str, Any] = ["past_key_values"] UpperCAmelCase__ : Optional[int] = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, SCREAMING_SNAKE_CASE_=17, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=128, SCREAMING_SNAKE_CASE_=4096, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=1024, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="relu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=1e-5, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=5_0256, SCREAMING_SNAKE_CASE_=5_0256, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, **SCREAMING_SNAKE_CASE_, ) -> str: UpperCamelCase : Optional[int] = state_dim UpperCamelCase : Optional[int] = act_dim UpperCamelCase : Tuple = hidden_size UpperCamelCase : int = max_ep_len UpperCamelCase : List[str] = action_tanh UpperCamelCase : Dict = vocab_size UpperCamelCase : Optional[int] = n_positions UpperCamelCase : List[str] = n_layer UpperCamelCase : Optional[int] = n_head UpperCamelCase : Optional[Any] = n_inner UpperCamelCase : Any = activation_function UpperCamelCase : Any = resid_pdrop UpperCamelCase : List[str] = embd_pdrop UpperCamelCase : str = attn_pdrop UpperCamelCase : List[str] = layer_norm_epsilon UpperCamelCase : Tuple = initializer_range UpperCamelCase : int = scale_attn_weights UpperCamelCase : Optional[int] = use_cache UpperCamelCase : Dict = scale_attn_by_inverse_layer_idx UpperCamelCase : Tuple = reorder_and_upcast_attn UpperCamelCase : Union[str, Any] = bos_token_id UpperCamelCase : Optional[int] = eos_token_id super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
40
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : int = IFPipeline UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case_ ( self ) -> str: return self._get_dummy_components() def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def snake_case_ ( self ) -> Optional[int]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda', reason='float16 requires CUDA' ) def snake_case_ ( self ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case_ ( self ) -> Dict: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case_ ( self ) -> Optional[int]: self._test_save_load_local() def snake_case_ ( self ) -> List[str]: self._test_inference_batch_single_identical( expected_max_diff=1e-2, ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def snake_case_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> List[Any]: # if UpperCamelCase : Union[str, Any] = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0', variant='fp16', torch_dtype=torch.floataa ) UpperCamelCase : str = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0', variant='fp16', torch_dtype=torch.floataa, text_encoder=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) UpperCamelCase , UpperCamelCase : List[str] = pipe_a.encode_prompt('anime turtle', device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCamelCase : int = None UpperCamelCase : Union[str, Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCamelCase : Optional[int] = IFImgaImgPipeline(**pipe_a.components ) UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCamelCase : Union[str, Any] = IFInpaintingPipeline(**pipe_a.components ) UpperCamelCase : Union[str, Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 UpperCamelCase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Tuple = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : int = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : Dict = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : List[Any] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = floats_tensor((1, 3, 256, 256), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
40
1
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : int ) -> int: UpperCamelCase : Any = nn.functional.normalize(snake_case__ ) UpperCamelCase : List[Any] = nn.functional.normalize(snake_case__ ) return torch.mm(snake_case__ , normalized_text_embeds.t() ) class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Optional[int] = CLIPConfig UpperCAmelCase__ : Union[str, Any] = ["CLIPEncoderLayer"] def __init__( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: super().__init__(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = CLIPVisionModel(config.vision_config ) UpperCamelCase : str = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = nn.Parameter(torch.ones(17, config.projection_dim ), requires_grad=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = nn.Parameter(torch.ones(3, config.projection_dim ), requires_grad=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = nn.Parameter(torch.ones(17 ), requires_grad=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = nn.Parameter(torch.ones(3 ), requires_grad=SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase : List[str] = self.vision_model(SCREAMING_SNAKE_CASE_ )[1] # pooled_output UpperCamelCase : str = self.visual_projection(SCREAMING_SNAKE_CASE_ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase : Tuple = cosine_distance(SCREAMING_SNAKE_CASE_, self.special_care_embeds ).cpu().float().numpy() UpperCamelCase : Union[str, Any] = cosine_distance(SCREAMING_SNAKE_CASE_, self.concept_embeds ).cpu().float().numpy() UpperCamelCase : str = [] UpperCamelCase : int = image_embeds.shape[0] for i in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images UpperCamelCase : Dict = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): UpperCamelCase : Any = special_cos_dist[i][concept_idx] UpperCamelCase : Optional[int] = self.special_care_embeds_weights[concept_idx].item() UpperCamelCase : Optional[Any] = round(concept_cos - concept_threshold + adjustment, 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) UpperCamelCase : List[Any] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): UpperCamelCase : List[str] = cos_dist[i][concept_idx] UpperCamelCase : List[Any] = self.concept_embeds_weights[concept_idx].item() UpperCamelCase : Optional[int] = round(concept_cos - concept_threshold + adjustment, 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(SCREAMING_SNAKE_CASE_ ) result.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : int = self.vision_model(SCREAMING_SNAKE_CASE_ )[1] # pooled_output UpperCamelCase : Dict = self.visual_projection(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = cosine_distance(SCREAMING_SNAKE_CASE_, self.special_care_embeds ) UpperCamelCase : Optional[int] = cosine_distance(SCREAMING_SNAKE_CASE_, self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images UpperCamelCase : Optional[Any] = 0.0 UpperCamelCase : List[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) UpperCamelCase : Tuple = torch.any(special_scores > 0, dim=1 ) UpperCamelCase : Optional[int] = special_care * 0.01 UpperCamelCase : Tuple = special_adjustment.unsqueeze(1 ).expand(-1, cos_dist.shape[1] ) UpperCamelCase : Dict = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) UpperCamelCase : Optional[Any] = torch.any(concept_scores > 0, dim=1 ) return images, has_nsfw_concepts
40
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def UpperCamelCase ( snake_case__ : Tuple="" ) -> str: UpperCamelCase : Union[str, Any] = tempfile.mkdtemp() return os.path.join(snake_case__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> int: UpperCamelCase : Union[str, Any] = torch.rand(12, dtype=torch.floataa ) - 0.5 UpperCamelCase : Union[str, Any] = AgentAudio(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) # Ensure that the file contains the same value as the original tensor UpperCamelCase , UpperCamelCase : Any = sf.read(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, torch.tensor(SCREAMING_SNAKE_CASE_ ), atol=1e-4 ) ) def snake_case_ ( self ) -> Any: UpperCamelCase : Optional[int] = torch.rand(12, dtype=torch.floataa ) - 0.5 UpperCamelCase : Union[str, Any] = get_new_path(suffix='.wav' ) sf.write(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, 1_6000 ) UpperCamelCase : int = AgentAudio(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type.to_raw(), atol=1e-4 ) ) self.assertEqual(agent_type.to_string(), SCREAMING_SNAKE_CASE_ ) @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Any: UpperCamelCase : Dict = torch.randint(0, 256, (64, 64, 3) ) UpperCamelCase : Union[str, Any] = AgentImage(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, agent_type._tensor, atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw(), Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' UpperCamelCase : Optional[int] = Image.open(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = AgentImage(SCREAMING_SNAKE_CASE_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ) -> int: UpperCamelCase : Optional[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' UpperCamelCase : Union[str, Any] = Image.open(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = AgentImage(SCREAMING_SNAKE_CASE_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = 'Hey!' UpperCamelCase : Dict = AgentText(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_string() ) self.assertEqual(SCREAMING_SNAKE_CASE_, agent_type.to_raw() ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
40
1
import math import random def UpperCamelCase ( snake_case__ : float , snake_case__ : bool = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def UpperCamelCase ( snake_case__ : int , snake_case__ : int ) -> float: UpperCamelCase : Optional[Any] = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(snake_case__ ): # Forward propagation UpperCamelCase : str = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? UpperCamelCase : int = (expected / 100) - layer_a # Error delta UpperCamelCase : List[str] = layer_1_error * sigmoid_function(snake_case__ , snake_case__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input('''Expected value: ''')) __UpperCAmelCase = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
40
def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : Any ) -> Union[str, Any]: UpperCamelCase : int = [1] for i in range(2 , snake_case__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCamelCase : List[Any] = [] UpperCamelCase : List[Any] = list(range(snake_case__ ) ) # Find permutation while factorials: UpperCamelCase : int = factorials.pop() UpperCamelCase , UpperCamelCase : int = divmod(snake_case__ , snake_case__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
40
1
def UpperCamelCase ( ) -> Any: for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> Any: UpperCamelCase : str = 1 UpperCamelCase : Optional[Any] = 2 while i * i <= n: UpperCamelCase : List[str] = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def UpperCamelCase ( ) -> List[str]: return next(i for i in triangle_number_generator() if count_divisors(snake_case__ ) > 500 ) if __name__ == "__main__": print(solution())
40
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase_ ( a__ ): def snake_case_ ( self ) -> Tuple: UpperCamelCase : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'width_multiplier' ) ) class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_="swish", SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=0.25, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, ) -> Any: UpperCamelCase : int = parent UpperCamelCase : int = batch_size UpperCamelCase : List[Any] = image_size UpperCamelCase : List[str] = patch_size UpperCamelCase : Optional[int] = num_channels UpperCamelCase : List[str] = make_divisible(512 * width_multiplier, divisor=8 ) UpperCamelCase : List[str] = hidden_act UpperCamelCase : Optional[int] = conv_kernel_size UpperCamelCase : List[str] = output_stride UpperCamelCase : Union[str, Any] = classifier_dropout_prob UpperCamelCase : List[Any] = use_labels UpperCamelCase : Any = is_training UpperCamelCase : int = num_labels UpperCamelCase : List[Any] = initializer_range UpperCamelCase : Tuple = scope UpperCamelCase : List[str] = width_multiplier UpperCamelCase : Any = ffn_dropout UpperCamelCase : List[Any] = attn_dropout def snake_case_ ( self ) -> int: UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : List[str] = None UpperCamelCase : int = None if self.use_labels: UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels ) UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCamelCase : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case_ ( self ) -> int: return MobileViTVaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : Any = MobileViTVaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : Optional[int] = self.num_labels UpperCamelCase : Tuple = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : Any = self.num_labels UpperCamelCase : Optional[Any] = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = config_and_inputs UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Tuple = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase__ : Any = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Optional[Any] = False def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Dict = MobileViTVaModelTester(self ) UpperCamelCase : Optional[Any] = MobileViTVaConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def snake_case_ ( self ) -> int: pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def snake_case_ ( self ) -> str: pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case_ ( self ) -> Any: pass def snake_case_ ( self ) -> List[str]: UpperCamelCase , UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : str = [*signature.parameters.keys()] UpperCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Tuple: def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Tuple = outputs.hidden_states UpperCamelCase : Dict = 5 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCamelCase : Any = 2 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2 ) UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : Optional[int] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> str: UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) @slow def snake_case_ ( self ) -> Optional[Any]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : str = MobileViTVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> Tuple: UpperCamelCase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> str: return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.default_image_processor UpperCamelCase : Any = prepare_img() UpperCamelCase : Tuple = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : List[str] = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Union[str, Any] = prepare_img() UpperCamelCase : Any = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = outputs.logits # verify the logits UpperCamelCase : Dict = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.tensor( [ [[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]], [[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]], [[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]], ], device=SCREAMING_SNAKE_CASE_, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : str = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Optional[int] = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Tuple = prepare_img() UpperCamelCase : int = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : str = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = outputs.logits.detach().cpu() UpperCamelCase : int = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_, target_sizes=[(50, 60)] ) UpperCamelCase : Optional[int] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ )
40
1
from timeit import timeit __UpperCAmelCase = { '''MALAYALAM''': True, '''String''': False, '''rotor''': True, '''level''': True, '''A''': True, '''BB''': True, '''ABC''': False, '''amanaplanacanalpanama''': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def UpperCamelCase ( snake_case__ : str ) -> bool: UpperCamelCase : str = 0 UpperCamelCase : Optional[int] = len(snake_case__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def UpperCamelCase ( snake_case__ : str ) -> bool: UpperCamelCase : List[str] = len(snake_case__ ) // 2 UpperCamelCase : Optional[int] = len(snake_case__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(snake_case__ ) ) def UpperCamelCase ( snake_case__ : str ) -> bool: if len(snake_case__ ) <= 2: return True if s[0] == s[len(snake_case__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def UpperCamelCase ( snake_case__ : str ) -> bool: return s == s[::-1] def UpperCamelCase ( snake_case__ : str ) -> None: UpperCamelCase : List[Any] = F"""all({name}(key) is value for key, value in test_data.items())""" UpperCamelCase : Optional[Any] = F"""from __main__ import test_data, {name}""" UpperCamelCase : Dict = 500000 UpperCamelCase : Optional[int] = timeit(stmt=snake_case__ , setup=snake_case__ , number=snake_case__ ) print(F"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F"""{key:21} {value}""") print('''a man a plan a canal panama''') # finished 500,000 runs in 0.46793 seconds benchmark_function('''is_palindrome_slice''') # finished 500,000 runs in 0.85234 seconds benchmark_function('''is_palindrome''') # finished 500,000 runs in 1.32028 seconds benchmark_function('''is_palindrome_recursive''') # finished 500,000 runs in 2.08679 seconds benchmark_function('''is_palindrome_traversal''')
40
def UpperCamelCase ( snake_case__ : Optional[int] ) -> str: UpperCamelCase : List[str] = [0] * len(snake_case__ ) UpperCamelCase : int = [] UpperCamelCase : Optional[int] = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: UpperCamelCase : Optional[int] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: UpperCamelCase : Tuple = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph __UpperCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
40
1
from random import randint from tempfile import TemporaryFile import numpy as np def UpperCamelCase ( snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Any ) -> Dict: UpperCamelCase : Any = 0 if start < end: UpperCamelCase : Tuple = randint(snake_case__ , snake_case__ ) UpperCamelCase : Tuple = a[end] UpperCamelCase : Dict = a[pivot] UpperCamelCase : Any = temp UpperCamelCase , UpperCamelCase : Dict = _in_place_partition(snake_case__ , snake_case__ , snake_case__ ) count += _in_place_quick_sort(snake_case__ , snake_case__ , p - 1 ) count += _in_place_quick_sort(snake_case__ , p + 1 , snake_case__ ) return count def UpperCamelCase ( snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : Optional[int] ) -> Tuple: UpperCamelCase : Dict = 0 UpperCamelCase : str = randint(snake_case__ , snake_case__ ) UpperCamelCase : Any = a[end] UpperCamelCase : Any = a[pivot] UpperCamelCase : str = temp UpperCamelCase : List[Any] = start - 1 for index in range(snake_case__ , snake_case__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase : Optional[Any] = new_pivot_index + 1 UpperCamelCase : str = a[new_pivot_index] UpperCamelCase : Tuple = a[index] UpperCamelCase : Tuple = temp UpperCamelCase : str = a[new_pivot_index + 1] UpperCamelCase : int = a[end] UpperCamelCase : Union[str, Any] = temp return new_pivot_index + 1, count __UpperCAmelCase = TemporaryFile() __UpperCAmelCase = 100 # 1000 elements are to be sorted __UpperCAmelCase , __UpperCAmelCase = 0, 1 # mean and standard deviation __UpperCAmelCase = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array __UpperCAmelCase = np.load(outfile) __UpperCAmelCase = len(M) - 1 __UpperCAmelCase = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
40
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
40
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Union[str, Any] = "gptj" UpperCAmelCase__ : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, SCREAMING_SNAKE_CASE_=5_0400, SCREAMING_SNAKE_CASE_=2048, SCREAMING_SNAKE_CASE_=4096, SCREAMING_SNAKE_CASE_=28, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="gelu_new", SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1e-5, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=5_0256, SCREAMING_SNAKE_CASE_=5_0256, SCREAMING_SNAKE_CASE_=False, **SCREAMING_SNAKE_CASE_, ) -> Optional[Any]: UpperCamelCase : Optional[int] = vocab_size UpperCamelCase : Dict = n_positions UpperCamelCase : Any = n_embd UpperCamelCase : Tuple = n_layer UpperCamelCase : Dict = n_head UpperCamelCase : str = n_inner UpperCamelCase : str = rotary_dim UpperCamelCase : Any = activation_function UpperCamelCase : Union[str, Any] = resid_pdrop UpperCamelCase : Dict = embd_pdrop UpperCamelCase : Tuple = attn_pdrop UpperCamelCase : str = layer_norm_epsilon UpperCamelCase : Tuple = initializer_range UpperCamelCase : Any = use_cache UpperCamelCase : Optional[int] = bos_token_id UpperCamelCase : List[str] = eos_token_id super().__init__( bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, tie_word_embeddings=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( a__ ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = "default", SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, ) -> Optional[int]: super().__init__(SCREAMING_SNAKE_CASE_, task=SCREAMING_SNAKE_CASE_, patching_specs=SCREAMING_SNAKE_CASE_, use_past=SCREAMING_SNAKE_CASE_ ) if not getattr(self._config, 'pad_token_id', SCREAMING_SNAKE_CASE_ ): # TODO: how to do that better? UpperCamelCase : Optional[Any] = 0 @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase : List[Any] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_, direction='inputs' ) UpperCamelCase : List[Any] = {0: 'batch', 1: 'past_sequence + sequence'} else: UpperCamelCase : List[Any] = {0: 'batch', 1: 'sequence'} return common_inputs @property def snake_case_ ( self ) -> int: return self._config.n_layer @property def snake_case_ ( self ) -> int: return self._config.n_head def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, ) -> Mapping[str, Any]: UpperCamelCase : Union[str, Any] = super(SCREAMING_SNAKE_CASE_, self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE_, batch_size=SCREAMING_SNAKE_CASE_, seq_length=SCREAMING_SNAKE_CASE_, is_pair=SCREAMING_SNAKE_CASE_, framework=SCREAMING_SNAKE_CASE_ ) # We need to order the input in the way they appears in the forward() UpperCamelCase : Optional[int] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase : List[str] = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCamelCase : int = seqlen + 2 UpperCamelCase : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCamelCase : Dict = [ (torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ )) for _ in range(self.num_layers ) ] UpperCamelCase : Dict = common_inputs['attention_mask'] if self.use_past: UpperCamelCase : Optional[Any] = ordered_inputs['attention_mask'].dtype UpperCamelCase : List[str] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, dtype=SCREAMING_SNAKE_CASE_ )], dim=1 ) return ordered_inputs @property def snake_case_ ( self ) -> int: return 13
40
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
40
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
1
import os import pytest from attr import dataclass __UpperCAmelCase = '''us-east-1''' # defaults region @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : str UpperCAmelCase__ : Tuple = "arn:aws:iam::558105141721:role/sagemaker_execution_role" UpperCAmelCase__ : Union[str, Any] = { "task_name": "mnli", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 500, "save_steps": 5500, } UpperCAmelCase__ : Dict = {**hyperparameters, "max_steps": 1000} @property def snake_case_ ( self ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def snake_case_ ( self ) -> str: return F"""{self.framework}-transfromers-test""" @property def snake_case_ ( self ) -> str: return F"""./tests/sagemaker/scripts/{self.framework}""" @property def snake_case_ ( self ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def UpperCamelCase ( snake_case__ : Any ) -> Union[str, Any]: UpperCamelCase : Optional[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
40
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''ViTFeatureExtractor'''] __UpperCAmelCase = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
1